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Abstract

Microbial colonies are fascinating structures in which growth and internal organization reflect complex
morphogenetic processes. Here, we generated a microfluidics device with arrays of long monolayer yeast
colonies to further global understanding of how intercellular metabolic interactions affect the internal
structure of colonies within defined boundary conditions. We observed the emergence of stable glucose
gradients using fluorescently labelled hexose transporters and quantified the spatial correlations with intra-
colony growth rates and expression of other genes regulated by glucose availability. These landscapes
depended on the external glucose concentration as well as secondary gradients, e.g., amino acid availability.
This work demonstrates the regulatory genetic networks governing cellular physiological adaptation are the
key to internal structuration of cellular assemblies. This approach could be used in the future to decipher
the interplay between long-range metabolic interactions, cellular development and morphogenesis in more

complex systems.
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Introduction

Structured cellular communities are complex, dynamic systems and their composition, expansion and
internal structure are the result of interactions between the cells and their microenvironment. Cells absorb
and metabolize nutrients and also produce and secrete metabolites, creating spatial gradients of nutrients
and metabolites. Thus, cells at the outskirts of a multicellular assembly do not experience the same
microenvironment as the cells deeply buried within. Reciprocally, cellular physiology is dependent on the
cell’s position within a colony. Such variations in cellular physiology are consistently observed in a variety
of multicellular systems — from bacterial and yeast colonies'? to biofilms® and tumors*® — and are reflected
by altered gene expression levels and cellular phenotypes as growth rates, nutrient uptake rates and
metabolic activity. Such variations presumably emerge because of long-range metabolic interactions
between cells, in that the cellular microenvironment at one position depends on the nutrient uptake rate at

another position.

Notably, multicellular communities®® exhibit various adaptive benefits, including higher cell proliferation,
improved access to resources and niches’, collective defence (e.g., against antagonists, drugs, antibiotics)?
resulting in optimization of population survival when confronted with averse physical, chemical, nutritional

or biological challenges'®. These examples indicate the importance of understanding the emergence and

111—13 114—16

maintenance of complex spatial multicellular structures from ecologica , medica and

evolutionary!”!?

perspectives. Yet, despite the obvious contrast between homogeneous environments and
the pronounced environmental heterogeneity of microbial cellular assemblies, the majority of scientific
research to date has either focused on single cells in homogeneous environments or populations of cells
grown in batch or continuous liquid cultures. This is mostly due to the complexity of designing an
experiment that would allow monitoring, over long time, the development of a spatially defined extended
multicellular assembly. This is in particular the case for the widely used eukaryotic model organism yeast

Saccharomyces cerevisiae, despite the numerous calls in recent reviews to study its nutrient sensing,

signalling, and related growth and development control within the natural colony context. %22,
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57  As microorganisms in nature tend to live in multicellular communities, devising an experimental approach
58  that captures this complexity while being easy to use and amenable to different experimental needs and
59  conditions should further our understanding of complex gene regulatory networks in the context of
60  microbial evolution and ecology.

61

62  Current direct observations of three-dimensional colonies and biofilms are cumbersome and often
63  constrained by existing technologies®. For example, two-photon microscopy of sliced agarose-encapsulated
64  yeast colonies was required to show that yeast cells may adopt different physiologies — and possibly
65  different cell types — depending on their position within a colony?. In another example, nanospray
66  desorption electrospray ionization mass spectrometry (nanoDESI MS) was used to study growing bacterial
67  colonies on agar plates and showed a wide diversity and complexity of compounds that characterise
68  microbial chemical ecology?*. Such complex methodologies are not amenable to time-lapse imaging, nor
69  to observation of the temporal variations in gene expression and growth rates of single cells over relevant
70  time and length scales. An alternative is to grow microbial cells in microfluidic devices to spatially constrain
71  the growth of the cells and to control the delivery of nutrients?*. Microfluidic experimental research is
72 typically designed to ensure that the cells being studied experience a homogeneous environment. This can
73 be done at the single cell level, as it has been demonstrated in studies of aging of yeast*® and bacteria’!
74  where single cells had to be trapped and kept under constant nutrient flow for long term observations to
75  capture their death. Alternatively, a small cell assembly can be trapped in dead-end chambers under
76  assumption that a quick diffusion of nutrients will keep the environment in chambers homogeneous. With
77  that approach cell lineages were tracked for bacteria®? (the widely used “mother machine™) and yeast®, cells
78  were subjected to fluctuating environments of different carbon sources to study non-genetic memory in
79  bacteria®®, and bacterial colonies were synchronised through quorum sensing and gas-phase redox

80  signalling over centimetre-length scales to produce oscillating colony “biopixels™3’

. Although fascinating
81 in their own right, unfortunately, such devices do not capture emerging properties at a colony level, i.e.

82  spatial variations in growth rates, microenvironments and phenotypes. Recently, there have been a few

83  attempts to use microfluidics to study collective properties of bacterial colonies grown in a microcolony.
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84  Hornung et al. grew two-dimensional bacterial microcolonies in a 75 um long device perfused with a very
85  low concentration (up to 195 uM) of protocatechuic acid as the only carbon source from both sides of the
86  cell chamber®. They observed heterogeneous growth which they confirmed through reaction-diffusion
87  model combined with particle-based simulations. In a similar setup, a 60 um long device perfused with a
88  very low concentration of glucose (up to 800 uM) from one side was used to study the emergence of
89  microscale gradients that resulted in metabolic cross-feeding between glucose-fermenting and acetate-
90  respiring subpopulations of bacteria and antibiotic tolerance by slow growing subpopulation’’. Wilmoth et
91  al. used microwells up to 100 um in diameter to look at spatial patterns of H1-Type VI secretion system
92  (T6SS) mutants of Pseudomonas aeruginosa accompanied with an agent-based model depicting the two
93  observed subpopulations®. They found that spatial constraints and local concentrations of growth substrates
94  affect the spatial organization of cells. Finally, Liu et al. grew Bacillus subtilis biofilms perfused with
95  glycerol and glutamate media. They discovered collective oscillations which emerge as a consequence of
96  long-range metabolic co-dependence between cells in the interior and cells at the periphery of a biofilm,
97  presumably to maximize the availability of nutrients and survival of interior cells**. While the use of
98  microfluidics gave rise to the discovery of interesting collective properties of microbial assemblies, such
99  attempts were too specific and had to deal with some of the limitations like small device dimensions (<100
100  um), use of low nutrient concentrations (<1 mM), limited scope of nutrient types, inability to access single
101 cell level — and therefore cannot be transposed to the general case of the study of a large monolayer of cells
102 in standard range and scope of nutrients employed in biological research. Additionally, it is tempting to
103 reconstruct the emergence of gene expression landscapes on a global scale (e.g., within structured
104  communities) from local (e.g., single cell) properties, given the extensive knowledge accumulated on
105  single-cell gene regulatory networks. However, the variations in the microenvironment within a
106  multicellular assembly and their interconnections with gene expression and cell metabolism are poorly
107  known.
108
109  In order to address the above limitations in current methodologies and observe emerging properties at a

