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Abstract

Cellular heterogeneity in gene expression is driven by cellular processes such as
cell cycle and cell-type identity, and cellular environment such as spatial location.
The cell cycle, in particular, is thought to be a key driver of cell-to-cell hetero-
geneity in gene expression, even in otherwise homogeneous cell populations. Recent
advances in single-cell RNA-sequencing (scRNA-seq) facilitate detailed characteri-
zation of gene expression heterogeneity, and can thus shed new light on the processes
driving heterogeneity. Here, we combined fluorescence imaging with scRNA-seq to
measure cell cycle phase and gene expression levels in human induced pluripotent
stem cells (iPSCs). Using these data, we developed a novel approach to character-
ize cell cycle progression. While standard methods assign cells to discrete cell cycle
stages, our method goes beyond this, and quantifies cell cycle progression on a con-
tinuum. We found that, on average, scRNA-seq data from only five genes predicted
a cell’s position on the cell cycle continuum to within 14% of the entire cycle, and
that using more genes did not improve this accuracy. Our data and predictor of
cell cycle phase can directly help future studies to account for cell-cycle-related het-
erogeneity in iPSCs. Our results and methods also provide a foundation for future
work to characterize the effects of the cell cycle on expression heterogeneity in other
cell types.

Introduction

Single-cell RNA-sequencing (scRNA-seq) can help characterize cellular heterogeneity in
gene expression at unprecedented resolution [1-4]. By using scRNA-seq one can study
not only the mean expression level of genes across an entire cell population, but also the
variation in gene expression levels among cells [5-10].

There are many reasons for differences in gene expression among cells, with arguably
the most obvious candidates being differences in regulation among cell types, and differ-
ences in cell cycle phase among cells [11-13]. Cell type and cell cycle phase, while inter-
esting to study directly, are often considered confounders in single cell studies that focus
on other factors influencing gene expression [14-16], such as genotype, treatment [17],
or developmental time [5,18]. The ability to characterize, correctly classify, and correct
for cell type and cell cycle phase are therefore important, even in studies that do not
specifically aim to study either of these factors.
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For these reasons, many studies have used single cell data to characterize the gene
regulatory signatures of individual cells of different types and of cells at different cell
cycle phases (e.g., [14,19,20]). Often the ultimate goal of such studies is to be able to
develop an effective approach to account for the variation associated with cell cycle or
cell type. To characterize cell cycle phase, a common strategy in scRNA-seq studies is
to first use flow cytometry to sort and pool cells that are in the same phase, followed
by single-cell sequencing of the different pools [14,19]. Unfortunately, in this common
study design, cell cycle phase is completely confounded with the technical batch used to
process single-cell RNA. This design flaw can inflate expression differences between the
pools of cells in different cell cycle phase, resulting in inaccurate estimates of multi-gene
signatures of cell cycle phase. When cells are not sorted before sequencing, cell cycle
phase is typically accounted for by classifying the cells into discrete states based on the
expression level of a few known markers [21].

Regardless of whether or not cells are sorted, all single-cell studies to date have ac-
counted for cell cycle by using the standard classification of cell cycle phases, which is
based on the notion that a cell passes through a consecutive series of distinct phases (G1,
S, G2, M, and GO) marked by irreversible abrupt transitions. This standard definition of
cell phases, however, is based on physiological observations and low-resolution data.

The traditional approach to classify and sort cells into distinct cell cycle states relies
on a few known markers, and quite arbitrary gating cutoffs. Most cells of any given non-
synchronized culture do not, in fact, show an unambiguous signature of being in one of
the standard discrete cell cycle phases [5,22,23]. This makes intuitive sense: while from a
physiological perspective, transitions between cell cycle states can be clearly defined (the
DNA is either being replicated or not; the cell is either dividing or not), this is not the
case when we try to define the cell states using molecular data. Indeed, we do not expect
the gene expression signature of cell state transitions to occur in abrupt steps but rather
to be a continuous process. High resolution single-cell data can provide a quantitative
description of cell cycle progression and thus can allow us to move beyond the arbitrary
classification of cells into discrete states.

From an analysis perspective, the ability to assign cells to a more precise point on the
cell cycle continuum could capture fine-scale differences in the transcriptional profiles of
single cells - differences that would be masked by grouping cells into discrete categories.
Our goal here is therefore to study the relationship between cell cycle progression and gene
expression at high resolution in single cells, without confounding cell cycle with batch
effects as in [14,19]. To do so, we used fluorescent ubiquitination cell cycle indicators
(FUCCI) |24] to measure cell cycle progression, and scRNA-seq to measure gene expres-
sion in induced pluripotent stem cells (iPSCs) from six Yoruba individuals from Ibadan,
Nigeria (abbreviation: YRI). To avoid the confounding of cell cycle with batch, we did
not sort the cells by cell cycle phase before we collected the RNA-seq data. Instead, we
measured FUCCI fluorescence intensities on intact single cells that were sorted into the
C1 Fluidigm plate, prior to the preparation of the sequencing libraries. We also used
a balanced incomplete block design to avoid confounding individual effects with batch
effects. Using these data, we developed an analysis approach to characterize cell cycle
progression on a continuous scale. We also developed a predictor of cell cycle progression
in the iPSCs based on the scRNA-seq data. Our experimental and analytical strategies
can help future scRNA-seq studies to explore the complex interplay between cell cycle
progression, transcriptional heterogeneity, and other cellular phenotypes.
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Results

Study design and data collection

We generated FUCCI-iPSCs using six YRI iPSC lines that we had characterized pre-
viously [25] (Fig. 1; see Methods for details). FUCCI-expressing iPSCs constitutively
express two fluorescent reporter constructs transcribed from a shared promoter [24, 26].
Reporters consist of either EGFP or mCherry fused to the degron domain of Geminin
(geminin DNA replication inhibitor) or Cdtl (Chromatin licensing and DNA replication
factor 1). Due to their precisely-timed and specific regulation by the ubiquitin ligases
APC/C and SCF, Geminin and Cdt1 are expressed in an inverse pattern throughout the
cell cycle. Specifically, Geminin accumulates during S/G2/M and declines as the cell
enters G1, whereas Cdtl accumulates during G1 and declines after the onset of S phase.
Thus, FUCCI reporters provide a way to assign cell cycle phase by tracking the degra-
dation of Geminin-EGFP and Cdtl-mCherry through the enzymatic activity of their
corresponding regulators, APC/C and SCF.

