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Linking lineage and population observables in biological branching processes
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Using a population dynamics inspired by an ensemble of growing cells, a set of fluctuation theorems
linking observables measured at the lineage and population levels are derived. One of these relations
implies inequalities comparing the population doubling time with the mean generation time at the
lineage or population levels. We argue that testing these inequalities provides useful insights into
the underlying mechanism controlling the division rate in such branching processes.

I. INTRODUCTION

The question of how a cell controls its size is a
very old one [1], which despite decades of research
is still under intense focus, because the old ex-
periments have only provided incomplete answers
while a new generation of experiments based on
the observation and manipulation of single cells in
microfluidic devices is becoming more and more
mature [2]. For instance, with time-lapse single
cell video-microscopy, entire lineages of single cells
such as F. coli can be traced over many gener-
ations. These experiments allow to investigate
mechanisms of cell size control (cell size homeosta-
sis) with unprecedented statistics both at the sin-
gle cell level and at the level of a population.

Many policies of cell size control have been intro-
duced: the “sizer” in which the cell divides when
it reaches a certain size, the “timer” in which the
cells grows for a specific amount of time before
division, and the “adder” in which cells add a con-
stant volume each generation [3]. The adder prin-
ciple is now favored by many experiments [4-7],
yet there is no consensus on why a specific regula-
tion emerges under certain conditions, and how it
is implemented at the molecular level.

Another important question is how to relate
measurements made at the lineage and at the
population levels. A classical study revealed the
discrepancy between the mean generation time
and the population doubling time [8] in an age-
dependent branching process with no mother-
daughter correlations, called Bellmann-Harris pro-
cess in the literature on branching processes [9].
Importantly, it is still not known at present how
to relate the mean generation time and the popu-
lation doubling time in general models of cell size
control.

Inspired by single-cell experiments with colonies
of prokaryotic cells in microfluidic devices [5, 10],
we consider here continuous rate models (CRM),
based on stochastic differential equations [4, 11].
Unlike discrete stochastic maps (DSM) [3], there is
no need in CRM to rely on a policy function since
the division mechanism is encoded in the func-
tional form of the division rate. The corresponding
population dynamics has an interesting thermody-

namic structure uncovered in Refs. [12, 13], which
we also exploit here to derive three new fluctuation
relations. As usual with fluctuation theorems [14],
our results map typical behaviors in one ensemble
(here the population level) to atypical behaviors
in another one (here the single lineage level). A
similar connection lies at the basis of an algorithm
to measure large deviation functions using a pop-
ulation dynamics [15, 16]. In the mathematical
literature on branching processes, relations of this
kind are known as Many-to-One formulas [17]; they
explain the existence of a statistical biais, when
choosing uniformly one individual in a population
as opposed to following a lineage.

This paper is organized as follows: In the next
section, we introduce two CRM dynamics, which
will be studied in this paper, namely a size-
controlled and an age-controlled model. In Sec. III,
we derive a fluctuation relation for the first type
of models. This fluctuation relation maps the sin-
gle lineage level and the population level. We test
the relation numerically, and we derive related in-
equalities between the mean generation time and
the population doubling time. In the next section,
Sec. IV, we derive a second more general fluctu-
ation relation, valid for both size models and age
models without correlations. We also explain how
this framework is related to the notion of “fitness
landscape” introduced in Ref. [18]. Then, we ana-
lyze age models with correlations between mother
and daughter cells. Finally, we conclude in Sec. V,
while all the important technical details are given
in the appendices.

II. CONTINUOUS RATE MODELS

Let us consider a population of cells as shown
in Fig. la, which grow by division into only two
offsprings at the end of each cell cycle. This pop-
ulation dynamics can be studied at three distinct
levels : the lineage level (red), the population snap-
shot (blue) and the tree level which includes the
complete phylogeny [19]. For bacteria such as E.
coli growing in a rich medium, each cell cycle is
well described by an exponential growth phase [20],
which for the cell cycle ¢ can be parametrized by
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FIG. 1. (a) Representation of the three main levels of
description of the ensemble of cells: the lineage level
(red), the population snapshot (blue) and the entire
tree (black). (b) Evolution of the cell size z(t) along a
lineage. The cell cycle i is parametrized by the gener-
atjon time 7;, the growth rate v; and the size at birth
4.

only three random variables shown in Fig. 1b: the
size at birth z}), the growth rate v* and the gener-
ation time ;.

In the following, we consider successively two
types of continuous rate models: in the first one
based on size, the division rate depends only the
size and in the second one, the division rate de-
pends only on the cell age.

A. Size-dependent division rate

Let us first consider a model with size-dependent
division rate. The evolution of the number of cells
of size x and single cell growth rate v at time ¢,
n(y,t) with y = (z,v), obeys the equation [4, 11]:

oin(y,t) = —vd,[zn(y,t)] — B(y)n(y,t) (1)
+ 2/dy’E(YIy’)B(y')n(y’,t),

where B(y) is the division rate and X(y|y’) is the
probability for a newborn cell to have parameters
y given that the mother cell has parameters y’.
By integrating Eq. (1) over y using the condition
[ dyX(yly’) = 1, a deterministic equation of evo-
lution of the total population N(t) = [ dyn(y,t)
is obtained.

