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Abstract

The proportion of phenotypic variance attributable to the additive effects of a given set of genotyped SNPs (i.e. SNP-

heritability) is a fundamental quantity in the study of complex traits. Recent works have shown that existing methods

to estimate genome-wide SNP-heritability often yield biases when their assumptions are violated. While various

approaches have been proposed to account for frequency- and LD-dependent genetic architectures, it remains unclear

which estimates of SNP-heritability reported in the literature are reliable. Here we show that genome-wide SNP-

heritability can be accurately estimated from biobank-scale data irrespective of the underlying genetic architecture of

the trait, without specifying a heritability model or partitioning SNPs by minor allele frequency and/or LD. We use

theoretical justifications coupled with extensive simulations starting from real genotypes from the UK Biobank (N =

337K) to show that, unlike existing methods, our closed-form estimator for SNP-heritability is highly accurate across

a wide range of architectures. We provide estimates of SNP-heritability for 22 complex traits and diseases in the UK

Biobank and show that, consistent with our results in simulations, existing biobank-scale methods yield estimates up

to 30% different from our theoretically-justified approach.
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Introduction

SNP-heritability, the proportion of phenotypic variance attributable to the additive effects of a given set of SNPs, is a
fundamental quantity in the study of complex traits!; it provides an upper bound on risk prediction from a linear model
relating genotypes to phenotype? and, when defined as a function of all SNPs on a genotyping array, yields insights
into the “missing heritability” of complex traits*>. Traditionally, SNP-heritability is estimated by fitting variance
components models with REML*°, With some notable exceptions®, REML-based methods are typically not scalable
to biobanks that assay hundreds of thousands of individuals (e.g., UK Biobank contains genotype measurements for
more than half a million individuals'®). SNP-heritability can also be estimated from summary-level GWAS data by
assessing the deviation in marginal association statistics as a function of the LD score of each SNP!!"1*, thus making
SNP-heritability estimation scalable to hundreds of thousands or even millions of individuals. More recently, a
randomized extension of Haseman-Elston (HE) regression!® was shown to estimate a single genetic variance
component from individual-level data as accurately as REML methods but in a fraction of the run-time!®.

To facilitate inference, all existing methods for genome-wide SNP-heritability inference make various
assumptions on the underlying genetic architecture of the trait, which is typically parametrized by polygenicity (the
number of variants with effect sizes larger than some small constant ) and MAF/LD-dependence (the coupling of
effect sizes with minor allele frequency (MAF), local linkage disequilibrium (LD), or other functional genomic
annotations such as regions of open chromatin)!’. Since the true genetic architecture of any given trait is unknown,
existing methods are susceptible to bias and often yield vastly different estimates of SNP-heritability for the same
traits, even when applied to the same data®'*!3. Although multi-component methods that stratify SNPs by MAF and
LD can ameliorate some of the robustness issues of single-component methods’!®!°, fitting multiple variance
components to biobank-scale data with REML is highly resource-intensive® and it is currently unclear whether
stratifying by MAF/LD produces accurate estimates of total SNP-heritability for methods based on summary statistics.
Alternate methods explicitly model MAF- and LD-dependent architectures when estimating SNP-heritability®®14;
however, these approaches can produce drastically different estimates when their assumptions are violated®*!4!81°_ In
addition, genetic architecture is unlikely to be the same across traits or populations due to, for example, variable
degrees of negative selection acting on different traits in different populations!72°-25, Methods that jointly infer SNP-
heritability and other parameters such as the strength of negative selection or polygenicity have been proposed!+232°
but are computationally intensive and/or sensitive to LD-dependent architectures. Thus, it remains unclear which
estimates of genome-wide SNP-heritability computed from biobank-scale data (e.g., UK Biobank!?) are reliable.

In this work, we investigate whether genome-wide SNP-heritability can be accurately estimated under a
generalized random effects (GRE) model that makes minimal assumptions on the genetic architecture of complex
traits. Under this model, every causal effect can have an arbitrary SNP-specific variance, and SNP-heritability is
defined as the sum of the SNP-specific variances (Methods). To the best of our knowledge, all existing methods make
additional assumptions on top of the GRE model (Table 1). For example, the infinitesimal model assumed by single-
component GREML? (and several other methods®!%?”) imposes an inverse relationship between MAF and effect size
by assuming that every standardized effect size explains an equal portion of total SNP-heritability, whereas the single-

component LDAK model assumes that each SNP-specific variance is inversely proportional to both MAF and the LD
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neighborhood of the SNP%°, We derive a closed-form estimator for SNP-heritability as a function of GWAS marginal
association statistics and in-sample LD and show that this estimator is consistent (i.e. approaches the true SNP-
heritability as sample size increases) and unbiased (i.e. its expectation is equal to the true SNP-heritability) when the
number of individuals is larger than the number of SNPs. Most importantly, the accuracy of this estimator does not
depend on the underlying genetic architecture of the trait. While the GRE estimator is similar in form to previously

"28.29 our approach differs from previous work in two main ways. First, SNP-

proposed "fixed effect estimators,
heritability defined under a fixed effect model is different from the estimand of interest here (Methods). Second,
previous work applied the estimator locally to identify regions that contribute disproportionately to the genome-wide
signal?®%; in this work, we define a different genome-wide estimator (Equation 1) that requires large-scale genotype
data. In addition, previous work applied an SVD-based regularization to introduce bias in favor of reduced variance®
whereas in this work, the regularization was unnecessary (all LD matrices used are full rank; see Methods).

Through theoretical derivations and extensive simulations across a wide range of MAF- and LD-dependent
architectures starting from real genotypes from the UK Biobank!® (337K individuals and 593K SNPs), we find that
the GRE estimator provides nearly unbiased estimates of SNP-heritability across all architectures whereas existing
methods are sensitive to model misspecification. For example, across 126 distinct architectures, the maximum bias
we observe with the GRE estimator is 2% of the simulated SNP-heritability whereas methods such as stratified LD
score regression (S-LDSC)!>!3 and SumHer!* yield biases between -64% and 28%. For completeness, we also contrast
the GRE estimator with several REML-based methods in simulations at lower sample sizes (due to the computational
burden of most REML methods) and find that, consistent with recent reports!®, all REML-based methods are biased
when their model assumptions are violated. Across a similar set of 126 architectures, the bias of the GRE estimator

3.689 are biased

ranges from -5% to 6% of the simulated SNP-heritability whereas single-component REML methods
by anywhere between -44% and 18%. We confirm that multi-component REML methods that stratify SNPs by MAF
and LD score (GREML-LDMS-1'®) are more accurate than single-component REML methods if favorable SNP
stratification criteria are used (i.e. if SNPs are stratified by the same MAF bins used to define the causal variant MAF
spectrum). The performance of the GRE estimator, which does not stratify SNPs or assume a specific heritability
model®>!4, is similar to that of GREML-LDMS-I with favorable stratification criteria, thereby confirming that SNP-
heritability can be accurately estimated without knowledge of the underlying genetic architecture.

Finally, we use marginal association statistics and in-sample LD from N = 290K unrelated British individuals
genotyped at M = 460K SNPs (MAF > 1%) to provide estimates of SNP-heritability for 22 complex traits and diseases
in the UK Biobank!?. Consistent with our simulations, across the 18 traits with SNP-heritability estimates greater than
0.05, we find that estimates from S-LDSC (controlling for the baseline-LD model'*) and SumHer differ from the GRE
estimates by a median of -9% and 11%, respectively. For example, for height, estimates from S-LDSC (0.56) and
SumHer (0.63) are approximately 7% lower and 5% higher, respectively, than our estimate of 0.60. Similarly, for
hypertension, estimates from S-LDSC (0.14) and SumHer (0.18) are £12.5% different from our estimate of 0.16.
Taken together, our results demonstrate that SNP-heritability can be accurately estimated from biobank-scale data
without prior knowledge of the genetic architecture the trait, motivating the development of new methods to make

inferences from biobank-scale data under fewer modeling assumptions.
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Results

Overview of the approach
We investigate the utility of an estimator for SNP-heritability derived under a model that makes minimal assumptions
on genetic architecture. We assume the standardized phenotype of an individual is a linear function of their genotypes:
y =xTB + €, where X is a vector of standardized genotypes at M SNPs, B is a vector of standardized effect sizes
corresponding to the M SNPs, and € ~ N (0, 02) is environmental noise (Methods). We assume the effects can follow
any distribution as long as the effect size of every SNP i is zero-centered (E[f;] = 0) with a finite SNP-specific
variance (Var[B;] = o7) that is allowed to be 0, and that the covariance between the effects of any pair of SNPs is
zero (E [ﬁiﬁj] = 0 for all i # j). We term this model the “generalized random effects” (GRE) model as, to the best of
our knowledge, all existing methods to estimate SNP-heritability impose additional assumptions on top of this model.
For example, setting 67 = h; /M fori =1, ..., M results in the single-component GREML model®, whereas setting
a? o« w;[fi(1 = f)]°7° (where w; is a function of the “LD score” of SNP i and f; is the MAF of SNP i) results in the
most recent LDAK model® (Table 1). Under the GRE model, the SNP-heritability explained by the M SNPs is the sum
of SNP-specific variances: h2 = Var[x"B]/Var[y] = X, 07 (Methods).