110  colony level, we developed a microfluidic device to grow thin, extended arrays of yeast cell monolayers
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111  that are perfused with nutrients from a single direction. We demonstrate a novel capacity to reproduce and
112 quantify spatial variation in cellular growth rate and the formation of gene expression landscapes for key
113 metabolic genes involved in glucose transport and utilization, across the nascent 2D microcolony.
114  Interestingly, the gene expression landscapes exhibited a high degree of spatial correlation over a range of
115  glucose concentrations. Notably, we show that an extended assembly of cells presents a spatial transition
116  between fermentative (high glucose environment, fast growth, rapid glucose utilization) and respiratory
117 (low glucose environment, slow growth, slow but efficient glucose utilization***') regimes, located close
118  to and far from the nutrient source, respectively. This spatial structure emerges from the interplay between
119  how cells individually adapt to the microenvironment and, at the same time, alter their surroundings as a
120  result of their metabolic activity. Said differently, cells collectively create, and experience, a spatially
121 structured micro-environment.

122

123 Results

124 Growing extended yeast monolayers. Microfluidic systems are usually designed to ensure a homogeneous
125  microenvironment for all cells?. In contrast, in this study, we designed a microfluidic device — dubbed the
126 “yeast machine” — to grow long, narrow yeast monolayers with the aim of observing the emergence of
127  nutrient gradients and spatial variations in cellular growth and gene expression landscapes. We used soft
128  lithography techniques to fabricate a multi-layered microfluidic device composed of a large channel (to
129  flow nutrients) and an array of perpendicular, extended (800 um-long), narrow (50 pm-wide), flat (4.5 pm-
130 high) dead-end chambers in which yeast cells can grow as monolayers while the media is supplied by a
131  pressure pump-based system with flow control (Figure 1, Supplementary Figure 1). The length of the dead-
132 end chambers was optimized to induce significant variations in the nutrient concentrations within the
133 chambers due to cellular nutrient uptake. The chamber width was large enough to avoid jamming during
134 cell growth due to geometric constraints and small enough to avoid generation of complex, cell-

135  recirculating flows induced by cell growth*?. The chamber height was comparable to — but slightly larger
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136 than—the average size of a yeast cell, so the cells were vertically constrained to facilitate single-cell imaging
137  and time-lapse fluorescence microscopy (Supplementary Figure 2).

138

139 The cells were injected into the main channel of the “yeast machine” and then forced into the dead-end
140  chambers by centrifugation using a homemade 3D-printed holding device attached to a spin coater (see
141 Supplementary Figure 1c, d; Methods). The main channel was washed with yeast synthetic complete growth
142  medium to remove excess cells; cells that were trapped in the dead-end chambers by centrifugation were
143  not removed by the washing step. Nutrients were flowed through the main channel and could passively
144 diffuse into the array of dead-end chambers. The cells formed growing monolayers that extended from the
145  closed end of the chamber and collectively progressed towards the nutrient source (i.e. the open end of the
146  chamber) as the cells pushed each other while growing (Figure 2a, b; Supplementary Movie 1). Cells
147  eventually filled each chamber, forming an extended two-dimensional colony composed of about 2500 cells
148 (Figure 2b, Supplementary Figure 2), typically ~10 cells wide and ~200 cells long. Cells could be observed
149  locally at high magnification (100x objective), while the whole assembly could be seen at low
150  magnification (10x objective). We recorded the cellular expansion and subsequent internal dynamics of
151  these long monolayers, as well as the landscape of expression of key fluorescently tagged endogenous
152  genes, over time and over an almost 1000-fold range of glucose concentrations (from 0.01% to 8% w/vol).
153

154

155
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Figure 1. Microfluidic device setup and design. 1a. Media reservoirs are pressurized with the help of Fluigent MFCS
pressure pump resulting in flow through the flow sensors, into the chip and then to waste. Flow sensors and pressure
pump are connected to the flow-rate control module, which maintains a constant flow through the system. Nutrient
supply and media conditions can be changed in real time. 1b. Each single “yeast machine” has two sets of cell
chambers of various widths (5 pm, 10pm, 25 pm and 50 pm). The Cell chambers are connected perpendicularly to a
large flow channel (1 mm wide, 25 pm high).. This design facilitates adaptation for different model systems (e.g.
bacteria, yeast, mammalian cells) and high-throughput depending on the of predefined flexible length, width and
height flexible adapted dimensions.. 1¢. A close-up sketch of a set of cell chambers used in our experiments. They
are 800 pm long, 50 um wide, and 4.5 pm high. A single cell chamber fits a monolayer of up to 2500 yeast cells. The
whole setup is mounted on a microscope for time-lapse fluorescent imaging.

Monolayer in expansion displays regions of fast and slow growth. Expansion of the monolayers of cells
was observed by microscopy at low magnification (10x objective). Under standard glucose-rich conditions
(2% w/vol; 111 mM) and excess amino acids (5x CSM, see Methods), the front velocity, VF, increased
during the first 2-4 h and eventually reached a steady-state close to 100 um.h™! (Figure 2c, d, Supplementary
Movie 1). Front velocity is the sum of the contribution of every cell to colony expansion. Therefore, Vr
depends on the quantities of glucose and other nutrients that penetrate inside the yeast monolayer, which