The instantaneous growth rate of the population
is defined as A,(t) = N/N, while the growth rate
of the total volume of the cells is Ay (t) = V/V
with V(t) = [ dyzn(y,t). When a steady state for
the variable y is reached, both A, and Ay become
independent of time and equal to each other [19)].

If instead of the full population, we consider the
dynamics at the lineage level, the natural quantity
to study is the probability density of the cell to
have size « and growth rate v at time ¢, p(z,v,t),
which satisfies the evolution equation

Owp(y,t) = —voy[zp(y,t)) — B(y)p(y.t) (2)
+/w®wwwwwww»

Note the difference with Eq. (1) due to the absence
of the factor 2 in front of the integral, rendering
p(y,t) normalizable at any time, [ p(y,t)dy = 1.

B. Age-dependent division rate

When the division rate depends on the age of
the cells instead of their size, the structure of the
model is rather different from that of the previ-
ous subsection. Let us now introduce a further
distinction between two types of age models. In
the first type, the interdivision times of mother
and daughter cells are uncorrelated, and the di-
vision rate is determined by the age of the cells
only. Such a model is usually termed independent
generation times (IGT) model or Bellmann-Harris
process [9]. In a second type of models, the di-
vision rate may depend on other variables besides
the age, and as a result, mother-daughter correla-
tions will be present.

In the case of the IGT type of models, the den-
sity of cells having age a in the population at time
t, n(a,t), satisfies the evolution equation

(at + 8a)n(a,t) = —B(a)n(a,t), (3)

with the boundary condition:

n(0,) = 2 / Ban(a,)da.  (4)
0

As before, B(a) denotes the age-dependent di-
vision rate. The physical interpretation of the
boundary condition (4) is clear: Each dividing cell
gives rise to two newborn cells (i.e. two cells with
age a = 0). The total number of cells in the pop-
ulation at time ¢ follows by integration of the den-
sity, N(t) = [ n(a,t)da.

As in the case of size control, lineage dynamics
can be directly encoded in the evolution of the age
distribution. Such dynamics reads

(0t + 0a)p(a,t) = —B(a)p(a, ). (5)

which is complemented by the boundary condition:

pwazémmmmwm, (6)

so that probability is conserved and p(a,t) is nor-
malized.

In a second type of models, correlations in the
inter-division times are accounted for by adding an
extra dependence of the division rate on the growth
rate, B(a,v), while introducing at the same time
correlations between the growth rate of mother and
daughter cells. The model then reads

(ﬁt + 3a)n(a, v, t) = —B(a,v)n(a,v,t), (7)
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n(0,v,t) = 2/ da

0 0
(8)
at the population level, and

(0 + 0a)p(a,v,t) = =B(a,v)p(a,v,t).  (9)

p(0,v,t) :/ da/ dv'S(v|v")B(a, v )p(a, V', t),
0 0

(10)
at the lineage level.

III. FLUCTUATION THEOREM FOR

DYNAMICAL ACTIVITY

We now address the problem of connecting lin-
eage to tree or population snapshot statistics in
models with size control. The evolution of a given
cell from time 0 to the time ¢ is encoded in the
trajectory {y}} = {y}.

For the case of size-controlled model, we de-
rive in Appendices A, path probabilities represen-
tations at the population and lineage levels, which
are given by (A10) and (A9) respectively. Compar-
ing these two expressions, we see that a possible
way to bring both distributions “closer” together,
is to multiply the division rate at the lineage level
by the factor m, and to consider a lineage start-
ing from the same initial condition as that of the
population.

Then, we introduce the dynamical activity
Wi({y}) = [3 dt'B(y(t')), which quantifies the ac-
tivity of cell divisions, and the time averaged pop-
ulation growth rate

M. (11)

(0)

After multiplying the relation mentioned above
between path probabilities by an arbitrary
trajectory-dependent observable A({z,v}), and af-
ter taking the average, for the special case where
m = 2, one obtains the following fluctuation rela-
tion :

(ALY D) ireers = (AUy DV D=they o

(12)
where (..)ree, p denotes a tree average generated by
the original dynamics with a division rate B while
(--)1in,2B denotes a lineage average with a modified
dynamics that has a division rate 2B. The rea-
son for this modified division rate is that each cell
divides into m = 2 cells, as a result a factor two
appears at the population level in Eq. (1), which
is absent for the corresponding equation at the lin-
eage level. In the particular case where the ob-
servable A only depends on y(t) instead of the full

1 [t 1
A = f/ dt'Apy(t') = ~1n
t Jo t

dV'S (V) B(a, ' )n(a, V', 1), trajectory {y}, Eq. (12) relates the lineage level to

the population snapshot level instead of the tree
level. The mapping also requires that the original
and the modified dynamics start with the same
initial condition y(0), defined here in terms of cell
size and growth rate.