We collected FUCCI fluorescence images and scRNA-seq data from the same single
cells using an automated system designed for the Fluidigm C1 platform (see Methods).
After image capture, we prepared scRNA-seq libraries for sequencing using a SMARTer
protocol adapted for iPSCs [27]. To minimize bias caused by batch effects [27, 28], we
used a balanced incomplete block design in which cells from unique pairs of iPSC lines
were distributed across fifteen 96-well plates on the C1 platform (see Supplemental Fig.
S1 for our C1 study design). We also included data from one additional plate (containing
individuals NA18855 and NA18511), which we collected as part of a pilot study in which
we optimized our protocols. In total, we collected data from 1,536 scRNA-seq samples
distributed across 16 C1 plates.

Single-cell RN A-sequencing

To help with quality control, we used DAPI staining to quantify the number of cells
captured in each C1 well (see Methods for details). Combined with the common scRNA-
seq data metrics, we determined, for our data, criteria for including single-cell samples
and high quality scRNA-seq expression data (see Supplemental Fig. S2. We obtained an
average of 1.7 + /- 0.6 million sequencing reads per sample (range=0.08-3.0 million). After
quality control, we retained RNA-seq data from 11,040 genes measured in 888 single cells,
with a range of 103 to 206 cells from each of the six individuals (see Supplemental Fig.
S3, Supplemental Fig. S4). We standardized the molecule counts to counts per million
(CPM) and transformed the data per gene to obtain a standardized normal distribution.
We retained all genes with CPM 1 or higher in order to evaluate as many genes as possible.
This resulted in a mean gene detection rate of 70 % across cells (standard deviation of
25 %, no significant difference between the six cell lines, see Supplemental Fig. S4).

We used principal components analysis (PCA) to assess the global influence of techni-
cal factors on expression, including plate, individual, and read depth (see Supplemental
Fig. S5). The primary source of sample variation in our data was the proportion of
genes detected (>1 logo CPM; adj. R-squared=0.39 for PC1; 0.25 for PC2), consistent
with results from previous studies [28]. Reassuringly, we found that the proportion of
genes detected in our samples showed a stronger correlation with the number of reads
mapped (adj R-squared=0.32) than with plate (adj. R-squared=0.01) or individual (adj.
R-squared=0.09). Thus, we confirmed that further statistical adjustment to account for
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batch effects will not yield noticeably different results. This demonstrates that our use
of a balanced incomplete block design was an effective strategy to minimize the effects of
confounding technical variables.

Quantifying continuous cell cycle phase using FUCCI intensities

Proceeding with the 888 single cells for which we had high quality RNA-seq data, we
turned our attention to the corresponding FUCCI data. To summarize FUCCI intensi-
ties, we defined a fixed cell area for all sample images (100 x 100 px) in order to account
for differences in cell size. We computed two FUCCI scores for each cell by individually
summing the EGFP (green) and mCherry (red) intensities in the fixed cell area and cor-
recting for background noise outside the defined cell area (see Methods for more details).
Because images were captured one plate at a time, we scanned the data for evidence of
batch effects. We found mean FUCCI scores to be significantly different between plates
(F-test P-value < 2e-16 for both EGFP and mCherry, see Supplemental Fig. S6 for
comparisons between C1 plates, Supplemental Fig. S7 for comparisons between the six
cell lines). We hence applied a linear model to account for plate effects on FUCCI scores
without removing individual effects (FUCCI score ~ plate + individual).

FUCCI intensities are commonly used to sort cells into discrete cell cycle phases.
For example, cells expressing EGFP-Geminin in the absence of mCherry-Cdtl would
traditionally be assigned to G2/M, cells with the opposite pattern of expression would be
assigned to G1, and cells expressing equal amounts of EGFP-Geminin and mCherry-Cdt1
would be assigned to the S/G2 transition [24]|. As a representative of this approach, we
applied Partition Around Medoids (PAM) from [29] to FUCCI scores to assign single-
cell samples to G1, S, and G2/M phase (G1 384 cells, S 172 cells, G2/M 332 cells, see
Supplemental Fig S8). Henceforth, the classification obtained from PAM is referred to
as PAM-based classification. However, FUCCI intensities are known to be continuously
distributed within each phase [24], suggesting that they could also be used to quantify
cell cycle progression through a continuum (conventionally represented using radians in
the range [0, 27]). With this in mind, we ordered the corrected FUCCI scores by phase
and plotted them on a unit circle, using the co-oscillation of mCherry-Cdtl and EGFP-
Geminin to infer an angle, or ‘FUCCI phase’, for each cell (Fig. 2A; see Methods). For
example, Fig. 2B shows that as a cell progresses through 7/2 to 7 radians, mCherry-
Ctd1 intensity decreases from its maximum, while EGFP-Geminin intensity changes from
negative to positive, suggesting progression through G1/S transition. Overall, FUCCI
phase explains 87% of variation in mCherry intensity and 70% of variation in EGFP
intensity.

We next sought to identify genes whose expression levels vary in a cyclic way through
the cell cycle, as captured by FUCCI phase. Specifically, we used a non-parametric
smoothing method, trend filtering [30], to estimate the change in expression for each
gene through the cell cycle. We refer to these estimates as the “cyclic trend" for each
gene. We used a permutation-based test (see Methods) to assess the significance of each
inferred cyclic trend, and ranked the genes by statistical significance. Reassuringly, genes
with a significant cyclic trend were strongly enriched for known cell cycle genes (using
the 622 genes annotated in Whitfield et al. [31], we found Odds Ratio=25.79 for the
101 significant cyclic genes, Odds Ratio=31 for the top 5 significant cyclic genes, 30
for the top 50 genes, and 27 for the top 100 genes, Fisher’s exact test P-value < .001,
see Supplemental Tables S1, S2 for the gene list, see Supplemental Fig. S9A,S9B for
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PAM-based results). These results provide strong independent support that the inferred
FUCCI phase is indeed meaningfully capturing cell cycle progression.

