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Abstract 19 

Microbial colonies are fascinating structures in which growth and internal organization reflect complex 20 

morphogenetic processes. Here, we generated a microfluidics device with arrays of long monolayer yeast 21 

colonies to further global understanding of how intercellular metabolic interactions affect the internal 22 

structure of colonies within defined boundary conditions. We observed the emergence of stable glucose 23 

gradients using fluorescently labelled hexose transporters and quantified the spatial correlations with intra-24 

colony growth rates and expression of other genes regulated by glucose availability. These landscapes 25 

depended on the external glucose concentration as well as secondary gradients, e.g., amino acid availability. 26 

This work demonstrates the regulatory genetic networks governing cellular physiological adaptation are the 27 

key to internal structuration of cellular assemblies. This approach could be used in the future to decipher 28 

the interplay between long-range metabolic interactions, cellular development and morphogenesis in more 29 

complex systems.  30 
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Introduction  31 

Structured cellular communities are complex, dynamic systems and their composition, expansion and 32 

internal structure are the result of interactions between the cells and their microenvironment. Cells absorb 33 

and metabolize nutrients and also produce and secrete metabolites, creating spatial gradients of nutrients 34 

and metabolites. Thus, cells at the outskirts of a multicellular assembly do not experience the same 35 

microenvironment as the cells deeply buried within. Reciprocally, cellular physiology is dependent on the 36 

cell’s position within a colony. Such variations in cellular physiology are consistently observed in a variety 37 

of multicellular systems – from bacterial and yeast colonies1,2 to biofilms3 and tumors4,5 – and are reflected 38 

by altered gene expression levels and cellular phenotypes as growth rates, nutrient uptake rates and 39 

metabolic activity. Such variations presumably emerge because of long-range metabolic interactions 40 

between cells, in that the cellular microenvironment at one position depends on the nutrient uptake rate at 41 

another position.  42 

 43 

Notably, multicellular communities6–8 exhibit various adaptive benefits, including higher cell proliferation, 44 

improved access to resources and niches9, collective defence (e.g., against antagonists, drugs, antibiotics)3 45 

resulting in optimization of population survival when confronted with averse physical, chemical, nutritional 46 

or biological challenges10. These examples indicate the importance of understanding the emergence and 47 

maintenance of complex spatial multicellular structures from ecological11–13, medical14–16 and 48 

evolutionary17–19 perspectives. Yet, despite the obvious contrast between homogeneous environments and 49 

the pronounced environmental heterogeneity of microbial cellular assemblies, the majority of scientific 50 

research to date has either focused on single cells in homogeneous environments or populations of cells 51 

grown in batch or continuous liquid cultures. This is mostly due to the complexity of designing an 52 

experiment that would allow monitoring, over long time, the development of a spatially defined extended 53 

multicellular assembly. This is in particular the case for the widely used eukaryotic model organism yeast 54 

Saccharomyces cerevisiae, despite the numerous calls in recent reviews to study its nutrient sensing, 55 

signalling, and related growth and development control within the natural colony context. 20–22.  56 
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As microorganisms in nature tend to live in multicellular communities, devising an experimental approach 57 

that captures this complexity while being easy to use and amenable to different experimental needs and 58 

conditions should further our understanding of complex gene regulatory networks in the context of 59 

microbial evolution and ecology.  60 

 61 

Current direct observations of three-dimensional colonies and biofilms are cumbersome and often 62 

constrained by existing technologies3. For example, two-photon microscopy of sliced agarose-encapsulated 63 

yeast colonies was required to show that yeast cells may adopt different physiologies – and possibly 64 

different cell types – depending on their position within a colony2. In another example, nanospray 65 

desorption electrospray ionization mass spectrometry (nanoDESI MS) was used to study growing bacterial 66 

colonies on agar plates and showed a wide diversity and complexity of compounds that characterise 67 

microbial chemical ecology23,24. Such complex methodologies are not amenable to time-lapse imaging, nor 68 

to observation of the temporal variations in gene expression and growth rates of single cells over relevant 69 

time and length scales. An alternative is to grow microbial cells in microfluidic devices to spatially constrain 70 

the growth of the cells and to control the delivery of nutrients25–29. Microfluidic experimental research is 71 

typically designed to ensure that the cells being studied experience a homogeneous environment. This can 72 

be done at the single cell level, as it has been demonstrated in studies of aging of yeast30 and bacteria31 73 

where single cells had to be trapped and kept under constant nutrient flow for long term observations to 74 

capture their death. Alternatively, a small cell assembly can be trapped in dead-end chambers under 75 

assumption that a quick diffusion of nutrients will keep the environment in chambers homogeneous. With 76 

that approach cell lineages were tracked for bacteria32 (the widely used “mother machine”) and yeast33, cells 77 

were subjected to fluctuating environments of different carbon sources to study non-genetic memory in 78 

bacteria34, and bacterial colonies were synchronised through quorum sensing and gas-phase redox 79 

signalling over centimetre-length scales to produce oscillating colony “biopixels”35. Although fascinating 80 

in their own right, unfortunately, such devices do not capture emerging properties at a colony level, i.e. 81 

spatial variations in growth rates, microenvironments and phenotypes. Recently, there have been a few 82 

attempts to use microfluidics to study collective properties of bacterial colonies grown in a microcolony. 83 
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Hornung et al. grew two-dimensional bacterial microcolonies in a 75 µm long device perfused with a very 84 

low concentration (up to 195 µM) of protocatechuic acid as the only carbon source from both sides of the 85 

cell chamber36. They observed heterogeneous growth which they confirmed through reaction-diffusion 86 

model combined with particle-based simulations. In a similar setup, a 60 µm long device perfused with a 87 

very low concentration of glucose (up to 800 µM) from one side was used to study the emergence of 88 

microscale gradients that resulted in metabolic cross-feeding between glucose-fermenting and acetate-89 

respiring subpopulations of bacteria and antibiotic tolerance by slow growing subpopulation37. Wilmoth et 90 

al. used microwells up to 100 µm in diameter to look at spatial patterns of H1-Type VI secretion system 91 

(T6SS) mutants of Pseudomonas aeruginosa accompanied with an agent-based model depicting the two 92 

observed subpopulations38. They found that spatial constraints and local concentrations of growth substrates 93 

affect the spatial organization of cells. Finally, Liu et al. grew Bacillus subtilis biofilms perfused with 94 

glycerol and glutamate media. They discovered collective oscillations which emerge as a consequence of 95 

long-range metabolic co-dependence between cells in the interior and cells at the periphery of a biofilm, 96 

presumably to maximize the availability of nutrients and survival of interior cells39. While the use of 97 

microfluidics gave rise to the discovery of interesting collective properties of microbial assemblies, such 98 

attempts were too specific and had to deal with some of the limitations like small device dimensions (<100 99 

