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Abstract 
The proportion of phenotypic variance attributable to the additive effects of a given set of genotyped SNPs (i.e. SNP-

heritability) is a fundamental quantity in the study of complex traits. Recent works have shown that existing methods 

to estimate genome-wide SNP-heritability often yield biases when their assumptions are violated. While various 

approaches have been proposed to account for frequency- and LD-dependent genetic architectures, it remains unclear 

which estimates of SNP-heritability reported in the literature are reliable. Here we show that genome-wide SNP-

heritability can be accurately estimated from biobank-scale data irrespective of the underlying genetic architecture of 

the trait, without specifying a heritability model or partitioning SNPs by minor allele frequency and/or LD. We use 

theoretical justifications coupled with extensive simulations starting from real genotypes from the UK Biobank (N = 

337K) to show that, unlike existing methods, our closed-form estimator for SNP-heritability is highly accurate across 

a wide range of architectures. We provide estimates of SNP-heritability for 22 complex traits and diseases in the UK 

Biobank and show that, consistent with our results in simulations, existing biobank-scale methods yield estimates up 

to 30% different from our theoretically-justified approach. 
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Introduction 
SNP-heritability, the proportion of phenotypic variance attributable to the additive effects of a given set of SNPs, is a 

fundamental quantity in the study of complex traits1; it provides an upper bound on risk prediction from a linear model 

relating genotypes to phenotype2 and, when defined as a function of all SNPs on a genotyping array, yields insights 

into the “missing heritability” of complex traits3–5. Traditionally, SNP-heritability is estimated by fitting variance 

components models with REML3,6–9. With some notable exceptions8, REML-based methods are typically not scalable 

to biobanks that assay hundreds of thousands of individuals (e.g., UK Biobank contains genotype measurements for 

more than half a million individuals10). SNP-heritability can also be estimated from summary-level GWAS data by 

assessing the deviation in marginal association statistics as a function of the LD score of each SNP11–14, thus making 

SNP-heritability estimation scalable to hundreds of thousands or even millions of individuals. More recently, a 

randomized extension of Haseman-Elston (HE) regression15 was shown to estimate a single genetic variance 

component from individual-level data as accurately as REML methods but in a fraction of the run-time16. 

To facilitate inference, all existing methods for genome-wide SNP-heritability inference make various 

assumptions on the underlying genetic architecture of the trait, which is typically parametrized by polygenicity (the 

number of variants with effect sizes larger than some small constant d) and MAF/LD-dependence (the coupling of 

effect sizes with minor allele frequency (MAF), local linkage disequilibrium (LD), or other functional genomic 

annotations such as regions of open chromatin)17. Since the true genetic architecture of any given trait is unknown, 

existing methods are susceptible to bias and often yield vastly different estimates of SNP-heritability for the same 

traits, even when applied to the same data9,14,18. Although multi-component methods that stratify SNPs by MAF and 

LD can ameliorate some of the robustness issues of single-component methods7,18,19, fitting multiple variance 

components to biobank-scale data with REML is highly resource-intensive8 and it is currently unclear whether 

stratifying by MAF/LD produces accurate estimates of total SNP-heritability for methods based on summary statistics. 

Alternate methods explicitly model MAF- and LD-dependent architectures when estimating SNP-heritability6,9,14; 

however, these approaches can produce drastically different estimates when their assumptions are violated6,9,14,18,19. In 

addition, genetic architecture is unlikely to be the same across traits or populations due to, for example, variable 

degrees of negative selection acting on different traits in different populations17,20–25. Methods that jointly infer SNP-

heritability and other parameters such as the strength of negative selection or polygenicity have been proposed14,23,26 

but are computationally intensive and/or sensitive to LD-dependent architectures. Thus, it remains unclear which 

estimates of genome-wide SNP-heritability computed from biobank-scale data (e.g., UK Biobank10) are reliable. 

In this work, we investigate whether genome-wide SNP-heritability can be accurately estimated under a 

generalized random effects (GRE) model that makes minimal assumptions on the genetic architecture of complex 

traits. Under this model, every causal effect can have an arbitrary SNP-specific variance, and SNP-heritability is 

defined as the sum of the SNP-specific variances (Methods). To the best of our knowledge, all existing methods make 

additional assumptions on top of the  GRE model (Table 1). For example, the infinitesimal model assumed by single-

component GREML3 (and several other methods8,16,27) imposes an inverse relationship between MAF and effect size 

by assuming that every standardized effect size explains an equal portion of total SNP-heritability, whereas the single-

component LDAK model assumes that each SNP-specific variance is inversely proportional to both MAF and the LD 
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neighborhood of the SNP6,9. We derive a closed-form estimator for SNP-heritability as a function of GWAS marginal 

association statistics and in-sample LD and show that this estimator is consistent (i.e. approaches the true SNP-

heritability as sample size increases) and unbiased (i.e. its expectation is equal to the true SNP-heritability) when the 

number of individuals is larger than the number of SNPs. Most importantly, the accuracy of this estimator does not 

depend on the underlying genetic architecture of the trait. While the GRE estimator is similar in form to previously 

proposed "fixed effect estimators,"28,29 our approach differs from previous work in two main ways. First, SNP-

heritability defined under a fixed effect model is different from the estimand of interest here (Methods). Second, 

previous work applied the estimator locally to identify regions that contribute disproportionately to the genome-wide 

signal28,29; in this work, we define a different genome-wide estimator (Equation 1) that requires large-scale genotype 

data. In addition, previous work applied an SVD-based regularization to introduce bias in favor of reduced variance29 

whereas in this work, the regularization was unnecessary (all LD matrices used are full rank; see Methods). 

Through theoretical derivations and extensive simulations across a wide range of MAF- and LD-dependent 

architectures starting from real genotypes from the UK Biobank10 (337K individuals and 593K SNPs), we find that 

the GRE estimator provides nearly unbiased estimates of SNP-heritability across all architectures whereas existing 

methods are sensitive to model misspecification. For example, across 126 distinct architectures, the maximum bias 

we observe with the GRE estimator is 2% of the simulated SNP-heritability whereas methods such as stratified LD 

score regression (S-LDSC)12,13 and SumHer14 yield biases between -64% and 28%. For completeness, we also contrast 

the GRE estimator with several REML-based methods in simulations at lower sample sizes (due to the computational 

burden of most REML methods) and find that, consistent with recent reports18, all REML-based methods are biased 

when their model assumptions are violated. Across a similar set of 126 architectures, the bias of the GRE estimator 

ranges from -5% to 6% of the simulated SNP-heritability whereas single-component REML methods3,6,8,9 are biased 

by anywhere between -44% and 18%. We confirm that multi-component REML methods that stratify SNPs by MAF 

and LD score (GREML-LDMS-I18) are more accurate than single-component REML methods if favorable SNP 

stratification criteria are used (i.e. if SNPs are stratified by the same MAF bins used to define the causal variant MAF 

spectrum). The performance of the GRE estimator, which does not stratify SNPs or assume a specific heritability 

model6,9,14, is similar to that of GREML-LDMS-I with favorable stratification criteria, thereby confirming that SNP-

heritability can be accurately estimated without knowledge of the underlying genetic architecture. 

Finally, we use marginal association statistics and in-sample LD from N = 290K unrelated British individuals 

genotyped at M = 460K SNPs (MAF > 1%) to provide estimates of SNP-heritability for 22 complex traits and diseases 

in the UK Biobank10. Consistent with our simulations, across the 18 traits with SNP-heritability estimates greater than 

0.05, we find that estimates from S-LDSC (controlling for the baseline-LD model13) and SumHer differ from the GRE 

estimates by a median of -9% and 11%, respectively. For example, for height, estimates from S-LDSC (0.56) and 

SumHer (0.63) are approximately 7% lower and 5% higher, respectively, than our estimate of 0.60. Similarly, for 

hypertension, estimates from S-LDSC (0.14) and SumHer (0.18) are ±12.5% different from our estimate of 0.16. 

Taken together, our results demonstrate that SNP-heritability can be accurately estimated from biobank-scale data 

without prior knowledge of the genetic architecture the trait, motivating the development of new methods to make 

inferences from biobank-scale data under fewer modeling assumptions.  
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Results 
Overview of the approach 
We investigate the utility of an estimator for SNP-heritability derived under a model that makes minimal assumptions 

on genetic architecture. We assume the standardized phenotype of an individual is a linear function of their genotypes: 

𝑦 = 𝐱$𝜷 + 𝜖, where 𝐱 is a vector of standardized genotypes at 𝑀 SNPs, 𝜷 is a vector of standardized effect sizes 

corresponding to the 𝑀 SNPs, and 𝜖 ∼ 𝑁(0, 𝜎/0) is environmental noise (Methods). We assume the effects can follow 

any distribution as long as the effect size of every SNP 𝑖 is zero-centered (E[𝛽6] = 0) with a finite SNP-specific 

variance (Var[𝛽6] = 𝜎60) that is allowed to be 0, and that the covariance between the effects of any pair of SNPs is 

zero (E;𝛽6𝛽<= = 0 for all 𝑖 ≠ 𝑗). We term this model the “generalized random effects” (GRE) model as, to the best of 

our knowledge, all existing methods to estimate SNP-heritability impose additional assumptions on top of this model. 

For example, setting 𝜎60 = ℎA0/𝑀 for 𝑖 = 1,… ,𝑀 results in the single-component GREML model3, whereas setting 

𝜎60 ∝ 𝑤6[𝑓6(1 − 𝑓6)]I.KL (where 𝑤6 is a function of the “LD score” of SNP 𝑖 and 𝑓6 is the MAF of SNP 𝑖) results in the 

most recent LDAK model9 (Table 1). Under the GRE model, the SNP-heritability explained by the 𝑀 SNPs is the sum 

of SNP-specific variances: ℎA0 ≡ Var[𝐱$𝜷]/Var[𝑦] 	= ∑ 𝜎60P
6QR  (Methods). 