For the specific choice A({y}) = §(W-W;({y}),
Eq. (12) leads to Crooks-like relation [14]:

Ptree,B(VVv t) = Plin,2B(VV> t)eW_tAta (13)

which relates the distribution of dynamical activity
at time ¢ in a tree (resp. in a lineage): Piyee, (W, 1)
(resp. Pin2p(W,t)). This relation is illustrated
in Fig. 2 for a population of cells growing with a
constant single cell growth rate v. Numerically,
instead of working directly with Eq. (1), we simu-
late an equivalent Langevin equation, which ac-
counts for deterministic growth with the rate v
and stochastic cell divisions with a rate B(z,v).
In the simulation, the division has been assumed
to be symmetric and the single cell growth v con-
stant, which corresponds to the particular choice
of X(yly’) = 6(v — v")d(x — 2’ /2). Note that this
dynamics bears some similarity to that of stochas-
tic resetting introduced in Ref. [21], with the dif-
ference that in our case the resetting of the size is
relative to the current size before division, while in
this reference the resetting was to a constant posi-
tion. Another important difference is the absence
of diffusion in our model.

We have used normalized units of time and size,
so that v = 2 and B(x,v) = vz in these units.
Since A, = Ay = v, Ay = 2, the two distributions
measured at the time ¢ = 2 cross as expected at
W = 4 (top figure). The bottom figure confirms
that the slope of the log-ratio of the two proba-
bility distributions is indeed —1 as expected from
Eq. (13).

Let us emphasize the following points concern-
ing our first main result: This fluctuation relation
is very general, it holds whether or not the sin-
gle cell growth rate fluctuates, i.e., for arbitrary
forms of the kernel ¥ and arbitrary division rate
B(x,v). There is no requirement that the popu-
lation should be stationary neither at time O nor
at time ¢. Further, it generalizes to the case that
each cell has m offsprings instead of two, provided
that this number m is independent on the state
of the system y and that the modified lineage dy-
namics has a division rate mB(z,v), as shown in
Appendix A 3.

The normalization of Piyee, (W, 1) in (13) leads
to the relation:

1 w
At = ; ln/dWe Plin’QB(W, t), (14)
which could be used either to infer the population
growth rate from lineage trajectories or to infer
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FIG. 2. Ilustration of the fluctuation relation in the
case of growth with a constant growth rate v = 2,
showing the distributions of dynamical activity at the
time ¢ = 2 in a tree and in a lineage (top figure) and
the log-ratio of these probability distributions (bottom
figure).

the form of the division rate B using lineage and
population trajectories [22]. In the next subsection
below, we provide such a numerical illustration.

A. Application to the determination of a
population growth rate

Since the variability of single cell growth rate
is known to be important experimentally [20], we
now discuss its role on the population growth rate
in light of our results. A simple way to study this
question in a simulation is to assume that the sin-
gle cell growth rate v is distributed according to a
normal distribution of mean v, and variance o, .
Since v, and o, take the same value at each divi-
sion, there is no correlation between the generation
time of the mother and daughter cell. This is the
situation studied in Fig. 3, where the population
growth rate A, is plotted as function of v,,. In
the absence of variability where o, = 0, we have
A, = vp,, which is shown as a black dashed line
in the figure. In the presence of variability, this
figure confirms that the growth rate of the total
volume Ay equals the growth rate of the popula-
tion where both of them have been measured from
the statistics of the final population at a fixed time.
Importantly, such a determination of the popula-
tion growth rate also agrees (within errors bars)
with the one based on the fluctuation relation of
Eq. (14) using lineage trajectories. Therefore, this
shows that the fluctuation relations of Eq. (14)
could be used as a numerical method to determine
a population growth rate based on lineage statis-
tics.

Another striking feature of Fig. 3 is that regard-
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FIG. 3. (a) Population growth rate A p versus the mean
single cell growth rate vy,,: from a population snapshot
(orange circles), from the growth rate of the total vol-
ume (green stars), and from the fluctuation relation of
Eq. (5) of the main text. Here the cell growth rate
is taken from the normal distribution N (vm,o.) and
B(z,v) = vz. Error bars have been obtained by using
the fluctuation relation on 1000 trajectories and then
repeating the estimation another 50 times.

less of the determination of A,, all the points are
below the dashed line. The interpretation is that
in a snapshot at time ¢, it is less likely to see
cells with a short generation time (corresponding
to large single cell growth rates), therefore the dis-
tribution is biased towards small single cell growth
rate [19]. Since the population growth rate gener-
ally increases with respect to the single cell growth
rate v,,, this bias leads to a decrease of the pop-
ulation growth rate with respect to the case of no
variability in the single cell growth rate.