impact both the number of cells that grow and their growth rates. Initially, the monolayer is sparsely
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175  populated and sufficient glucose is expected to reach all cells. After growth and division, a larger number
176  of cells can participate in global expansion of the population. Thus, the front velocity is expected to quickly
177  increase over time. However, at some point, as the size of the monolayer increases, the cells close to the
178  dead end of the chamber will stop growing (due to absorption and metabolism of available nutrients by
179  cells closer to the nutrient source/chamber opening) and the front velocity will plateau. Hence, after the cell
180  chamber populates with cells completely, a steady-state is reached where a constant number of cells with
181  access to glucose continue to divide and move passively towards the nutrient source, while the number of
182  cells at the dead end of the chamber deprived of glucose (and other nutrients) remains unchanged. If we
183  consider the ideal case in which yeast cells are 4 pm-wide and divide every 90 min in the presence of
184  glucose, each cell layer leads to an expansion of 4 um every 90 min, or 2.6 um.hr'!. The observed terminal
185  front velocity of 94 + 8 um.hr! (Figure 2) can be attributed to the first 36 + 3 layers of cells, i.e. the first
186 140 um of the colony. The glucose penetration distance can be approximated by assuming' that glucose —
187  of which the concentration is maintained at Cyat the front of the monolayer — freely diffuses within the
188  assembly with a diffusion coefficient D ~ 100 um?.s™! and is absorbed by cells at a constant rate, g, of ~ 1
189 mM.s!. Diffusion law dictates that the glucose concentration is expected to decrease significantly after a

190  typical distance, H, that scales with D _ 100 pum. Our direct observation (Figure 2¢) showed that for a

o
191 layer of growing cells, H is around 400 um at 2% w/vol glucose. Notably, both estimations are in agreement,
192 albeit they underestimate the observed size of the growing layer. These discrepancies result from discarding
193  the decay in the cellular growth rate at decreasing glucose concentrations and the variation in the specific
194 cellular uptake rate, g, with glucose concentration. Indeed, the interplay between glucose diffusion and
195  uptake is central to structuration of the colony as it affects both the number of cells that have access to
196  glucose and the glucose concentration in the microenvironment of each region, and thus determines which
197  cells actually participate in colony expansion and by how much'. The true glucose penetration distance is
198  therefore likely to be larger than the ‘guesstimate’ above. Yet, inferring the true penetration distance would
199  require a detailed model of the dependency of both cellular glucose absorption and the growth rate on the
200  glucose concentration, as well as experimental measurements of the glucose concentrations within the

201  monolayer. This outlines the difficulty of predicting the internal structure of a simple yeast monolayer due

9
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202  to our limited understanding of how yeast cells interact with nutrients and the difficulty of obtaining
203  quantitative details of the microenvironment landscapes within a yeast monolayer. In the following text,
204  we quantify the expression of different glucose concentration-dependent transporters as a possible proxy
205  for intra-colony glucose concentration. We even ventured further, to study how landscapes of cellular
206  growth and expression of key genes involved in glucose transport self-emerge from long-range metabolic
207  interactions within the yeast colony.

208

209  Front velocity increases with glucose concentration. Increasing the glucose concentration (from 0.01%
210  to 8% w/vol) led to higher terminal front velocities (Figure 2d), in agreement with the fact that at higher
211  concentrations, glucose will penetrate further by diffusion in the colony (Figure 2a). Thus, increasing the
212 concentration allows a larger number of cells to access glucose and participate in the growth of the colony.
213 Yet, the front velocity does not increase linearly with glucose concentration, and plateaus at very high
214 glucose concentrations (> 4% w/vol). One interpretation is that at this concentration range, sufficient
215  glucose reaches the dead end of the chamber, allowing all cells to participate in the growth of the assembly.
216  However, based on Vr ~ ul, where L is the length of the dead-end chamber and u is the average cell growth
217  rate, one would expect a saturating front velocity of 368 um.h!, much larger than the measured value of
218 100 um.h''.

219

220  Glucose is not the only nutrient required for cellular growth; amino acids can be a limiting factor for
221  auxotrophic strains such as the one employed in this study (S288C background). This is why we used an
222 excess of amino acids (5% CSM) compared to classic SC medium for yeast cell cultures. Indeed, using
223 standard amino acid concentrations in the media resulted in significantly lower terminal front velocities,
224 even at high glucose concentrations (Supplementary Figure 3). This suggests that amino acid availability
225  can limit cellular growth, which is especially visible in the presence of high glucose concentrations, where
226  no longer glucose is limiting but rather amino acids are. As all experiments were performed under 5-fold
227  higher amino acid concentrations than normal SC medium, other metabolites that are consumed are likely

228  to form gradients within colony and might become rate-limiting for growth. Taken together, we conclude

10
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229  that the spatial variations in all metabolic components of the microenvironment need to be taken into
230  account in order to fully understand microbial colony growth. With that in mind, building a mathematical
231  model to account for the observed expansion of a spatially structured colony is barely achievable, and we
232 will not address this question here. Rather, we opted to further characterize the development of glucose
233 gradients as a specific and critical component of the emergence of the metabolic landscape of the colony.
234

235  Local expansion rate decreases with distance from the nutrient source. Once the dead-end chambers
236  were filled with cells, we found the growth pattern was highly reproducible across parallel chambers at
237  each glucose concentration. The cells closer to the open end of the chambers continued to divide, pushing
238  cells out that were washed away by the flow in the nutrient channel. Cells closer to the dead end (y ~ 800
239  um) did not move, grow nor divide. At standard glucose conditions (2% w/vol) and a high amino acid
240  concentration (5% CSM), significant cell motion was not observed after y ~ 400 um, indicating that very
241  limited glucose is available to the cells that are beyond this region. By tracking single cell trajectories, we
242  measured the velocity field within the yeast monolayers over a range of glucose concentrations. We
243 extracted > 100 single cell trajectories per concentration, resulting in thousands of velocity data points (see
244 Methods). As expected, increasing the glucose concentration in the nutrient channel (from 0.01% to 8%
245  w/vol) led to higher local velocities deeper in the colony (Figure 2f, Supplementary Figure 4).
246  Concomitantly, velocity also increased closer to the chamber opening when cells experienced a higher
247  glucose concentration.

248

249  To sum up, our setup captures the essence of structured colonies, with the emergence of a landscape of
250  growth divided into a non-growing area and actively growing area. This spatial separation is the result of
251  the formation of glucose (and other nutrient) gradients. These gradients emerge as a result of cellular
252 metabolic activity, which in turn affects the cellular growth rate and physiology at the local scale.