In this work, we are interested in accurately estimating h; from genotype measurements across N individuals at

NBTVTB—q

M typed SNPs. When N > M, the estimator h2 = Nq

, where B is the vector of standardized SNP effects

estimated by ordinary least squares (OLS), V1 is the pseudoinverse of the in-sample LD matrix, and q is the rank of
the in-sample LD matrix, is an unbiased estimator of SNP-heritability under the GRE model. That is, E[ﬁ;] =

M oo?= h; (Methods). The GRE model allows each SNP-specific variance (6?) to be an arbitrary finite value

satisfying the constraints 67 € [0,1] and 2.}, 6 € [0,1]. Thus, 67 can capture any relationship between effect size
and MAF/LD, which in turn implies that fl; is unbiased under most genetic architectures. Unfortunately, even the
largest biobank-scale datasets currently available contain fewer unrelated individuals than typed SNPs (i.e. UK
Biobank has genotyped M =~ 593K SNPs in N = 337K unrelated British individuals), which limits the utility of the
above estimator. We therefore extend our approach by partitioning the genome by chromosome into 22 approximately

independent regions:

22 oo
B2 — Z NB Vi Bx — ax
GRE= / — o _

N —qy W

k=1
where for each chromosome k with p,, typed SNPs, B, is the p,-vector of standardized SNP effects estimated by
ordinary least squares (OLS), V,:r is the pseudoinverse of the in-sample LD matrix, and q,, is the rank of the in-sample
LD matrix. Although this genome-wide estimator does not provide theoretical guarantees of unbiasedness, we show
through extensive simulations that the magnitude of the bias is extremely small across all architectures when N is

sufficiently larger than p.
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Accurate estimation of SNP-heritability irrespective of disease architecture

To investigate the bias and variance of A%, we perform simulations starting from the real genotypes of N = 337205
unrelated British individuals in the UK Biobank!?. First, we use data from chromosome 22 (M = 9654 typed SNPs)
to simulate 64 distinct MAF- and LD-dependent architectures by varying the SNP-heritability (h;), the proportion of
causal variants (Pcausal), the distribution of causal variant MAF (CV MAF), and the strength of coupling between
effect size and MAF/LD; we use “LDAK-LD-dependent” to describe architectures where causal effects are coupled
with “LDAK weights” (Methods). To enable comparison of estimates across different values of h2, we assess bias as
a percentage of the simulated value of h; (relative bias) or the error of a single estimate as a percentage of h; (relative
error). Consistent with analytical derivations, the GRE estimator restricted to chromosome 22 provides unbiased
estimates across the 64 quantitative trait architectures after correcting for 16 independent tests at each value of h;
(bias p-value < 0.05/16 is considered significant; see Methods) (Figure lac, Supplementary Table S1). The average
relative bias across the 64 quantitative trait architectures is 0.00015% of the simulated h2, and the largest bias we
observe under any single architecture is approximately +0.2% X hZ (Supplementary Figure Sla, Supplementary
Table S1). In simulations of unascertained case-control studies (Methods), the GRE estimator is approximately
unbiased for a range of values of disease prevalence (for h; = 0.10, relative bias range is [-0.20%, 0.30%]) and has
larger variance for diseases with lower prevalence (Supplementary Figure S2a, Supplementary Table S2). For
ascertained case-control studies, estimates are downward-biased but invariant to disease architecture (e.g., when h =
0.10, population prevalence = 0.10, and N,5e = Ncontrol» relative bias is approximately -4%) (Supplementary Table
S3). We then performed simulations in which 0%, 50%, or 100% of causal SNPs were masked from the observed
summary statistics (i.e. untyped). When causal variants are drawn from the MAF range [0.01, 0.05], GRE is downward
biased due to lower average LD between the observed typed SNPs and the masked causal SNPs (Supplementary
Figure S3). We confirm that the analytical estimator of the standard error (Methods) is well-calibrated across all
genetic architectures (Supplementary Figure S4a, Supplementary Table S4). We then investigate the bias induced by
partitioning chromosome 22 into non-independent blocks and find that, as expected, our estimator accrues statistically
significant upward bias as the average block size decreases (Supplementary Figure S5, Supplementary Table S5). For
example, in simulations on chromosome 22 where h; = 0.1, a = =1, peausal = 1%, and causal variants were drawn
uniformly from all SNPs, using a single chromosome-wide LD block produces approximately unbiased estimates (bias
=6.9 X 1075, p-value = 0.55) whereas partitioning the chromosome into 2 disjoint blocks of equal size induces a
small but significant upward bias (bias = 4.3 X 10™*, p-value = 5.3 X 10™*) (Supplementary Figure S5,
Supplementary Table S5).

Next, we investigate the accuracy of the GRE estimator in genome-wide simulations (N = 337K unrelated
individuals and M = 593K array SNPs) where we use 22 chromosome-wide LD blocks to compute h2g. Despite the
22-block approximation, we find that A%y is highly accurate and robust across all 64 MAF- and LDAK-LD-
dependent quantitative trait architectures (Figure 1b, 1c). The average bias across the 64 architectures is 0.97% X h;,
with the relative bias under any single architecture ranging from 0.07% to 2.1% of the simulated h; (Supplementary

Figure S1b, Supplementary Table S6). The largest error we observe for a single estimate across all 6400 simulations
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(64 genetic architectures X 100 simulation replicates) is approximately 17% X h; (Figure 1c) and as N/M increases,

the variance of ﬁéRE decreases while the relative bias across the 64 architectures appears to be approximately fixed,
ranging between 0.91% (N = 100K) and 0.99% (N = 200K) (Figure 1d). These trends hold for a range of values of
Pcausal (Supplementary Figure S6, Supplementary Table S6), for unascertained case-control studies (Supplementary
Figure S2b, Supplementary Table S7), and in a smaller set of simulations with N = 7685 individuals of South Asian
ancestry and M = 1642 SNPs (Supplementary Table S8; Methods). Most importantly, the accuracy of the GRE
estimator does not correlate with the simulated trait architecture (Figure 1b). We also assess the calibration of our
analytical estimator for the standard error in the genome-wide simulations and observe a small downward bias with
respect to the empirical standard deviation of ﬁéRE estimates (Supplementary Figure S4b, Supplementary Table S9).
For example, across 16 distinct architectures where h; = 0.25, the empirical standard deviation computed from 100
independent estimates of h; ranges from 0.0049 to 0.0064, whereas our estimate of the standard error is approximately
0.0036 across all architectures (Supplementary Figure S4b, Supplementary Table S9).

We then investigate the effects of unmodeled substructure and/or cryptic relatedness by filtering individuals at
different kinship coefficient thresholds (Methods) and find that using stricter relatedness thresholds increases the
variance of the estimates (due to smaller sample size) while reducing bias, albeit not significantly (Supplementary
Figure S7, Supplementary Table S10). In addition, to assess the impact of population stratification, we simulated an
effect of the first genetic principal component (PC) on phenotype and computed OLS association statistics both with
and without adjusting for the first genetic PC (Methods). As expected, OLS with no PC adjustment yields inflated
estimates while OLS adjusted for the first PC yields approximately unbiased estimates (Supplementary Figure S8,
Supplementary Table S11). However, even when a relatively large proportion of phenotypic variance is explained by
the first PC (e.g., hi = 0.25 and o7 = 0.05), the maximum bias we observe from unadjusted OLS association
statistics is 5% of the simulated SNP-heritability (bias p-value = 2.7 X 10~°). Together, these results indicate that the
GRE estimator is relatively robust to modest amounts of unmodeled substructure and/or population stratification. In
all subsequent analyses, we compute hZgy with the 22 chromosome-wide LD block approximation as this provides

sufficiently accurate estimates and a fair comparison to other methods.

Comparison of methods to estimate SNP-heritability
We compare hZy; with existing state-of-the-art approaches to estimate SNP-heritability that are easily scalable to the
full UK Biobank data (N = 337K): LD score regression with no annotations (LDSC), which assumes & = —1 and no
coupling of effect size with LD'!; stratified LD score regression (S-LDSC), which partitions h; by a set of annotations
of interest'>!3; and SumHer, a recent scalable extension of LDAK which explicitly models MAF- and LD-dependent
architectures through a specific form of the SNP-specific variances' (Table 1). To ensure a fair comparison among
the methods, LD scores for LDSC, S-LDSC, and SumHer are computed using in-sample LD among the M SNPs, and
in all simulations we aim to estimate the SNP-heritability explained by the same set of M SNPs (see Methods).