As mentioned in the introduction, the fluctua-
tion relation of Eq. (12) includes in itself a sta-
tistical biais: when choosing uniformly one indi-
vidual in a population, an individual belonging to
a lineage with prolific ancestors is more likely to
be chosen, as a result, the jump rate on a lin-
eage must be multiplied by the mean number of
offsprings. Although variability in the single cell
growth rate also introduces a form of statistical
bias as explained above, the biais is not exactly
the same one as that contained in the fluctuation
relation. In any case, we would like to point out
a comprehensive theoretical study on the effect of
variability on the population growth rate, namely
[23]. This study confirms that in the case of size
models with i.i.d. single cell growth rates, vari-
ability indeed lowers the Malthusian growth rate
as observed in figure 3. This work also discusses
age models, with and without correlations in sin-
gle cell growth rates, and concludes that in general,
variability may lead to either a positive or negative
trend on the population growth rate.


https://doi.org/10.1101/527291
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/527291; this version posted January 22, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

—-- 128
\ In(2)/B
0.8 N . 1B
- ®  (Tees

~ (Thin.8

FIG. 4. (a) Mean generation times evaluated in a tree
(red circles) and in lineage (violet triangles) against
the division rate B. Theoretical predictions are shown
as dashed lines and the doubling time Ty = In(2)/B is
shown as a dotted line. (b) Distribution of generation
times in the tree firee(7). In these figures, the division
rate, B and the single cell growth rate, v, are constant
and equal to each other.

B. Consequences for the distribution of
generation times

An important quantity in population dynamics
is the distribution of generation times f(7). This
quantity can be evaluated from the observable [24]:

K
Ap = ;ga(T—Tk), (15)

where the index k runs over all the K cell cycles
which have appeared in the trajectory that starts
from ¢ = 0 to final time ¢. This observable can
be evaluated either on a lineage or on a tree. By
reporting Ak as the observable A in Eq. (12), one
deduces the relation

K
1
ftrcc,B(T) - <? § 5(7_ - 77@)6VVt7tAt>lin,2B7 (16)
k=1

where a summation over the random variable K
and a dependence on the final time ¢ are implicit.
In the particular case where the division rate B
is constant, W; = tA, and therefore firee p(7) =
fiin2B(7). In this case, the generation time dis-
tribution in a lineage is the simple exponential
fiin,B(T) = B - exp (B7) with mean 1/B. It fol-
lows that firee,5(7) = 2B - exp (2B7) with mean
1/(2B). Fig. 4 confirms that the distribution of
generation times has the expected properties.

IV. A SECOND FLUCTUATION
THEOREM TO RELATE LINEAGE AND
TREE STATISTICS

A. Size-controlled model

When the division rate B is not constant, the
distribution of generation times will no longer be
exponential, but we may still wonder how mean

generation times observed at the lineage and tree
levels compare to each other. In order to address
this issue, we derive a different fluctuation theo-
rem that connects this time the lineage and tree
statistics with the same division rate B. More pre-
cisely, it follows from a direct comparison of (A10)
and (A9) taking again Py = pg. Since the division
rate is the same in both probability distributions,
we stick to the notations introduced above, except
that now the index B will be omitted.
This allows to write

P {zy, vg, tr}] = P [{ g, vk, tr Y] exp [K In m—tAt}.

(17)
Now, by multiplying the above relation by an ar-
bitrary trajectory-observable A and taking m = 2,
we obtain:

(ALY Deree = (A{yhe" 2 R0, (18)

where K = K({y}) counts as in Eq. (15) the num-
ber of divisions.

In the particular case where A({y}) = d(y —
y(t))dk k), Eq. (18) leads upon averaging, to a
relation between the joint probability distributions
of size, growth rate and number of divisions at the
lineage and tree levels [18]:

PUee(z, 1, K) =28 e M tPlin(g 1K), (19)

which we call a local fluctuation relation. Averages
over lineages within a population can be carried
out with respect to either a chronological or to a
retrospective distribution [12, 13, 24], which corre-
spond respectively to our lineage and tree proba-
bility distributions. Let us briefly comment on a
connection to a discussion presented in Ref. [18].
Elimination of K in Eq. (19) leads to a fluctuation
theorem only involving phenotypic traits z and v:

Ptree(x’ I/) — Z 1,:)tree(:1;7 v, K)
K

e Mot Z 2K plin(z v K)
K
=e M IP(2,0) Yy 25 R™(K]a,v)
K

= e[h(ar:,u)—Ap]t‘Plin(LL,7 V), (20)
where we have introduced the probability of the
number of division events conditioned on size
and growth rate at the lineage level, R'(K|x,v)

and the equivalent of the “fitness landscape” of
Ref. [18] reads

h(z,v) = %1n<2K|x, V) = %ln (Z 2K Rlin(K|x,I/)>.
K

(21)
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By summing over K in Eq. (19), one obtains
ptree ({L‘7 1/) _ e[h(w,u)—Ap]tPIin (:L‘7 I/), (22)

in terms of a function h(z,v) called “fitness land-
scape” in Ref. [18]. Egs. (19)-(22) show that the
knowledge of the two phenotypic probability dis-
tributions P'°® and PY" can be used to infer a
fitness function for size and growth rate.