253

11
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Figure 2. Expansion and dynamics of extended cellular monolayers. 2a. The microfluidic device is perfused with
nutrients using a pressure-driven system (see Figure 1). Yeast monolayers extend within the long chambers: front
velocity (Vr) and local velocity (Vz) are determined by cellular growth and division. 2b. Example of a time-lapse
collage of yeast monolayer expansion along an 800 pm-long chamber (2% w/vol. glucose, 5% amino acid
concentration). Front velocity increases and reaches a plateau (indicated by flattening of the slope of the green curve).
When the front approaches close to the open end of the chamber (i.e., 0 um), the over-spilling cells are constantly
washed away by the nutrient flow within the main channel. 2¢. Front velocity reaches a maximum when the position
of the front becomes close to the open end of the chamber indicating that after expanding by a typical distance (~ 400
pum here for 2% w/vol. glucose), the maximal number of cells that receive glucose and can participate in expansion
has been reached. 340 velocity data points binned into 10 equally spaced position points were extracted from n=12
colony front trajectories (2% w/vol. glucose). The error bars denote standard deviations of each bin (~15-30 velocity
data points). 2d. Front velocity as function of external glucose concentration. Data comes from the bin closest to the
open end of the chamber as measured in Figure 2¢ for each glucose concentration (n > 5). Error bars denote standard
deviations. 2e. Local cellular motion can be assessed by computing the standard deviation of pixel intensities across
a stack of time-lapse images. Here, white areas indicate variations in movement across the time-lapse for cells below
400 um, while the cells above do not move. Averaging over several channels (n=9), we obtained an indicator of cell
motion and thus an estimate of the glucose penetration distance, H (~ 400 um for 2% glucose). 2f. Local velocity
decreases for cells deeper within the chamber. Local velocity also increases with external glucose concentration.
Velocity Data, that were binned into 16 equally spaced position, comes from the analysis of >100 cell trajectories.
Error bars denote standard deviations.

254

255  Cellular metabolic activity creates gene expression landscapes. The emerging glucose (and other
256  nutrient) gradients are expected to both trigger and be governed by differential gene expression landscapes.
257  To this end, we studied the expression of seven key glucose transporters (HXT1-7) whose expressions are
258  regulated by the extracellular glucose concentration. We employed yeast strains in which these endogenous
259  glucose transporters were tagged with GFP (Methods), and recorded the fluorescence signals at the global

260  scale using a low-magnification objective (10x) and local cellular scale using a high-magnification

12
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261  objective (100%). Cells were loaded into the chambers as described above and observed after the
262  establishment of a quasi-steady state (starting 10 h after the chamber was filled with cells, Supplementary
263  Figure 5). We observed the formation of different landscapes of gene expression for each of the seven
264  transporters, each with marked territories of low and high expression (Figure 3, 4; Methods). In particular,
265  HXTI1 and HXT?7 displayed inversely correlated landscapes of gene expression (e.g., Figure 3a, 3g for 2%
266  w/vol glucose). Both patterns demonstrate the formation and maintenance of a glucose gradient that emerges
267  from cellular metabolic activity. HXT1 is a low-affinity glucose transporter mainly expressed under high-
268  glucose conditions, while HXT7 is a high-affinity glucose transporter expressed under low-glucose
269  conditions only (Figure 3b, 3f)*. Concomitantly, HXT1 was expressed at the highest levels in the cells
270  close to the chamber opening (i.e., in the highest glucose concentration), while HXT7 expression peaked
271  further away in the chamber, indicating a transition to a low-glucose region. We examined the cells at higher
272  magnification (60x) to assess the localisation of HXT7 gene expression. As expected, in the cells expressing
273  the highest levels of this gene, the fluorescence was localized to the cell membrane, indicating HTX7 played
274 an active role in glucose transport in these cells. In contrast, deeper in the colony, we observed lower levels
275  of HTXT7 fluorescence due to the long lifetime of GFP-fused proteins and absence of dilution through cell
276  division, though this fluorescence was localized in vacuoles, indicating the transporter had been targeted
277  for degradation by the cells*® (Figure 3a). Assuming the observed peak of HXT7 fluorescence matches the
278  peak fluorescence observed in batch culture at a glucose concentration of 0.016% wAol. (Figure 3b, c,
279  Supplementary Figure 6), we could locate the position in the yeast monolayer at which the glucose
280  concentration reached 0.016% w/vol. This position was around Hy ~ 500 um from the front, in good

281  agreement with the transition in cell motion (Figure 2, H,,~ 400 pm).

13


https://doi.org/10.1101/527846
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/527846; this version posted April 25, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

%]
[=}
[=]

1% 2% 4%

a b g HXT7+ HXT1
= HXT7 : %73 7
%150 2% glucose g g
© 100 O C
® a 250
@ 2 0
o S0 Sz 600 -
S rlf =3
=2 9 -
m _umm i e —
I I I I 1
Posmon 0 05 1 15 5
(o] HXT7 Fluorescence (a.u.) d
0 50 100 150 200
T T . 400
X —_
C<0.016% —_
T 600 I | £ £
=1 P =
= 400 g c
S at 2 A
= 200 @
2 200 % 8
o =
0 - B 0
0 2 4
> Q«g PPl 2 48
o D[Gluw‘;e] il [Glucose] (% w /vol.) 200
€  HXT1 Fluorescence (a.u.) f
0 100 200
[ 100 -
E 600 I NE 8z
=1 [} j=e)]
= = 8§
E 400 = = % 5 50
@ = =] e}
g i 28

0 =5 T T T 1 [Glucose] (% w / vol.)
1 2 3 4 6 8 0 2 4 6 8
282 [Glucose] (% w / vol.) [Glucose] (% w / vol.)

Figure 3. Landscapes of gene expression self-emerge in extended yeast monolayers. 3a. Expression profile of
HXT7-GFP along the chamber (average fluorescence levels, n=9; standard deviation shown as the envelope) for an
external concentration of 2% w/vol glucose. Membrane localization of HXT7 was only observed in the cells
surrounding the area of peak HXT7 expression, localized at ~500 um at 2% w/vol. glucose. 3b. FACS measurements
of HXT7-GFP expression in batch culture (average of three replicates) showing a single intensity peak at Cp=0.016%.
This peak value can be mapped back to the spatial landscape of 3a to infer the glucose concentration in the region of
peak HXT7-GFP fluorescence. n=3-6 per glucose concentration 3¢. On varying the glucose concentration in the
nutrient channel, we observed a transition in peak HXT7-GFP fluorescence within the 2D colony. At a concentration
of 4% w/vol and above, the peak was located close to the dead end of the chamber or not visible, indicating sufficient
glucose was available throughout the chamber (color code normalized to maximal expression level). Data obtained
from n=8-17 replicates per glucose concentrations (see also Supplementary Figure 6). 3d. Compared with 3b, it is
possible to roughly define areas of glucose presence in the monolayer for a range of glucose concentrations (n=8-17,
per glucose concentrations, error bars denote +/- one standard deviation). 3e. Landscape of HXT1-GFP gene
expression over a range of glucose concentrations (color code normalized to maximal expression); n=8-9 per glucose
concentrations (see also Supplementary Figure 7). 3f. FACS measurements of HXT1-GFP over a range of glucose
concentrations; n=3 replicates. 3g. Overlay of HXT1 (red) and HXT7 (green) gene expression landscapes at three
external glucose concentrations, showing that the expression landscapes of these transporters were inversely
correlated, in agreement with their different glucose-dependent expression patterns (compare 3b and 3f).