µm), use of low nutrient concentrations (<1 mM), limited scope of nutrient types, inability to access single 100 

cell level – and therefore cannot be transposed to the general case of the study of a large monolayer of cells 101 

in standard range and scope of nutrients employed in biological research. Additionally, it is tempting to 102 

reconstruct the emergence of gene expression landscapes on a global scale (e.g., within structured 103 

communities) from local (e.g., single cell) properties, given the extensive knowledge accumulated on 104 

single-cell gene regulatory networks. However, the variations in the microenvironment within a 105 

multicellular assembly and their interconnections with gene expression and cell metabolism are poorly 106 

known.  107 

 108 

In order to address the above limitations in current methodologies and observe emerging properties at a 109 

colony level, we developed a microfluidic device to grow thin, extended arrays of yeast cell monolayers 110 
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that are perfused with nutrients from a single direction. We demonstrate a novel capacity to reproduce and 111 

quantify spatial variation in cellular growth rate and the formation of gene expression landscapes for key 112 

metabolic genes involved in glucose transport and utilization, across the nascent 2D microcolony. 113 

Interestingly, the gene expression landscapes exhibited a high degree of spatial correlation over a range of 114 

glucose concentrations. Notably, we show that an extended assembly of cells presents a spatial transition 115 

between fermentative (high glucose environment, fast growth, rapid glucose utilization) and respiratory 116 

(low glucose environment, slow growth, slow but efficient glucose utilization40,41) regimes, located close 117 

to and far from the nutrient source, respectively. This spatial structure emerges from the interplay between 118 

how cells individually adapt to the microenvironment and, at the same time, alter their surroundings as a 119 

result of their metabolic activity. Said differently, cells collectively create, and experience, a spatially 120 

structured micro-environment. 121 

 122 

Results 123 

Growing extended yeast monolayers. Microfluidic systems are usually designed to ensure a homogeneous 124 

microenvironment for all cells25. In contrast, in this study, we designed a microfluidic device – dubbed the 125 

“yeast machine” – to grow long, narrow yeast monolayers with the aim of observing the emergence of 126 

nutrient gradients and spatial variations in cellular growth and gene expression landscapes. We used soft 127 

lithography techniques to fabricate a multi-layered microfluidic device composed of a large channel (to 128 

flow nutrients) and an array of perpendicular, extended (800 µm-long), narrow (50 µm-wide), flat (4.5 µm-129 

high) dead-end chambers in which yeast cells can grow as monolayers while the media is supplied by a 130 

pressure pump-based system with flow control (Figure 1, Supplementary Figure 1). The length of the dead-131 

end chambers was optimized to induce significant variations in the nutrient concentrations within the 132 

chambers due to cellular nutrient uptake. The chamber width was large enough to avoid jamming during 133 

cell growth due to geometric constraints and small enough to avoid generation of complex, cell-134 

recirculating flows induced by cell growth42. The chamber height was comparable to – but slightly larger 135 
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than – the average size of a yeast cell, so the cells were vertically constrained to facilitate single-cell imaging 136 

and time-lapse fluorescence microscopy (Supplementary Figure 2). 137 

 138 

The cells were injected into the main channel of the “yeast machine” and then forced into the dead-end 139 

chambers by centrifugation using a homemade 3D-printed holding device attached to a spin coater (see 140 

Supplementary Figure 1c, d; Methods). The main channel was washed with yeast synthetic complete growth 141 

medium to remove excess cells; cells that were trapped in the dead-end chambers by centrifugation were 142 

not removed by the washing step. Nutrients were flowed through the main channel and could passively 143 

diffuse into the array of dead-end chambers. The cells formed growing monolayers that extended from the 144 

closed end of the chamber and collectively progressed towards the nutrient source (i.e. the open end of the 145 

chamber) as the cells pushed each other while growing (Figure 2a, b; Supplementary Movie 1). Cells 146 

eventually filled each chamber, forming an extended two-dimensional colony composed of about 2500 cells 147 

(Figure 2b, Supplementary Figure 2), typically ~10 cells wide and ~200 cells long. Cells could be observed 148 

locally at high magnification (100× objective), while the whole assembly could be seen at low 149 

magnification (10× objective). We recorded the cellular expansion and subsequent internal dynamics of 150 

these long monolayers, as well as the landscape of expression of key fluorescently tagged endogenous 151 

genes, over time and over an almost 1000-fold range of glucose concentrations (from 0.01% to 8% w/vol). 152 

 153 

 154 

 155 
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 156 

Figure 1. Microfluidic device setup and design. 1a. Media reservoirs are pressurized with the help of Fluigent MFCS 157 
pressure pump resulting in flow through the flow sensors, into the chip and then to waste. Flow sensors and pressure 158 
pump are connected to the flow-rate control module, which maintains a constant flow through the system. Nutrient 159 
supply and media conditions can be changed in real time. 1b. Each single “yeast machine” has two sets of cell 160 
chambers of various widths (5 µm, 10µm, 25 µm and 50 µm). The Cell chambers are connected perpendicularly to a 161 
large flow channel (1 mm wide, 25 µm high).. This design facilitates adaptation for different model systems (e.g. 162 
bacteria, yeast, mammalian cells) and high-throughput depending on the of predefined flexible length, width and 163 
height flexible adapted dimensions.. 1c. A close-up sketch of a set of cell chambers used in our experiments.  They 164 
are 800 µm long, 50 µm wide, and 4.5 µm high. A single cell chamber fits a monolayer of up to 2500 yeast cells. The 165 
whole setup is mounted on a microscope for time-lapse fluorescent imaging.  166 
  167 
 

Monolayer in expansion displays regions of fast and slow growth. Expansion of the monolayers of cells 168 

was observed by microscopy at low magnification (10× objective). Under standard glucose-rich conditions 169 

(2% w/vol; 111 mM) and excess amino acids (5× CSM, see Methods), the front velocity, VF, increased 170 

during the first 2-4 h and eventually reached a steady-state close to 100 µm.h-1 (Figure 2c, d, Supplementary 171 