B. Consequences for the generation times

Let us also introduce the Kullback-Leibler diver-
gence between two probabilities p and ¢:

D(plq) = /dwp(m)lnzgg > 0. (23)

Using the fluctuation relation of Eq. (17), we ob-
tain

D(Pin|ptreey = (K, In2 + tA,. (24)
On large times ¢, we can use the relation (7)), =
t/{K)1n, which together with the definition of the
population doubling time T; = In2/A;, leads to
the right inequality in

<T>tree S Td S <T>lin, (25)

while the left inequality follows very similarly using
D(fptree‘fplin).

In the case that B is constant shown in Fig. 4a,
Eq. (25) is trivially satisfied. For B non-constant of
the form vz, the inequalities are verified numer-
ically in Fig. 5. This figure shows that the mean
generation time for lineage (resp. tree) approaches
the doubling time in the limit of large «, because
in this limit the distribution of generation times
becomes peaked at T.

|22 020 20000022
0.341 I
0.321 (I R
0.301 n

®  (Thins
(T)tree,B

0.28—
5 10 15

FIG. 5. Mean generation times measured in a lineage
or in a tree versus the exponent « entering in the di-
vision rate B(z,v) = va®. The dashed line represents
the doubling time In2/A, the single cell growth rate is
v =2, and values « € [1,16] are shown.

C. Age-controlled model

Beyond cell size control models, one can also
consider age models, which may have or not
mother-daughter correlations. Let us first con-
sider the case where correlations are absent, the
so-called IGT model, and let us focus on the dis-
tribution of generation times either in a lineage or
in a population.

As in the case of size control, lineage dynamics of
age-structured models can be directly encoded in
the evolution of the age distribution, as prescribed
by Egs. (5) and (6). Let us consider steady-state
conditions:

dap(a) = —B(a)p(a), (26)

p(0) = / " Bla)p(a)da. (27)

A nice feature of age models is that the generation-
time distribution can be accessed directly. This is
so because generation time distribution is the age
distribution of the dividing cells. We proceed to
compute this distribution for individual lineages
in age-structured IGT models. First, note that
from (26) immediately follows that

o) =p0yesp | - [ Blraa|. )

Relying on the relation between generation time
distribution and age distribution of dividing cells,
we can write

B(r)p(7)
fooo B(a)p(a)da

= B(r)exp [/O B(a)da], (29)

fin(7) =

where we have used (27) and (28).

Now in order to obtain the distribution of gener-
ation times at the population level, we start from
Egs. (3) and (4). Again, we focus on stationary
conditions for which the total number of cells in the
population grows exponentially, as N(t) = e’rt.
In that case, de density can be written in terms of
the stationary probability density of cells with a
given age as n(a,t) = e*»*P(a), where P(a) is the
stationary age distribution of the population. We
have:

9.P(a) = —[A, + B(a)] P(a), (30)

with the boundary condition:

P(0) =2 /0 " B(a)P(a)da. (31)
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It is worth noting that normalization of P(a)
n (30), leads, using (31), to the following identity

P0).  (32)

o 1
Ap:/o B(a)P(a)da B

We can now proceed to compute the generation
time distribution, by computing the age distribu-
tion of dividing cells. We have first for the station-
ary distribution from (30):

Pla) = P(0) exp { Aja— /O ’ B(a')da’}
— 27, exp {_ Aja— /O ’ B(a’)da’], (33)

where we have also used (32). On passing by, we
highlight an important relation for IGT models ob-
tained from the normalization of P(a) in Eq. (33):

/ exp [—Apa—/ B(a’)da'] da = L (34)
0 0 24,

We can now calculate the generation time dis-
tribution, which reads

B(1)P(T)

J° B(a)P(a)da

— 2B(r) exp [ A /OT B(a)da}

ftree (T) =

(35)
Reading now from the result for the lineage,
Eq. (29), we obtain :

Frree(T) = 2 fin(T)e 407, (36)

which corresponds to the result derived in Ref [10]
with the identification of their generation time dis-
tribution g (resp. ¢*) with our distributions fii,

(resp. ftree)-
Using Eq. (36) we have, for instance:

ftree (T)

D(ftreerlin) = /O ftree(T) n flin(T)

<T>tree
— IR Y
In2 [1 ; 0

= <T>tree S Td7 (37)

dr

where as usual the population doubling time reads
Ty = In2/A,. It is straightforward to prove the
second inequality using the same technique. We
then conclude that for IGT models, one has the
same result as obtained for size structured popu-
lations in Eq. (25), i.e.,

<T>tree < Td < <T>lin- (38)

D. Extension to age models with correlations

In view of the result of previous section, it is
then natural to ask what happens in the more com-
plex case in which mother-daughter correlations
are present. In appendix B, we also derived a gen-
eralization of Eq. (36) for that case, namely:

0
Py (v)

Foreo(T, 1) = 2 fin(r,v)e M7 (39)

lin tree

where p(v) (resp. py*®®(v)) represent the growth
rate distributions of newborn cells at the lineage
(resp. tree level). The presence of these two new
probability distributions is entirely due to mother-
daughter correlations. As a result, the inequali-
ties (25) (identical to (38)) do not necessarily hold
for age models with correlations. An example
where they are indeed violated can be found in the
model with correlated generation times studied in
Ref. [19] in some range of parameters.