283
284  Gene expression landscapes depend on the glucose source concentration. Increasing the glucose

285  concentration in the nutrient channel changed the gene expression landscape of all seven glucose
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286  transporters (Figure 3, 4). In particular, at 1% w/vol glucose, HXT1 was only expressed at low levels at the
287  growing front of the colony (y < 60 um). In contrast, at the highest glucose concentration (8% w/vol; Figure
288  3e, Supplementary Figure 7), HXT1 was expressed at high levels throughout the whole colony,
289  demonstrating glucose was available throughout the chamber. As HXT1 is mainly expressed under high-
290  glucose conditions (> 1% w/vol glucose) in batch culture*, this observation indicated the glucose
291  penetration distance (within the chamber) increased with the external glucose concentration. This is in
292  agreement with the increase in local velocity with the external glucose concentration in Figure 2, with the
293 size of the growing area also increasing with the external glucose concentration.

294

295  In contrast, HXT7 exhibited a peak-like expression pattern, and was repressed under both high-glucose
296  conditions and when no glucose was present. At low-glucose concentrations (0.1% w/vol), a peak in HXT7
297  expression was observed at the very beginning of the colony (y ~ 20 um), indicating glucose was quickly
298  absorbed by the cells closest to the chamber opening, thus these were the only cells with access to sufficient
299  carbon resources to grow and divide. The peak of HXT7 expression moved deeper into the colony as the
300  glucose concentration increased and disappeared completely at 8% w/vol glucose, again indicating
301  sufficient glucose could diffuse to the end of the chamber under high-glucose conditions (Figure 3, 4).
302

303  Reconstructing glucose concentration landscapes using glucose transporter gene expression levels.
304  We assessed the expression profiles of HXT1-7 in batch culture as a function of glucose concentration (see
305  Methods) to obtain a qualitative idea of the glucose concentrations within the microfluidic device. The data
306  for HXT7 was particularly revealing: its rather sharp, well-defined expression peak at 0.016% w/vol
307  allowed to define the distance in the microfluidic device at which the glucose concentration is close to that
308  value (Figure 3a, c). This concentration boundary separates the yeast monolayer into two regions with
309  different properties, i.e., actively dividing and growth arrest. The position of this boundary moved deeper
310  into the colony as the external glucose concentration increased (Figure 3d).

311
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312  We extended this idea further and used the complete HXT7 expression profile to infer the glucose
313 concentrations at all positions within the chambers. Assuming that the local level of HXT7
314  expression is only set by the local glucose concentration, we can use batch culture measurements
315  of HXT7 expression (based on flow cytometry) to determine the glucose concentration at a given
316  chamber position (Figure 4c, 4d). However, this only allows us to reconstruct the glucose
317  concentration gradient up to 0.016% w/vol., i.e. in the domain where cells are actively dividing.
318 The idea is simply to linearly map the two sets of measurements (in batch culture and in the
319  microfluidic device) based on the fluorescence levels that correspond to the maxima Fyuay and F max
320  and HXT7-GFP fluorescence levels at the chamber entry Fp and F . Using the data for HXT7 in
321  Figure 3, we were able to reconstruct the glucose gradient for different initial glucose
322 concentrations (Figure 4e). When applied to HXT1, the same inference led to very similar results
323 (Figure 4f). In both cases, glucose concentrations decay very quickly moving away from the

324  chamber opening and then exhibit a relatively long tail moving deeper into the colony.
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Figure 4. Using the fluorescence landscapes of glucose transporter gene expression to infer glucose
concentration gradients. 4a. FACS measurements for HXT1-GFP to HXT7-GFP in batch culture over a range of
glucose concentrations. The expression levels of each HXT show a specific dependence on glucose concentration
(n=3-6 replicates per glucose concentration). 4b. Landscapes of gene expression for all HXTs-GFP at an external
glucose concentration of 2% w/vol. HXTs are ordered by their relative glucose specificity: HXT1 is expressed under
high-glucose conditions, while HXTS is only expressed at very low-glucose conditions. Assuming a progressive
spatial decay in the glucose concentration away from the chamber opening, all maps of gene expression are in perfect
agreement with the intensity profiles observed in batch culture (n=8-10 replicates per glucose concentration). 4¢-d.
Method of glucose gradient reconstruction. The fluorescence landscape of HXT7 (resp. HXT1) shows a peak Fiuax
(resp. a minimum, F,,;,) at a given location. The fluorescence intensity at the opening of the chamber, F, corresponds
to the external glucose concentration, Cy. Using the FACS measurements of HXT7 (resp. HXT1) as a function of
glucose concentration, one can define the concentration of glucose that matches the peak F.. (respective to the
minimum F,»), and the fluorescence intensity that corresponds to Cy. This allows us to linearly map all other
fluorescence intensities for a given glucose concentration from the batch culture to the fluorescence intensities inside
the colony, allowing the glucose concentration across the entire cellular monolayer to be reconstructed. Data comes
from previously mentioned HXT1 and HXT7 microfluidics and flow cytometry measurements. 4e-f. Reconstruction
of glucose concentration obtained from HXT7 (4e, 4f) and HXT1 (4f) fluorescence data and various external glucose
concentrations.

325  Gene expression landscapes of other genes and transcription factor activity confirm the inferred

326  glucose gradients. The fact the seven glucose transporters exhibited varied, robust spatial expression
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327  patterns under identical conditions (e.g., Figure 4a), together with the observed growth rate landscapes
328  (Figure 2), suggests cellular metabolic state varies significantly across the longitudinal axis of the yeast
329  monolayers. This variation was further assessed by mapping the expression and localisation of additional
330  key genes involved in glucose metabolism.