For illustration, Fig. 2C shows the cyclic trends for the top 5 significant cyclic genes:
CDK1, UBE2C, TOP2A, HIST1H/FE, HIST1H/C. These genes have all been previously
identified as cell cycle genes in synchronization experiments of HeLa cells [31] and in
scRNA-seq studies of FUCClI-sorted cells [19]. CDK1 (Cyclin Dependent Kinase 1, also
known as CDC?2) promotes the transition to mitosis. TOP2A (DNA topoisomerase II-
alpha) controls the topological state of DNA during cell state transitions. UBE2C (Ubig-
uitin Conjugating Enzyme E2 C) is required for the degradation of mitotic cyclins and
the transition to G2 stage. Finally, HIST1H/C, and HIST1H/E (Histone gene cluster
1, H4 histone family) are replication-dependent histone genes expressed mainly during S
phase.

Predicting FUCCI phase from gene expression data
Our supervised approach

Building on these results, we developed a statistical method for predicting continuous
cell cycle phase from gene expression data. The intuition behind our approach is that
given a set of labeled training data — cells for which we have both FUCCI phase (Y)
and scRNA-seq data (X) — our trend-filtering approach learns the cyclic trend for each
gene (i.e., p(X|Y)). We combine this with a prior for the phase (p(Y')) using the idea of
a ‘naive Bayes” predictor, to predict FUCCI phase from gene expression (i.e., p(Y|X)).
Given scRNA-seq data, X, on any additional cell without FUCCI data, we can then apply
this method to predict its FUCCI phase, Y (see Methods for more details). Henceforth,
our continuous predictor is referred to as peco.

To assess the performance of our predictor, we applied six-fold cross-validation. In
each fold, we trained our predictor on cells from five individuals and tested its performance
on cells from the remaining individual. This allowed us to assess the ability of our
predictor to generalize to individuals not seen in training. We measured the prediction
error as the difference between the predicted phase and the measured FUCCI phase (as
a percentage of the entire cycle, 27; see Fig. 3A). Note that since phases lie on a circle,
the maximum possible error is 50% of the circle, and the expected error from random
guessing would be 25% of the circle. Using our approach, on average, we were able to
predict a cell’s position on the cell cycle continuum to within 14% of the entire cycle (i.e.,
.28 between inferred phase and FUCCI phase).

Supplemental Fig. S10A shows the performance of predictors built using between 2
and 50 genes. The genes were ranked and included in the predictors according to the
significance of their cyclic trend. We observed that the mean prediction error was robust
to the number of genes included in the predictor, and that the simplest predictor using
only the top five genes (CDK1, UBE2C, TOP2A, HIST1H/E, HIST1H/C) performed
just as well as the predictors with more genes.

We also checked the robustness of our predictors for data with lower effective se-
quencing depth compared to the C1 platform (e.g., Drop-seq and 10X). Specifically, we
repeated the analysis above after thinning the test data (total sample molecule count
in the unthinned data was 56,724 + 12,762) by a factor of 2.2 (total sample molecule
count 25,581 + 15,220) and 4.4 (total sample molecule count 13,651 + 13,577). Results
in Supplemental Fig. S10C,D show that the predictors based on fewer genes (e.g. 5-15)
were relatively robust to this thinning; predictors based on more genes showed worse per-
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formance in the lower-count data. These results were not surprising, as we demonstrated
in the unthinned data (Supplemental Fig. S9A) that adding genes with weak signals
increased prediction error.

Comparisons with existing methods on our data

Several methods exist for making inferences on cell cycle from RNA-seq data. Here
we consider two methods that assign cells to discrete cell cycle states (Seurat [21] and
Cyclone [32]) and two methods that attempt to infer a “cyclic ordering" of cells from
RNA-seq data in an unsupervised way (Oscope [19] and reCAT [33]). Coming to concrete
conclusions that one analytic method is better than another is difficult in most settings,
and is particularly difficult in settings where, as here, “gold standard" data are hard
to come by. It is further complicated here by the fact that the methods differ in their
precise goals (e.g. discrete vs continuous assignments, and supervised vs unsupervised
assignments). Nonetheless, we compared the methods on both our data and on other
data sets in an effort to provide some indication of their differences and commonalities.

First we ran the four other methods on our RNA-seq data from all 888 single cells,
and compared their results with our FUCCI data on the same cells.

For Seurat and Cyclone, we compared the discrete classifications (G1 vs S vs G2/M)
they produced from RNA-seq data with the corresponding classifications obtained from
FUCCI data using the PAM-based method from [29]. Neither the Seurat nor Cyclone
classifications agreed well with the FUCCI data. Treating the FUCCI results as a gold
standard, Seurat misclassification rates were 78% (G1), 74% (S), 43% (G2/M); and Cy-
clone misclassification rates were 34% (G1), 88% (S), 31% (G2/M). See Supplemental
Fig. S11A,B).

For the unsupervised methods Oscope and reCAT, we first applied each method to
infer an ordering of cells from the RNA-seq data, and then assessed whether the inferred
orderings produced cyclic patterns in the FUCCI scores (which one would expect if the
inferred orderings accurately represented cell cycle). In both cases the ordering explained
only very little variation in the FUCCI scores, with Oscope slightly higher than reCAT
(Oscope: 13% EGFP, 16% mCherry; reCAT: 4% EGFP, 9% mCherry, see Supplemental
Fig. S11D,F). In contrast, inferred phase from peco explained an average 29% of the
variation in EGFP score and an average of 24% of the variation in mCherry score (see
Supplemental Fig. S12).