In this work, we are interested in accurately estimating ℎA0 from genotype measurements across 𝑁 individuals at 

𝑀  typed SNPs. When 𝑁 > 𝑀 , the estimator ℎTA0 =
U𝜷VW𝐕VY𝜷VZ[

UZ[
, where 𝜷V  is the vector of standardized SNP effects 

estimated by ordinary least squares (OLS), 𝐕V\ is the pseudoinverse of the in-sample LD matrix, and 𝑞 is the rank of 

the in-sample LD matrix, is an unbiased estimator of SNP-heritability under the GRE model. That is, E;ℎTA0= =

∑ 𝜎60 = ℎA0P
6QR  (Methods). The GRE model allows each SNP-specific variance (𝜎60) to be an arbitrary finite value 

satisfying the constraints 𝜎60 ∈ [0,1] and ∑ 𝜎60P
6QR ∈ [0,1]. Thus, 𝜎60 can capture any relationship between effect size 

and MAF/LD, which in turn implies that ℎTA0 is unbiased under most genetic architectures. Unfortunately, even the 

largest biobank-scale datasets currently available contain fewer unrelated individuals than typed SNPs (i.e. UK 

Biobank has genotyped 𝑀 ≈ 593K SNPs in 𝑁 ≈ 337K unrelated British individuals), which limits the utility of the 

above estimator. We therefore extend our approach by partitioning the genome by chromosome into 22 approximately 

independent regions: 

ℎTefg0 =h
𝑁𝜷Vi$𝐕Vi

\𝜷Vi − 𝑞i
𝑁 − 𝑞i

00

iQR

(1) 

where for each chromosome 𝑘 with 𝑝i  typed SNPs, 𝜷Vi  is the 𝑝i-vector of standardized SNP effects estimated by 

ordinary least squares (OLS), 𝐕Vi
\ is the pseudoinverse of the in-sample LD matrix, and 𝑞i is the rank of the in-sample 

LD matrix. Although this genome-wide estimator does not provide theoretical guarantees of unbiasedness, we show 

through extensive simulations that the magnitude of the bias is extremely small across all architectures when 𝑁 is 

sufficiently larger than 𝑝i. 
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Accurate estimation of SNP-heritability irrespective of disease architecture 

To investigate the bias and variance of ℎTefg0 , we perform simulations starting from the real genotypes of 𝑁 = 337205 

unrelated British individuals in the UK Biobank10. First, we use data from chromosome 22 (𝑀 = 9654 typed SNPs) 

to simulate 64 distinct MAF- and LD-dependent architectures by varying the  SNP-heritability (ℎA0), the proportion of 

causal variants (𝑝opqrps), the distribution of causal variant MAF (CV MAF), and the strength of coupling between 

effect size and MAF/LD; we use “LDAK-LD-dependent” to describe architectures where causal effects are coupled 

with “LDAK weights” (Methods). To enable comparison of estimates across different values of ℎA0, we assess bias as 

a percentage of the simulated value of ℎA0 (relative bias) or the error of a single estimate as a percentage of ℎA0 (relative 

error). Consistent with analytical derivations, the GRE estimator restricted to chromosome 22 provides unbiased 

estimates across the 64 quantitative trait architectures after correcting for 16 independent tests at each value of ℎA0 

(bias p-value < 0.05/16 is considered significant; see Methods) (Figure 1ac, Supplementary Table S1). The average 

relative bias across the 64 quantitative trait architectures is 0.00015% of the simulated ℎA0, and the largest bias we 

observe under any single architecture is approximately ±0.2%× ℎA0  (Supplementary Figure S1a, Supplementary 

Table S1). In simulations of unascertained case-control studies (Methods), the GRE estimator is approximately 

unbiased for a range of values of disease prevalence (for ℎA0 = 0.10, relative bias range is [-0.20%, 0.30%]) and has 

larger variance for diseases with lower prevalence (Supplementary Figure S2a, Supplementary Table S2). For 

ascertained case-control studies, estimates are downward-biased but invariant to disease architecture (e.g., when ℎA0 =

0.10, population prevalence = 0.10, and 𝑁oprw = 𝑁oxyz{xs, relative bias is approximately -4%) (Supplementary Table 

S3). We then performed simulations in which 0%, 50%, or 100% of causal SNPs were masked from the observed 

summary statistics (i.e. untyped). When causal variants are drawn from the MAF range [0.01, 0.05], GRE is downward 

biased due to lower average LD between the observed typed SNPs and the masked causal SNPs (Supplementary 

Figure S3). We confirm that the analytical estimator of the standard error (Methods) is well-calibrated across all 

genetic architectures (Supplementary Figure S4a, Supplementary Table S4). We then investigate the bias induced by 

partitioning chromosome 22 into non-independent blocks and find that, as expected, our estimator accrues statistically 

significant upward bias as the average block size decreases (Supplementary Figure S5, Supplementary Table S5). For 

example, in simulations on chromosome 22 where ℎA0 = 0.1, 𝛼 = −1, 𝑝opqrps = 1%, and causal variants were drawn 

uniformly from all SNPs, using a single chromosome-wide LD block produces approximately unbiased estimates (bias 

= 6.9 × 10ZL, p-value = 0.55) whereas partitioning the chromosome into 2 disjoint blocks of equal size induces a 

small but significant upward bias (bias = 4.3 × 10Z} , p-value = 5.3 × 10Z} ) (Supplementary Figure S5, 

Supplementary Table S5). 

Next, we investigate the accuracy of the GRE estimator in genome-wide simulations (N = 337K unrelated 

individuals and M = 593K array SNPs) where we use 22 chromosome-wide LD blocks to compute ℎTefg0 . Despite the 

22-block approximation, we find that ℎTefg0  is highly accurate and robust across all 64 MAF- and LDAK-LD-

dependent quantitative trait architectures (Figure 1b, 1c). The average bias across the 64 architectures is 0.97%× ℎA0, 

with the relative bias under any single architecture ranging from 0.07% to 2.1% of the simulated ℎA0 (Supplementary 

Figure S1b, Supplementary Table S6). The largest error we observe for a single estimate across all 6400 simulations 
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(64 genetic architectures × 100 simulation replicates) is approximately 17%× ℎA0 (Figure 1c) and as 𝑁/𝑀 increases, 

the variance of ℎTefg0  decreases while the relative bias across the 64 architectures appears to be approximately fixed, 

ranging between 0.91% (N = 100K) and 0.99% (N = 200K) (Figure 1d). These trends hold for a range of values of 

𝑝opqrps (Supplementary Figure S6, Supplementary Table S6), for unascertained case-control studies (Supplementary 

Figure S2b, Supplementary Table S7), and in a smaller set of simulations with N = 7685 individuals of South Asian 

ancestry and M = 1642 SNPs (Supplementary Table S8; Methods). Most importantly, the accuracy of the GRE 

estimator does not correlate with the simulated trait architecture (Figure 1b). We also assess the calibration of our 

analytical estimator for the standard error in the genome-wide simulations and observe a small downward bias with 

respect to the empirical standard deviation of ℎTefg0  estimates (Supplementary Figure S4b, Supplementary Table S9). 

For example, across 16 distinct architectures where ℎA0 = 0.25, the empirical standard deviation computed from 100 

independent estimates of ℎA0 ranges from 0.0049 to 0.0064, whereas our estimate of the standard error is approximately 

0.0036 across all architectures (Supplementary Figure S4b, Supplementary Table S9). 

We then investigate the effects of unmodeled substructure and/or cryptic relatedness by filtering individuals at 

different kinship coefficient thresholds (Methods) and find that using stricter relatedness thresholds increases the 

variance of the estimates (due to smaller sample size) while reducing bias, albeit not significantly (Supplementary 

Figure S7, Supplementary Table S10). In addition, to assess the impact of population stratification, we simulated an 

effect of the first genetic principal component (PC) on phenotype and computed OLS association statistics both with 

and without adjusting for the first genetic PC (Methods). As expected, OLS with no PC adjustment yields inflated 

estimates while OLS adjusted for the first PC yields approximately unbiased estimates (Supplementary Figure S8, 

Supplementary Table S11). However, even when a relatively large proportion of phenotypic variance is explained by 

the first PC (e.g., ℎA0 = 0.25  and 𝜎~0 = 0.05), the maximum bias we observe from unadjusted OLS association 

statistics is 5% of the simulated SNP-heritability (bias p-value = 2.7 × 10Z�). Together, these results indicate that the 

GRE estimator is relatively robust to modest amounts of unmodeled substructure and/or population stratification. In 

all subsequent analyses, we compute ℎTefg0  with the 22 chromosome-wide LD block approximation as this provides 

sufficiently accurate estimates and a fair comparison to other methods. 

 

Comparison of methods to estimate SNP-heritability 

We compare ℎTefg0  with existing state-of-the-art approaches to estimate SNP-heritability that are easily scalable to the 

full UK Biobank data (N = 337K): LD score regression with no annotations (LDSC), which assumes 𝛼 = −1 and no 

coupling of effect size with LD11; stratified LD score regression (S-LDSC), which partitions ℎA0 by a set of annotations 

of interest12,13; and SumHer, a recent scalable extension of LDAK which explicitly models MAF- and LD-dependent 

architectures through a specific form of the SNP-specific variances14 (Table 1). To ensure a fair comparison among 

the methods, LD scores for LDSC, S-LDSC, and SumHer are computed using in-sample LD among the M SNPs, and 

in all simulations we aim to estimate the SNP-heritability explained by the same set of M SNPs (see Methods). 

We find that ℎTefg0  is highly accurate and robust across all simulated architectures while LDSC, S-LDSC, and 

SumHer are sensitive to deviations from their respective model assumptions. For example, when ℎA0 = 0.25 (Figure 
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2), LDSC is approximately unbiased under the “single-component GREML model” (relative bias = 0.04%, p = 0.86) 

but is sensitive to the MAF spectrum of causal variants and the degree of coupling between effect size and MAF/LD 

(e.g., across the 12 architectures where 𝑝opqrps = 1%, relative bias ranges from -44% to 50%) (Supplementary Table 

S12). Similarly, SumHer is accurate under the “LDAK model” (relative bias = 5.3%) but highly sensitive to other 

plausible genetic architectures (when 𝑝opqrps = 1%, relative bias ranges from -19% to 22%) (Figure 2, Supplementary 

Table S13). Estimates from S-LDSC (MAF), which partitions ℎA0  by 10 MAF bins (Supplementary Table S14; 

Methods), are less biased compared to estimates from LDSC when causal effects are coupled with only MAF, but are 

significantly downward biased when causal effects are also coupled with LDAK weights (for ℎA0 = 0.25, relative bias 

range is [1.9%, 7.0%] when 𝛾 = 0 and [-58%, -37%] when 𝛾 = 1) (Figure 2, Supplementary Table S15). S-LDSC 

with 10 MAF bins and an additional continuous “level of LD” (LLD) annotation, which we denote S-LDSC 

(MAF+LLD) (Methods), produces similar results on the same architectures (for ℎA0 = 0.25, relative bias range is 

[1.8%, 6.5%] when 𝛾 = 0 and [-80%, -33%] when 𝛾 = 1) (Supplementary Table S16). In contrast, the relative bias 

of ℎTefg0  ranges from 0.45% to 1.3% across the same 16 genetic architectures where ℎA0 = 0.25 and 𝑝opqrps = 1% 

(Figure 2, Supplementary Table S6). These trends hold for a range of values of ℎA0 and 𝑝opqrps: across 112 distinct 

LDAK-LD- and/or MAF-dependent architectures, the average and range of the relative bias of each method are 0.96% 

[-0.06%, 2.1%] for ℎTefg0 , -2.2% [-71%, 70%] for LDSC, -22% [-62%, 8.7%] for S-LDSC (MAF), -29% [-89%, 9.0%] 

for S-LDSC (MAF+LLD), and 2.8% [-27%, 28%] for SumHer (Figure 1b, Figure 2, Supplementary Figures S9-S12, 

Supplementary Tables S6, S12, S13, S15, S16). We also perform simulations under 14 alternative LD-dependent 

architectures where the variance of each SNP is coupled with its inverse LD score instead of its LDAK weight (i.e. 