We find that A%y, is highly accurate and robust across all simulated architectures while LDSC, S-LDSC, and

SumHer are sensitive to deviations from their respective model assumptions. For example, when h; = 0.25 (Figure
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2), LDSC is approximately unbiased under the “single-component GREML model” (relative bias = 0.04%, p = 0.86)
but is sensitive to the MAF spectrum of causal variants and the degree of coupling between effect size and MAF/LD
(e.g., across the 12 architectures where p¢,usa1 = 1%, relative bias ranges from -44% to 50%) (Supplementary Table
S12). Similarly, SumHer is accurate under the “LDAK model” (relative bias = 5.3%) but highly sensitive to other
plausible genetic architectures (When p.ausa = 1%, relative bias ranges from -19% to 22%) (Figure 2, Supplementary
Table S13). Estimates from S-LDSC (MAF), which partitions h; by 10 MAF bins (Supplementary Table S14;
Methods), are less biased compared to estimates from LDSC when causal effects are coupled with only MAF, but are
significantly downward biased when causal effects are also coupled with LDAK weights (for h; = 0.25, relative bias
range is [1.9%, 7.0%] when y = 0 and [-58%, -37%] wheny = 1) (Figure 2, Supplementary Table S15). S-LDSC
with 10 MAF bins and an additional continuous “level of LD” (LLD) annotation, which we denote S-LDSC
(MAF+LLD) (Methods), produces similar results on the same architectures (for h; = 0.25, relative bias range is
[1.8%, 6.5%] when y = 0 and [-80%, -33%] when y = 1) (Supplementary Table S16). In contrast, the relative bias
of fléRE ranges from 0.45% to 1.3% across the same 16 genetic architectures where h; = 0.25 and peausa = 1%
(Figure 2, Supplementary Table S6). These trends hold for a range of values of h; and Pcausal: across 112 distinct
LDAK-LD- and/or MAF-dependent architectures, the average and range of the relative bias of each method are 0.96%
[-0.06%, 2.1%)] for h2gg, -2.2% [-71%, 70%] for LDSC, -22% [-62%, 8.7%)] for S-LDSC (MAF), -29% [-89%, 9.0%]
for S-LDSC (MAF+LLD), and 2.8% [-27%, 28%] for SumHer (Figure 1b, Figure 2, Supplementary Figures S9-S12,
Supplementary Tables S6, S12, S13, S15, S16). We also perform simulations under 14 alternative LD-dependent
architectures where the variance of each SNP is coupled with its inverse LD score instead of its LDAK weight (i.e.
“LD-score-dependent” architectures; see Methods, Supplementary Figure S13) and find that A%y remains nearly
unbiased (relative bias ranges from 0.52% to 1.3%) whereas estimates from S-LDSC (MAF), S-LDSC (MAF+LLD),
and SumHer are downward-biased on average across the 14 architectures (Supplementary Figure S14, Supplementary
Table S17).

For completeness, we also compare to four widely used REML-based methods: single-component GREML
(GREML), which assumes @ = —1 and no coupling of effect size with LD?*; GREML-LDMS-I, a multi-component
extension of GREML that partitions SNPs by MAF and LD score!®; BOLT-REML, a computationally efficient
variance components estimation method with assumptions similar to those of GREML?; and LDAK, which assumes
a specific form of the coupling of effect size with LD and recommends setting &« = —0.25 %° (Table 1). Because it is
computationally intractable to apply the REML-based methods to thousands of genome-wide simulations with 337K
individuals, we perform simulations using a reduced number of individuals and SNPs (N = 8430 individuals and M =
14821 array SNPs; see Methods). We find that the single-component REML methods (GREML, BOLT-REML, and
LDAK) are sensitive to MAF- and LD-dependent architectures that deviate from their respective model assumptions,
whereas our estimator is robust to all architecture parameters. For example, when h; = 0.25 (Figure 3), GREML and
BOLT-REML are accurate under the “single-component GREML model” (GREML: relative bias = -1.4%, p =
6.0 X 1073, Supplementary Table S18; BOLT-REML.: relative bias = -0.16%, p = 0.75, Supplementary Table S19)
and LDAK is approximately unbiased under the “LDAK model” (relative bias = 0.16%, p = 0.77, Supplementary
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Table S20), but all single-component methods are sensitive to the MAF spectrum of causal variants and to the coupling
of causal effects with MAF/LD. Across the 12 architectures in Figure 3 where p.,usa1 = 1%, the relative biases of the
single-component methods range from -15% to 7.9% (GREML), -14% to 9.1% (BOLT-REML), and -34% to 8.2%
(LDAK) (Supplementary Tables S18-S20). In contrast, for the same 12 architectures, h2g; yields relative biases in
the range [-2.1%, 1.7%], which is comparable to the relative bias observed with GREML-LDMS-I (range [-2.9%,
1.5%]) when using 8 GRMs defined by 4 LD quartiles and 2 MAF bins (MAF > 5% and MAF < 5%) that align with
the causal variant MAF spectrum (Figure 3, Supplementary Tables S21, S22). These trends are consistent across a
range of values of h; and pcausal: across the 112 distinct LDAK-LD- and/or MAF-dependent architectures shown in
Supplementary Figures S15-S19, the average and range of the relative bias are 0.09% [-4.9%, 6.4%] (GRE), -0.6% [-
5.9%, 2.3%] (GREML-LDMS-I), -2.9% [-27%, 15%] (GREML), -1.8% [-25%, 18%] (BOLT-REML), and -8.2% [-
44%, 13%] (LDAK) (Supplementary Tables S18-S22). Similar trends are observed in additional simulations under 14
LD-score-dependent architectures (Supplementary Figure S20, Supplementary Table S23). We note that the
performance of GREML-LDMS-I depends on the resolution of the MAF and LD bins used to partition SNPs; in an
extreme example where all causal variants are drawn from a MAF range tightly concentrated near 1%, running
GREML-LDMS-I with the same 8 GRMs as before yields downward-biased estimates whereas our estimator remains
robust (Supplementary Figure S21, Supplementary Tables S18-S22). While the variance of our estimator is larger than
the variances of the REML-based methods (Figure 3), our approach is designed for biobank-scale GWAS data with
sample sizes several orders of magnitude larger than what we used in these small-scale simulations. In summary, our

results confirm that it is possible to accurately estimate h; under minimal assumptions about genetic architecture.

Estimating SNP-heritability of 22 complex traits in the UK Biobank
Finally, we apply our approach to estimate h; for 22 complex traits and diseases in the UK Biobank (N = 290K

unrelated British individuals, M = 460K array SNPs; see Methods)'®. For comparison, we also provide estimates of

h; from LDSC (no annotations), S-LDSC (controlling for the baseline-LD model'**), and SumHer. Of the 22 traits

analyzed (6 quantitative and 16 binary), we focus on 18 traits for which A2z > 0.05 (Table 2). Using our approach,
estimates of SNP-heritability for the 6 quantitative traits range from 0.12 (smoking status) to 0.60 (height). Across the
12 binary traits, our estimates range from 0.064 (autoimmune disorders) to 0.16 (hypertension) (Table 2). These
estimates are robust to filtering of individuals based on relatedness (Supplementary Table S24), suggesting that
including the top 20 PCs as covariates in OLS sufficiently controls for substructure and/or cryptic relatedness. We
also computed h2gg from two additional sets of SNPs (MAF > 0.1% and MAF > 0.01%) and found that the estimates
increase slightly for lower MAF thresholds (Supplementary Table S25), which is expected due to the increased number
of SNPs (the limited number of typed SNPs in the UK Biobank prohibits us from assessing the utility of GRE at rare
variants further). To enable a direct comparison between hZy; and the SNP-heritability quantities estimated by LDSC,
S-LDSC, and SumHer, we run each of the summary-statistics-based methods with LD scores and regression weights
computed from in-sample LD among the typed SNPs, and we estimate SNP-heritability as the sum of the per-SNP

variances across all M SNPs (Methods). Across the 18 traits, the median difference (as a percentage of h2gz) between
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S-LDSC (baseline-LD/in-sample) and hZgy is -9%:; the median difference between SumHer (in-sample) and A is
11% (Figure 4, Table 2). This pattern is roughly consistent with the global trends we observed in genome-wide
simulations (Figure 2). As expected!!, LDSC (in-sample) yields inflated estimates across all 18 traits.