To directly compare existing methods with our method requires translating results
from existing methods into a continuous predictor of cell cycle phase that is compara-
ble with our continuous predictor. For Oscope/reCAT, we did this by using their cyclic
ordering to assign cells to equidistant points on the unit circle. For Seurat/Cyclone, we
built a continuous predictor based on the Seurat/Cyclone phase-specific scores. Specifi-
cally, we applied the same approach used to derive FUCCI phase to transform the two
Seurat scores and the three Cyclone scores to cell cycle angles (see Supplemental Fig.
S13 for an example of Seurat score transformation).

This comparison will likely favor our predictor because existing methods were not
optimized for continuous phase predictions (indeed, no method other than ours has been
so optimized). Also our predictor was trained on the same cell types as are being used
for assessment. With these caveats in mind, on these data our predictor outperformed
predictors built from existing methods, with lower prediction error than all the other
methods on all cell lines (and in most cases significantly lower at P-value < .05; see
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Supplemental Fig. S14). Overall, the mean prediction error of our predictor across the
six cell lines was approximately 80% of the Cyclone-based predictor and 60% of the
Seurat/Oscope/reCAT-based predictors (See Figure 3B).

Visual comparisons of the results from the different methods on the top 5 cyclic
genes used by peco (see Figure 3C, Supplemental Fig. SI5A, S15B, S15C, S15D, S15E),
suggest that on these data Oscope agrees most closely with peco than other methods;
in particular results from peco and Oscope show a clearer cyclic trend in the expression

levels of HIST1H4FE and HIST1H4C than do other methods.

Comparisons on data from Leng et al

Leng et al. [19] collected scRNA-seq and FUCCI data on Human embryonic cells (hESCs).
The cells were transfected with the same FUCCI reporters used in our study (in fact,
the co-author Dr. Chris Barry generously gifted us their plasmid). However, in contrast
to our study, cells were first sorted into discrete cell cycle phases based on the FUCCI
data (G1, S, and G2/M, henceforth referred to as “gating-based classification"), and then
cells in each phase were prepared on different 96-well C1 plates prior to RNA-seq. In
contrast to our data, this design means that plate effects are confounded with cell cycle
phase, which is far from ideal. In addition, the sorted cells are not a random sample of
all cells across all cell cycle states, but rather represent cells whose FUCCI data place
them confidently into one of three discretely-defined cell cycle states. These issues were
major motivations for our own data collection efforts. However, since this is one of the
very few available single-cell datasets with RNA-seq and FUCCI data on the same cells,
we nonetheless compared methods on these data.

We analyzed the 247 FUCCI-expressing hESC single-cell samples from [19] that passed
quality control: 91 G1 phase, 80 S phase, and 76 G2/M phase. We applied peco and the
four existing methods to these data (for peco we used only the top 4 cyclic genes, because
HIST1H4E, was not mapped in these data).

Comparing results from the three continuous assignment methods (peco, Oscope and
reCAT), we found that the orderings from reCAT agree most closely with the gating-based
classification (Fig. 4B). Results from peco also show strong agreement with gating-based
classification, but the S-phase cells are spread out on either side of the G2/M cells, rather
than only preceding them as in the reCAT results. In contrast, the ordering from Oscope
show less agreement with the gating-based classification. (Quantifying these qualitative
statements is not straightforward because it is not obvious how to quantitatively compare
a continuous cyclic ordering with a discrete classification; nonetheless we believe the
qualitative patterns are clear in Fig. 4B.)

Turning to the discrete classification methods (Seurat and Cyclone), in these data
the Cyclone discrete assignments show much better agreement with the gating-based
patterns than Seurat (Cyclone misclassification rates 0% G1, 2.5% S, and 0% G2/M;
Seurat misclassification rates 89% G1, 25% S, and 21% G2/M).

Overall our results suggest the need for more research and better data to quantify the
accuracy and relative performance of the different available methods, including ours.

Discussion

In this study we sought to characterize the effects of cell cycle progression on gene ex-
pression data from single cells (iPSCs), by jointly measuring both cell cycle phase (via
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FUCCI) and expression (via scRNA-seq) on the same cells. Our study differs in two
key ways from previous similar studies. First, unlike the most commonly-cited previous
studies [14,19], our experimental design avoided confounding batch/plate effects with cell
cycle phase. In these previous studies, cells were FACS-sorted by discrete cell cycle stage
and loaded onto different C1 plates, making it difficult to decouple batch effects from cell
cycle effects [28]. Second, our study focused on characterizing cell cycle progression in a
continuum, rather than as abrupt transitions between discrete cell cycle phases.

We found that a simple predictor, based on 5 genes with a cyclic expression pattern
(CDK1, UBE2C, TOP2A, HIST1H4C, HIST1H4E), was sufficient to predict cell cycle
progression in our data, and that adding information from other genes did not improve
prediction accuracy. That these particular genes should be helpful predictors of cell cycle
is not entirely surprising, as they have been reported as potential markers in previous
studies, including synchronization experiments in HeLa cells [31] and yeast [34], and in
previous scRNA-seq studies of FUCClI-sorted hESCs [19]. However, our finding that
additional genes did not further improve prediction accuracy is perhaps more surprising,
and contrasts with the common use of dozens of genes for cell cycle prediction (e.g., Seurat
[21]). Of course, our results do not imply that only these five genes are associated with
cell cycle progression in iPSCs, only that additional genes provide redundant information
in our data.

As noted in the Introduction, one reason to estimate cell cycle from RNA-seq data
is to control for it when performing other downstream tasks. Although our methods
provide a way to estimate cell cycle information, they do not dictate a specific way to
control for cell cycle in downstream analyses. Indeed, how best to do this remains an
interesting and open question, and the ease with which it can be achieved will inevitably
depend on the downstream analyses being performed. For example, if the downstream
analyses rely on Gaussian models for transformed single-cell data (e.g., [35,36]) then it
may suffice to first regress out the effects of cell cycle from the transformed data (e.g.
using a non-parametric regression method such as trend filtering, to allow for the non-
linear trends that must occur in any cyclic phenomenon) before applying downstream
analyses to the residuals. On the other hand, if the downstream methods rely on explicit
models for count data (e.g., [37]) then controlling for cell cycle may be more complicated
and require further methodological development. However, we note that these issues are
not unique to our approach: controlling for cell cycle within count-based analyses poses
additional methodological challenges for whatever method is used to estimate cell cycle.