“LD-score-dependent” architectures; see Methods, Supplementary Figure S13) and find that ℎTefg0  remains nearly 

unbiased (relative bias ranges from 0.52% to 1.3%) whereas estimates from S-LDSC (MAF), S-LDSC (MAF+LLD), 

and SumHer are downward-biased on average across the 14 architectures (Supplementary Figure S14, Supplementary 

Table S17). 

For completeness, we also compare to four widely used REML-based methods: single-component GREML 

(GREML), which assumes 𝛼 = −1 and no coupling of effect size with LD3; GREML-LDMS-I, a multi-component 

extension of GREML that partitions SNPs by MAF and LD score18; BOLT-REML, a computationally efficient 

variance components estimation method with assumptions similar to those of GREML8; and LDAK, which assumes 

a specific form of the coupling of effect size with LD and recommends setting 𝛼 = −0.25 6,9 (Table 1). Because it is 

computationally intractable to apply the REML-based methods to thousands of genome-wide simulations with 337K 

individuals, we perform simulations using a reduced number of individuals and SNPs (N = 8430 individuals and M = 

14821 array SNPs; see Methods). We find that the single-component REML methods (GREML, BOLT-REML, and 

LDAK) are sensitive to MAF- and LD-dependent architectures that deviate from their respective model assumptions, 

whereas our estimator is robust to all architecture parameters. For example, when ℎA0 = 0.25 (Figure 3), GREML and 

BOLT-REML are accurate under the “single-component GREML model” (GREML: relative bias = -1.4%, 𝑝 =

6.0 × 10Z�, Supplementary Table S18; BOLT-REML: relative bias = -0.16%, 𝑝 = 0.75, Supplementary Table S19) 

and LDAK is approximately unbiased under the “LDAK model” (relative bias = 0.16%, 𝑝 = 0.77, Supplementary 
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Table S20), but all single-component methods are sensitive to the MAF spectrum of causal variants and to the coupling 

of causal effects with MAF/LD. Across the 12 architectures in Figure 3 where 𝑝opqrps = 1%, the relative biases of the 

single-component methods range from -15% to 7.9% (GREML), -14% to 9.1% (BOLT-REML), and -34% to 8.2% 

(LDAK) (Supplementary Tables S18-S20). In contrast, for the same 12 architectures, ℎTefg0  yields relative biases in 

the range [-2.1%, 1.7%], which is comparable to the relative bias observed with GREML-LDMS-I (range [-2.9%, 

1.5%]) when using 8 GRMs defined by 4 LD quartiles and 2 MAF bins (MAF > 5% and MAF ≤ 5%) that align with 

the causal variant MAF spectrum (Figure 3, Supplementary Tables S21, S22). These trends are consistent across a 

range of values of ℎA0 and 𝑝opqrps: across the 112 distinct LDAK-LD- and/or MAF-dependent architectures shown in 

Supplementary Figures S15-S19, the average and range of the relative bias are 0.09% [-4.9%, 6.4%] (GRE), -0.6% [-

5.9%, 2.3%] (GREML-LDMS-I), -2.9% [-27%, 15%] (GREML), -1.8% [-25%, 18%] (BOLT-REML), and -8.2% [-

44%, 13%] (LDAK) (Supplementary Tables S18-S22). Similar trends are observed in additional simulations under 14 

LD-score-dependent architectures (Supplementary Figure S20, Supplementary Table S23). We note that the 

performance of GREML-LDMS-I depends on the resolution of the MAF and LD bins used to partition SNPs; in an 

extreme example where all causal variants are drawn from a MAF range tightly concentrated near 1%, running 

GREML-LDMS-I with the same 8 GRMs as before yields downward-biased estimates whereas our estimator remains 

robust (Supplementary Figure S21, Supplementary Tables S18-S22). While the variance of our estimator is larger than 

the variances of the REML-based methods (Figure 3), our approach is designed for biobank-scale GWAS data with 

sample sizes several orders of magnitude larger than what we used in these small-scale simulations. In summary, our 

results confirm that it is possible to accurately estimate ℎA0 under minimal assumptions about genetic architecture. 

 

Estimating SNP-heritability of 22 complex traits in the UK Biobank 
Finally, we apply our approach to estimate ℎA0 for 22 complex traits and diseases in the UK Biobank (N = 290K 

unrelated British individuals, M = 460K array SNPs; see Methods)10. For comparison, we also provide estimates of 

ℎA0 from LDSC (no annotations), S-LDSC (controlling for the baseline-LD model13,30), and SumHer. Of the 22 traits 

analyzed (6 quantitative and 16 binary), we focus on 18 traits for which ℎTefg0 > 0.05 (Table 2). Using our approach, 

estimates of SNP-heritability for the 6 quantitative traits range from 0.12 (smoking status) to 0.60 (height). Across the 

12 binary traits, our estimates range from 0.064 (autoimmune disorders) to 0.16 (hypertension) (Table 2). These 

estimates are robust to filtering of individuals based on relatedness (Supplementary Table S24), suggesting that 

including the top 20 PCs as covariates in OLS sufficiently controls for substructure and/or cryptic relatedness. We 

also computed ℎTefg0  from two additional sets of SNPs (MAF > 0.1% and MAF > 0.01%) and found that the estimates 

increase slightly for lower MAF thresholds (Supplementary Table S25), which is expected due to the increased number 

of SNPs (the limited number of typed SNPs in the UK Biobank prohibits us from assessing the utility of GRE at rare 

variants further). To enable a direct comparison between ℎTefg0  and the SNP-heritability quantities estimated by LDSC, 

S-LDSC, and SumHer, we run each of the summary-statistics-based methods with LD scores and regression weights 

computed from in-sample LD among the typed SNPs, and we estimate SNP-heritability as the sum of the per-SNP 

variances across all M SNPs (Methods). Across the 18 traits, the median difference (as a percentage of ℎTefg0 ) between 
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S-LDSC (baseline-LD/in-sample) and ℎTefg0  is -9%; the median difference between SumHer (in-sample) and ℎTefg0  is 

11% (Figure 4, Table 2). This pattern is roughly consistent with the global trends we observed in genome-wide 

simulations (Figure 2). As expected11, LDSC (in-sample) yields inflated estimates across all 18 traits. 
To enable a comparison between ℎTefg0  and SNP-heritability estimates from summary-statistics-based methods 

reported in the literature, we also run LDSC, S-LDSC, and SumHer with their recommended parameter 

settings11,12,14,30 and with LD scores and regression weights computed from 489 Europeans in the 1000 Genomes Phase 

3 reference panel31 – we note that when running these methods as recommended, their SNP-heritability estimands are 

not equivalent to our definition of ℎA0 (see Methods and refs.11,12,14,19 for details). Across the 18 traits for which ℎTefg0 >

0.05, the median differences with respect to ℎTefg0  are -11% for LDSC (1KG), -14% for S-LDSC (baseline-LD/1KG), 

and 38% for SumHer (1KG) (Supplementary Figure S22, Supplementary Table S26). Across 9 traits (a subset of the 

18 traits with ℎTefg0 > 0.05) for which a previous study reported estimates from single-component BOLT-REML 

(computed from approximately 337K unrelated white British individuals in the UK Biobank27), the median difference 

between the previously reported BOLT-REML estimates and ℎTefg0  is 8% (Supplementary Table S26).  

 

Runtime and memory requirement 
Since our approach is designed to be applied to biobank-scale data, we report the runtime and memory requirements 

for computing ℎTefg0  with 22 chromosome-wide LD blocks in the UK Biobank (N = 337K individuals, M = 593K array 

SNPs). First, we compute chromosome-wide LD; this has complexity 𝑂(𝑁𝑝i0) for chromosome 𝑘 with 𝑝i SNPs. In 

practice, this step does not impose a computational bottleneck because the LD computations can be parallelized over 

SNP partitions (e.g., for a pair of SNP partitions containing 1000 SNPs each, computing the pairwise LD matrix takes 

about 10 minutes and 16GB of memory). Second, the pseudoinverse of each chromosome-wide LD matrix is computed 

via truncated singular value decomposition (SVD), which has complexity 𝑂(𝑝i�) for chromosome 𝑘. This step is 

parallelized over chromosomes; for chromosome 2, which has the largest number of typed SNPs, computing the 

truncated SVD and pseudoinverse of the LD matrix takes about 3 hours and 60GB of memory. Lastly, given the 

precomputed pseudoinverse of each chromosome-wide LD matrix and OLS association statistics, computing ℎTefg0  

genome-wide has complexity 𝑂(𝑝R0 +⋯+ 𝑝000 ). For any of the UK Biobank traits analyzed in this work, this takes 

less than 1 hour and requires 24GB of memory; most of this time is spent loading the pseudoinverse LD matrices into 

memory. For comparison, running LDSC, S-LDSC, or SumHer consists of precomputing LD scores and SNP-specific 

weights and performing linear regression to estimate the variance parameters in the model. The first step 

(precomputing LD scores and SNP-specific weights) can be parallelized over blocks of SNPs and therefore does not 

pose a computational bottleneck in practice. The complexity of the second step (least squares regression) is 𝑂(𝐶0𝑀) 

where M is the number of SNPs in the regression and C is the number of variance parameters being estimated. 

 

Discussion 
In this work, we show that highly accurate estimation of SNP-heritability can be achieved under minimal assumptions 

on the genetic architecture of complex traits. In particular, our proposed estimator assumes that each SNP effect has a 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 3, 2019. ; https://doi.org/10.1101/526855doi: bioRxiv preprint 

https://doi.org/10.1101/526855
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

fixed SNP-specific variance that can capture any arbitrary relationship between effect size and genomic features such 

as MAF and LD. We show that all existing methods to estimate SNP-heritability impose additional assumptions on 

the GRE model, and we confirm through extensive simulations that these methods are susceptible to bias when their 

modeling assumptions are not met. Additionally, we confirm that REML-based methods that partition SNPs by MAF 

and LD score generally yield much smaller bias compared to single-component REML methods18. In contrast, our 

estimator, derived under the GRE model, provides accurate estimates of SNP-heritability regardless of the underlying 

genetic architecture, without specifying a heritability model or partitioning SNPs by functional categories. On average 

across 18 heritable traits in the UK Biobank (ℎTefg0 > 0.05), our approach yields estimates that are higher than S-

LDSC estimates (controlling for the baseline-LD model30) and lower than SumHer estimates (with the recommended 

heritability model9,14). One practical advantage of our approach over methods such as LDSC, S-LDSC, and SumHer 

is that the estimand of our approach is always the same for a given genotype matrix, whereas the definitions and 

interpretations of the estimands of LDSC, S-LDSC, and SumHer can vary depending on what sets of SNPs are used 

in each step of the inference procedure (e.g., the set of SNPs used to compute LD scores need not be the same set of 

SNPs that defines the SNP-heritability estimand of interest)11,12,19. Overall, our results show that while existing 

methods can yield biases, for the purpose of estimating total SNP-heritability of complex traits, most methods are 

relatively accurate and robust to plausible genetic architectures. 