To enable a comparison between hZz; and SNP-heritability estimates from summary-statistics-based methods
reported in the literature, we also run LDSC, S-LDSC, and SumHer with their recommended parameter

11.12,1430 and with LD scores and regression weights computed from 489 Europeans in the 1000 Genomes Phase

settings
3 reference panel’! — we note that when running these methods as recommended, their SNP-heritability estimands are
not equivalent to our definition of h2 (see Methods and refs.!12!1*1 for details). Across the 18 traits for which A3gg >

0.05, the median differences with respect to hy are -11% for LDSC (1KG), -14% for S-LDSC (baseline-LD/1KG),
and 38% for SumHer (1KG) (Supplementary Figure S22, Supplementary Table S26). Across 9 traits (a subset of the
18 traits with h2zg > 0.05) for which a previous study reported estimates from single-component BOLT-REML
(computed from approximately 337K unrelated white British individuals in the UK Biobank?"), the median difference
between the previously reported BOLT-REML estimates and h2gg is 8% (Supplementary Table S26).

Runtime and memory requirement

Since our approach is designed to be applied to biobank-scale data, we report the runtime and memory requirements
for computing A%z with 22 chromosome-wide LD blocks in the UK Biobank (N = 337K individuals, M = 593K array
SNPs). First, we compute chromosome-wide LD; this has complexity O(NpZ) for chromosome k with p;, SNPs. In
practice, this step does not impose a computational bottleneck because the LD computations can be parallelized over
SNP partitions (e.g., for a pair of SNP partitions containing 1000 SNPs each, computing the pairwise LD matrix takes
about 10 minutes and 16GB of memory). Second, the pseudoinverse of each chromosome-wide LD matrix is computed
via truncated singular value decomposition (SVD), which has complexity O(p;) for chromosome k. This step is
parallelized over chromosomes; for chromosome 2, which has the largest number of typed SNPs, computing the
truncated SVD and pseudoinverse of the LD matrix takes about 3 hours and 60GB of memory. Lastly, given the
precomputed pseudoinverse of each chromosome-wide LD matrix and OLS association statistics, computing h2g
genome-wide has complexity O(p? + -+ + pZ,). For any of the UK Biobank traits analyzed in this work, this takes
less than 1 hour and requires 24GB of memory; most of this time is spent loading the pseudoinverse LD matrices into
memory. For comparison, running LDSC, S-LDSC, or SumHer consists of precomputing LD scores and SNP-specific
weights and performing linear regression to estimate the variance parameters in the model. The first step
(precomputing LD scores and SNP-specific weights) can be parallelized over blocks of SNPs and therefore does not
pose a computational bottleneck in practice. The complexity of the second step (least squares regression) is 0(C2M)

where M is the number of SNPs in the regression and C is the number of variance parameters being estimated.

Discussion

In this work, we show that highly accurate estimation of SNP-heritability can be achieved under minimal assumptions

on the genetic architecture of complex traits. In particular, our proposed estimator assumes that each SNP effect has a
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fixed SNP-specific variance that can capture any arbitrary relationship between effect size and genomic features such
as MAF and LD. We show that all existing methods to estimate SNP-heritability impose additional assumptions on
the GRE model, and we confirm through extensive simulations that these methods are susceptible to bias when their
modeling assumptions are not met. Additionally, we confirm that REML-based methods that partition SNPs by MAF
and LD score generally yield much smaller bias compared to single-component REML methods!®. In contrast, our
estimator, derived under the GRE model, provides accurate estimates of SNP-heritability regardless of the underlying
genetic architecture, without specifying a heritability model or partitioning SNPs by functional categories. On average
across 18 heritable traits in the UK Biobank (h2gg > 0.05), our approach yields estimates that are higher than S-
LDSC estimates (controlling for the baseline-LD model*®) and lower than SumHer estimates (with the recommended
heritability model®!'#). One practical advantage of our approach over methods such as LDSC, S-LDSC, and SumHer
is that the estimand of our approach is always the same for a given genotype matrix, whereas the definitions and
interpretations of the estimands of LDSC, S-LDSC, and SumHer can vary depending on what sets of SNPs are used
in each step of the inference procedure (e.g., the set of SNPs used to compute LD scores need not be the same set of
SNPs that defines the SNP-heritability estimand of interest)!"!%!°. Overall, our results show that while existing
methods can yield biases, for the purpose of estimating total SNP-heritability of complex traits, most methods are
relatively accurate and robust to plausible genetic architectures.

We conclude with several caveats and future directions. First, the utility of the GRE estimator critically depends
on the ratio between the number of SNPs (M) and the number of individuals (V) in the data — as M /N increases, the
eigenstructure of the in-sample LD matrix (and sample covariance matrices in general) becomes increasingly distorted
(larger eigenvalues are overestimated and smaller eigenvalues are underestimated)®2. We mitigate this by assuming
that the genome-wide LD matrix has a block diagonal structure (specifically, one block per chromosome); since the
number of unrelated British individuals in the UK Biobank is larger than the number of array SNPs per chromosome,
our approach is able to provide meaningful estimates of the SNP-heritability attributable to common SNPs (MAF >
1%) in individuals of British ancestry. While the utility of our approach is clearly limited for the time being by the
availability of individual-level biobank-scale data, this will become less of a concern as more institutions establish
their own biobanks*~**, A major limitation of our approach remains with respect to imputed and/or whole-genome
sequenced data, in which the number of SNPs will continue to be orders of magnitude larger than the number of
individuals for the foreseeable future. We defer a thorough investigation of regularized estimation of LD in high-
dimensional settings (M > N) to future work.

Second, the theoretical guarantees of the GRE estimator rely on the assumption that OLS association statistics
and chromosome-wide LD matrices are estimated from the same genotype data. While summary statistics have been
made publicly available for hundreds of large-scale GWAS, in-sample LD is usually unavailable or nonexistent for
these studies since most are meta-analyses®®, and publicly available reference panels such as 1000 Genomes>! currently
have sample sizes in the hundreds or thousands at most. In addition, many publicly available summary statistics were
computed using linear mixed models rather than OLS in order to control for population structure/cryptic relatedness.
Previous works have noted (in the context of statistical fine-mapping) that the LD computation must be adjusted to

accommodate association statistics computed from mixed models®*®*’. The sensitivity of our estimator to reference
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panel LD (with or without regularized LD estimation) and/or mixed model association statistics remains unclear®-8;

we leave an investigation of both for future work. Furthermore, our simulations use typed SNPs to draw phenotypes
because imputed genotypes have highly irregular LD patterns®!8. Although it would be more realistic to simulate
causal variants and phenotypes from a denser set of genotyped SNPs or from whole-genome sequencing data'®, our
simulation design was dependent on the availability of individual-level genotype measurements in biobank-scale
sample sizes.

Third, the GRE estimator does not correct for population structure/cryptic relatedness. We mitigate this in our
analysis of real UK Biobank traits by considering only unrelated individuals (> 3rd degree relatives) and by including
age, sex, and the top 20 principal components as covariates in the linear regression when computing OLS association
statistics. While recent work has found significant evidence of assortative mating for some traits in the UK Biobank
(e.g., height) and not others®®, our estimates for real phenotypes are robust to different relatedness thresholds,
suggesting that including the top 20 PCs as covariates in OLS is sufficient to control for population stratification. Still,
it remains unclear how to quantify the bias of our genome-wide estimator due to population structure and/or assortative
mating in real data. In addition, we derive the GRE estimator under no ascertainment in case/control data. Future work
is needed to extend the GRE approach to control for ascertainment bias!>16:40:4L,

Finally, while previous works have applied similar estimators in the context of fixed effects models to estimate

local SNP-heritability within small regions (e.g., LD blocks)*%

, additional work is needed to extend our approach to
perform functional partitioning of SNP-heritability by higher-resolution annotations. Existing methods for partitioning
genome-wide SNP-heritability by small and/or overlapping annotations make various assumptions on genetic

8,12-14,30

architecture , motivating the development of new methods in this area under fewer assumptions.

URLs

GRE estimator: https://bogdan.dgsom.ucla.edu/pages/software

BOLT-LMM: https://data.broadinstitute.org/alkesgroup/BOLT-LMM/

GCTA: https://cnsgenomics.com/software/gcta/

LDAK: http://dougspeed.com/Idak/

LDSC: https://github.com/bulik/Idsc/

baseline-LD annotations: https://data.broadinstitute.org/alkesgroup/LDSCORE/
PLINK: https://www.cog-genomics.org/plink2

UK Biobank: https://www.ukbiobank.ac.uk
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Methods

The generalized random effects model

We model the phenotype for an individual # randomly sampled from the population as y, = XI B + €,,, where x,, =
(xpq - Xnp)T is a vector of standardized genotypes measured at M SNPs for individual n, B = (B4, ..., By)T is an M-
vector of the corresponding standardized SNP effect sizes, and €,, ~ N(0, 02) is environmental noise. We assume

Var[y,] = 1 and that the genotype at each SNP i is centered and scaled in the population such that E[x,,;] = 0 and