One important question is how well our methods will generalize beyond the data col-
lected here. We believe that our methods should be useful in other iPSC studies because
we were able to effectively predict cell cycle progression in cells from one individual using
scRNA-seq data from five other individuals (that is, our approach worked well in out-of-
sample prediction assessment). However, further data are required to assess how well our
methods generalize to studies involving different cell types than the iPSCs studied here.

Single-cell omics technology allows us to characterize cellular heterogeneity at an
ever-increasing scale and high resolution. We argue that the standard way of classifying
biological states in general, and cell cycle in particular, to discrete types, is no longer
sufficient for capturing the complexities of expression variation at the cellular level. Our
study provides a foundation for future work to characterize the effect of the cell cycle at
single-cell resolution and to study cellular heterogeneity in single-cell expression studies.
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Methods

FUCCI-iPSC cell lines and cell culture

Six previously characterized YRI iPSCs [25], including three females (NA18855, NA18511,
and NA18870) and three males (NA19098, NA19101, and NA19160), were used to gen-
erate FUCCI iPSC lines by the PiggyBAC insertion of a cassette encoding an EEF1A
promoter-driven mCherryCDT1-IRES- EgfpGMNN double transgene (the plasmid was
generously gifted by Dr. Chris Barry) [19,24]. Transfection of these iPSCs with the
plasmid and Super piggyBacTM transposase mRNA (Transposagen) was done using the
Human Stem Cell Nucleofector Kit 1 (VAPH-5012) by Nucleofector 2b Device (AAB-
1001, Lonza) according to the manual. Notably, single-cell suspension for the trans-
fection was freshly prepared each time using TrypLETM Select Enzyme (1X) with no
phenol red (ThermoFisher) to maintain cell viability. For standard maintenance, cells
were split every 3-4 days using cell release solution (0.5 mM EDTA and NaCl in PBS)
at the confluence of roughly 80%.

After two regular passages on the 6-wells, the transfected cells were submitted to
fluorescence activated cell sorting (FACS) for the selection of double positive (EGFP and
mCherry) single cells. To increase the cell survival after FACS, Y27632 ROCK inhibitor
(Sigma) was included in E8 medium (Life Technologies) for the first day. FACS was
performed on the FACSAria IIlu instrument at University of Chicago Flow Cytometry
Facility. Up to 12 individual clones from each of the six iPSC lines were maintained in E8
medium on Matrigel-coated tissue culture plates with daily media feeding at 37°C with
5% (vol/vol) CO2, same as regular iPSCs. After another ten passages of the FUCCI-
iPSCs, a second round of FACS was performed to confirm the activation of the FUCCI
transgene before single-cell collection on the C1 platform.

Single-cell capture and image acquisition

Single-cell loading, capture, and library preparations were performed following the Flu-
idigm protocol (PN 100-7168) and as described in Tung et al. [27]|. Specifically, the reverse
transcription primer and the 1:50,000 Ambion® ERCC Spike-In Mix1 (Life Technolo-
gies) were added to the lysis buffer, and the template-switching RNA oligos which contain
the UMI (6-bp random sequence) were included in the reverse transcription mix. A cell
mixture of two different YRI FUCCI-iPSC lines was freshly prepared using TrypLE™ at
37°C for three minutes. Cell viability and cell number were measured to have an equal
number of live cells from the two FUCCI-iPSC lines. In addition, single-cell suspensions
were stained with 5 uM Vybrant™ DyeCycle™ Violet Stain (ThermoFisher) at 37°C for
five minutes right before adding the C1 suspension buffer.

After the cell sorting step on the C1 machine, the C1 IFC microfluidic chip was
immediately transferred to JuLl Stage (NanoEnTek) for imaging. The Jull stage was
specifically designed as an automated single-cell observation system for C1 IFC vessel. For
each cell capture site, four images were captured, including bright field, DAPI, EGFP,
and mCherry. The total imaging time, together with the setup time, was roughly 45
minutes for one 96-well C1 IFC. The JuLl Stage runs a series of standardized steps for
each C1 IFC and for each fluorescence channel, separately. First, the camera scans the
four corners of the C1 IFC and sets the exposure setting accordingly. Then, the camera
proceeds to capture images of each C1 well.
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Library preparation and read mapping

For sequencing library preparation, tagmentation and isolation of 5/ fragments were per-
formed as described in Tung et al. [27|. The sequencing libraries generated from the 96
single-cell samples of each C1 chip were pooled and then sequenced in two lanes on an
[lumina HiSeq 2500 instrument using TruSeq SBS Kit v3-HS (FC-401-3002).

We mapped the reads with Subjunc [38| to a combined genome that included human
genome GRCh37, ERCC RNA Spike-In Mix 1 (Invitrogen), and the mCherry and EGFP
open reading frames from the FUCCI plasmid (we included the latter to ensure that
the transgene was being transcribed). We focused on the protein-coding regions of the
genome (RNA-seq), which have been well-established and stable for a long time. Newer
genome builds improve the resolution of hard-to-map regions of the genome (e.g. lots
of repeats) that would be more relevant if one is studying structural variation. Next,
we extracted the UMIs from the 5/ end of each read (pre-mapping) and deduplicated
the UMIs (post-mapping) with UMI-tools [39]. We counted the molecules per protein-
coding gene (Ensembl 75, February 2014) with featureCounts [40]. Note that we observed
quantitatively similar results when using genome build GRCh38 and gene annotations
from Ensembl 96 (April 2019) (Supplemental Fig. S16). Lastly, we matched each single
cell to its individual of origin with verifyBamID [41| by comparing the genetic variation
present in the RNA-seq reads to the known genotypes, as previously described [27].