V. CONCLUSION

In conclusion, we have established several fluctu-
ation relations which relate observables measured
at the lineage and population levels. We have de-
duced from the second relation that mean gener-
ation times in a lineage should be larger than the
population doubling times in models with cell size
control, whether or not mother-daughter correla-
tions are present, and in age models without cor-
relations. In constrast to this, Eq. (25) can be
violated in age models with correlations. Recent
experiments reporting mean generation times in a
lineage larger than the population doubling time
[10], provide an illustration of the right inequal-
ity of Eq. (25). Our analysis indicates that such
an observation is compatible with a cell size con-
trol model or with an age model without mother-
daughter correlations. Further experimental tests
of both inequalities of Eq. (25) based on our frame-
work could reveal additional information on the
underlying mechanism of cell size control.

Our approach being general, it could be ex-
tended to cover more complex cases such asym-
metric divisions relevant for yeast cells, non-
exponential regimes of growth, relevant for eukari-
ots and other mechanisms of cell aging [25]. While
we have mainly focused on the control of the size
variable, extension of this formalism to other vari-
ables not directly linked to cell size is possible, one
choice being for instance the protein copy numbers
[20].

We also find that the variability of single cell
growth has a negative impact on the population
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growth rate in the absence of mother-daughter cor-
relations when the division rate is B(z,v) = vz.
A positive impact due to correlations has been re-
ported in some other study [26], while more gen-
erally a positive or negative impact should be ex-
pected depending on the form of the division rate
[23]. All these recent results suggest that genera-
tion times are under a strong evolutionary pressure
in which single cell variability and correlations over
generations [27] play an important role.

In the future, we would like to study systems
where the division rate is controlled simultaneosly
by the size and the age of the cell, which represents
a situation of major biological relevance [28]. Fi-
nally, while this work was under review, two new

|

studies of cell growth dynamics have appeared,
which relate either to our pathwise formulation [29]
or to our analysis of generation time distributions
[30].
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Appendix A: Path integral representation of the dynamics for size-controlled models

1. Population level

Let us start by building a path integral representation associated to the evolution of the number density
of cells in the population case, Eq. (1). Here, we will allow for an arbitrary number of offsprings m for
generality, although only m = 2 was considered above. We emphasize that m should be independent of
the state of the system. Let us treat the following term

f(y.t) =m / dy'S(yly') By )n(y' 1),

(A1)

in Eq. (1) as a perturbation. The growth propagator G of the unperturbed dynamics is such that

0,Gp(z,v,tla' t') = —v0, [2Gp(z, vtz V)] — B(z,v)Gp(z, vt 1),

(A2)

with initial condition Gg(z,v,¢'|2',t') = §(x — ). Then using these equations, one can check that

[e%e] t [e'e]
n(x,v,t) :/ dxo Gp(z, v, t|xo, 0)ng(zo, V) +/ dt / dx' Gz, v, t|a' ¢) f(2' v, 1),
0 0 0

(A3)

is equivalent to the initial problem given in Eq. (1). By explicitly using the definition of f from Eq. (A1),

one obtains

oo t 00
n(x,v,t) = / dxo Gp(x, v, t|xo,0)ng(zo, v) + m/ dt; / dxy Gp(z, v, t|xy, t1)x
0 0 0

></ duo/ dz 3(x1,v, |2,19)B(z,v0)n(z, vo, t1),
0 0

(A4)

which allows to find an explicit solution for n(z, v, t) iteratively.

The explicit solution of Eq. (A2) is

t
Gp(z,v,tla’ ') =6(z — z/e”(t*t/)) exp { - / dTB(:c'e”(T*t/), 1/)] )
t/

which allows us to write:

0 t
n(x,v,t) = / dxzo 5({E — woe”t) exp [ — / dTB(l’o@VT, V)]no(xo, v) +
0 0

t oo [e%e) [e%s} t
+ m/ dtq / dl/o/ dxq / dxg 6(ac — xle”(t*tl)) exp {— / dTB(xle”(T*tl), 1/)] X
0 0 0 0 t1

X Z(a:l,u,

ty
moe”otl,uo)B(xoe”Otl , uo) exp [ — / dTB(xoe”"T, uo)} no(zo, o) + ...
0

(A6)
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9
or more compactly:
n(x,v,t) = Z mK/ dig .. / dty / H day dvg 6(v — v )d(z — :L'KeVK(tftK)) no (o, vo) X
K—o 0 0 0
t K
X exp [—/ dTB(SL‘(T),V(T)):| HT(l’k,Vk, xkle”’“l(t’“_t’“l)wkl), (A7)
0 k=1

where trajectories explicity appearing in the exponential in the r.h.s. of (A7) are given as v(7) = v}, and
2(7) = zp exp(vg (T —tg)), for T € (tg, tr+1], while k =0,1,..., K. In our notations, tc = 0 and tx1 = t.
In addition, the transition matrix is given as T(z,v|z’,v') = E(z,v|2’,v")B(z', V).