Var[x,;] = 1; i.e. x; = (gri — 2f1) /v 2f;(1 — fi), where g,,; € {0,1,2} is the number of copies of the effect allele at
SNP i for individual n, and f; is the population frequency of the effect allele at SNP i. We define the population LD
between two SNPs i and j to be v;; = E[xy;x,;] for all i # j. The population LD matrix among the M SNPs is
therefore V = Cov[x]]. For simplicity, we use “SNP effect sizes” in lieu of “standardized SNP effect sizes” to refer
to B. We assume that the genotypes x,, and effect sizes B are independent given allele frequencies (f;, ..., i) and V.
Under the generalized random effects (GRE) model, the first two moments of the distribution of the effect size of
SNP i are E[B;] = 0 and Var[B;] = o7, where 67 can be any arbitrary nonnegative finite number. We assume the
covariance between the effects of different SNPs is 0 (i.e. Cov[ﬁi, ﬁj] = E[ﬁiﬁj] = 0 for all i # j). Because the SNP-
specific variances (02, ...,0%) can capture any polygenicity (number of variants with effects larger than some
measurable constant) and any degree of coupling between genomic features (e.g., MAF and LD) and effect size, the
GRE model encompasses most realistic genetic architectures (Table 1).
We define total SNP-heritability (h;) to be the proportion of phenotypic variance attributable to the additive
effects of a set of M SNPs whose genotypes are directly measured:
Var([x; 8]
Varly, ]
= E[Var[x; BIB]] + Var[E[x; BIB]]
= E[B"Var[x;]B] + Var[E[x;]B]
BVB]+0
= E[tr(VBB")]
= tr(VE[BB"])

hg

(2)

E[
E[

INgE
Q,

h2 =

(3)

=1

Thus, h} is defined with respect to a given population and a given set of SNPs. By definition, 0 < hZ < 1. Similarly,
we define regional SNP-heritability (h2) to be the proportion of phenotypic variance due to the additive effects of the
genotyped SNPs in region k. We assume that the set of SNPs that defines hZ is a subset of the M SNPs that define h;

(thus, 0 < hi < h3). If region k is the whole genome, hj = hZ.

Estimating SNP-heritability under the GRE model

We are interested in estimating h; under the GRE model (Equation 3). In a GWAS with N individuals genotyped at
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M SNPs, let X = (x7,...,x%5)T be the N X M matrix of standardized genotypes (i.e. each column of X has been
standardized to have mean 0 and variance 1), lety = (yy, ..., yy)7T be the N-vector of standardized phenotypes, and
let V.= (1/N)X"X be the M X M in-sample LD matrix (an estimate of population LD, V) with rank q, where 1 < q <
M. LetX = (X, ..., Xg) be the genotype matrices for a set of K approximately independent regions spanning all M
SNPs (e.g., chromosomes). For each region k containing p, SNPs, X, is the N X p,, standardized genotype matrix
and V,, is the corresponding p, X p, in-sample LD matrix with rank q,, where 1 < q;, < p,. We propose the

following estimator for genome-wide SNP-heritability:
K

B2 — Z Nﬁiv}jﬁk — q
GRE

N—q. 4

k=1
where B), = (1/N)XLy is the pj-vector of marginal SNP effects estimated by ordinary least squares (OLS) for region
k and V] is the pseudoinverse of V.
In the following sections, we first derive hZgg in the simplest case where K = 1 and N > M by finding an
estimator that satisfies E[fléRE] = h. We then describe modifications to this estimator to allow N < M as well as

rank-deficient LD matrices. Lastly, we derive an analytical form for the standard error of hZyy.

Derivation for hZ;; assuming fixed g and N > M
Recall that Var[y,] = 1 and Var[x}] = V. Our goal is to find an estimator hZzp that satisfies E[A2gg] = h; =
Var[xI B8] = E[Var[x}B|B]] + Var[E[xLB|B]] = E[BTVB] (Equation 2). If B were fixed and we observed V and 3,
we could estimate h2 as h2 = BTVB. However, in reality, we observe noisy estimates of B and V from GWAS. Given
a GWAS of N unrelated individuals and M SNPs, we observe X, the standardized genotype matrix, and y, the
standardized phenotype vector. We assume that when N > M, V - V as N — oo (in practice, the assumption that N >
M is untrue; in subsequent sections we show how we partition the genome into K blocks such that N > p, for each
block k). In a typical GWAS, the marginal SNP effects are estimated through ordinary least squares (OLS) regression
as B = (1/N)X"y = (1/N)X"XB + (1/N)X"e = VB + (1/N)X" €. Given X and fixed B, it follows that
E[B|8.X] = E[VB + + X7€|8.X] (5)
=VB + %XTE[G]
=Vp

Cov[B|B,X] = Cov |V + %xTe| B.X| (6)

Thus, as N —» oo, B — VB. Substituting V2B ~ B and V ~ V, we obtain the revised estimator h? = BTVp ~

(V_IB)TV(V_IZ?) = BTV~1B. The expectation of this estimator is
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E[B"VB|B.X] = E[tr(B"VB)|B.X]
= E[tr(V'BB")|B.X]
= u(VE[BB"[B.X])

= w(Vcov[l.X]) + (V2 E[l. X]E[B]6.x]")
=tr 0—82\7—1\7 + BTV
N
M -
=N o +B"VB (7
We define h2gg to be an estimator that satisfies E[fléREm, X] = BTV. Substituting into Equation 7, we obtain
P M(1 - E[hZze|B. X -
el vl x] - 2 [NGRE D\ bligelex
M

N—-M .
=V +TE[héRE|B'X]

N
~ P M
E[2ecl8.X] = (E[BT9Bl8.X] - )

_ NE[B'V'BIB.X] - M
- N-M
NB"™V-B-M

N-M

N-M

8

ih2 —
hGRE -

Unbiasedness of h%;; under the GRE model when N > M
Recall that under the GRE model, E[B;] = 0 and Var[B;] = 67, where o/ = 0 for all SNPs i. In the previous sections,
we showed that E[fléRE| B, X] = BTVB and h; = M, 0?. Recalling that Cov[ﬁi, ﬁj] = 0 for all i # j, it follows that
E[ﬁéRE|X] = E[E[ﬁéREm'X”X]
= E["VB[X]
= E[tr(B7VE)[X]
= u(VE[BB"])

=Y. ©

Therefore, E[hZpg]=E [E[fléRE|X]] = XM, 07 = h. This implies that hipg is an unbiased estimator for h? under

a wide range of genetic architectures that fall under the GRE model.

Genome-wide approximation

For most GWAS, because the number of genotyped SNPs M is much larger than the number of individuals N in the
study, V is a poor estimator of V genome-wide; as M /N increases, the eigenstructure of V becomes increasingly
distorted (larger eigenvalues are overestimated and smaller eigenvalues are underestimated)®. In addition, it is

generally computationally intractable to compute and invert V genome-wide. Thus, in practice, we divide the genome
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into a set of K approximately independent blocks (e.g., by chromosome) and, following a procedure similar to

Equations 5-8, we obtain
BB Bl X] = Deo? + BLV.BL (10)
- ﬁk (1 - E[ﬁ§|ﬁ, XD + Bivkﬁk
To find an estimator that satisfies E[ﬁ;'ﬁ, X] = Y BEV, B, we sum Equation 10 over k = 1, ..., K:

Zﬁkvkﬁk_z [BTVkIBka] szk+ E g|ﬁx]zpk

K K
E[#318.X] (N - 2“«) DA AT

k=1 k=1

NYi,E [Ezvk 13k|ﬁ'x] — Y1 2%

eliglp.x) = P I
k
B2 Y NBiVi "By — Tk
g N — Yk Dk
~  YeNBIV: B, —
Ry == (11)

While Equation 11 does circumvent the need to invert the genome-wide LD matrix in Equation 8, this estimator will
produce negative estimates of h} if N < M, which is the case in all of our genome-wide analyses. We therefore use
an approximation which estimates the contribution of block k while ignoring the contributions of the remaining blocks.