Filtering and normalization of gene expression data

We used DAPI staining results to inform our RNA-seq quality control analysis and estab-
lish criteria for high-quality single-cell samples in two steps. First, we used DAPI staining
results to classify each C1 well into empty or non-empty wells. We then used data from
the empty wells to determine filtering criteria for the non-empty wells (see Supplemen-
tal Fig. S2A): number of mapped reads, percentage of unmapped reads, percentage of
ERCC reads, and percentage of genes detected to have at least one reads. Second, we
determined the number of cells captured in each C1 well using linear discriminant anal-
ysis (LDA; see our previous work for the rationale [27]). We fitted two LDA models: 1)
number of cells per well ~ gene molecule count + concentration of cDNA amplicons, and
2) number of cells per well ~ read-to-molecule conversion efficiency of ERCC spike-in
controls + read-to-molecule conversion efficiency of endogeneous genes. We used DAPI
staining results to determine the number of cells captured in each well. Supplemental
Fig. S17 shows the results of our LDA analysis. These quality control steps have been
applied and described in more details in our previous work [27].
In summary, our quality control criteria include the following:

e Only one cell observed per well

At least one molecule mapped to EGFP (to ensure the transgene is transcribed)
The individual assigned by verifyBamID was included on the C1 chip

At least 1,309,921 reads mapped to the genome

Less than 44% unmapped reads

Less than 18% ERCC reads

At least 6,292 genes with at least one read

After sample filtering, we excluded genes based on the following criteria.
e Over-expressed genes with more than 6% molecules across the samples.
o Lowly-expressed genes with sample average of CPM less than 2.
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In total, we collected 20,327 genes from 1,536 scRNA-seq samples after read mapping.
After the quality filtering steps described above, we were left with 888 samples and 11,040
genes. We standardized the molecule counts to CPM using per-sample total molecule
count from the 20,327 genes pre-filtering.

FUCCI image data analysis and FUCCI phase

Images were segmented using the EBImage package in R/Bioconductor [42]. We used
the nuclear channel (DAPI) to identify the location of cells in each C1 well. First, we
normalized pixel intensities in each image and applied a 10 pixel median filter. Next,
we generated a nuclear mask using the EBImage adaptive thresholding algorithm. We
filled holes in the resulting binary image and smoothed borders with a single round of
erosion and dilation. Finally, we identified individual nuclei using the EBImage bwla-
bel function. The code that implements these methods is available at https://raw.
githubusercontent.com/jdblischak/fucci-seq/master/code/create_mask.R.

We generated 100 by 100 pixel cell images centered on each nucleus centroid for the
remaining channels. For each channel, we estimated the background florescence in each
image by taking the median pixel intensity of all pixels that were not within the selected
100 pixel squares. We then subtracted this background intensity from the value of each
pixel within the cell images. Finally, we summed and log-transformed the background-
removed fluorescence intensities across the 100 by 100 pixel cell image. This yielded two
FUCCI scores summarizing fluorescence intensities of mCherry-Cdtl and EGFP-Geminin
for each cell.

We used the FUCCI scores - log10 sum of fluorescence intensity in the cell area after
background correction - to infer an angle for each cell on a unit circle. Specifically, we
applied PCA to transform the two FUCCI scores to orthogonal vectors. Using the PCs
of the FUCCI scores, we inferred an angle for each cell where the angle is the inverse
tangent function of (PC2/PC1). We refer to these angles as FUCCI phase, namely the
cell cycle phase estimates based on FUCCI intensities.

Estimating cyclic trends in gene expression data

To estimate the cyclic trend of gene expression, we ordered the single-cell samples by
the measured FUCCI phase and applied nonparametric trend filtering. We quantile-
normalized CPM values of each gene to a standard normal distribution. This way, the
samples with zero molecule count were assigned the lowest level of gene expression. We ap-
plied quadratic (second order) trend filtering using the trendfilter function in the genlasso
package [30]. The trendfilter function implements a nonparametric smoothing method
which chooses the smoothing parameter by cross-validation and fits a piecewise poly-
nomial regression. In more specifics: The trendfilter method determines the folds in
cross-validation in a nonrandom manner. Every k-th data point in the ordered sample
is placed in the k-th fold, so the folds contain ordered subsamples. We applied five-fold
cross-validation and chose the smoothing penalty using the option lambda. 1se: among all
possible values of the penalty term, the largest value such that the cross-validation stan-
dard error is within one standard error of the minimum. Furthermore, we desired that the
estimated expression trend be cyclical. To encourage this, we concatenated the ordered
gene expression data three times, with one added after another. The quadratic trend fil-
tering was applied to the concatenated data series of each gene. The estimates from the
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middle series were extracted and taken as the estimated cyclic trend of each gene. Using
this approach, we ensured that the estimated trend be continuous at the boundaries of
the ordered data: the estimates at the beginning always meet the estimates at the end
of the ordered data series.

We used a permutation-based test to assess the significance of each inferred cyclic
trend. For each gene, we computed the proportion of variance explained (PVE) by the
inferred cyclic trend in the expression levels. Then, we constructed an empirical null
distribution of PVE. We randomly chose a gene with less than 10 % of the cells observed
as undetected (CPM > 1) and permuted the expression levels in the selected gene 1,000
times. Each time, we fit trendfilter and computed PVE of the cyclic trend. We found
that the significance (p-value) of the inferred cyclic trend was more conservative when
the empirical null was based on a gene with low proportion of undetected cells, compared
to when the empirical null was based on a gene with high proportion of detected cells (>
80 %). Using these empirical p-values, we were able to assess significance of the cyclic
trends for each gene.

Predicting quantitative cell cycle phase of single cells: a supervised
learning approach

Our goal was to build a statistical method to predict continuous cell cycle phase from
gene expression data. We implemented the method in a two-step algorithm. In the first
step, we trained our predictor on data from 5 individuals and learned the cyclic trend
for each gene using trendfilter. In the second step, we applied the predictor and used
the gene-specific trends to compute the likelihood of gene expression levels in the test
data for each cell. We evaluated the likelihood on grid points selected along a circle
(default to 100 equally-spaced cell cycle phases). Finally, we assigned each cell in the test
data to a grid point (phase) at which its likelihood reaches the maximum. Because we
independently assigned each cell based on its gene expression levels, prediction accuracy
does not depend on the number of cells in the test data.