Movie 1). Front velocity is the sum of the contribution of every cell to colony expansion. Therefore, VF 172 

depends on the quantities of glucose and other nutrients that penetrate inside the yeast monolayer, which 173 

impact both the number of cells that grow and their growth rates. Initially, the monolayer is sparsely 174 
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populated and sufficient glucose is expected to reach all cells. After growth and division, a larger number 175 

of cells can participate in global expansion of the population. Thus, the front velocity is expected to quickly 176 

increase over time. However, at some point, as the size of the monolayer increases, the cells close to the 177 

dead end of the chamber will stop growing (due to absorption and metabolism of available nutrients by 178 

cells closer to the nutrient source/chamber opening) and the front velocity will plateau. Hence, after the cell 179 

chamber populates with cells completely, a steady-state is reached where a constant number of cells with 180 

access to glucose continue to divide and move passively towards the nutrient source, while the number of 181 

cells at the dead end of the chamber deprived of glucose (and other nutrients) remains unchanged. If we 182 

consider the ideal case in which yeast cells are 4 µm-wide and divide every 90 min in the presence of 183 

glucose, each cell layer leads to an expansion of 4 µm every 90 min, or 2.6 µm.hr-1. The observed terminal 184 

front velocity of 94 ± 8 µm.hr-1 (Figure 2) can be attributed to the first 36 ± 3 layers of cells, i.e. the first 185 

140 µm of the colony. The glucose penetration distance can be approximated by assuming1 that glucose – 186 

of which the concentration is maintained at C0 at the front of the monolayer – freely diffuses within the 187 

assembly with a diffusion coefficient D ~ 100 µm2.s-1 and is absorbed by cells at a constant rate, q0, of ~ 1 188 

mM.s-1. Diffusion law dictates that the glucose concentration is expected to decrease significantly after a 189 

typical distance, H, that scales with �DC0
q0

 ~ 100 µm. Our direct observation (Figure 2e) showed that for a 190 

layer of growing cells, H is around 400 µm at 2% w/vol glucose. Notably, both estimations are in agreement, 191 

albeit they underestimate the observed size of the growing layer. These discrepancies result from discarding 192 

the decay in the cellular growth rate at decreasing glucose concentrations and the variation in the specific 193 

cellular uptake rate, q, with glucose concentration. Indeed, the interplay between glucose diffusion and 194 

uptake is central to structuration of the colony as it affects both the number of cells that have access to 195 

glucose and the glucose concentration in the microenvironment of each region, and thus determines which 196 

cells actually participate in colony expansion and by how much1. The true glucose penetration distance is 197 

therefore likely to be larger than the ‘guesstimate’ above. Yet, inferring the true penetration distance would 198 

require a detailed model of the dependency of both cellular glucose absorption and the growth rate on the 199 

glucose concentration, as well as experimental measurements of the glucose concentrations within the 200 

monolayer. This outlines the difficulty of predicting the internal structure of a simple yeast monolayer due 201 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 25, 2019. ; https://doi.org/10.1101/527846doi: bioRxiv preprint 

https://doi.org/10.1101/527846
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

to our limited understanding of how yeast cells interact with nutrients and the difficulty of obtaining 202 

quantitative details of the microenvironment landscapes within a yeast monolayer. In the following text, 203 

we quantify the expression of different glucose concentration-dependent transporters as a possible proxy 204 

for intra-colony glucose concentration. We even ventured further, to study how landscapes of cellular 205 

growth and expression of key genes involved in glucose transport self-emerge from long-range metabolic 206 

interactions within the yeast colony. 207 

 208 

Front velocity increases with glucose concentration. Increasing the glucose concentration (from 0.01% 209 

to 8% w/vol) led to higher terminal front velocities (Figure 2d), in agreement with the fact that at higher 210 

concentrations, glucose will penetrate further by diffusion in the colony (Figure 2a). Thus, increasing the 211 

concentration allows a larger number of cells to access glucose and participate in the growth of the colony. 212 

Yet, the front velocity does not increase linearly with glucose concentration, and plateaus at very high 213 

glucose concentrations (> 4% w/vol). One interpretation is that at this concentration range, sufficient 214 

glucose reaches the dead end of the chamber, allowing all cells to participate in the growth of the assembly. 215 

However, based on VF  ~ µL, where L is the length of the dead-end chamber and µ is the average cell growth 216 

rate, one would expect a saturating front velocity of 368 µm.h-1, much larger than the measured value of 217 

100 µm.h-1. 218 

 219 

Glucose is not the only nutrient required for cellular growth; amino acids can be a limiting factor for 220 

auxotrophic strains such as the one employed in this study (S288C background). This is why we used an 221 

excess of amino acids (5× CSM) compared to classic SC medium for yeast cell cultures. Indeed, using 222 

standard amino acid concentrations in the media resulted in significantly lower terminal front velocities, 223 

even at high glucose concentrations (Supplementary Figure 3). This suggests that amino acid availability 224 

can limit cellular growth, which is especially visible in the presence of high glucose concentrations, where 225 

no longer glucose is limiting but rather amino acids are. As all experiments were performed under 5-fold 226 

higher amino acid concentrations than normal SC medium, other metabolites that are consumed are likely 227 

to form gradients within colony and might become rate-limiting for growth. Taken together, we conclude 228 
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that the spatial variations in all metabolic components of the microenvironment need to be taken into 229 

account in order to fully understand microbial colony growth. With that in mind, building a mathematical 230 

model to account for the observed expansion of a spatially structured colony is barely achievable, and we 231 

will not address this question here. Rather, we opted to further characterize the development of glucose 232 

gradients as a specific and critical component of the emergence of the metabolic landscape of the colony. 233 

 234 

Local expansion rate decreases with distance from the nutrient source. Once the dead-end chambers 235 

were filled with cells, we found the growth pattern was highly reproducible across parallel chambers at 236 

each glucose concentration. The cells closer to the open end of the chambers continued to divide, pushing 237 

cells out that were washed away by the flow in the nutrient channel. Cells closer to the dead end (y ~ 800 238 

µm) did not move, grow nor divide. At standard glucose conditions (2% w/vol) and a high amino acid 239 

concentration (5× CSM), significant cell motion was not observed after y ~ 400 µm, indicating that very 240 

limited glucose is available to the cells that are beyond this region. By tracking single cell trajectories, we 241 

measured the velocity field within the yeast monolayers over a range of glucose concentrations. We 242 

extracted > 100 single cell trajectories per concentration, resulting in thousands of velocity data points (see 243 

Methods). As expected, increasing the glucose concentration in the nutrient channel (from 0.01% to 8% 244 

w/vol) led to higher local velocities deeper in the colony (Figure 2f, Supplementary Figure 4). 245 