The last step now consists in noticing that the object propagating trajectories from tg = 0 up to time ¢
in (A7) is not yet a path probability because it is not properly normalized. To deal with this issue it is good
to pass from number densisites to population-level probability densities, P(z,v,t) = N(t)~n(x,v,t), and
Po(z,v) = N(0)"Ing(z,v). We can now write in terms of these quantities:

o t to o K oo K+1
P(z,v,t) = Z /0 dtg .. ./0 dt1/0 H dv, / H dry 0(v — vg)§(x — x4 1) PR {zk, vk, tr ],
K=0 k=0

(A8)
where the object
t
P {wk, v, ti}] = m’ 5($K+1 - xKGUK(tftK)) exp { tA; — / dTB(SU(T), V(T)) X
0
K
X H T(»Tk, Vi, | gt (e tnon) Vk1>Po($07 o), (A9)

k=1

(

is now properly normalized and can be identified
with the correct path propability generating aver-
ages of all observables related to the number den-
sity at the population level. We have added a 2.
subscript B to indicate that the division rate is
given by B(x,v). This will be important later in

the population growth rate, A,, by Eq. (11).

Lineage level

The starting point to derive the path probabil-

the derivation of fluctuation theorems. Note that
when passing from densities to probability densi-
ties, a new term has appeared in the argument of
the exponential namely A;, which is connected to

P l{@e, vie, tr}] = 0(wx41 — w71 ) exp [—

K
X H ']I‘(xk, Vi,

k=1

T—1€

ity for lineage observables is the evolution equation
for the probability density of size and growth rate,
Eq. (2) Except for the absence of the factor two
in front of the integral, the structure of the equa-
tions are the same and the derivation follows along
exactly as in the population case. We provide the
final result:

/t drB(xz(7), V(T))] X

0

l/kl(tk—tkl),yk1)p0(x071/0), (AlO)

which can be readily shown to be properly normalized. Here pg is the distribution of initial conditions
for the lineage. Note that we have introduced pgy, which could be different from the P, introduced earlier
as the initial condition of the population.
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3. Derivation of fluctuation relations

We can now compare path probabilities representations at the population and lineage levels given by
(A10) and (A9) with each other. We see that a possible way to bring both distributions “closer” together,
is to multiply the division rate at the lineage level by the factor m, and to consider a lineage starting from
the same initial condition as that of the population. A possible choice of this initial condition consists,
for instance, in considering a population dynamics starting from a single cell.

In that case we have:

¢
Py, vk, tr}] = m5 (5(90;(“ - xKe”K(t_tK)) exp [— m/ dTB(w(T), V(T)):| X
0
K
X H T(xk, Vk, |mk,1e”’“*1(t’“_t’“*1), ukl)PO(;EO, V). (A11)
k=1
Then, the following relation holds from direct comparison of (A11) and (A9):

Phee{ay, vg, tr}] = P [{ah, vg, tr Y] exp [(m - 1)/0 drB(xz(7),v(1)) — tAt} (A12)

Appendix B: Fluctuation theorem for correlated age models
1. Lineage dynamics

We now consider models in which interdivision times are correlated. The natural way in which these
correlations arise is by inter-cell-cycle growth-rate fluctuations, as given by Egs. (9) and (10). Growth-
rate correlations are encoded in 3, which is a properly normalized conditional probability. Again, we will
focus on stationary conditions. It is simple to see from (9) that one can formally write the stationary
distribution as:

p(a,v) =p(0,v)exp { / B(d/, V)da’]. (B1)
0
To determine p(0,v), we use (10) and (B1):
p(0,v) :/ da/ dv'S(v|v")B(a, v )p(0,v") exp {—/ B(a/,l/)da']
0 0 0
(oo} [e.e] d a
= —/ dv'S(v|v")p(0, u’)/ da —exp | — / B(d',v")dd' |, (B2)
0 0 da 0
from where we get the following integral equation:
p0) = [ S0 p0.) av (B3)
0

The generation time distribution can now be determined, again, as the age-distribution of dividing cells.
It is worth considering slightly more general object, i.e., the joint probability distribution of interdivision
time and growth rate

B(r,v)p(r,v) B(r,v)p(0,v) exp [ — | Bla, u)da}

in T7 V)= o0 o0 - o0 B4
Sin(7,v) fo da fO dv B(a,v)p(a,v) fo p(0, 1) dv' (B4)
[
This result can be written in a more illuminating of newborn cells can be identified as
way by noticing that the growth rate distribution 0.2)
in by, v
Pyt (v) = (B5)

fooo p(0,v/)dv'”
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Furthermore, due to the linearity of Eq. (B3), and 2. Population dynamics
the fact that pi®(v) differs from p(0, v) only in a
multiplicative constant, we have that py»(v) satis- Let us now consider the population level. The
fies stationary equation for the population age distri-

bution reads
8GP(G,V) = _[AP+B(G7V)]P(G’V)7 (BS)

oo
p})m(y) - /0 E(VW)p%’m(V/) dv'. (B6) with boundary condition

P(0,v) = 2/000 da /OOO dv'S(v|v)B(a, V') P(a, ).