Notations

° (Yémi”, éfl"“"”)n:17,,_7 ~: For each individual cell n in the training sample, we denote
yirain — (yfrain ylrein) as the quantile-normalized gene expression vector, and
0, the FUCClI-based cell cycle phases. The single-cell samples are ordered in FUCCI
time, where 0 < gir@in < _@train < 97

denotes the logs normalized gene expression vector. The method estimates 9f§St the
cell cycle phase for each sample m.

° (fg, 04)g=1...c: Using the training data Y% we estimate a function fg for each
gene describing the cyclic trend of gene expression levels in FUCCI phase. f is a
cyclic function assumed to be continuous at 0 and 27.

Methods

1. Estimate ( fg,(rg) using Y;mm gene expression levels of gene g
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(a) Sort the gene expression levels Ygltmm in ascending order according to the cell
times (é,imi")n:17,..7]v.
(b) For each gene g, fit a piecewise polynomial function fg using trendfilter. (This

function uses internal 5-fold cross-validation to determine an appropriate amount
of smoothing for each g).

(c) Compute the gene-specific standard error 6, = \/ SN (Y, — f,(Btram))?

2. Predict (0f"),,—1. r using the gene expression data (Y, )i
(a) Choose K discrete and equally-spaced cell times between 0 to 27. For now,
we choose K = 100, which is pretty large considering the size of 155 cells in
the test sample.

(b) Compute the likelihood of VX" at each cell time k:

G
Ln(k) = L = [V, (fo(Om = £),69)g=1,..c) = [ [ P (Vg1 fo(Om = F),6,),

where P(ﬁﬁft!fg(em = k)v&g) ~ N(fg(em = k), 0,)
(c) Maximize L,,(k) over k =1,...,100:

ntest
0" = argmax L,, (k)
k=1,...,100

Data access

All raw and processed sequencing data generated in this study have been submitted

to the NCBI Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) [43]
under accession number GSE121265. We also make the processed data available at
https://github.com/jhsiao999/peco-paper and https://giladlab.uchicago.edu/
wp-content/uploads/2019/02/Hsiao_et_al_2019.tar.gz. All analysis results and all
scripts used to produce the work are available at https://jhsiao999.github.io/peco-paper.
We implement our method peco in an R package, which is available through Bioconductor.

The development version of peco is also available at https://github.com/jhsiao999/
peco.
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Figure 1: Overview of study design. We collected two types of data from the same single
cells using FUCCI-expressing iPSCs: in situ fluorescence images and scRNA-seq. After
quality control, we obtained 888 single cells for which we had high quality RNA-seq data.
We computed two FUCCI scores for each cell by individually summing the EGFP (green)
and mCherry (red) intensities in a fixed cell area (100 x 100 px), correcting for background
noise outside the defined cell area, and then taking the logl10 transformation of the sum of
corrected intensities. In the bottom-right scatter plot, we show the FUCCI scores for the
888 high quality single-cell samples, i.e., mCherry and EGFP logl0 sum intensities after
background noise correction. Finally, we standardized the molecule counts to counts per
million (CPM) and transformed the data per gene to a standard normal distribution.
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Figure 2: Characterizing cell cycle phase using FUCCI fluorescence intensities. (A) We
inferred FUCCI phase (angles in a circle) based on FUCCI scores of EGFP and mCherry.
The points in center correspond to PC scores based on EGFP and mCherry scores, and
the circle histogram shows the corresponding FUCCI phase distribution. For example, we
inferred #; based on the PC scores derived from the cell’s FUCCI scores. (B) We ordered
FUCCI scores of EGFP and mCherry by FUCCI phase to visualize the co-oscillation of
EGFP and mCherry along the cell cycle. Red and green points correspond to EGFP and
mCherry scores, respectively. The vertical lines correspond to phase boundaries derived
from the PAM-based classification (G1 384 cells, S 172 cells, G2/M 332 cells). (C) Given
FUCCI phase, we ordered cells along the cell cycle to estimate the cyclic trend of gene
expression levels for each gene. We identified these 5 genes as the top 5 cyclic genes in
the data: CDK1, UBE2C, TOP2A, HIST1H}E, and HIST1H/C. Each plot shows the
expression levels of 888 single-cell samples and the estimated cyclic trend (orange line).
All 5 genes were previously identified as related to cell cycle regulation. The vertical lines
correspond to phase boundaries derived from the PAM-based classification.
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Figure 3: Inferring cell cycle phase from scRNA-seq data. (A) We defined prediction
error as the distance between predicted phase and FUCCI phase (as a percentage of
the entire cycle, 2m). (B) We applied six-fold cross-validation to test the performance
of our predictor. The six panels correspond to performances in the six folds. Each
panel compares the mean prediction error of FUCCI phase in the test data (error bars
correspond to standard error) using our method and existing tools (Seurat [21], Cyclone
[32], reCAT [33], and Oscope [19]). (C) Estimated cyclic trend of top 5 cyclic genes for
samples from individual cell line NA18511. Rows correspond to the results of the five
methods. For example, we show the results of peco predicted phase in the first row. We
ordered the samples according to the predicted phase and used trendfilter to estimate
cyclic trend of gene expression. The colored line corresponds to the estimated cyclic
expression level along the predicted phase.
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Figure 4: Applying peco and existing tools to Leng et al. data [19]. The single-cell samples
in this data were sorted into G1, S and G2M phase. (A) We plot the distribution of gene
expression for the top 4 cyclic genes per cell cycle phase. (B) We compare predicted phases
based on peco, Oscope and reCAT. Rows correspond to prediction results based on the
three methods. Specifically, we sort the single-cell samples according to the predicted
phase, and color the sample points according to the gated phase. For example, in the
first row, we show that the peak expression profile of peco prediction is consistent with
results based on gating. The orange line corresponds to the cyclic trend of expression
levels. (C) We compare the phase assignment based on gating with Seurat/Cyclone-based
classification.
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Supplemental Figure S1
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A Balanced Incomplete Block Design (BIBD)