That is, assuming y = X, B + €, where Var[e, ] = o, Iy, we obtain

EBLY BulB.X] =25 (1 = D) + BLV. B,

_%_ﬁqmmm+ﬂmmm

- NE[BIV-1B,. B, X]| —
el ) = PP - I=n (12)

An estimator that satisfies Equation 12 is

NBV* By —

R =
« N —py
Finally, we estimate genome-wide SNP-heritability as
N NBi Vi "B — i
B2 = Z — Pk 13
e (13)

k=1
While this estimator does not provide theoretical guarantees of unbiasedness, we find that it allows us to robustly

estimate genome-wide SNP-heritability as long as N > p,, for all £ (e.g., Figure 1b).
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Extension for rank-deficient LD

It is often the case that two SNPs are perfectly correlated in a genotype block X, or that N < p, for a block k. In this
case, V, is rank-deficient (i.e. its rank is less than p,) and V! does not exist. We therefore compute V,:r , the
pseudoinverse (Moore-Penrose inverse) of V., which approximate V! using its truncated eigendecomposition. Let

qi = rank(V,) and let V,, = U, A, UL be the eigendecomposition of V., where A, = diag(/ll, wirAg, 0, ...,O). The

ax’
pseudoinverse of Vi, is VI = U, ATUZL, where Al = diag(17%, ... ,AgL,0,...,0).
Substituting VB, ~ B, and V, =V, , we obtain the following estimator for hZ : hZ = BLV, B ~
(V,j B k)TVk (\7,:r B k) = Biv,j By Let I, be apy X p; diagonal matrix in which the first g, diagonal entries are 1 and
the rest are 0. The expectation of our estimator given 8 and X is
E[BLV{B.|B.X] = E[tr(V{B.B})|B.X]
= tw(V/E[BBL|B.X])
= tr(ViCov[By|B.X]) +tr (VJE[EAB,X]E[BAB,X]T)
= tr((02/N)V{V,) +tr (vlj(vkﬁk) (Vkﬁk)T)
= tr((aez/N)lqk) + tr(UkATcugUkAkugﬁkﬁgukAkui)

_ 9 5

=N % + tr(UkA-}rcAkugﬁkﬁgukAkU£)

+ tr(lqkugﬁkﬁiuk/\k)
+ tr(ﬁiUkAqukUﬁﬁk)
+ BiUi Al Ug By

+ B U AU By

=—07 + B VB

Following a procedure similar to Equations 10-13, we obtain
K

~o Nﬁiv;jﬁk_%
hére = N —
e q
Again, while this estimator is not unbiased, it allows us to robustly estimate genome-wide SNP-heritability as long as

N > q, for all k.

Analytical variance of h2g

Following quadratic form theory?**?, the variance of hZyy; in the single-block case is given by

- g — hZ — h2
Var[AZge] = (NL_q) <2q (1 ~ g ) + 4h§> <1N—~"> (14)

When using the K-block approximation, which assumes that the blocks are independent, we approximate Equation 14
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as the sum of the variances of the local SNP-heritabilities:

K
R N \? 1 — h? 1—h2
Var[hZgg| = Z (N — Qk) <ZQk ( N k) + 4h}2c>< N k) (15)

k=1

Because h; and h for all k are unknown, Equation 14 is estimated by plugging in A%,y and Equation 15 is estimated

by plugging in (hZ, ..., h%), the estimates of the regional SNP-heritabilities.

Simulation Framework

To assess the performance of hZ; and other methods, we simulated continuous phenotypes from genotype array data
in the UK Biobank!” under a range of genetic architectures. We obtained a set of N = 337205 unrelated British
individuals to use in simulations by extracting individuals that are > 3rd degree relatives (defined as pairs of
individuals with kinship coefficient < 1/2(%/2))!% and excluding individuals with putative sex chromosome
aneuploidy. In all simulations, we standardize the genotype matrix before drawing phenotypes such that each column

(SNP) of the genotype matrix has mean 0 and variance 1. In other words, we standardize the genotype at SNP i for
individual n by computing x,,;; = (gn; — 2f;)/+/ 2f;(1 — f;), where g,,; € {0,1,2} is the number of minor alleles at
SNP i for individual n and f; is the minor allele frequency (MAF) of SNP i among the N individuals.

Simulations of quantitative traits with no population stratification

Given standardized genotypes for N individuals at M SNPs and a fixed value of hZ, phenotypes are simulated under
different genetic architectures according to the following model. The proportion of causal variants, p.ausal, 1S set to
either 1 (i.e. an infinitesmal model in which all variants have nonzero effects), 0.01, or 0.001. Let ¢; € {0,1} be an
indicator variable for the causal status of SNP i. If p.ausa1 = 1, ¢; = 1 fori = 1, ..., M. Otherwise, if 0 < peausal < 1,
we draw peausa X M SNPs from the set of SNPs with minor allele frequencies in one of three ranges: (0, 0.5], (0.01,
0.05], or (0.05, 0.5]. We use the abbreviation “CV MAF” to refer to the MAF range from which causal variants are
drawn. The standardized SNP effect sizes and phenotypes are then drawn according to the

following model:

of < c;-w![2f;(1 — f)I*e (16)
By, -, BT ~ N(0,diag(a?, ..., a)) (17)
@1 y)T 1B ~ N(XB, (1 — h2)1y) (18)

where a is a parameter that controls the coupling of MAF and effect size, w; is a SNP-specific LD weight, and y €
{0,1} is a global parameter specifying whether the effect size of a SNP is coupled with its LD score. We simulate two
types of LD-dependent architectures by defining the SNP-specific LD weights wy, ..., w,, to be either (1) the default
“LDAK weights” computed by the LDAK software®, or (2) the inverse unpartitioned “LD score” of each SNP
computed within a 2-Mb window using the LDSC software (i.e. w; 1 = ), ] vl-zj where j indexes the set of SNPs within
a 2-Mb window centered on SNP i)!!. Wheny = 1, both the LDAK weights and inverse LD score weights cause
SNPs in regions of higher LD to have smaller effects than do SNPs in regions of lower LD. We set & to one of two

values: ¢ = —1, which indicates a relatively strong inverse relationship between MAF and effect size, or & = —0.25,
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which indicates a weaker inverse relationship between MAF and effect size. Each per-SNP variance is multiplied by
a constant scaling factor to ensure that 3.}1, 07 = hZ. Note that 67 > 0 if c; = 1 and 67 = 0 if ¢; = 0.
Finally, given simulated phenotypesy = (¥, ..., yy)' and genotypes X = (xI,...,x5)7, we compute marginal

association statistics through ordinary least squares (OLS) as 8 = (1/N)X"y.

Simulations of case-control phenotypes with no population stratification
To simulate case-control studies, we first draw each individual’s continuous liability (I,, for individual ») according
to Equation 18. Then, for a given population prevalence (0 < d,,, < 1), we compute the corresponding liability
threshold L = ®~1(1 — dpop), Where @ is the CDF of the standard normal distribution, and we convert each
individual’s continuous liability into a case-control status: y,, = 1ifl, = L ory,, = 0 if [, < L. In simulations of
unascertained case-control studies, we assume that the proportion of cases in the study is equal to the population
prevalence (dgwas = dpop)- In all simulations of ascertained case-control studies (dgwas > dpop), We set dgyas =
0.5 and select a random set of controls to satisfy N.,s. = Neontror-

To estimate SNP-heritability from simulated case-control studies, we compute association statistics by regressing
the binary case-control statuses on genotypes and apply GRE; this produces an estimate of SNP-heritability on the

observed scale (h2,,). We assume that we know the population prevalence, which allows us to convert this estimate

from the observed scale to the [liability scale with the transformation hZ,, = ﬁgbsdgop(l—dpop)z/

(F WP dgwas (1 — dgwas)), where f is the standard normal probability density function®.

Simulations with population stratification
To simulate GWAS with population stratification, we draw phenotypes from a model where a covariate that is
correlated to genotypes has a nonzero effect on phenotype. To this end, we simulate an effect of the first genetic
principal component (PC,) by setting 02, the proportion of total phenotypic variance explained by the covariate, and
drawing phenotypes from the model

31, )T IB ~ N(XB + PC, B, (1 = hg — o)1) (19)
where B, satisfies Var[PC, ;] /Var[y] = B2Var[PC,] = 2. We then compute association statistics from one of two
models: y = X7 B + €, which ignores population stratification and other potential sources of confounding, or y =

XTB + PC, B, + €, which controls for the effect of the first genetic PC.

Comparison of methods in simulations

Unless otherwise specified, in all genome-wide simulations, we use real genotypes of N = 337205 unrelated British
individuals measured at M = 593300 array SNPs to draw causal effects for all M SNPs and phenotypes for all N
individuals. OLS summary statistics are computed for all M SNPs using the simulated phenotypes and real genotypes
for all N individuals. We implement our estimator (Equation 4) by computing chromosome-wide in-sample LD for
each chromosome & as Vi, = (1/N)X%X, and we compare to three computationally efficient methods that operate on

summary statistics: LD score regression (LDSC)!!, stratified LD score regression (S-LDSC)!?!*, and SumHer'*.
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To run LDSC with no annotations, we use the LDSC software (see URLs) to compute the LD score of each SNP
as a function of its LD to all other SNPs in a 2-Mb window centered on the SNP. The LD scores are computed from
a random sample of 40K individuals to reduce the amount of memory required by the LDSC software. We run the
regression with an unconstrained intercept, using all M SNPs as observations in the response variable, where each
SNP in the regression is weighted to account for heteroscedasticity and correlations between association statistics at
SNPs in LD!%, h; is estimated as a function of all M SNP-specific variances by running LDSC with the flags --not-M-
5-50 and --chisq-max 99999 (the latter option prevents the LDSC software from dropping high-effect SNPs).