We conclude with several caveats and future directions. First, the utility of the GRE estimator critically depends 

on the ratio between the number of SNPs (M) and the number of individuals (N) in the data – as 𝑀/𝑁 increases, the 

eigenstructure of the in-sample LD matrix (and sample covariance matrices in general) becomes increasingly distorted 

(larger eigenvalues are overestimated and smaller eigenvalues are underestimated)32. We mitigate this by assuming 

that the genome-wide LD matrix has a block diagonal structure (specifically, one block per chromosome); since the 

number of unrelated British individuals in the UK Biobank is larger than the number of array SNPs per chromosome, 

our approach is able to provide meaningful estimates of the SNP-heritability attributable to common SNPs (MAF > 

1%) in individuals of British ancestry. While the utility of our approach is clearly limited for the time being by the 

availability of individual-level biobank-scale data, this will become less of a concern as more institutions establish 

their own biobanks33–35. A major limitation of our approach remains with respect to imputed and/or whole-genome 

sequenced data, in which the number of SNPs will continue to be orders of magnitude larger than the number of 

individuals for the foreseeable future. We defer a thorough investigation of regularized estimation of LD in high-

dimensional settings (M > N) to future work.  

Second, the theoretical guarantees of the GRE estimator rely on the assumption that OLS association statistics 

and chromosome-wide LD matrices are estimated from the same genotype data. While summary statistics have been 

made publicly available for hundreds of large-scale GWAS, in-sample LD is usually unavailable or nonexistent for 

these studies since most are meta-analyses36, and publicly available reference panels such as 1000 Genomes31 currently 

have sample sizes in the hundreds or thousands at most. In addition, many publicly available summary statistics were 

computed using linear mixed models rather than OLS in order to control for population structure/cryptic relatedness. 

Previous works have noted (in the context of statistical fine-mapping) that the LD computation must be adjusted to 

accommodate association statistics computed from mixed models36,37. The sensitivity of our estimator to reference 
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panel LD (with or without regularized LD estimation) and/or mixed model association statistics remains unclear29,38; 

we leave an investigation of both for future work. Furthermore, our simulations use typed SNPs to draw phenotypes 

because imputed genotypes have highly irregular LD patterns9,18. Although it would be more realistic to simulate 

causal variants and phenotypes from a denser set of genotyped SNPs or from whole-genome sequencing data18, our 

simulation design was dependent on the availability of individual-level genotype measurements in biobank-scale 

sample sizes.  

Third, the GRE estimator does not correct for population structure/cryptic relatedness. We mitigate this in our 

analysis of real UK Biobank traits by considering only unrelated individuals (> 3rd degree relatives) and by including 

age, sex, and the top 20 principal components as covariates in the linear regression when computing OLS association 

statistics. While recent work has found significant evidence of assortative mating for some traits in the UK Biobank 

(e.g., height) and not others39, our estimates for real phenotypes are robust to different relatedness thresholds, 

suggesting that including the top 20 PCs as covariates in OLS is sufficient to control for population stratification. Still, 

it remains unclear how to quantify the bias of our genome-wide estimator due to population structure and/or assortative 

mating in real data. In addition, we derive the GRE estimator under no ascertainment in case/control data. Future work 

is needed to extend the GRE approach to control for ascertainment bias15,16,40,41.  

Finally, while previous works have applied similar estimators in the context of fixed effects models to estimate 

local SNP-heritability within small regions (e.g., LD blocks)28,29, additional work is needed to extend our approach to 

perform functional partitioning of SNP-heritability by higher-resolution annotations. Existing methods for partitioning 

genome-wide SNP-heritability by small and/or overlapping annotations make various assumptions on genetic 

architecture8,12–14,30, motivating the development of new methods in this area under fewer assumptions. 

 

URLs 
GRE estimator: https://bogdan.dgsom.ucla.edu/pages/software 

BOLT-LMM: https://data.broadinstitute.org/alkesgroup/BOLT-LMM/ 

GCTA: https://cnsgenomics.com/software/gcta/ 

LDAK: http://dougspeed.com/ldak/ 

LDSC: https://github.com/bulik/ldsc/ 

baseline-LD annotations: https://data.broadinstitute.org/alkesgroup/LDSCORE/ 

PLINK: https://www.cog-genomics.org/plink2 

UK Biobank: https://www.ukbiobank.ac.uk 
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Methods 
The generalized random effects model 
We model the phenotype for an individual n randomly sampled from the population as 𝑦� = 𝐱𝐧�𝜷 + 𝜖�, where 𝐱𝐧 =

(𝑥�R …𝑥�P)$ is a vector of standardized genotypes measured at M SNPs for individual n, 𝜷 = (𝛽R,… , 𝛽P)$  is an M-

vector of the corresponding standardized SNP effect sizes, and 𝜖� ∼ 𝑁(0, 𝜎/0) is environmental noise. We assume 

Var[𝑦�] = 1 and that the genotype at each SNP 𝑖 is centered and scaled in the population such that E[𝑥�6] = 0 and 

Var[𝑥�6] = 1; i.e. 𝑥�6 = (𝑔�6 − 2𝑓6)/�2𝑓6(1 − 𝑓6), where 𝑔�6 ∈ {0,1,2} is the number of copies of the effect allele at 

SNP 𝑖 for individual 𝑛, and 𝑓6 is the population frequency of the effect allele at SNP 𝑖. We define the population LD 

between two SNPs 𝑖  and 𝑗  to be 𝑣6< ≡ E[𝑥�6𝑥�<] for all 𝑖 ≠ 𝑗. The population LD matrix among the 𝑀  SNPs is 

therefore 𝐕 ≡ Cov[𝐱𝐧�]. For simplicity, we use “SNP effect sizes” in lieu of “standardized SNP effect sizes” to refer 

to 𝜷. We assume that the genotypes 𝐱𝐧 and effect sizes 𝜷 are independent given allele frequencies (𝑓R,… , 𝑓P) and 𝐕.  

Under the generalized random effects (GRE) model, the first two moments of the distribution of the effect size of 

SNP 𝑖 are E[𝛽6] = 0 and Var[𝛽6] = 𝜎60, where 𝜎60 can be any arbitrary nonnegative finite number. We assume the 

covariance between the effects of different SNPs is 0 (i.e. Cov;𝛽6, 𝛽<= = E;𝛽6𝛽<= = 0 for all i ≠ j). Because the SNP-

specific variances (σR0,… , 𝜎P0 )  can capture any polygenicity (number of variants with effects larger than some 

measurable constant) and any degree of coupling between genomic features (e.g., MAF and LD) and effect size, the 

GRE model encompasses most realistic genetic architectures (Table 1). 

We define total SNP-heritability (ℎA0) to be the proportion of phenotypic variance attributable to the additive 

effects of a set of M SNPs whose genotypes are directly measured:  

ℎA0 ≡
Var[𝐱�$𝜷]
Var[𝑦�]

(2)	

= E[Var[𝐱�$𝜷|𝜷]] + Var[E[𝐱�$𝜷|𝜷]]	

= E[𝜷$Var[𝐱�$]𝜷] + Var[E[𝐱�$]𝜷]	

= E[𝜷$𝐕𝜷] + 0	

= E[tr(𝐕𝜷𝜷$)]	

= tr(𝐕E[𝜷𝜷$])	

ℎA0 =h𝜎60
P

6QR

(3) 

Thus, ℎA0 is defined with respect to a given population and a given set of SNPs. By definition, 0 ≤ ℎA0 ≤ 1. Similarly, 

we define regional SNP-heritability (ℎi0) to be the proportion of phenotypic variance due to the additive effects of the 

genotyped SNPs in region 𝑘. We assume that the set of SNPs that defines ℎi0 is a subset of the 𝑀 SNPs that define ℎA0 

(thus, 0 ≤ ℎi0 ≤ ℎA0). If region 𝑘 is the whole genome, ℎi0 = ℎA0.  

 

Estimating SNP-heritability under the GRE model 
We are interested in estimating ℎA0 under the GRE model (Equation 3). In a GWAS with 𝑁 individuals genotyped at 
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𝑀  SNPs, let 𝐗 = (𝐱R$,… , 𝐱U$ )$  be the 𝑁 ×𝑀  matrix of standardized genotypes (i.e. each column of 𝐗  has been 

standardized to have mean 0 and variance 1), let 𝐲 = (𝑦R,… , 𝑦U)$ be the 𝑁-vector of standardized phenotypes, and 

let 𝐕V = (1/𝑁)𝐗$𝐗 be the 𝑀 ×𝑀 in-sample LD matrix (an estimate of population LD, 𝐕) with rank 𝑞, where 1 ≤ 𝑞 ≤

𝑀. Let 𝐗 = (𝐗R,… , 𝐗�) be the genotype matrices for a set of 𝐾 approximately independent regions spanning all 𝑀 

SNPs (e.g., chromosomes). For each region 𝑘 containing 𝑝i SNPs, 𝐗i is the 𝑁 × 𝑝i  standardized genotype matrix 

and 𝐕Vi  is the corresponding 𝑝i × 𝑝i  in-sample LD matrix with rank 𝑞i , where 1 ≤ 𝑞i ≤ 𝑝i . We propose the 

following estimator for genome-wide SNP-heritability:  

ℎTefg0 =h
𝑁𝜷Vi$𝐕Vi

\𝜷Vi − 𝑞i
𝑁 − 𝑞i

	
�

iQR

(4) 

where 𝜷Vi = (1/𝑁)𝐗i$𝐲 is the 𝑝i-vector of marginal SNP effects estimated by ordinary least squares (OLS) for region 

𝑘 and 𝐕Vi
\ is the pseudoinverse of 𝐕Vi .  

In the following sections, we first derive ℎTefg0  in the simplest case where 𝐾 = 1  and 𝑁 > 𝑀  by finding an 

estimator that satisfies E;ℎTefg0 = = ℎA0. We then describe modifications to this estimator to allow 𝑁 < 𝑀 as well as 

rank-deficient LD matrices. Lastly, we derive an analytical form for the standard error of ℎTefg0 . 