331

332 MIGI is a key transcription factor involved in glucose repression that localizes to the nucleus in the
333  presence of glucose, to repress genes that participate in parallel carbon metabolic pathways (e.g.,
334  galactose)**?!. Observing the cells at high magnification, we quantified the distance after which MIG1
335  fluorescence was not present in the nucleus of the cells (Figure 5b, Supplementary Figure 8). This distance,
336 around 400 pm at Cp= 2% w/vol glucose, was in excellent agreement with the data obtained by HXT7
337  profiling. Interestingly, the spatial transition from nuclear MIG1 to cytoplasmic MIG1 localisation was very
338  sharp and occurred over just a few cells.

339

340  In agreement with the batch culture observations, we found HXT5 was only expressed in regions with very
341  low or no glucose concentrations where the cells did not seem to divide over several hours (Figure 5a).

342 Therefore, HXTS5 appears to be an excellent marker of growth arrest in this context*’.
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Figure 5: Other landscapes of genes involved in glucose metabolism. 5a. Landscape of HXTS5 expression. HXT5
is expressed under very low and no glucose conditions and appears to be a good marker of growth arrest. At Cp=2%
w/vol, HXTS expression is in good agreement with the observed absence of cellular division (see Figure 2,
Supplementary Figure 9). Sb. Landscape of MIG1 activity. MIG1 fluorescence was located in the nucleus in the
presence of glucose, with a sharp transition in nuclear localization observed (middle picture, at 2% w/vol glucose in
the nutrient channel), confirming the existence of a glucose gradient (n=3 replicates). Total number of cells and cells
with nuclear localization of fluorescence were annotated manually and binned into 25 pum bins (see also
Supplementary Figure 8). 5¢. HXK1 and HXK?2 are hexokinases involved in glucose metabolism. Their landscape of
expression exhibited peaks that indicate a transition from high to very low glucose levels (n=8-9 replicates per glucose
concentration). 5d. FACS measurements of HXK 1 and HXK2 expression over a range of glucose concentrations (n=3-
6 replicates per glucose concentration).

343

344  The expression landscapes of two hexokinases involved in glucose metabolism, HXK 1 and HXK?2 (Figure
345  5c) that are expressed when cells are grown on non-glucose carbon sources, were also consistent with the
346  batch measurements (Figure 5d, Supplementary Figure 11) and further validated the existence of a glucose
347  gradient. For each profile, we extracted the position of maximal expression and inferred the glucose
348  concentration at this position from the FACS measurements of batch cultures. The batch measurements

349  indicated maximal HXK1 and HXK2 expression were observed at a glucose concentration of about 0.016%
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350  whol. As expected, neither enzyme was expressed at very high glucose concentrations. The HXK1 and
351 HXK2 expression maxima were similar at the two other glucose concentrations studied, around 300 um at
352 Co=1% and 500 um at 2% w/vol. Again, these data are in very good agreement with the positions of HXT7
353  peak expression at the same glucose concentrations.

354

355  Finally, we examined the expression of PDCI1 and SDH2, which are overexpressed in fermenting and
356  respiring cells, respectively®®>°. Their expression landscapes were inversely correlated (Figure 6a,
357  Supplementary Figure 10), indicating a transition from fermentative metabolic activity at the nutrient front
358  of'the colony to respiratory metabolic activity towards the dead end of the chamber where glucose is scarce.
359  These expression maps are in good accordance with our previous results (Figure 2, 3, 5) and the levels of
360  PDCI and SDH2 expression in batch culture (Figure 6b, 6¢).
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Figure 6. Impact of the glucose gradient on yeast physiology and the emergence of a landscape of phenotypes.
6a. Overlay of the landscapes of gene expression of PDC1 (blue) and SHD2 (pink). PDC1 is known to be expressed
when yeast cells ferment, SDH2 is mainly expressed in respiring cells (see also Supplementary Figure 10). 6b. FACS
measurements of PDC1 expression over a range of glucose concentrations in batch culture (n=3). 6¢c. FACS
measurements of SDH2 expression over a range of glucose concentrations in batch culture. The inverse correlation
between PDC1 and SDH2 expression observed in batch culture is in good agreement with the inversely correlated
spatial expression patterns within yeast cell monolayers (n=3).
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362  Multiple gene expression landscapes are spatially correlated. We decided to compare the landscapes of
363  gene expression for the entire set of reporter genes by aligning the different landscapes across varied
364  nutrient conditions (Figure 7a). Strikingly, all landscapes showed a high level of spatial correlation. Two
365  major landscapes emerged: peaking (e.g., HXT7) and switching (e.g., HXT1 or MIG1). We defined and
366  extracted the typical lengths of the peaking and switching landscapes (Figure 7b) and plotted them as
367  function of the external glucose concentration (Figure 7¢). The typical lengths of all of these landscapes for
368  different reporter genes were remarkably close, despite the fact that we looked at different cellular
369  components: a transcription factor (MIG1), glucose transporters (HXTs), metabolic enzymes (HXKs) and
370  metabolic state reporters (SDH2, PDC1). Notably, we gained a global view of gene expression landscapes
371  and their interrelationships along a monolayer colony. All data showed the colonies were structured into
372 two regions with very different properties (Figure 7d): an actively growing region, where cells divide
373  abundantly and ferment glucose, and a quiescent area, where cells do not divide much and have switched
374  to respiratory metabolism to compensate for the very low glucose availability. While it is not surprising to
375  see the expression levels of metabolic genes vary with the glucose concentration, our approach
376  demonstrates genetic programs not only allow individual cells to adapt to changes in the nutrient
377  environment, but also enable multicellular assemblies to self-organize spatially through long-range
378  metabolic interactions. This sheds new light on the coordinated actions of these genes in a biologically
379  relevant multicellular context that has impact on ecology, evolution, development and emergence of
380  multicellularity.

381

382  Overall, we studied how cells within a monolayer colony collectively shape their microenvironment
383  through long-range metabolic interactions. This is a complex process, in which cells adapt locally,
384  and shape a spatial landscape of gene expression as a global phenotype. As a whole, the structure of
385 an assembly of cells and the microenvironment landscapes emerge as the result of local cellular
386  metabolic activity.