We run S-LDSC in two ways to account for MAF- and LD-dependent architectures. S-LDSC (MAF) refers to S-
LDSC with 10 binary MAF bin annotations defined such that each bin contains exactly 10% of the typed SNPs; this
is intended to mirror the 10 MAF bin annotations in the S-LDSC “baseline-L.D model”'? (see Supplementary Table
S14 for precise MAF bin ranges for the UK Biobank Axiom Array). S-LDSC (MAF+LLD) refers to S-LDSC with the
same 10 MAF bins and an additional continuous “level of LD (LLD) annotation computed by quantile-normalizing
the unpartitioned LD scores within each MAF bin to a standard normal distribution'®. While our definition of LLD is
intended to mirror the LLD annotation in the baseline-LD model, we do not set the LLD of variants with MAF < 0.05
to 0 because our estimand of interest is the SNP-heritability attributable to all M SNPs (not just SNPs with MAF >
0.05)"3. For each annotation, LD scores are computed within 2-Mb windows from a random sample of 40K individuals.
We run the regression with all M SNPs, an unconstrained intercept, and the recommended regression weights!!3,
Once again, we use the flags --not-M-5-50 and --chisq-max 99999 to estimate h; as a function of all M SNP-specific
variances and to prevent the LDSC software from dropping high-effect SNPs.

To run SumHer, we first use the LDAK software (see URLSs) to compute the default “LDAK weights” using in-
sample LD*!*, Second, we compute “LD tagging” (i.e. LD scores) using 1-Mb windows centered on each SNP and
setting @ = —0.25 as recommended'*. The LDAK software is memory-efficient, allowing us to use in-sample LD
computed from all N= 337K individuals to obtain LDAK weights and LD tagging. Finally, we run SumHer to estimate
h; as a function of all M SNP-specific variances. Unless otherwise specified, all default parameter settings are used
to run SumHer in simulations.

Similarly, in all small-scale simulations, we use real genotypes of N = 8430 unrelated individuals at M = 14821
array SNPs to draw phenotypes for all N individuals. These individuals and SNPs are a subset of the full UK Biobank
data that were used in the genome-wide simulations, and were chosen by selecting approximately 2.5% of individuals
and the first 2.5% of SNPs from the beginning of each chromosome in order to preserve a realistic LD structure among
the SNPs. OLS summary statistics are computed from the simulated phenotypes and genotypes for all N individuals
and M SNPs, and h2gg is computed using in-sample chromosome-wide LD. We run the implementation of single-
component GREML? provided by the GCTA software** and single-component BOLT-REML? provided by the BOLT-
LMM software (see URLs), both with default parameters. We run the implementation of GREML-LDMS-1'® provided
by the GCTA software using 8 GRMs created from 2 MAF bins (MAF < 0.05 and MAF > 0.05) and 4 LD score
quartiles; LD scores were computed using the GCTA software with the default window size of 200-kb. We run LDAK
using the default LDAK weights, setting @ = —0.25 as recommended®®.

For a given genetic architecture, we generate 100 simulation replicates and obtain 100 estimates of h; from each
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method. We estimate the bias of an estimator fl; under a given architecture by computing the difference between the

average of the 100 estimates and the simulated h2 (i.e. bias[AZ] = E[RZ] — hZ ~ (1/100) X 1% A2(i) — h? where

fl; (i) is the estimate from the i-th simulation). To test whether the bias is statistically significant (i.e. significantly
different from 0), we assess the z-score of the bias (zy;,s = bias[ﬁ;] / SEM[ﬁ;], where SEM[ﬁ;] is the standard error
of the mean of the 100 estimates) which follows a N(0,1) distribution under the null hypothesis. To enable a
comparison of estimators across different values of hZ, we assess the relative bias of an estimator under a single
architecture (bias[fl;] / h;) as a percentage of h;. In Figure 1c, we compute the error of a single estimate from the i-
th simulation as (h2(i) — h2)/h2; errors are also reported as percentages of hZ.

We also performed simulations using the genotypes of 7,685 individuals of South Asian ancestry in the UK
Biobank. This group was composed of individuals of Indian (n = 5,716), Pakistani (n = 1,748), and Bangladeshi (n =
221) ancestry. Due to the small sample size, we used a reduced set of 803 SNPs from chromosome 21 and 839 SNPs
from chromosome 22 (1,642 SNPs in total). This reduced set of SNPs was chosen such that N/p, for each

chromosome k was similar to N /p,, in the “white British” cohort.

Analysis of UK Biobank phenotypes

We estimate SNP-heritability for 22 real complex traits (6 quantitative, 16 binary) in the UK Biobank!?, We use
PLINK?* to exclude SNPs with MAF < 0.01 and genotype missingness > 0.01 as well as SNPs that fail the Hardy-
Weinberg test at significance threshold 10~7. We keep only the individuals with self-reported British white ancestry
and no kinship (i.e. > 3rd degree relatives, defined as pairs of individuals with kinship coefficient < 1/2/2)!10 After
removing individuals who are outliers for genotype heterozygosity and/or missingness, we obtain a set of N=290,641
unrelated British individuals to use in the real data analyses. For all traits, marginal association statistics are computed
through OLS in PLINK, using age, sex, and the top 20 genetic principal components (PCs) as covariates in the
regression; these 20 PCs were precomputed by UK Biobank from a superset of 488,295 individuals. Additional
covariates were used for waist-to-hip ratio (adjusted for BMI) and diastolic/systolic blood pressure (adjusted for
cholesterol-lowering medication, blood pressure medication, insulin, hormone replacement therapy, and oral
contraceptives). We compute hZpp for each trait using chromosome-wide in-sample LD estimated from all N
individuals.

When using LDSC, S-LDSC, or SumHer to estimate SNP-heritability, it is necessary to define and distinguish
between the following sets of SNPs: the set of SNPs containing all possible causal SNPs of interest (used to compute
LD scores and LDAK weights), the set of SNPs used as observations in the regression, and the set of SNPs that defines
the SNP-heritability estimand of interest. We run two versions of LDSC, S-LDSC (controlling for the most recent
baseline-LD model'>'**%), and SumHer'*. First, to enable a more direct comparison between A%y and the estimands
of LDSC, S-LDSC, and SumHer, we run an “in-sample LD” version of each method where the M typed SNPs (MAF
>(.01) are used to compute LD scores and LDAK weights, perform the regression, and estimate SNP-heritability (i.e.
we define the SNP-heritability estimand to be the sum of the per-SNP variances across the M typed SNPs). We refer
to the in-sample LD versions of these methods as LDSC (in-sample), S-LDSC (baseline-LD/in-sample), and SumHer
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(in-sample). To run LDSC (in-sample) and S-LDSC (baseline-LD/in-sample), we use the LDSC software (URLs) to
compute LD scores and regression weights within 2-Mb windows centered on each SNP, using a random sample of
40K individuals to reduce the memory requirement. To run SumHer (in-sample), we use the LDAK software (URLs)
to compute LD tagging from the genotypes of all NV individuals, using 1-Mb windows centered on each SNP and
setting @ = —0.25 as recommended”!*. Unless otherwise specified, all other parameters were set to the default
settings of each software.

To enable comparisons between hZg; and estimates from LDSC, S-LDSC, and SumHer reported in the literature,
we also run each method with its recommended parameter settings and LD estimated from reference panel sequencing
data. We refer to these methods as LDSC (1KG), S-LDSC (baseline-LD/1KG), and SumHer (1KG) to indicate that
LD is estimated from 489 Europeans in the 1000 Genomes Phase 3 reference panel’*!. We run LDSC (1KG) and S-
LDSC (baseline-LD/1KG) with LD scores and regression weights computed within 1-cM windows from 9,997,231
SNPs with minor allele count greater than 5 in the reference panel (URLs), and we define the SNP-heritability
estimand to be a function of the array SNPs with MAF > 0.05':!2, We run SumHer (1KG) using 8,569,062 SNPs with
MAF > 0.01 in the reference panel to compute LDAK weights and LD tagging (1-cM windows) and to define the
SNP-heritability estimand; we control for a multiplicative inflation of test statistics as recommended!*. See

refs.!H121419 for details about the definitions and interpretations of the estimands of LDSC, S-LDSC, and SumHer.
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Model Assumptions on f3; Description

Generalized

Each SNP i has a nonnegative SNP-specific variance
— — 2 2
random effects  ELAid = 0. VarlBi] = o7, 07 2 0

%= of. Total SNP-heritability is h2 = Y1, o7.

GREML-SC 2 Each SNP explains an equal portion of h;. In other words,
38,16 Bi~ N0, hg/M) ol =hZ/Mforalli=1,..,M.

hZ is partitioned by a set of disjoint SNP partitions C that
GREML-MC span all M SNPs. Partition ¢ € C contains m. SNPs that
7,8,18,46,47 Bi ~ N(0, Xcec[SNP; € c]hé /m.) P q

have per-SNP variances h? /m,. Total SNP-heritability is
h; = ZCEC hcz'-

Each SNP-specific variance is proportional to a function
of f; (the MAF of SNP i) and to w; (a SNP-specific weight
LDAK®? Bi ~ N(0,02), a2 x wi[f,(1— f;)]***  thatis a function of the inverse of the LD score of SNP ).
a controls the relationship between ¢? and f;. The most
recent recommendation by ref.? is to assume a = —0.25.