These observations then lead to the final result: (B9)
‘We then have

P(a,v) = P(0,v) exp [ — Aya— /0 B(d, V)da’],

fiin(1,v) = pi™(v)B(7,v) exp [ / B(a, V)da} (B10)
’ 0 Note that the normalization of P gives the follow-

(B7) ing condition:
|

A, = /Ooo da /Ooo dv B(a,v)P(a,v) = /OOO dv P(0, v) /OOO da B(a, v) exp { Apa — /O B(a',y)da'}

__ OOO dv P(0, ) /Om da(;; +A,,) exp {_ Aya— /0 B(a’,y)da'}
= /OO dv P(0,v) — A, /OO dv P(0,0)T(v), (B11)
0 0

where we have used (B10) and introduced the function

I(v) = /OOO daexp [_ Apa — Oa B(a’,u)da’]. (B12)

We can thus write for the growth rate of the population:

IS P(0,v)dv

A =17 I PO, )T () dv (B13)

On the other hand, integrating directly in (B10), we get

1= / da/ dv P(0,v) exp [— Apa —/ B(d, V)da/} = / P(0,v)I'(v) dv, (B14)
0 0 0 0
so we have
A, = f/ P(0,v)dv. (B15)
0

As before, we can find an equation for P(0,v) using (B9) and the solution for P(a,v), Eq. (B10):

P(0,v) = 2/ da/ dv'S(v|V')P(0,v") B(a, V') exp [— Apa — / B(d, V')da’}
0 0 0

= —2/ dv'S(v|v")P(0, y’)/ da(ja + Ap> exp [— Apa — / B(d, l/)da’]
0 0 0

= 2/ dv'S(v|V)P(0,V)) — 2Ap/ dv'S(v|v")P(0, 1/)/ da exp { Apa — / B(d/, V’)da’}7
0 0 0 0
(B16)
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so, we then have

P(0,v) = 2/000 dv'S(v|v)[1 = AL (V)] P(0, ).

Let us now write the joint probability distribution of interdivision times and single-cell growth rate:

ftree(T, I/) = B(T7 V)P(T, l/)

_P(O.)

IS da [;° dv B(a,v)P(a,v)

The condition (B15) implies that P(0,v)/A, =
2ppree(v), where

P(0,v)
pW) = B19
A= e B
can be identified, as we did in the lineage case,
with the growth rate distribution of newborn cells,
now at the tree level. We then have:

ftrcc(T V) - 2ptree( ).B(’I'7 I/)X

exp [ Apr — /0 " Bla, V)da]. (B20)

Note once more that the linearity of Eq. (B17) and
the fact that P(0,v) and pje®(v) differ only on a
multiplicative factor, lead to the equation satisfied
by ptree

pirec(v) = 2/ dv'S(v[v)[1 = AL(V)] ppree (V).
’ (B21)

If we now compare (B20) and (B7), we read-
ily obtain Eq. (39). Before closing this paragraph
some comments are in order. First, note that as
Egs. (B6) and (B21) are clearly different, one has
pin(v) # piree(v). Nevertheless, in absence of
fluctuations, when X(v|v') = §(v — V'), we have
o (v) = p“ee(y). To illustrate this, let us con-
sider, for instance, a population starting from a
single cell with growth rate ry. As the growth
rate remains the same in all cell cycles, we have

pin(v) = piree(v) = 6(v — 1) at all times. Then,
Eq. (B6) becomes tautological, while Eq. (B21)

12
(B17)
B(r,v)exp { — AT — / B(a, V)da} . (B18)
p 0
[
leads to the identity
2[1 = AT ()] =1, (B22)

which is precisely the relation (34) found for IGT
models (recall the definition of T', (B12)).

3. Inequalities in correlated age models

Let us now analyze the consequences of the gen-
eralized relation (39) for the inequalities. We have,
for instance:

_ ftree( )
D(ftrcc”flin) - / ftrcc('ra]/ hn(T V) drdv

<T>tree
=2l - ——
n [ P +

A
+ /(; ftree(l/)l

dv >0,
P ()

(B23)

where firee(rv) = | d7 firee(T,v) is the marginal
distribution of the growth rate of the dividing cells.
This result implies, in particular, that

()
Td - < tree ftl 1112 / ftree 1 hn(l/) dv
(B24)
Given that the quantity in the right hand side
of (B24) does not have a definite sign (in particu-
lar, it is not necessarily positive), in this case the
left inequality in (38) (and Eq. (25)) may be vio-
lated. Repeating a similar argument, on arrives to
the same conclusion for the right inequality.
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