387
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Figure 7: Global view of the emergence of landscapes of gene expression. 7a. The different landscapes of gene
expression presented in this study are aligned, regrouped and displayed over a range of glucose concentrations. This
simple view sheds light on the macroscopic spatial correlations between these different landscapes, which are both
setting and traces of the establishment of glucose gradients. 7b. For each gene expression landscape, we identified the
fluorescence peak (HXT7, HXK1, HXK2) or the position of the transition between low and high expression (HXT1,
HXTS5, SDH2, PDCI) or activity of the transcription factor (MIG1). 7¢. Landscapes of gene expression delimit two
regions in which cells are physiologically different. Phase I indicates active growth by fermentation in the presence
of glucose; Phase Il indicates growth arrest or very limited growth via respiratory metabolism at zero or close to zero
glucose concentrations. The transition between the two phases typically takes place relatively sharply, over a hundred
micrometers or ~ 20 cells.

389  Discussion

390  Here, we took an alternative point of view compared to traditional systems and single-cell biology. Rather
391  than studying single-cell metabolic properties in a well-mixed, homogeneous environment, we designed a
392  microfluidic chip to force yeast cells to grow and shape their microenvironment, solely by fixing the
393  properties of the microenvironment at the boundary of the monolayer. This approach allowed us to measure
394  simultaneously properties at both the single-cell scale and structured population scale and holds potential

395  for establishing a quantitative link between these scales.
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396

397  Specifically, we showed that cells self-generate nutrient landscapes that in turn influence cellular
398  metabolism and gene expression profiles. This behaviour, based on nutrient uptake adaptation, is generic
399  and feeds back on the behaviour of other cells through what we call non-specific long-range metabolic
400 interactions. Indeed, the microenvironment sensed by cells a few hundred micrometres inside a colony is
401  very different from the microenvironment experienced by the cells at periphery. Notably, gradients emerge
402  over relatively short distances, and this process may possibly affect studies of cellular populations within
403  microfluidics settings. More importantly, quantitative description of gene expression landscapes is critical
404 if one wants to understand the establishment and behaviour of cellular communities, whether these are as
405  simple as yeast colonies or more complex, such as biofilms and complex microbial ecosystems in which
406  several types of cells cohabit and interact. Indeed, in addition to the described long-range metabolic
407  interactions, many other environmental and genetic determinants such as intercellular communication, cell
408  surface properties, cell-cell adhesion strength and secretion of extracellular matrix components have been

351,52 and internal structure of microbial

409  shown to participate in the emergence of the complex morphology
410  colonies in such complex situations. The nature of many of these interactions could also be studied using
411  similar microfluidic devices to identify the relative contribution and relationship of environmental and
412  genetic determinants to the metabolically generated microenvironment.

413

414  We have made significant advances in the study of emerging properties of yeast colony growth,
415  microenvironment formation and gene expression compared to previously published studies >°**, These
416  studies have shown fascinating differentiation and diversity within yeast colonies grown on agar but their
417  relevance to study the dynamical emergence of complexity in microbial colonies is limited by their
418  methodology (e.g., growth on a single specific medium withno dynamic control of environmental changes,
419  two-photon microscopy, unsuitable for live time-lapse microscopy, obligation to section colonies etc.)
420  which does not allow detailed spatiotemporal analysis of cellular growth, microenvironment and gene

421  expression landscapes at a relevant single-cell scale. Our approach is designed to access the dynamics of

422 large microbial colonies, and while we did not report it here, it is straightforward with microfluidics to
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423 dynamically change in frequency and composition the external environment, and as such to analyse how
424  colonies adapt their internal organisation to such stresses.

425

426  Our results are in most part in line with the knowledge of glucose metabolism obtained in batch culture.
427  Yet, our methodology sheds quantitative description of the spatial expression of genes involved in the
428  glucose metabolism and its correlation with the cell local growth rates. Our results show that even in the
429  simple context studied here, reconstructing the microenvironment spatial structure from single-cell
430  measurement is not trivial. A proper model should take into account how the growth rate and specific
431  absorption rate vary with the glucose concentration and the microenvironment. Modelling the entire
432  complexity of the microenvironment is hardly possible, even with today’s knowledge. Thus, we decided to
433  take a different approach and use key genes involved in glucose metabolism to infer the glucose
434  concentration gradient. We showed that different reporter genes consistently reported the same glucose
435  gradient. We envision that the data extracted from relevant fluorescent reporters could be fed into an agent-
436  based or mean-field models that take cell-cell interactions, mechanics and spatial diffusion of metabolites
437  into account to fill the gap between data generated from single cells to data that is relevant to evolution and
438  ecology, i.e. at the colony scale. We anticipate that linking local properties to macroscopic, global behaviour
439  will help to understand the architecture of microbial communities and how evolution shapes the
440  development of these architectures through long-range metabolic interactions. Of note, in another rare
441  attempt to study emergence of population level phenomena in yeast S. cerevisiae Campbell ef al. looked
442 at the synthetic “self-establishing communities” that were able to cooperatively exchange metabolites®.
443  They inoculated on agar plate auxotrophic S. cerevisiae strain that had different auxotrophic markers on
444  plasmids. As cells were dividing, some of the plasmids that complemented yeast auxotrophy and therefore
445  rescued their growth were lost, resulting in a colony which is composed of yeast that are auxotrophic for a
446  certain amino acid. However, they were able to grow because they used amino acids that were released in
447  the environment by other yeast that were producing it, effectively generating a very heterogeneous colony
448  that sustained growth through metabolite exchange. Interestingly, previous efforts to co-culture

449  complementary auxotrophs had limited effectiveness in supporting co-growth in liquid cultures, indicating
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450  the importance of spatial structure in facilitating cooperation and makes our system very attractive for study
451  of such phenomena®.

452

453  Furthermore, while the spatial microenvironment is not fully characterized, we have shown that the
454  emergence of gradients, and simultaneously gene expression landscapes, are robust and reproducible
455  features of the colony. Moreover, the landscapes can be compared to extract correlation patterns and infer
456  how gene regulatory networks act in synchronicity to establish the microenvironment within the colony.
457  This approach may provide a relatively simple, yet effective method of screening for “organismic”
458  properties that have been shaped by evolution and are only relevant in a multicellular context.