 

Derivation for ℎTefg0  assuming fixed 𝜷 and 𝑁 > 𝑀 

Recall that Var[𝑦�] = 1  and Var[𝐱�$] = 𝐕 . Our goal is to find an estimator ℎTefg0  that satisfies E;ℎTefg0 = = ℎA0 =

Var[𝐱�$𝜷] = E[Var[𝐱�$𝜷|𝜷]] + Var[E[𝐱�$𝜷|𝜷]] = E[𝜷$𝐕𝜷] (Equation 2). If 𝜷 were fixed and we observed 𝐕 and 𝜷, 

we could estimate ℎA0 as ℎTA0 = 𝜷$𝐕𝜷. However, in reality, we observe noisy estimates of 𝜷 and 𝐕 from GWAS. Given 

a GWAS of N unrelated individuals and M SNPs, we observe 𝐗, the standardized genotype matrix, and 𝐲 , the 

standardized phenotype vector. We assume that when 𝑁 > 𝑀, 𝐕V → 𝐕 as 𝑁 → ∞ (in practice, the assumption that 𝑁 >

𝑀 is untrue; in subsequent sections we show how we partition the genome into 𝐾 blocks such that 𝑁 > 𝑝i for each 

block 𝑘). In a typical GWAS, the marginal SNP effects are estimated through ordinary least squares (OLS) regression 

as 𝜷V = (1/𝑁)𝐗$𝐲 = (1/𝑁)𝐗$𝐗𝜷+ (1/𝑁)𝐗$𝝐 = 𝐕V𝜷+ (1/𝑁)𝐗$𝝐. Given 𝐗 and fixed 𝜷, it follows that  

E;𝜷V 𝜷, 𝐗= = E ¡𝐕V𝜷+ 1
𝑁𝐗

$𝝐¢𝜷, 𝐗£ (5)	

= 𝐕V𝜷+
1
𝑁𝐗

$E[𝝐]	

= 𝐕V𝜷	

Cov;𝜷V 𝜷, 𝐗= = Cov ¡𝐕V𝜷+ 1
𝑁 𝐗

$𝝐¢𝜷, 𝐗£ (6)	

=
𝜎/0

𝑁0 𝑿
$𝑿	

=
𝜎/0

𝑁 𝐕V 

Thus, as 𝑁 → ∞ , 𝜷V → 𝐕𝜷 . Substituting 𝐕VZR𝜷V ≈ 𝜷  and 𝐕V ≈ 𝐕 , we obtain the revised estimator ℎTA0 = 𝜷$𝐕𝜷 ≈

¥𝐕VZR𝜷V¦
$
𝐕V¥𝐕VZR𝜷V¦ = 𝜷V$𝐕VZR𝜷V. The expectation of this estimator is  
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E;𝜷V$𝐕VZR𝜷V 𝜷, 𝐗= = E;tr¥𝜷V$𝐕VZR𝜷V¦ 𝜷, 𝐗=	

= E;tr¥𝐕VZR𝜷V𝜷V$¦ 𝜷, 𝐗=	

= tr¥𝐕VZRE;𝜷V𝜷V$ 𝜷, 𝐗=¦	

= tr¥𝐕VZRCov;𝜷V 𝜷, 𝐗=¦ + tr §𝐕VZRE;𝜷V 𝜷, 𝐗=E;𝜷V 𝜷, 𝑿=
$
¨	

= tr ©
𝜎/0

𝑁 𝐕VZR𝐕Vª+ 𝜷$𝐕V𝜷	

=
𝑀
𝑁 𝜎/0 + 𝜷$𝐕V𝜷 (7) 

We define ℎTefg0  to be an estimator that satisfies E;ℎTefg0  𝜷, 𝐗= = 𝜷$𝐕V𝜷. Substituting into Equation 7, we obtain  

E;𝜷V$𝐕VZR𝜷V 𝜷, 𝐗= =
𝑀¥1 − E;ℎTefg0 |𝜷, 𝐗=¦

𝑁 + E;ℎTefg0  𝜷, 𝐗=	

=
𝑀
𝑁 +

𝑁 −𝑀
𝑁 E;ℎTefg0  𝜷, 𝐗=	

E;ℎTefg0  𝜷, 𝐗= = «E;𝜷V$𝐕VZR𝜷V 𝜷, 𝐗= −
𝑀
𝑁
¬

𝑁
𝑁 −𝑀	

=
𝑁E;𝜷V$𝐕VZR𝜷V|𝜷, 𝐗= − 𝑀

𝑁 −𝑀 	

ℎTefg0 =
𝑁𝜷V$𝐕VZR𝜷V −𝑀

𝑁 −𝑀
(8) 

 

Unbiasedness of ℎTefg0  under the GRE model when 𝑁 > 𝑀 

Recall that under the GRE model, E[𝛽6] = 0 and Var[𝛽6] = 𝜎60, where 𝜎60 ≥ 0 for all SNPs 𝑖. In the previous sections, 

we showed that E;ℎTefg0  𝜷, 𝐗= = 𝜷$𝐕V𝜷 and ℎA0 = ∑ 𝜎60P
6QR . Recalling that Cov;𝛽6, 𝛽<= = 0 for all 𝑖 ≠ 𝑗, it follows that 

E;ℎTefg0  𝐗= = E;E;ℎTefg0  𝜷, 𝐗= 𝐗= 	

= E;𝜷$𝐕V𝜷 𝐗=	

= E;tr¥𝜷$𝐕V𝜷¦ 𝐗=	

= tr¥𝐕VE[𝜷𝜷$]¦	

=h𝜎60
P

6QR

(9) 

Therefore,  E;ℎTefg0 = = E ¡E;ℎTefg0  𝐗=£ = ∑ 𝜎60P
6QR = ℎA0. This implies that ℎTefg0  is an unbiased estimator for ℎA0 under 

a wide range of genetic architectures that fall under the GRE model. 

 

Genome-wide approximation 

For most GWAS, because the number of genotyped SNPs M is much larger than the number of individuals N in the 

study, 𝐕V is a poor estimator of 𝐕 genome-wide; as 𝑀/𝑁 increases, the eigenstructure of 𝐕V becomes increasingly 

distorted (larger eigenvalues are overestimated and smaller eigenvalues are underestimated)32. In addition, it is 

generally computationally intractable to compute and invert 𝐕V genome-wide. Thus, in practice, we divide the genome 
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into a set of K approximately independent blocks (e.g., by chromosome) and, following a procedure similar to 

Equations 5-8, we obtain 

E;𝜷Vi$𝐕ViZR𝜷Vi 𝜷, 𝐗= =
𝑝i
𝑁 𝜎/0 + 𝜷i$𝐕Vi𝜷i (10)	

=
𝑝i
𝑁
¥1 − E;ℎTA0 𝜷, 𝐗=¦ + 𝜷i$𝐕Vi𝜷i	

To find an estimator that satisfies E;ℎTA0 𝜷, 𝐗= = ∑ 𝜷i$𝐕Vi𝜷ii , we sum Equation 10 over 𝑘 = 1,… , 𝐾: 

h𝜷i$𝐕Vi𝜷i

�

iQR

=hE;𝜷Vi$𝐕ViZR𝜷Vi 𝜷, 𝐗=
�

iQR

−
1
𝑁
h𝑝i

�

iQR

+
1
𝑁E ¡ℎ

V𝑔
2
¢𝜷,𝐗£h 𝑝i

𝐾

𝑘=1
	

E;ℎTA0 𝜷, 𝐗= ¯𝑁 −h𝑝𝑘

𝐾

𝑘=1

° = 𝑁hE ¡𝜷V𝑘
𝑇𝐕²𝑘

−1
𝜷V𝑘¢𝜷, 𝐗£ − 𝑝𝑘

𝐾

𝑘=1

	

E;ℎTA0 𝜷, 𝐗= =
𝑁∑ E ¡𝜷V𝑘

𝑇𝐕²𝑘
−1𝜷V𝑘¢𝜷, 𝐗£

𝐾
𝑘=1 − ∑ 𝑝𝑘

𝐾
𝑘=1

𝑁 − ∑ 𝑝𝑘
𝐾
𝑘=1

	

ℎTA0 =
∑ 𝑁𝜷Vi$𝐕ViZR𝜷Vii − ∑ 𝑝ii

𝑁 − ∑ 𝑝ii
	

ℎTA0 =
∑ 𝑁𝜷Vi$𝐕ViZR𝜷Vii − 𝑀

𝑁 −𝑀
(11) 

While Equation 11 does circumvent the need to invert the genome-wide LD matrix in Equation 8, this estimator will 

produce negative estimates of ℎA0 if 𝑁 < 𝑀, which is the case in all of our genome-wide analyses. We therefore use 

an approximation which estimates the contribution of block 𝑘 while ignoring the contributions of the remaining blocks. 

That is, assuming 𝐲 = 𝑿i𝜷i + 𝛜i, where Var[𝛜i] = σ/´
0 𝐈U, we obtain 

E;𝜷Vi$𝐕ViZR𝜷Vi 𝜷, 𝐗= =
𝑝i
𝑁
(1 − ℎi0) + 𝜷i$𝐕Vi𝜷i	

=
𝑝i
𝑁 −

𝑝i
𝑁 E;ℎTi0 𝜷, 𝐗= + E;ℎTi0 𝜷, 𝐗=	

E;ℎTi0 𝜷, 𝐗= =
𝑁E;𝜷Vi$𝐕ViZR𝜷Vi|𝜷, 𝐗= − 𝑝i

𝑁 − 𝑝i
(12) 

An estimator that satisfies Equation 12 is 

ℎTi0 =
𝑁𝜷Vi$𝐕ViZR𝜷Vi − 𝑝i

𝑁 − 𝑝i
 

Finally, we estimate genome-wide SNP-heritability as 

ℎTefg0 =h
𝑁𝜷Vi$𝐕ViZR𝜷Vi − 𝑝i

𝑁 − 𝑝i

�

iQR

(13) 

While this estimator does not provide theoretical guarantees of unbiasedness, we find that it allows us to robustly 

estimate genome-wide SNP-heritability as long as 𝑁 ≫ 𝑝i for all k (e.g., Figure 1b). 
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Extension for rank-deficient LD 

It is often the case that two SNPs are perfectly correlated in a genotype block 𝐗i, or that 𝑁 < 𝑝i for a block 𝑘. In this 

case, 𝐕Vi  is rank-deficient (i.e. its rank is less than 𝑝i ) and 𝐕ViZR  does not exist. We therefore compute 𝐕Vi
\ , the 

pseudoinverse (Moore-Penrose inverse) of 𝐕Vi , which approximate 𝐕ViZR using its truncated eigendecomposition. Let 

𝑞i = rank(𝐕Vi) and let 𝐕Vi = 𝐔i𝚲i𝐔i$ be the eigendecomposition of 𝐕Vi , where 𝚲i = diag¥𝜆R,… , 𝜆[´, 0, … ,0¦. The 

pseudoinverse of 𝐕Vi  is 𝐕Vi
\ = 𝐔i𝚲i

\𝐔i$, where 𝚲i
\ = diag¥𝜆RZR,… , 𝜆[´

ZR,0,… ,0¦.  