Concomitantly, velocity also increased closer to the chamber opening when cells experienced a higher 246 

glucose concentration.  247 

 248 

To sum up, our setup captures the essence of structured colonies, with the emergence of a landscape of 249 

growth divided into a non-growing area and actively growing area. This spatial separation is the result of 250 

the formation of glucose (and other nutrient) gradients. These gradients emerge as a result of cellular 251 

metabolic activity, which in turn affects the cellular growth rate and physiology at the local scale.  252 

 253 
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Figure 2. Expansion and dynamics of extended cellular monolayers. 2a. The microfluidic device is perfused with 
nutrients using a pressure-driven system (see Figure 1). Yeast monolayers extend within the long chambers: front 
velocity (VF) and local velocity (Vz) are determined by cellular growth and division. 2b. Example of a time-lapse 
collage of yeast monolayer expansion along an 800 µm-long chamber (2% w/vol. glucose, 5× amino acid 
concentration). Front velocity increases and reaches a plateau (indicated by flattening of the slope of the green curve). 
When the front approaches close to the open end of the chamber (i.e., 0 µm), the over-spilling cells are constantly 
washed away by the nutrient flow within the main channel. 2c. Front velocity reaches a maximum when the position 
of the front becomes close to the open end of the chamber indicating that after expanding by a typical distance (~ 400 
µm here for 2% w/vol. glucose), the maximal number of cells that receive glucose and can participate in expansion 
has been reached. 340 velocity data points binned into 10 equally spaced position points were extracted from n=12 
colony front trajectories (2% w/vol. glucose). The error bars denote standard deviations of each bin (~15-30 velocity 
data points). 2d. Front velocity as function of external glucose concentration. Data comes from the bin closest to the 
open end of the chamber as measured in Figure 2c for each glucose concentration (n > 5). Error bars denote standard 
deviations. 2e. Local cellular motion can be assessed by computing the standard deviation of pixel intensities across 
a stack of time-lapse images. Here, white areas indicate variations in movement across the time-lapse for cells below 
400 µm, while the cells above do not move. Averaging over several channels (n=9), we obtained an indicator of cell 
motion and thus an estimate of the glucose penetration distance, H (~ 400 µm for 2% glucose). 2f. Local velocity 
decreases for cells deeper within the chamber. Local velocity also increases with external glucose concentration. 
Velocity Data, that were binned into 16 equally spaced position, comes from the analysis of >100 cell trajectories. 
Error bars denote standard deviations. 

 254 

Cellular metabolic activity creates gene expression landscapes. The emerging glucose (and other 255 

nutrient) gradients are expected to both trigger and be governed by differential gene expression landscapes. 256 

To this end, we studied the expression of seven key glucose transporters (HXT1-7) whose expressions are 257 

regulated by the extracellular glucose concentration. We employed yeast strains in which these endogenous 258 

glucose transporters were tagged with GFP (Methods), and recorded the fluorescence signals at the global 259 

scale using a low-magnification objective (10×) and local cellular scale using a high-magnification 260 
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objective (100×). Cells were loaded into the chambers as described above and observed after the 261 

establishment of a quasi-steady state (starting 10 h after the chamber was filled with cells, Supplementary 262 

Figure 5). We observed the formation of different landscapes of gene expression for each of the seven 263 

transporters, each with marked territories of low and high expression (Figure 3, 4; Methods). In particular, 264 

HXT1 and HXT7 displayed inversely correlated landscapes of gene expression (e.g., Figure 3a, 3g for 2% 265 

w/vol glucose). Both patterns demonstrate the formation and maintenance of a glucose gradient that emerges 266 

from cellular metabolic activity. HXT1 is a low-affinity glucose transporter mainly expressed under high-267 

glucose conditions, while HXT7 is a high-affinity glucose transporter expressed under low-glucose 268 

conditions only (Figure 3b, 3f)43–45. Concomitantly, HXT1 was expressed at the highest levels in the cells 269 

close to the chamber opening (i.e., in the highest glucose concentration), while HXT7 expression peaked 270 

further away in the chamber, indicating a transition to a low-glucose region. We examined the cells at higher 271 

magnification (60×) to assess the localisation of HXT7 gene expression. As expected, in the cells expressing 272 

the highest levels of this gene, the fluorescence was localized to the cell membrane, indicating HTX7 played 273 

an active role in glucose transport in these cells. In contrast, deeper in the colony, we observed lower levels 274 

of HTX7 fluorescence due to the long lifetime of GFP-fused proteins and absence of dilution through cell 275 

division, though this fluorescence was localized in vacuoles, indicating the transporter had been targeted 276 

for degradation by the cells46 (Figure 3a). Assuming the observed peak of HXT7 fluorescence matches the 277 

peak fluorescence observed in batch culture at a glucose concentration of 0.016% w/vol. (Figure 3b, c, 278 

Supplementary Figure 6), we could locate the position in the yeast monolayer at which the glucose 279 

concentration reached 0.016% w/vol. This position was around Hf ~ 500 µm from the front, in good 280 

agreement with the transition in cell motion (Figure 2, Hm ~ 400 µm).  281 
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   282 

Figure 3. Landscapes of gene expression self-emerge in extended yeast monolayers. 3a. Expression profile of 
HXT7-GFP along the chamber (average fluorescence levels, n=9; standard deviation shown as the envelope) for an 
external concentration of 2% w/vol glucose. Membrane localization of HXT7 was only observed in the cells 
surrounding the area of peak HXT7 expression, localized at ~500 µm at 2% w/vol. glucose. 3b. FACS measurements 
of HXT7-GFP expression in batch culture (average of three replicates) showing a single intensity peak at C0 = 0.016%. 
This peak value can be mapped back to the spatial landscape of 3a to infer the glucose concentration in the region of 
peak HXT7-GFP fluorescence. n=3-6 per glucose concentration 3c. On varying the glucose concentration in the 
nutrient channel, we observed a transition in peak HXT7-GFP fluorescence within the 2D colony. At a concentration 
of 4% w/vol and above, the peak was located close to the dead end of the chamber or not visible, indicating sufficient 
glucose was available throughout the chamber (color code normalized to maximal expression level). Data obtained 
from n=8-17 replicates per glucose concentrations (see also Supplementary Figure 6). 3d. Compared with 3b, it is 
possible to roughly define areas of glucose presence in the monolayer for a range of glucose concentrations (n=8-17, 
per glucose concentrations, error bars denote +/- one standard deviation). 3e. Landscape of HXT1-GFP gene 
expression over a range of glucose concentrations (color code normalized to maximal expression); n=8-9 per glucose 
concentrations (see also Supplementary Figure 7). 3f. FACS measurements of HXT1-GFP over a range of glucose 
concentrations; n=3 replicates. 3g. Overlay of HXT1 (red) and HXT7 (green) gene expression landscapes at three 
external glucose concentrations, showing that the expression landscapes of these transporters were inversely 
correlated, in agreement with their different glucose-dependent expression patterns (compare 3b and 3f). 