459

460  Our future efforts to extend the application of this setup will be dedicated to the study of how the
461  microenvironment dynamically changes when external conditions are altered, an uncharted territory at the
462  scale of a multicellular assembly that is central to the understanding of microbial ecosystem resistance to
463  stress, environmental fluctuations and adaptation. We anticipate that similar approaches could be used
464  to study aging, cooperation and competition, cell memory or evolutionary dynamics, as well as
465  quantitative characterization of (synthetic) ecological systems and mixtures of cells relevant to

466  ecology and chemical biology.
467

468  Materials and Methods

469  Yeast strains. All experiments were performed using haploid S. cerevisiae strains derived from the S288C
470  background - BY4741: MATa his341 leu2A40 met1540 ura340. See Supplementary Table T1 for a detailed
471  list of the yeast strains used in this study.

472

473  Microscopy. We used an inverted fluorescence microscope (IX81, Olympus) equipped with an EMCCD
474  camera (Evolve 512, Photometrics) and X-Cite exacte fluorescence light source (Lumen Dynamics).
475  Optical filters from Chroma Technology Corporation ET-EGFP (U-N49002; Ex 470/40nm Di495 Em

476  525/50nm) and ET-DsRed (U-N49005; Ex 545/30nm Di570 Em620/60nm) were used to observe GFP and
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477  RFP fluorescence. Cells were observed using Olympus 10x (Plan 10x / 0.25 NA), 60% (PlanApo N 60x /
478  1.42 NA Oil) and 100x (UPlanFL N 100x / 1.3 NA Oil) objectives. Open-source uManager’’ microscopy
479  software was used to control all of these components and setup multi-dimensional acquisition. The
480  temperature inside the microscope incubation chamber that contained the media and cells was maintained
481 at 30 °C (Life Imaging Services). Fluorescence intensity was set to 10% of maximum output, fluorescence
482  exposure was set to 1000 ms and camera gain was set at maximum. The time interval between each
483  acquisition cycle was 6 min.

484

485  Microfluidics and cell loading. Microfluidic devices were constructed using soft lithography techniques.
486  Photomasks were drawn using L-Edit software (Tanner) and printed on a high-resolution glass substrate
487  (Delta Mask). A master wafer was created using SU-8 2000 (MicroChem) epoxy-based photoresist that
488  was spin-coated to the appropriate thickness and exposed to UV light using an appropriate photomask to
489  create the desired pattern. Multi-layered patterns were aligned and exposed to UV light using a MJB4
490  manual mask aligner (SUSS MicroTec) and the dimensions of the master wafer were checked using a
491  Dektak 150 surface profiler (Veeco). The master wafer was treated with 95% (3-mercaptopropyl)-
492  trimethoxysilane (Sigma) for 1 h in the vapour phase. Microfluidic chips were created by casting a degassed
493 10:1 mix of polydimethylsiloxane (PDMS) and curing agent (Sylgard 184 kit; Dow Corning) on the master
494  wafer, followed by at least 2 h curing at 65 °C. Each chip was gently cut and peeled off the master wafer;
495  the entry/exit ports were punched out. The chip and a glass coverslip (24 x 50 mm #1; Menzel-Gléser) were
496  treated with O plasma for 1 min in a plasma cleaner (Harrick Plasma), bonded together and incubated at
497 65 °C for 10 min. Before loading cells, the chips were coated with 1% Pluronic F-127 (Sigma) for 30 min.
498  Cells were precultured overnight in 5 mL of synthetic complete (SC) medium containing 2% w/vol glucose
499  in a shaking incubator at 30 °C, diluted 50-fold into 50 mL of SC + 2% w/vol glucose, cultured for 5-6 h in
500  a shaking incubator at 30 °C to an OD., of 0.2-0.4, collected by centrifugation, and loaded into the
501  microfluidic system with a pipette. The microfluidic system was centrifuged for 2 min at 1000 rpm using
502  3D-printed adaptors (Laurell WS-650 spin coater) to force the cells into the dead-end cell chambers. Liquid

503  media was flowed rapidly through the flow channel to remove excess cells and the flow rate was set to 5
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504  pL/min. A pressure-based microfluidic flow control system (MFCS; Fluigent) coupled with a flow rate
505  platform (Fluigent) and a flow rate control module (Fluigent) that measured the flow rate and kept it
506  constant by adjusting the pressure through a feedback loop was used to push liquid media through the flow
507  channel. The output was kept at a constant pressure of 100 mbar above atmospheric pressure to minimize
508  formation of air bubbles inside the flow channel.

509

510  Flow cytometry. Flow cytometry experiments were performed on a Gallios Flow Cytometer (Beckman
511 Coulter) using a 488 nm excitation laser and 530/30 nm FL1 emission filter to detect GFP fluorescence.
512 Data analysis was performed using Kaluza Flow Cytometry Analysis Software (Beckman Coulter).
513  Approximately 10 cells were inoculated in 10 mL of SC medium containing various glucose concentrations
514  (log, dilutions from 8% to 0.0078125%, and 0% w/vol glucose) and cultured in a shaking incubator at 30
515  °Ctoan OD, of ~0.02-0.2 depending on the starting glucose concentration. Cells were then diluted 10-fold
516  into 10 mL of fresh SC media containing the same starting glucose concentration and grown for 4-5 h in a
517  shaking incubator at 30 °C, centrifuged at 4000 rpm for 10 min, re-suspended in 300 uL of PBS pH 7.4
518  buffer (Gibco) and fluorescence was measured using the flow cytometer. The supernatant of each sample
519  was collected, and the glucose concentration was measured using the Glucose (HK) Assay Kit (Sigma) to
520  confirm that the glucose concentration remained constant during the growth phase (Supplementary Figure
521 11a).

522

523 Image analysis. Image analysis was performed using open-source ImagelJ 1.51p software™. To obtain front
524 velocity, we applied a threshold (Otsu) to detect the bottom frontier over time after flattening the
525  background using a FFT band-pass filter. The image signal is decomposed by FFT into a spectrum of its
526  constituent frequencies. Because some operations can be more easily performed on the spectrum than on
527  the original image, the FFT bandpass algorithm filters out large structures (shading correction) and small
528  structures (smoothing) of the specified size by gaussian filtering in Fourier space. The default parameters
529  are set at 40 pixels for large structure and 5 pixels for small ones. To compute the local speed of the cells

530  inside the cell assembly, we used the plugin TrackMate® v3.5.1 to track cell trajectories. TrackMate was
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531  setto DoG detector with estimated blob diameter of 4 um and threshold of 4, while tacking was set to linear
532 motion LAP.

533
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