Substituting 𝐕Vi
\𝜷Vi ≈ 𝜷i  and 𝐕Vi ≈ 𝐕i , we obtain the following estimator for ℎi0 : ℎTi0 = 𝜷i$𝐕i𝜷i ≈

¥𝐕Vi
\𝜷Vi¦

$
𝐕Vi¥𝐕Vi

\𝜷Vi¦ = 𝜷Vi$𝐕Vi
\𝜷Vi. Let 𝐈[´  be a 𝑝i × 𝑝i  diagonal matrix in which the first 𝑞i diagonal entries are 1 and 

the rest are 0. The expectation of our estimator given 𝜷 and 𝐗 is 

E;𝜷Vi$𝐕Vi
\𝜷Vi 𝜷, 𝐗= = E;tr¥𝐕Vi

\𝜷Vi𝜷Vi$¦ 𝜷, 𝐗=	

= tr¥𝐕Vi
\E;𝜷Vi𝜷Vi$ 𝜷, 𝐗=¦	

= tr¥𝐕Vi
\Cov;𝜷Vi 𝜷, 𝐗=¦ + tr §𝐕Vi

\E;𝜷Vi 𝜷, 𝐗=E;𝜷Vi 𝜷, 𝐗=
$
	̈

= tr¥(𝜎/0/𝑁)𝐕Vi
\𝐕Vi¦ + tr §𝐕Vi

\¥𝐕Vi𝜷i¦¥𝐕Vi𝜷i¦
$
	̈

= tr¥(𝜎/0/𝑁)𝐈[´¦ + tr¥𝐔i𝚲i
\𝐔i$𝐔i𝚲i𝐔i$𝜷i𝜷i$𝐔i𝚲i𝐔i$¦	

=
𝑞i
𝑁 𝜎/0 + tr¥𝐔i𝚲i

\𝚲i𝐔i$𝜷i𝜷i$𝐔i𝚲i𝐔i$¦	

=
𝑞i
𝑁 𝜎/0 + tr¥𝐈[´𝐔i

$𝜷i𝜷i$𝐔i𝚲i¦	

=
𝑞i
𝑁 𝜎/0 + tr¥𝜷i$𝐔i𝚲i𝐈[´𝐔i

$𝜷i¦	

=
𝑞i
𝑁 𝜎/0 + 𝜷i$𝐔i𝚲i𝐈[´𝐔i

$𝜷i	

=
𝑞i
𝑁 𝜎/0 + 𝜷i$𝐔i𝚲i𝐔i$𝜷i	

=
𝑞i
𝑁 𝜎/0 + 𝜷i$𝐕Vi𝜷i 

Following a procedure similar to Equations 10-13, we obtain 

ℎTefg0 =h
𝑁𝜷Vi$𝐕Vi

\𝜷Vi − 𝑞i
𝑁 − 𝑞i

�

iQR

 

Again, while this estimator is not unbiased, it allows us to robustly estimate genome-wide SNP-heritability as long as 

𝑁 ≫ 𝑞i for all 𝑘. 

 

Analytical variance of ℎTefg0  

Following quadratic form theory29,42, the variance of ℎTefg0  in the single-block case is given by  

Var;ℎTefg0 = = «
𝑁

𝑁 − 𝑞
¬
0

©2𝑞 ©
1 − ℎA0

𝑁 ª+ 4ℎA0ª©
1 − ℎA0

𝑁 ª (14) 

When using the K-block approximation, which assumes that the blocks are independent, we approximate Equation 14 
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as the sum of the variances of the local SNP-heritabilities: 

Var;ℎTefg0 = =h«
𝑁

𝑁− 𝑞i
¬
0

©2𝑞i ©
1 − ℎi0

𝑁 ª+ 4ℎi0ª©
1 − ℎi0

𝑁 ª
¾

¿QR

(15) 

Because ℎA0 and ℎi0 for all k are unknown, Equation 14 is estimated by plugging in ℎTefg0  and Equation 15 is estimated 

by plugging in (ℎTR0,… , ℎT�0 ), the estimates of the regional SNP-heritabilities. 

 

Simulation Framework 

To assess the performance of ℎTefg0  and other methods, we simulated continuous phenotypes from genotype array data 

in the UK Biobank10 under a range of genetic architectures. We obtained a set of N = 337205 unrelated British 

individuals to use in simulations by extracting individuals that are > 3rd degree relatives (defined as pairs of 

individuals with kinship coefficient < 1/2(�/0) )10 and excluding individuals with putative sex chromosome 

aneuploidy. In all simulations, we standardize the genotype matrix before drawing phenotypes such that each column 

(SNP) of the genotype matrix has mean 0 and variance 1. In other words, we standardize the genotype at SNP 𝑖 for 

individual 𝑛 by computing 𝑥�6 = (𝑔�6 − 2𝑓6)/�2𝑓6(1 − 𝑓6), where 𝑔�6 ∈ {0,1,2} is the number of minor alleles at 

SNP 𝑖 for individual 𝑛 and 𝑓6 is the minor allele frequency (MAF) of SNP 𝑖 among the 𝑁 individuals. 

 

Simulations of quantitative traits with no population stratification 

Given standardized genotypes for N individuals at M SNPs and a fixed value of ℎA0, phenotypes are simulated under 

different genetic architectures according to the following model. The proportion of causal variants, 𝑝opqrps, is set to 

either 1 (i.e. an infinitesmal model in which all variants have nonzero effects), 0.01, or 0.001. Let 𝑐6 ∈ {0,1} be an 

indicator variable for the causal status of SNP 𝑖. If 𝑝opqrps = 1, 𝑐6 = 1 for 𝑖 = 1,… ,𝑀. Otherwise, if 0 ≤ 𝑝opqrps < 1, 

we draw 𝑝opqrps × 𝑀 SNPs from the set of SNPs with minor allele frequencies in one of three ranges: (0, 0.5], (0.01, 

0.05], or (0.05, 0.5]. We use the abbreviation “CV MAF” to refer to the MAF range from which causal variants are 

drawn. The standardized SNP effect sizes and phenotypes are then drawn according to the  

following model: 

𝜎60 ∝ 𝑐6 ⋅ 𝑤6
Â[2𝑓6(1 − 𝑓6)]RÃÄ (16)	

(𝛽R, … , 𝛽i)$ ∼ 𝑁¥0, diag(𝜎R0,… , 𝜎P0 )¦ (17)	

(𝑦R,… , 𝑦U)$|𝜷 ∼ 𝑁¥𝐗𝜷, ¥1 − ℎA0¦𝐈U¦ (18) 

where 𝛼 is a parameter that controls the coupling of MAF and effect size, 𝑤6 is a SNP-specific LD weight, and 𝛾 ∈

{0,1} is a global parameter specifying whether the effect size of a SNP is coupled with its LD score. We simulate two 

types of LD-dependent architectures by defining the SNP-specific LD weights 𝑤R,… ,𝑤P  to be either (1) the default 

“LDAK weights” computed by the LDAK software6, or (2) the inverse unpartitioned “LD score” of each SNP 

computed within a 2-Mb window using the LDSC software (i.e. 𝑤6ZR = ∑ 𝑣6<0<  where 𝑗 indexes the set of SNPs within 

a 2-Mb window centered on SNP 𝑖)11. When 𝛾 = 1, both the LDAK weights and inverse LD score weights cause 

SNPs in regions of higher LD to have smaller effects than do SNPs in regions of lower LD. We set 𝛼 to one of two 

values: 𝛼 = −1, which indicates a relatively strong inverse relationship between MAF and effect size, or 𝛼 = −0.25, 
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which indicates a weaker inverse relationship between MAF and effect size. Each per-SNP variance is multiplied by 

a constant scaling factor to ensure that ∑ 𝜎60P
6QR = ℎA0. Note that 𝜎60 > 0 if 𝑐6 = 1 and 𝜎60 = 0 if 𝑐6 = 0. 

Finally, given simulated phenotypes 𝐲 = (𝑦R,… , 𝑦U)$ and genotypes 𝐗 = (𝐱R$,… , 𝐱U$ )$, we compute marginal 

association statistics through ordinary least squares (OLS) as 𝜷V = (1/𝑁)𝐗$𝐲. 

 

Simulations of case-control phenotypes with no population stratification 

To simulate case-control studies, we first draw each individual’s continuous liability (𝑙� for individual n) according 

to Equation 18. Then, for a given population prevalence (0 ≤ 𝑑ÇÈÇ ≤ 1), we compute the corresponding liability 

threshold 𝐿 = ΦZR(1 − 𝑑ÇÈÇ) , where Φ  is the CDF of the standard normal distribution, and we convert each 

individual’s continuous liability into a case-control status: 𝑦� = 1 if 𝑙� ≥ 𝐿 or 𝑦� = 0 if 𝑙� < 𝐿. In simulations of 

unascertained case-control studies, we assume that the proportion of cases in the study is equal to the population 

prevalence (𝑑ËÌÍÎ = 𝑑ÇÈÇ). In all simulations of ascertained case-control studies (𝑑ËÌÍÎ > 𝑑ÇÈÇ), we set 𝑑ËÌÍÎ =

0.5 and select a random set of controls to satisfy 𝑁ÏÐ~/ = 𝑁ÏÈ�ÑÒÈÓ. 

To estimate SNP-heritability from simulated case-control studies, we compute association statistics by regressing 

the binary case-control statuses on genotypes and apply GRE; this produces an estimate of SNP-heritability on the 

observed scale (ℎTÈÔ~0 ). We assume that we know the population prevalence, which allows us to convert this estimate 

from the observed scale to the liability scale with the transformation ℎTÓ6ÐÔ0 = ℎTÈÔ~0 𝑑ÇÈÇ0 ¥1 − 𝑑ÇÈÇ¦
0
/

([𝑓(𝐿)]0𝑑ËÌÍÎ(1 − 𝑑ËÌÍÎ)), where 𝑓 is the standard normal probability density function43.  

 

Simulations with population stratification 

To simulate GWAS with population stratification, we draw phenotypes from a model where a covariate that is 

correlated to genotypes has a nonzero effect on phenotype. To this end, we simulate an effect of the first genetic 

principal component (𝐏𝐂R) by setting 𝜎~0, the proportion of total phenotypic variance explained by the covariate, and 

drawing phenotypes from the model 

(𝑦R,… , 𝑦U)$|𝜷 ∼ 𝑁¥𝐗𝜷+ 𝐏𝐂R𝛽~, ¥1 − ℎA0 − 𝜎~0¦𝐈U¦ (19) 

where 𝛽~ satisfies Var[𝐏𝐂R𝛽~]/Var[𝐲] = 𝛽~0Var[𝐏𝐂R] = 𝜎~0. We then compute association statistics from one of two 

models: 𝐲 = 𝐗$𝜷 + 𝛜, which ignores population stratification and other potential sources of confounding, or 𝐲 =

𝐗$𝜷+ 𝐏𝐂R𝛽~ + 𝛜, which controls for the effect of the first genetic PC. 