 283 

Gene expression landscapes depend on the glucose source concentration. Increasing the glucose 284 

concentration in the nutrient channel changed the gene expression landscape of all seven glucose 285 
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transporters (Figure 3, 4). In particular, at 1% w/vol glucose, HXT1 was only expressed at low levels at the 286 

growing front of the colony (y < 60 µm). In contrast, at the highest glucose concentration (8% w/vol; Figure 287 

3e, Supplementary Figure 7), HXT1 was expressed at high levels throughout the whole colony, 288 

demonstrating glucose was available throughout the chamber. As HXT1 is mainly expressed under high-289 

glucose conditions (> 1% w/vol glucose) in batch culture44, this observation indicated the glucose 290 

penetration distance (within the chamber) increased with the external glucose concentration. This is in 291 

agreement with the increase in local velocity with the external glucose concentration in Figure 2, with the 292 

size of the growing area also increasing with the external glucose concentration.  293 

 294 

In contrast, HXT7 exhibited a peak-like expression pattern, and was repressed under both high-glucose 295 

conditions and when no glucose was present. At low-glucose concentrations (0.1% w/vol), a peak in HXT7 296 

expression was observed at the very beginning of the colony (y ~ 20 µm), indicating glucose was quickly 297 

absorbed by the cells closest to the chamber opening, thus these were the only cells with access to sufficient 298 

carbon resources to grow and divide. The peak of HXT7 expression moved deeper into the colony as the 299 

glucose concentration increased and disappeared completely at 8% w/vol glucose, again indicating 300 

sufficient glucose could diffuse to the end of the chamber under high-glucose conditions (Figure 3, 4).  301 

 302 

Reconstructing glucose concentration landscapes using glucose transporter gene expression levels. 303 

We assessed the expression profiles of HXT1-7 in batch culture as a function of glucose concentration (see 304 

Methods) to obtain a qualitative idea of the glucose concentrations within the microfluidic device. The data 305 

for HXT7 was particularly revealing: its rather sharp, well-defined expression peak at 0.016% w/vol 306 

allowed to define the distance in the microfluidic device at which the glucose concentration is close to that 307 

value (Figure 3a, c). This concentration boundary separates the yeast monolayer into two regions with 308 

different properties, i.e., actively dividing and growth arrest. The position of this boundary moved deeper 309 

into the colony as the external glucose concentration increased (Figure 3d).  310 

 311 
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We extended this idea further and used the complete HXT7 expression profile to infer the glucose 312 

concentrations at all positions within the chambers. Assuming that the local level of HXT7 313 

expression is only set by the local glucose concentration, we can use batch culture measurements 314 

of HXT7 expression (based on flow cytometry) to determine the glucose concentration at a given 315 

chamber position (Figure 4c, 4d). However, this only allows us to reconstruct the glucose 316 

concentration gradient up to 0.016% w/vol., i.e. in the domain where cells are actively dividing. 317 

The idea is simply to linearly map the two sets of measurements (in batch culture and in the 318 

microfluidic device) based on the fluorescence levels that correspond to the maxima Fmax and F’
max 319 

and HXT7-GFP fluorescence levels at the chamber entry F0 and F’
0. Using the data for HXT7 in 320 

Figure 3, we were able to reconstruct the glucose gradient for different initial glucose 321 

concentrations (Figure 4e). When applied to HXT1, the same inference led to very similar results 322 

(Figure 4f). In both cases, glucose concentrations decay very quickly moving away from the 323 

chamber opening and then exhibit a relatively long tail moving deeper into the colony.  324 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 25, 2019. ; https://doi.org/10.1101/527846doi: bioRxiv preprint 

https://doi.org/10.1101/527846
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

  
Figure 4. Using the fluorescence landscapes of glucose transporter gene expression to infer glucose 
concentration gradients. 4a. FACS measurements for HXT1-GFP to HXT7-GFP in batch culture over a range of 
glucose concentrations. The expression levels of each HXT show a specific dependence on glucose concentration 
(n=3-6 replicates per glucose concentration). 4b. Landscapes of gene expression for all HXTs-GFP at an external 
glucose concentration of 2% w/vol. HXTs are ordered by their relative glucose specificity: HXT1 is expressed under 
high-glucose conditions, while HXT5 is only expressed at very low-glucose conditions. Assuming a progressive 
spatial decay in the glucose concentration away from the chamber opening, all maps of gene expression are in perfect 
agreement with the intensity profiles observed in batch culture (n=8-10 replicates per glucose concentration). 4c-d. 
Method of glucose gradient reconstruction. The fluorescence landscape of HXT7 (resp. HXT1) shows a peak Fmax 
(resp. a minimum, Fmin) at a given location. The fluorescence intensity at the opening of the chamber, F0, corresponds 
to the external glucose concentration, C0. Using the FACS measurements of HXT7 (resp. HXT1) as a function of 
glucose concentration, one can define the concentration of glucose that matches the peak Fmax (respective to the 
minimum Fmin), and the fluorescence intensity that corresponds to C0. This allows us to linearly map all other 
fluorescence intensities for a given glucose concentration from the batch culture to the fluorescence intensities inside 
the colony, allowing the glucose concentration across the entire cellular monolayer to be reconstructed. Data comes 
from previously mentioned HXT1 and HXT7 microfluidics and flow cytometry measurements. 4e-f. Reconstruction 
of glucose concentration obtained from HXT7 (4e, 4f) and HXT1 (4f) fluorescence data and various external glucose 
concentrations. 