Each SNP explains an equal portion of hZ (similar to the
LDSC" E[B;] =0, Var[B;] = hi /M GREML-SC model when h3 is defined with respect to the
same set of M SNPs).

Each SNP-specific variance is a linear function of a set of
annotations A where each a € A represents a binary or
continuous-valued annotation. a(i) is the value of
annotation a at SNP i. 7, is the expected contribution of
a one-unit increase in annotation a to each SNP-specific
variance.

S-LDSC12:13:30 E[B;] =0, Var[g;] = YaeaTqa(i)

An extension of the LDAK model to operate on summary-
level data; can also efficiently partition h; by multiple
annotations. The most recent recommendations by
refs.%14 is to set @ = —0.25.

SumHer™ E[B;] = 0, Var[B;] < w;[f;(1 — f)]**

Table 1. Existing methods to estimate SNP-heritability impose additional assumptions on top of the
generalized random effects (GRE) model. Under the GRE model, the causal effects at any two SNPs are
assumed to be independent (E[S;/5;] = 0 for all i # j) and genome-wide SNP-heritability is defined as hj =

L, 07, where each ¢/ can be an arbitrary nonnegative real number as long as 0 < hZ < 1 (Methods). All
existing methods make assumptions on the distribution of g; and/or the form of 7 that can be subsumed
under the GRE model. To simplify notation, we assume for each model that phenotypes are standardized
in the population (i.e. Var[y, ] = 1 for every individual n).
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Figure 1. Simulations under 64 distinct MAF- and LD-dependent architectures (N = 337205 unrelated
British individuals, UK Biobank). For each value of h;, phenotypes were drawn according to one of 16
genetic architectures defined by the polygenicity (pc.usa1), the MAF range of causal variants (CV MAF), the
coupling of MAF with effect size (a), and the effect of local LD on effect size (y = 0 indicates no LD weights
and y = 1 indicates LDAK weights; see Methods). (a) Distribution of A%, in simulations on chromosome
22 (M = 9654 typed SNPs) where hZ,. was computed with 1 chromosome-wide LD block. (b) Distribution
of hZge in genome-wide simulations (M = 593300 typed SNPs) where hZ;; was computed with 22
chromosome-wide LD blocks. In (a) and (b), each boxplot shows the distribution of estimates from 100
simulations. Boxplot whiskers extend to the minimum and maximum estimates located within 1.5xIQR from
the first and third quartiles, respectively. Black points and error bars in (a) represent the mean of the
distribution and +2 standard errors of the mean (s.e.m.), which were used to test whether the bias under a
single architecture is significant (Methods). (c) Distribution of errors A%z (i) — h2, where hZ;(i) is the
estimate from the i-th simulation under a given genetic architecture, as a percentage of h;. Each violin plot
represents the errors of 6400 estimates (64 genetic architectures x 100 simulation replicates). (d)
Distribution of relative bias (as a percentage of h;) as a function of sample size (N = 100K, 200K, or 337K)
in genome-wide simulations. Each violin plot represents the distribution of the relative bias of h%y; across
of 64 genetic architectures. In (c) and (d), the white diamonds mark the mean of each distribution.
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Figure 2. Comparison of hz; with LDSC, S-LDSC (MAF), and SumHer in genome-wide simulations (N =
337205 unrelated individuals, M = 593300 array SNPs, h; = 0.25). Left: Phenotypes were drawn under
one of 16 MAF- and/or LDAK-LD-dependent architectures by varying p.ausai> @, ¥, and CV MAF (see
Methods). Each boxplot contains estimates of hj from 100 simulations. Boxplot whiskers extend to the
minimum and maximum estimates located within 1.5 x IQR from the first and third quartiles, respectively.
Right: Relative bias of each method (as a percentage of the true h}) across 112 distinct MAF- and LDAK-
LD-dependent architectures (see Methods). Each boxplot contains 112 points; each point represents the
average estimated h; from 100 simulations under a single genetic architecture. The white diamonds mark
the average of each distribution.
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Figure 3. Comparison of A%y with GREML, BOLT-REML, GREML-LDMS-I, and LDAK in small-scale
simulations (N = 8430 unrelated individuals, M = 14821 array SNPs). Left: Phenotypes were drawn under
one of 16 MAF- and/or LDAK-LD-dependent architectures by varying p.ausai> @, ¥, and CV MAF (see
Methods). Each boxplot contains estimates of h; from 100 simulations. Boxplot whiskers extend to the
minimum and maximum estimates located within 1.5 x IQR from the first and third quartiles, respectively.
Right: Relative bias of each method (as a percentage of the true h}) across 112 distinct MAF- and LDAK-
LD-dependent architectures (see Methods). Each box plot represents the distribution of 112 points; each
point is the average estimated h; from 100 simulations under a single genetic architecture. The white
diamonds mark the average of each distribution.
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Figure 4. Percent difference of h; estimates from LDSC (in-sample), S-LDSC (baseline-LD/in-sample), and
SumHer (in-sample) with respect to hZg. for 18 complex traits and diseases in the UK Biobank for which
hZgze > 0.05 (N = 290K unrelated British individuals, M = 460K typed SNPs; see Methods). Each bar
represents the difference between the estimated hZ from one of the methods (LDSC, S-LDSC, or SumHer)

and hiy; as a percentage of hg. Black bars mark +2 standard errors.
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Trait GRE S.E. LDSC S.E. S-LDSC S.E. SumHer S.E.
Smoking Status 0.122  3.90E-03 0178 7.70E-03  0.110  8.50E-03 0.132  4.30E-03
Height 0.602 4.70E-03 0730 2.70E-02  0.555  3.10E-02 0.634 2.70E-02
BMI 0.285 4.20E-03 0436 1.20E-02  0.289  1.70E-02 0.315 9.00E-03
WHR 0.173  4.00E-03 0256 1.20E-02  0.184  1.60E-02 0.198  9.40E-03
ﬁz’esé‘;':fr’eB'OOd 0.159  4.20E-03 0.243 9.00E-03  0.134  9.70E-03 0.177 5.70E-03
g:aeztsodirceB'OOd 0.154  4.20E-03 0233 8.60E-03  0.130  9.70E-03 0.170  6.40E-03
Eczema 0.116  4.20E-03 0.165 1.10E-02  0.107  1.20E-02 0.130  8.80E-03
Asthma 0.116  4.90E-03 0.163  1.20E-02  0.116  1.70E-02 0.131  1.20E-02
Hypertension 0.162  4.00E-03 0.244 9.40E-03  0.142  1.10E-02 0.180 6.10E-03
High Cholesterol 0.082 5.10E-03 0.127 1.30E-02  0.138  5.80E-02 0.088 8.30E-03
Diabetes (Any) 0.070 3.70E-03 0.093 5.90E-03  0.062  8.70E-03 0.074 5.00E-03
Type 2 Diabetes 0.071  3.80E-03 0.090 6.10E-03  0.057  8.80E-03 0.071  4.00E-03
Hypothyroidism 0.088 5.20E-03 0.142 1.30E-02  0.078  1.20E-02 0.110  1.70E-02
Thyroid Disorders ~ 0.084  5.20E-03 0.141  1.30E-02  0.080  1.20E-02 0.110  2.00E-02
Endocrinopathies ~ 0.069  5.10E-03 0.084  7.00E-03  0.058  9.90E-03 0.068 5.00E-03
(D:;rg;‘;‘gscu'ar 0.143  5.30E-03 0.228 1.10E-02  0.140  1.40E-02 0.164  6.00E-03

Respiratory and

; 0.086 5.20E-03 0.120  1.20E-02 0.079  1.40E-02 0.090 9.50E-03
ENT Diseases

Psoriasis 0.019  5.00E-03 0.071  3.10E-02 0.035  1.20E-02 0.059  4.20E-02
Dermatologic 0.023  5.00E-03 0.049  1.40E-02 0.034  9.90E-03 0.031 1.10E-02
Disorders

Rheumatoid 0.008  5.00E-03 0.041  2.10E-02 0.010  7.90E-03 0.021  1.20E-02
Arthritis

Autoimmune 0.063 5.10E-03 0.105  1.20E-02 0.050  9.50E-03 0.079 1.70E-02
Disorders (Broad)

Autoimmune 0.015 5.00E-03 0.052  2.60E-02 0.005  7.60E-03 0.047 3.40E-02

Disorders (Certain)

Table 2. Estimates of h; from the GRE approach, LDSC (in-sample), S-LDSC (baseline-LD/in-sample),

and SumHer (in-sample) for 22 complex traits and diseases in the UK Biobank (N = 290K unrelated British
individuals, M = 460K typed SNPs).
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