 

Comparison of methods in simulations 
Unless otherwise specified, in all genome-wide simulations, we use real genotypes of N = 337205 unrelated British 

individuals measured at M = 593300 array SNPs to draw causal effects for all M SNPs and phenotypes for all N 

individuals. OLS summary statistics are computed for all M SNPs using the simulated phenotypes and real genotypes 

for all N individuals. We implement our estimator (Equation 4) by computing chromosome-wide in-sample LD for 

each chromosome k as 𝐕Vi = (1/𝑁)𝐗i$𝐗i and we compare to three computationally efficient methods that operate on 

summary statistics: LD score regression (LDSC)11, stratified LD score regression (S-LDSC)12,13, and SumHer14. 
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To run LDSC with no annotations, we use the LDSC software (see URLs) to compute the LD score of each SNP 

as a function of its LD to all other SNPs in a 2-Mb window centered on the SNP. The LD scores are computed from 

a random sample of 40K individuals to reduce the amount of memory required by the LDSC software. We run the 

regression with an unconstrained intercept, using all M SNPs as observations in the response variable, where each 

SNP in the regression is weighted to account for heteroscedasticity and correlations between association statistics at 

SNPs in LD11. ℎA0 is estimated as a function of all M SNP-specific variances by running LDSC with the flags --not-M-

5-50 and --chisq-max 99999 (the latter option prevents the LDSC software from dropping high-effect SNPs). 

We run S-LDSC in two ways to account for MAF- and LD-dependent architectures. S-LDSC (MAF) refers to S-

LDSC with 10 binary MAF bin annotations defined such that each bin contains exactly 10% of the typed SNPs; this 

is intended to mirror the 10 MAF bin annotations in the S-LDSC “baseline-LD model”13 (see Supplementary Table 

S14 for precise MAF bin ranges for the UK Biobank Axiom Array). S-LDSC (MAF+LLD) refers to S-LDSC with the 

same 10 MAF bins and an additional continuous “level of LD” (LLD) annotation computed by quantile-normalizing 

the unpartitioned LD scores within each MAF bin to a standard normal distribution13. While our definition of LLD is 

intended to mirror the LLD annotation in the baseline-LD model, we do not set the LLD of variants with MAF < 0.05 

to 0 because our estimand of interest is the SNP-heritability attributable to all M SNPs (not just SNPs with MAF > 

0.05)13. For each annotation, LD scores are computed within 2-Mb windows from a random sample of 40K individuals. 

We run the regression with all M SNPs, an unconstrained intercept, and the recommended regression weights12,13. 

Once again, we use the flags --not-M-5-50 and --chisq-max 99999 to estimate ℎA0 as a function of all M SNP-specific 

variances and to prevent the LDSC software from dropping high-effect SNPs. 

To run SumHer, we first use the LDAK software (see URLs) to compute the default “LDAK weights” using in-

sample LD6,9,14. Second, we compute “LD tagging” (i.e. LD scores) using 1-Mb windows centered on each SNP and 

setting 𝛼 = −0.25 as recommended14. The LDAK software is memory-efficient, allowing us to use in-sample LD 

computed from all N = 337K individuals to obtain LDAK weights and LD tagging. Finally, we run SumHer to estimate 

ℎA0 as a function of all M SNP-specific variances. Unless otherwise specified, all default parameter settings are used 

to run SumHer in simulations. 

Similarly, in all small-scale simulations, we use real genotypes of N = 8430 unrelated individuals at M = 14821 

array SNPs to draw phenotypes for all N individuals. These individuals and SNPs are a subset of the full UK Biobank 

data that were used in the genome-wide simulations, and were chosen by selecting approximately 2.5% of individuals 

and the first 2.5% of SNPs from the beginning of each chromosome in order to preserve a realistic LD structure among 

the SNPs. OLS summary statistics are computed from the simulated phenotypes and genotypes for all N individuals 

and M SNPs, and ℎTefg0  is computed using in-sample chromosome-wide LD. We run the implementation of single-

component GREML3 provided by the GCTA software44 and single-component BOLT-REML8 provided by the BOLT-

LMM software (see URLs), both with default parameters. We run the implementation of GREML-LDMS-I18 provided 

by the GCTA software using 8 GRMs created from 2 MAF bins (MAF ≤ 0.05 and MAF > 0.05) and 4 LD score 

quartiles; LD scores were computed using the GCTA software with the default window size of 200-kb. We run LDAK 

using the default LDAK weights, setting 𝛼 = −0.25 as recommended6,9. 

For a given genetic architecture, we generate 100 simulation replicates and obtain 100 estimates of ℎA0 from each 
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method. We estimate the bias of an estimator ℎTA0 under a given architecture by computing the difference between the 

average of the 100 estimates and the simulated ℎA0  (i.e. bias;ℎTA0= = E;ℎTA0= − ℎA0 ≈ (1/100)∑ ℎTA0(𝑖) − ℎA0RII
6QR  where 

ℎTA0(𝑖) is the estimate from the i-th simulation). To test whether the bias is statistically significant (i.e. significantly 

different from 0), we assess the z-score of the bias (𝑧ØÙpr = bias;ℎTA0=/SEM[ℎTA0], where SEM[ℎTA0] is the standard error 

of the mean of the 100 estimates) which follows a 𝑁(0,1)  distribution under the null hypothesis. To enable a 

comparison of estimators across different values of ℎA0, we assess the relative bias of an estimator under a single 

architecture (bias;ℎTA0=/ℎA0) as a percentage of ℎA0. In Figure 1c, we compute the error of a single estimate from the i-

th simulation as (ℎTA0(𝑖) − ℎA0)/ℎA0; errors are also reported as percentages of ℎA0. 

We also performed simulations using the genotypes of 7,685 individuals of South Asian ancestry in the UK 

Biobank. This group was composed of individuals of Indian (n = 5,716), Pakistani (n = 1,748), and Bangladeshi (n = 

221) ancestry. Due to the small sample size, we used a reduced set of 803 SNPs from chromosome 21 and 839 SNPs 

from chromosome 22 (1,642 SNPs in total). This reduced set of SNPs was chosen such that 𝑁/𝑝i  for each 

chromosome k was similar to 𝑁/𝑝i in the “white British” cohort. 

 

Analysis of UK Biobank phenotypes 
We estimate SNP-heritability for 22 real complex traits (6 quantitative, 16 binary) in the UK Biobank10. We use 

PLINK45 to exclude SNPs with MAF < 0.01 and genotype missingness > 0.01 as well as SNPs that fail the Hardy-

Weinberg test at significance threshold 10ZK. We keep only the individuals with self-reported British white ancestry 

and no kinship (i.e. > 3rd degree relatives, defined as pairs of individuals with kinship coefficient < 1/2(�/0))10. After 

removing individuals who are outliers for genotype heterozygosity and/or missingness, we obtain a set of N = 290,641 

unrelated British individuals to use in the real data analyses. For all traits, marginal association statistics are computed 

through OLS in PLINK, using age, sex, and the top 20 genetic principal components (PCs) as covariates in the 

regression; these 20 PCs were precomputed by UK Biobank from a superset of 488,295 individuals. Additional 

covariates were used for waist-to-hip ratio (adjusted for BMI) and diastolic/systolic blood pressure (adjusted for 

cholesterol-lowering medication, blood pressure medication, insulin, hormone replacement therapy, and oral 

contraceptives). We compute ℎTefg0  for each trait using chromosome-wide in-sample LD estimated from all N 

individuals. 

When using LDSC, S-LDSC, or SumHer to estimate SNP-heritability, it is necessary to define and distinguish 

between the following sets of SNPs: the set of SNPs containing all possible causal SNPs of interest (used to compute 

LD scores and LDAK weights), the set of SNPs used as observations in the regression, and the set of SNPs that defines 

the SNP-heritability estimand of interest. We run two versions of LDSC, S-LDSC (controlling for the most recent 

baseline-LD model12,13,30), and SumHer14. First, to enable a more direct comparison between ℎTefg0  and the estimands 

of LDSC, S-LDSC, and SumHer, we run an “in-sample LD” version of each method where the M typed SNPs (MAF 

> 0.01) are used to compute LD scores and LDAK weights, perform the regression, and estimate SNP-heritability (i.e. 

we define the SNP-heritability estimand to be the sum of the per-SNP variances across the M typed SNPs). We refer 

to the in-sample LD versions of these methods as LDSC (in-sample), S-LDSC (baseline-LD/in-sample), and SumHer 
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(in-sample). To run LDSC (in-sample) and S-LDSC (baseline-LD/in-sample), we use the LDSC software (URLs) to 

compute LD scores and regression weights within 2-Mb windows centered on each SNP, using a random sample of 

40K individuals to reduce the memory requirement. To run SumHer (in-sample), we use the LDAK software (URLs) 

to compute LD tagging from the genotypes of all N individuals, using 1-Mb windows centered on each SNP and 

setting 𝛼 = −0.25 as recommended9,14. Unless otherwise specified, all other parameters were set to the default 

settings of each software. 

To enable comparisons between ℎTefg0  and estimates from LDSC, S-LDSC, and SumHer reported in the literature, 

we also run each method with its recommended parameter settings and LD estimated from reference panel sequencing 

data. We refer to these methods as LDSC (1KG), S-LDSC (baseline-LD/1KG), and SumHer (1KG) to indicate that 

LD is estimated from 489 Europeans in the 1000 Genomes Phase 3 reference panel31. We run LDSC (1KG) and S-

LDSC (baseline-LD/1KG) with LD scores and regression weights computed within 1-cM windows from 9,997,231 

SNPs with minor allele count greater than 5 in the reference panel (URLs), and we define the SNP-heritability 

estimand to be a function of the array SNPs with MAF > 0.0511,12. We run SumHer (1KG) using 8,569,062 SNPs with 

MAF > 0.01 in the reference panel to compute LDAK weights and LD tagging (1-cM windows) and to define the 

SNP-heritability estimand; we control for a multiplicative inflation of test statistics as recommended14. See 

refs.11,12,14,19 for details about the definitions and interpretations of the estimands of LDSC, S-LDSC, and SumHer. 
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Model Assumptions on 𝜷𝒊 Description 

Generalized 
random effects E[𝛽6] = 0, Var[𝛽6] = 𝜎60, 𝜎60 ≥ 0 

Each SNP 𝑖  has a nonnegative SNP-specific variance 
𝜎60. Total SNP-heritability is ℎA0 ≡ ∑ 𝜎60P

6QR . 

GREML-SC 
3,8,16 𝛽6 ∼ 𝑁(0, ℎA0/𝑀)  

Each SNP explains an equal portion of ℎA0. In other words, 
𝜎60 = ℎA0/𝑀 for all 𝑖 = 1,… ,𝑀. 