 

Gene expression landscapes of other genes and transcription factor activity confirm the inferred 325 

glucose gradients. The fact the seven glucose transporters exhibited varied, robust spatial expression 326 
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patterns under identical conditions (e.g., Figure 4a), together with the observed growth rate landscapes 327 

(Figure 2), suggests cellular metabolic state varies significantly across the longitudinal axis of the yeast 328 

monolayers. This variation was further assessed by mapping the expression and localisation of additional 329 

key genes involved in glucose metabolism.  330 

 331 

MIG1 is a key transcription factor involved in glucose repression that localizes to the nucleus in the 332 

presence of glucose, to repress genes that participate in parallel carbon metabolic pathways (e.g., 333 

galactose)20,21. Observing the cells at high magnification, we quantified the distance after which MIG1 334 

fluorescence was not present in the nucleus of the cells (Figure 5b, Supplementary Figure 8). This distance, 335 

around 400 µm at C0 = 2% w/vol glucose, was in excellent agreement with the data obtained by HXT7 336 

profiling. Interestingly, the spatial transition from nuclear MIG1 to cytoplasmic MIG1 localisation was very 337 

sharp and occurred over just a few cells.  338 

 339 

In agreement with the batch culture observations, we found HXT5 was only expressed in regions with very 340 

low or no glucose concentrations where the cells did not seem to divide over several hours (Figure 5a). 341 

Therefore, HXT5 appears to be an excellent marker of growth arrest in this context47.  342 
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Figure 5: Other landscapes of genes involved in glucose metabolism. 5a. Landscape of HXT5 expression. HXT5 
is expressed under very low and no glucose conditions and appears to be a good marker of growth arrest. At C0 = 2% 
w/vol, HXT5 expression is in good agreement with the observed absence of cellular division (see Figure 2, 
Supplementary Figure 9). 5b. Landscape of MIG1 activity. MIG1 fluorescence was located in the nucleus in the 
presence of glucose, with a sharp transition in nuclear localization observed (middle picture, at 2% w/vol glucose in 
the nutrient channel), confirming the existence of a glucose gradient (n=3 replicates). Total number of cells and cells 
with nuclear localization of fluorescence were annotated manually and binned into 25 µm bins (see also 
Supplementary Figure 8). 5c. HXK1 and HXK2 are hexokinases involved in glucose metabolism. Their landscape of 
expression exhibited peaks that indicate a transition from high to very low glucose levels (n=8-9 replicates per glucose 
concentration). 5d. FACS measurements of HXK1 and HXK2 expression over a range of glucose concentrations (n=3-
6 replicates per glucose concentration). 

 343 

The expression landscapes of two hexokinases involved in glucose metabolism, HXK1 and HXK2 (Figure 344 

5c) that are expressed when cells are grown on non-glucose carbon sources, were also consistent with the 345 

batch measurements (Figure 5d, Supplementary Figure 11) and further validated the existence of a glucose 346 

gradient. For each profile, we extracted the position of maximal expression and inferred the glucose 347 

concentration at this position from the FACS measurements of batch cultures. The batch measurements 348 

indicated maximal HXK1 and HXK2 expression were observed at a glucose concentration of about 0.016% 349 
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w/vol. As expected, neither enzyme was expressed at very high glucose concentrations. The HXK1 and 350 

HXK2 expression maxima were similar at the two other glucose concentrations studied, around 300 µm at 351 

C0 = 1% and 500 µm at 2% w/vol. Again, these data are in very good agreement with the positions of HXT7 352 

peak expression at the same glucose concentrations.  353 

 354 

Finally, we examined the expression of PDC1 and SDH2, which are overexpressed in fermenting and 355 

respiring cells, respectively48–50. Their expression landscapes were inversely correlated (Figure 6a, 356 

Supplementary Figure 10), indicating a transition from fermentative metabolic activity at the nutrient front 357 

of the colony to respiratory metabolic activity towards the dead end of the chamber where glucose is scarce. 358 

These expression maps are in good accordance with our previous results (Figure 2, 3, 5) and the levels of 359 

PDC1 and SDH2 expression in batch culture (Figure 6b, 6c).  360 

 361 

Figure 6. Impact of the glucose gradient on yeast physiology and the emergence of a landscape of phenotypes. 
6a. Overlay of the landscapes of gene expression of PDC1 (blue) and SHD2 (pink). PDC1 is known to be expressed 
when yeast cells ferment, SDH2 is mainly expressed in respiring cells (see also Supplementary Figure 10). 6b. FACS 
measurements of PDC1 expression over a range of glucose concentrations in batch culture (n=3). 6c. FACS 
measurements of SDH2 expression over a range of glucose concentrations in batch culture. The inverse correlation 
between PDC1 and SDH2 expression observed in batch culture is in good agreement with the inversely correlated 
spatial expression patterns within yeast cell monolayers (n=3). 
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Multiple gene expression landscapes are spatially correlated. We decided to compare the landscapes of 362 

gene expression for the entire set of reporter genes by aligning the different landscapes across varied 363 

nutrient conditions (Figure 7a). Strikingly, all landscapes showed a high level of spatial correlation. Two 364 

major landscapes emerged: peaking (e.g., HXT7) and switching (e.g., HXT1 or MIG1). We defined and 365 

extracted the typical lengths of the peaking and switching landscapes (Figure 7b) and plotted them as 366 

function of the external glucose concentration (Figure 7c). The typical lengths of all of these landscapes for 367 

different reporter genes were remarkably close, despite the fact that we looked at different cellular 368 

components: a transcription factor (MIG1), glucose transporters (HXTs), metabolic enzymes (HXKs) and 369 

metabolic state reporters (SDH2, PDC1). Notably, we gained a global view of gene expression landscapes 370 

and their interrelationships along a monolayer colony. All data showed the colonies were structured into 371 

two regions with very different properties (Figure 7d): an actively growing region, where cells divide 372 

abundantly and ferment glucose, and a quiescent area, where cells do not divide much and have switched 373 

to respiratory metabolism to compensate for the very low glucose availability. While it is not surprising to 374 

see the expression levels of metabolic genes vary with the glucose concentration, our approach 375 

demonstrates genetic programs not only allow individual cells to adapt to changes in the nutrient 376 

environment, but also enable multicellular assemblies to self-organize spatially through long-range 377 

metabolic interactions. This sheds new light on the coordinated actions of these genes in a biologically 378 

relevant multicellular context that has impact on ecology, evolution, development and emergence of 379 

multicellularity. 380 

 381 

Overall, we studied how cells within a monolayer colony collectively shape their microenvironment 382 

through long-range metabolic interactions. This is a complex process, in which cells adapt locally, 383 

and shape a spatial landscape of gene expression as a global phenotype. As a whole, the structure of 384 

an assembly of cells and the microenvironment landscapes emerge as the result of local cellular 385 

metabolic activity.  386 

 387 
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 388 

Figure 7: Global view of the emergence of landscapes of gene expression. 7a. The different landscapes of gene 
expression presented in this study are aligned, regrouped and displayed over a range of glucose concentrations. This 
simple view sheds light on the macroscopic spatial correlations between these different landscapes, which are both 
setting and traces of the establishment of glucose gradients. 7b. For each gene expression landscape, we identified the 
fluorescence peak (HXT7, HXK1, HXK2) or the position of the transition between low and high expression (HXT1, 
HXT5, SDH2, PDC1) or activity of the transcription factor (MIG1). 7c. Landscapes of gene expression delimit two 
regions in which cells are physiologically different. Phase I indicates active growth by fermentation in the presence 
of glucose; Phase II indicates growth arrest or very limited growth via respiratory metabolism at zero or close to zero 
glucose concentrations. The transition between the two phases typically takes place relatively sharply, over a hundred 
micrometers or ~ 20 cells.  

Discussion 389 

Here, we took an alternative point of view compared to traditional systems and single-cell biology. Rather 390 

than studying single-cell metabolic properties in a well-mixed, homogeneous environment, we designed a 391 

microfluidic chip to force yeast cells to grow and shape their microenvironment, solely by fixing the 392 

properties of the microenvironment at the boundary of the monolayer. This approach allowed us to measure 393 

simultaneously properties at both the single-cell scale and structured population scale and holds potential 394 

for establishing a quantitative link between these scales.  395 
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 396 

Specifically, we showed that cells self-generate nutrient landscapes that in turn influence cellular 397 

metabolism and gene expression profiles. This behaviour, based on nutrient uptake adaptation, is generic 398 

and feeds back on the behaviour of other cells through what we call non-specific long-range metabolic 399 

interactions. Indeed, the microenvironment sensed by cells a few hundred micrometres inside a colony is 400 

very different from the microenvironment experienced by the cells at periphery. Notably, gradients emerge 401 

over relatively short distances, and this process may possibly affect studies of cellular populations within 402 

microfluidics settings. More importantly, quantitative description of gene expression landscapes is critical 403 

if one wants to understand the establishment and behaviour of cellular communities, whether these are as 404 

simple as yeast colonies or more complex, such as biofilms and complex microbial ecosystems in which 405 

several types of cells cohabit and interact. Indeed, in addition to the described long-range metabolic 406 

interactions, many other environmental and genetic determinants such as intercellular communication, cell 407 

surface properties, cell-cell adhesion strength and secretion of extracellular matrix components have been 408 

shown to participate in the emergence of the complex morphology3,51,52 and internal structure of microbial 409 

colonies in such complex situations. The nature of many of these interactions could also be studied using 410 

similar microfluidic devices to identify the relative contribution and relationship of environmental and 411 

genetic determinants to the metabolically generated microenvironment.  412 

 413 

We have made significant advances in the study of emerging properties of yeast colony growth, 414 

microenvironment formation and gene expression compared to previously published studies 2,53,54. These 415 

studies have shown fascinating differentiation and diversity within yeast colonies grown on agar but their 416 

relevance to study the dynamical emergence of complexity in microbial colonies is limited by their 417 

methodology (e.g., growth on a single specific medium with no  dynamic control of environmental changes, 418 

two-photon microscopy, unsuitable for live time-lapse microscopy, obligation to section colonies etc.) 419 

which does not allow detailed spatiotemporal analysis of cellular growth, microenvironment and gene 420 

expression landscapes at a relevant single-cell scale. Our approach is designed to access the dynamics of 421 

large microbial colonies, and while we did not report it here, it is straightforward with microfluidics to 422 
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dynamically change in frequency and composition the external environment, and as such to analyse how 423 

colonies adapt their internal organisation to such stresses.  424 

 425 

Our results are in most part in line with the knowledge of glucose metabolism obtained in batch culture. 426 

Yet, our methodology sheds quantitative description of the spatial expression of genes involved in the 427 

glucose metabolism and its correlation with the cell local growth rates. Our results show that even in the 428 

simple context studied here, reconstructing the microenvironment spatial structure from single-cell 429 

measurement is not trivial. A proper model should take into account how the growth rate and specific 430 

absorption rate vary with the glucose concentration and the microenvironment. Modelling the entire 431 

complexity of the microenvironment is hardly possible, even with today’s knowledge. Thus, we decided to 432 

take a different approach and use key genes involved in glucose metabolism to infer the glucose 433 

concentration gradient. We showed that different reporter genes consistently reported the same glucose 434 

gradient. We envision that the data extracted from relevant fluorescent reporters could be fed into an agent-435 

based or mean-field models that take cell-cell interactions, mechanics and spatial diffusion of metabolites 436 

into account to fill the gap between data generated from single cells to data that is relevant to evolution and 437 

ecology, i.e. at the colony scale. We anticipate that linking local properties to macroscopic, global behaviour 438 

will help to understand the architecture of microbial communities and how evolution shapes the 439 

development of these architectures through long-range metabolic interactions. Of note, in another rare 440 

attempt to study emergence of population level phenomena in yeast S. cerevisiae Campbell et al.  looked 441 

at the synthetic “self-establishing communities” that were able to cooperatively exchange metabolites55. 442 

They inoculated on agar plate auxotrophic S. cerevisiae strain that had different auxotrophic markers on 443 

plasmids. As cells were dividing, some of the plasmids that complemented yeast auxotrophy and therefore 444 

rescued their growth were lost, resulting in a colony which is composed of yeast that are auxotrophic for a 445 

certain amino acid. However, they were able to grow because they used amino acids that were released in 446 

the environment by other yeast that were producing it, effectively generating a very heterogeneous colony 447 

that sustained growth through metabolite exchange. Interestingly, previous efforts to co-culture 448 

complementary auxotrophs had limited effectiveness in supporting co-growth in liquid cultures, indicating 449 
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the importance of spatial structure in facilitating cooperation and makes our system very attractive for study 450 

of such phenomena56.  451 

 452 

Furthermore, while the spatial microenvironment is not fully characterized, we have shown that the 453 

emergence of gradients, and simultaneously gene expression landscapes, are robust and reproducible 454 

features of the colony. Moreover, the landscapes can be compared to extract correlation patterns and infer 455 

how gene regulatory networks act in synchronicity to establish the microenvironment within the colony. 456 

This approach may provide a relatively simple, yet effective method of screening for “organismic” 457 

properties that have been shaped by evolution and are only relevant in a multicellular context. 458 