GREML-MC 
7,8,18,46,47 𝛽6 ∼ 𝑁(0, ∑ [SNP6 ∈ 𝑐]ℎÏ0/𝑚ÏÏ∈â )  

ℎA0 is partitioned by a set of disjoint SNP partitions 𝐶 that 
span all 𝑀 SNPs. Partition 𝑐 ∈ 𝐶 contains 𝑚Ï SNPs that 
have per-SNP variances ℎÏ0/𝑚Ï. Total SNP-heritability is 
ℎA0 = ∑ ℎÏ0Ï∈â . 

LDAK6,9 𝛽6 ∼ 𝑁¥0, 𝜎60¦, 𝜎60 ∝ 𝑤6[𝑓6(1 − 𝑓6)]RÃÄ 

Each SNP-specific variance is proportional to a function 
of 𝑓6 (the MAF of SNP 𝑖) and to 𝑤6 (a SNP-specific weight 
that is a function of the inverse of the LD score of SNP 𝑖). 
𝛼 controls the relationship between 𝜎60 and 𝑓6. The most 
recent recommendation by ref.9 is to assume 𝛼 = −0.25. 

LDSC11 E[𝛽6] = 0, Var[𝛽6] = ℎA0/𝑀 
Each SNP explains an equal portion of ℎA0 (similar to the 
GREML-SC model when ℎA0 is defined with respect to the 
same set of 𝑀 SNPs). 

S-LDSC12,13,30 E[𝛽6] = 0, Var[𝛽6] = ∑ 𝜏Ð𝑎(𝑖)Ð∈Í  

Each SNP-specific variance is a linear function of a set of 
annotations 𝐴 where each 𝑎 ∈ 𝐴 represents a binary or 
continuous-valued annotation. 𝑎(𝑖)  is the value of 
annotation 𝑎 at SNP 𝑖. 𝜏Ð is the expected contribution of 
a one-unit increase in annotation 𝑎 to each SNP-specific 
variance. 

SumHer14 E[𝛽6] = 0, Var[𝛽6] ∝ 𝑤6[𝑓6(1 − 𝑓6)]RÃÄ 

An extension of the LDAK model to operate on summary-
level data; can also efficiently partition ℎA0  by multiple 
annotations. The most recent recommendations by 
refs.9,14 is to set 𝛼 = −0.25. 

 
Table 1. Existing methods to estimate SNP-heritability impose additional assumptions on top of the 
generalized random effects (GRE) model. Under the GRE model, the causal effects at any two SNPs are 
assumed to be independent (E[𝛽6𝛽<] = 0 for all 𝑖 ≠ 𝑗) and genome-wide SNP-heritability is defined as ℎA0 ≡
∑ 𝜎60P
6QR , where each 𝜎60 can be an arbitrary nonnegative real number as long as 0 ≤ ℎA0 ≤ 1 (Methods). All 

existing methods make assumptions on the distribution of 𝛽6  and/or the form of 𝜎60 that can be subsumed 
under the GRE model. To simplify notation, we assume for each model that phenotypes are standardized 
in the population (i.e. Var[𝑦�] = 1 for every individual 𝑛). 
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Figure 1. Simulations under 64 distinct MAF- and LD-dependent architectures (N = 337205 unrelated 
British individuals, UK Biobank). For each value of ℎA0, phenotypes were drawn according to one of 16 
genetic architectures defined by the polygenicity (𝑝opqrps), the MAF range of causal variants (CV MAF), the 
coupling of MAF with effect size (𝛼), and the effect of local LD on effect size (𝛾 = 0 indicates no LD weights 
and 𝛾 = 1 indicates LDAK weights; see Methods). (a) Distribution of ℎTefg0  in simulations on chromosome 
22 (M = 9654 typed SNPs) where ℎTefg0  was computed with 1 chromosome-wide LD block. (b) Distribution 
of ℎTefg0  in genome-wide simulations (M = 593300 typed SNPs) where ℎTefg0  was computed with 22 
chromosome-wide LD blocks. In (a) and (b), each boxplot shows the distribution of estimates from 100 
simulations. Boxplot whiskers extend to the minimum and maximum estimates located within 1.5×IQR from 
the first and third quartiles, respectively. Black points and error bars in (a) represent the mean of the 
distribution and ±2 standard errors of the mean (s.e.m.), which were used to test whether the bias under a 
single architecture is significant (Methods). (c) Distribution of errors ℎTefg0 (𝑖) − ℎA0 , where ℎTefg0 (𝑖) is the 
estimate from the 𝑖-th simulation under a given genetic architecture, as a percentage of ℎA0. Each violin plot 
represents the errors of 6400 estimates (64 genetic architectures ×  100 simulation replicates). (d) 
Distribution of relative bias (as a percentage of ℎA0) as a function of sample size (N = 100K, 200K, or 337K) 
in genome-wide simulations. Each violin plot represents the distribution of the relative bias of ℎTefg0  across 
of 64 genetic architectures. In (c) and (d), the white diamonds mark the mean of each distribution.  
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Figure 2. Comparison of ℎTefg0  with LDSC, S-LDSC (MAF), and SumHer in genome-wide simulations (N = 
337205 unrelated individuals, M = 593300 array SNPs, ℎA0 = 0.25). Left: Phenotypes were drawn under 
one of 16 MAF- and/or LDAK-LD-dependent architectures by varying 𝑝opqrps , 𝛼 , 𝛾 , and CV MAF (see 
Methods). Each boxplot contains estimates of ℎA0 from 100 simulations. Boxplot whiskers extend to the 
minimum and maximum estimates located within 1.5 × IQR from the first and third quartiles, respectively. 
Right: Relative bias of each method (as a percentage of the true ℎA0) across 112 distinct MAF- and LDAK-
LD-dependent architectures (see Methods). Each boxplot contains 112 points; each point represents the 
average estimated ℎA0 from 100 simulations under a single genetic architecture. The white diamonds mark 
the average of each distribution. 
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Figure 3. Comparison of ℎTefg0  with GREML, BOLT-REML, GREML-LDMS-I, and LDAK in small-scale 
simulations (N = 8430 unrelated individuals, M = 14821 array SNPs). Left: Phenotypes were drawn under 
one of 16 MAF- and/or LDAK-LD-dependent architectures by varying 𝑝opqrps , 𝛼 , 𝛾 , and CV MAF (see 
Methods). Each boxplot contains estimates of ℎA0 from 100 simulations. Boxplot whiskers extend to the 
minimum and maximum estimates located within 1.5 × IQR from the first and third quartiles, respectively. 
Right: Relative bias of each method (as a percentage of the true ℎA0) across 112 distinct MAF- and LDAK-
LD-dependent architectures (see Methods). Each box plot represents the distribution of 112 points; each 
point is the average estimated ℎA0  from 100 simulations under a single genetic architecture. The white 
diamonds mark the average of each distribution. 
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Figure 4. Percent difference of ℎA0 estimates from LDSC (in-sample), S-LDSC (baseline-LD/in-sample), and 
SumHer (in-sample) with respect to ℎTefg0  for 18 complex traits and diseases in the UK Biobank for which 
ℎTefg0 > 0.05 (N = 290K unrelated British individuals, M = 460K typed SNPs; see Methods). Each bar 
represents the difference between the estimated ℎA0 from one of the methods (LDSC, S-LDSC, or SumHer) 
and ℎTefg0  as a percentage of ℎTefg0 . Black bars mark ±2 standard errors. 
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Trait GRE S.E. LDSC S.E. S-LDSC  S.E. SumHer S.E. 
Smoking Status 0.122 3.90E-03 0.178 7.70E-03 0.110 8.50E-03 0.132 4.30E-03 

Height 0.602 4.70E-03 0.730 2.70E-02 0.555 3.10E-02 0.634 2.70E-02 

BMI 0.285 4.20E-03 0.436 1.20E-02 0.289 1.70E-02 0.315 9.00E-03 

WHR 0.173 4.00E-03 0.256 1.20E-02 0.184 1.60E-02 0.198 9.40E-03 
Systolic Blood 
Pressure 0.159 4.20E-03 0.243 9.00E-03 0.134 9.70E-03 0.177 5.70E-03 

Diastolic Blood 
Pressure 0.154 4.20E-03 0.233 8.60E-03 0.130 9.70E-03 0.170 6.40E-03 

Eczema 0.116 4.20E-03 0.165 1.10E-02 0.107 1.20E-02 0.130 8.80E-03 

Asthma 0.116 4.90E-03 0.163 1.20E-02 0.116 1.70E-02 0.131 1.20E-02 

Hypertension 0.162 4.00E-03 0.244 9.40E-03 0.142 1.10E-02 0.180 6.10E-03 

High Cholesterol 0.082 5.10E-03 0.127 1.30E-02 0.138 5.80E-02 0.088 8.30E-03 

Diabetes (Any) 0.070 3.70E-03 0.093 5.90E-03 0.062 8.70E-03 0.074 5.00E-03 

Type 2 Diabetes 0.071 3.80E-03 0.090 6.10E-03 0.057 8.80E-03 0.071 4.00E-03 

Hypothyroidism 0.088 5.20E-03 0.142 1.30E-02 0.078 1.20E-02 0.110 1.70E-02 

Thyroid Disorders 0.084 5.20E-03 0.141 1.30E-02 0.080 1.20E-02 0.110 2.00E-02 

Endocrinopathies 0.069 5.10E-03 0.084 7.00E-03 0.058 9.90E-03 0.068 5.00E-03 
Cardiovascular 
Diseases 0.143 5.30E-03 0.228 1.10E-02 0.140 1.40E-02 0.164 6.00E-03 

Respiratory and 
ENT Diseases 0.086 5.20E-03 0.120 1.20E-02 0.079 1.40E-02 0.090 9.50E-03 

Psoriasis 0.019 5.00E-03 0.071 3.10E-02 0.035 1.20E-02 0.059 4.20E-02 
Dermatologic 
Disorders 0.023 5.00E-03 0.049 1.40E-02 0.034 9.90E-03 0.031 1.10E-02 

Rheumatoid 
Arthritis 0.008 5.00E-03 0.041 2.10E-02 0.010 7.90E-03 0.021 1.20E-02 

Autoimmune 
Disorders (Broad) 0.063 5.10E-03 0.105 1.20E-02 0.050 9.50E-03 0.079 1.70E-02 

Autoimmune 
Disorders (Certain) 0.015 5.00E-03 0.052 2.60E-02 0.005 7.60E-03 0.047 3.40E-02 

 
Table 2. Estimates of ℎA0 from the GRE approach, LDSC (in-sample), S-LDSC (baseline-LD/in-sample), 
and SumHer (in-sample) for 22 complex traits and diseases in the UK Biobank (N = 290K unrelated British 
individuals, M = 460K typed SNPs).  
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