 459 

Our future efforts to extend the application of this setup will be dedicated to the study of how the 460 

microenvironment dynamically changes when external conditions are altered, an uncharted territory at the 461 

scale of a multicellular assembly that is central to the understanding of microbial ecosystem resistance to 462 

stress, environmental fluctuations and adaptation. We anticipate that similar approaches could be used 463 

to study aging, cooperation and competition, cell memory or evolutionary dynamics, as well as 464 

quantitative characterization of (synthetic) ecological systems and mixtures of cells relevant to 465 

ecology and chemical biology.  466 

 467 

Materials and Methods 468 

Yeast strains. All experiments were performed using haploid S. cerevisiae strains derived from the S288C 469 

background - BY4741: MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0. See Supplementary Table T1 for a detailed 470 

list of the yeast strains used in this study. 471 

 472 

Microscopy. We used an inverted fluorescence microscope (IX81, Olympus) equipped with an EMCCD 473 

camera (Evolve 512, Photometrics) and X-Cite exacte fluorescence light source (Lumen Dynamics). 474 

Optical filters from Chroma Technology Corporation ET-EGFP (U-N49002; Ex 470/40nm Di495 Em 475 

525/50nm) and ET-DsRed (U-N49005; Ex 545/30nm Di570 Em620/60nm) were used to observe GFP and 476 
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RFP fluorescence. Cells were observed using Olympus 10× (Plan 10x / 0.25 NA), 60× (PlanApo N 60x / 477 

1.42 NA Oil) and 100× (UPlanFL N 100x / 1.3 NA Oil) objectives. Open-source µManager57 microscopy 478 

software was used to control all of these components and setup multi-dimensional acquisition. The 479 

temperature inside the microscope incubation chamber that contained the media and cells was maintained 480 

at 30 °C (Life Imaging Services). Fluorescence intensity was set to 10% of maximum output, fluorescence 481 

exposure was set to 1000 ms and camera gain was set at maximum. The time interval between each 482 

acquisition cycle was 6 min.  483 

 484 

Microfluidics and cell loading. Microfluidic devices were constructed using soft lithography techniques. 485 

Photomasks were drawn using L-Edit software (Tanner) and printed on a high-resolution glass substrate 486 

(Delta Mask). A master wafer was created using SU-8 2000 (MicroChem) epoxy-based photoresist that 487 

was spin-coated to the appropriate thickness and exposed to UV light using an appropriate photomask to 488 

create the desired pattern. Multi-layered patterns were aligned and exposed to UV light using a MJB4 489 

manual mask aligner (SUSS MicroTec) and the dimensions of the master wafer were checked using a 490 

Dektak 150 surface profiler (Veeco). The master wafer was treated with 95% (3-mercaptopropyl)-491 

trimethoxysilane (Sigma) for 1 h in the vapour phase. Microfluidic chips were created by casting a degassed 492 

10:1 mix of polydimethylsiloxane (PDMS) and curing agent (Sylgard 184 kit; Dow Corning) on the master 493 

wafer, followed by at least 2 h curing at 65 °C. Each chip was gently cut and peeled off the master wafer; 494 

the entry/exit ports were punched out. The chip and a glass coverslip (24 x 50 mm #1; Menzel-Gläser) were 495 

treated with O2 plasma for 1 min in a plasma cleaner (Harrick Plasma), bonded together and incubated at 496 

65 °C for 10 min. Before loading cells, the chips were coated with 1% Pluronic F-127 (Sigma) for 30 min. 497 

Cells were precultured overnight in 5 mL of synthetic complete (SC) medium containing 2% w/vol glucose 498 

in a shaking incubator at 30 °C, diluted 50-fold into 50 mL of SC + 2% w/vol glucose, cultured for 5-6 h in 499 

a shaking incubator at 30 °C to an OD600 of 0.2-0.4, collected by centrifugation, and loaded into the 500 

microfluidic system with a pipette. The microfluidic system was centrifuged for 2 min at 1000 rpm using 501 

3D-printed adaptors (Laurell WS-650 spin coater) to force the cells into the dead-end cell chambers. Liquid 502 

media was flowed rapidly through the flow channel to remove excess cells and the flow rate was set to 5 503 
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µL/min. A pressure-based microfluidic flow control system (MFCS; Fluigent) coupled with a flow rate 504 

platform (Fluigent) and a flow rate control module (Fluigent) that measured the flow rate and kept it 505 

constant by adjusting the pressure through a feedback loop was used to push liquid media through the flow 506 

channel. The output was kept at a constant pressure of 100 mbar above atmospheric pressure to minimize 507 

formation of air bubbles inside the flow channel. 508 

 509 

Flow cytometry. Flow cytometry experiments were performed on a Gallios Flow Cytometer (Beckman 510 

Coulter) using a 488 nm excitation laser and 530/30 nm FL1 emission filter to detect GFP fluorescence. 511 

Data analysis was performed using Kaluza Flow Cytometry Analysis Software (Beckman Coulter). 512 

Approximately 104 cells were inoculated in 10 mL of SC medium containing various glucose concentrations 513 

(log2 dilutions from 8% to 0.0078125%, and 0% w/vol glucose) and cultured in a shaking incubator at 30 514 

°C to an OD600 of ~0.02-0.2 depending on the starting glucose concentration. Cells were then diluted 10-fold 515 

into 10 mL of fresh SC media containing the same starting glucose concentration and grown for 4-5 h in a 516 

shaking incubator at 30 °C, centrifuged at 4000 rpm for 10 min, re-suspended in 300 µL of PBS pH 7.4 517 

buffer (Gibco) and fluorescence was measured using the flow cytometer. The supernatant of each sample 518 

was collected, and the glucose concentration was measured using the Glucose (HK) Assay Kit (Sigma) to 519 

confirm that the glucose concentration remained constant during the growth phase (Supplementary Figure 520 

11a).  521 

 522 

Image analysis. Image analysis was performed using open-source ImageJ 1.51p software58. To obtain front 523 

velocity, we applied a threshold (Otsu) to detect the bottom frontier over time after flattening the 524 

background using a FFT band-pass filter. The image signal is decomposed by FFT into a spectrum of its 525 

constituent frequencies. Because some operations can be more easily performed on the spectrum than on 526 

the original image, the FFT bandpass algorithm filters out large structures (shading correction) and small 527 

structures (smoothing) of the specified size by gaussian filtering in Fourier space.  The default parameters 528 

are set at 40 pixels for large structure and 5 pixels for small ones. To compute the local speed of the cells 529 

inside the cell assembly, we used the plugin TrackMate59 v3.5.1 to track cell trajectories. TrackMate was 530 
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set to DoG detector with estimated blob diameter of 4 µm and threshold of 4, while tacking was set to linear 531 

motion LAP. 532 

 533 
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