Supplemental Fig. S1: C1 study design. The table displays the distribution of cells from
six individual cell lines across sixteen C1 96-well plates, with rows corresponding to cell
lines and columns corresponding to C1 plates. Specifically, we used a balanced incomplete
block design (BIBD) in which cells from unique pairs of individuals were distributed across
fifteen 96-well C1 plates on the C1 platform. We also included data from one additional
plate (containing individuals NA18855 and NA18511), which we collected as part of a
pilot study. In total, we collected data from 1,536 scRNA-seq samples distributed across
sixteen C1 plates.
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Supplemental Fig. S2: Filtering criteria for including single-cell samples. We used DAPI
to determine the number of cells captured in each C1 well and compared common scRNA-
seq data metrics between empty wells and single-cell wells to determine filtering criteria
for single-cell samples. Using this approach, we determined filtering criteria for (A) the
number of total mapped reads (>= 1,309,921), (B) the percentage of unmapped reads
(< 44%), (C) the percentage of ERCC reads (< 18%), and (D) the number of detected
genes (>= 6,292 genes with least one read).
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Supplemental Figure S3

Mapped Reads Unmapped Reads Number of ERCC reads Molecule count

(million) Proportion (%) |singleton samples | proportion (%) (million)

Overall 2.0 (0.30) 33.0 (4.12) 888 7.6 (3.15) .13 (.024)
NA18511 1.9 (0.25) 35.0 (4.31) 103 9.0 (2.43) 13 (.019)
NA18855 1.9 (0.31) 34.9 (4.17) 163 8.2 (3.58) 12 (.022)
NA18870 2.0 (0.30) 32.5 (4.30) 206 7.4(3.47) .13 (.023)
NA19098 2.1(0.32) 31.3(2.95) 182 6.8 (2.25) 13 (.024)
NA19101 2.0(0.29) 33.3 (4.27) 122 5.9(3.27) .15 (.022)
NA19160 2.0(0.27) 32.0(3.14) 112 8.8 (2.33) .14(.022)

Supplemental Fig. S3: Summary table of scRNA-seq quality metrics. We computed
means and standard deviations (in parentheses) of these metrics across single-cell samples
for each of the six cell lines and also for the entire dataset.
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Supplemental Fig. S4: Distribution of scRNA-seq quality metrics for the six cell lines.
We show the distribution of single-cell samples in (A) the total molecule count, (B) the
mean gene detection rate (i.e., fraction of genes with at least one read), (C) the number
of single-cell samples.

25


https://doi.org/10.1101/526848
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/526848; this version posted October 29, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Supplemental Figure S5

Association between Principal Components of
gene expression data and technical factors

Bl -

adj R. squared

Incvickual

©1: €1 batch

ERCG: ERGG gens propottion dstectsd

ENSG: Endogensous gena proportion detected

Reads mapped: R eads with valid UMI magped 1o genome

cONA: cDNA concentration

Malecules: Total sample molecule count

Reads raw: Raw reads

Reads unmappedt: Reads with valid UMI not mapped 1o genome

Reads UMI: Reads with valid UMI

Well: G1 caplurs sits (well) ID

B

Correlation between technical factors

- e
.

Pearson's
correlation

ERCC: ERGC gene propastion detected

cONA; cDNA concentration

ENSG: Endogenecus gens proportion detected
| Malocules: Total sampte molecle ¢ cunt
Floads mapped: Reads with vlld LIMI mapped 10 genome
Fleacks unmapped: Aeads with valkd UMI not mapped 16 genct
Foads UMI: Reads with valid UMI

T

<
z
a

Fleads raw! Aaw reads

ERCG
ENSG

i

Paads mapped

Roads UM
Reads raw

Reads unmappad

Supplemental Fig. S5: Major sources of variation in our gene expression data of 888
quality samples and 11,040 genes. (A) Principal Component Analysis (PCA) was applied
to the logos CPM of the gene expression data. We computed the proportion of variance
explained (i.e., adjusted R-squared) in each of the principal components by: individual
identity of the single-cell sample (Individual), C1 processing batch (C1), capture site
or well (Well), fraction of ERCC genes detected (ERCC), fraction of endogenous genes
detected (ENSG), cDNA concentration (cDNA), sample total molecule count (Molecules),
number of raw reads (Reads raw), number of raw reads with valid UMI (Reads UMI),
number of reads with valid UMI mapped to the genome (Reads mapped), and number
of reads with valid UMI not mapped to the genome (Reads unmapped). (B) Pearson’s
correlation between technical factors that are known to influence sample variation in gene
expression data.
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Supplemental Figure S6
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Supplemental Fig. S6: FUCCI scores for the sixteen C1 plates before and after correcting
for C1 plate effect. We computed two FUCCI scores - log10 sum of fluorescence intensity
in the predefined cell area after background noise correction - corresponding to EGFP
and mCherry intensities. (A) and (B) show FUCCI scores before correcting for C1 plate
effect. (C) and (D) show FUCCI scores after correcting for C1 plate effect. We found
mean FUCCI scores to be significantly different between plates and applied a linear model
to account for plate effects on FUCCI scores without removing individual effects.
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Supplemental Figure S7
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Supplemental Fig. S7: FUCCI scores for the six cell lines before and after correcting for
C1 plate effect. We computed two FUCCI scores - logl0 sum of fluorescence intensity
in the predefined cell area after background noise correction - corresponding to EGFP
and mCherry intensities. (A) and (B) show FUCCI scores before correcting for C1 plate
effect. (C) and (D) show FUCCI scores after correcting for C1 plate effect. We found
mean FUCCI scores to be significantly different between plates and applied a linear model
to account for plate effects on FUCCI scores without removing individual effects.
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Supplemental Figure S8
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Supplemental Fig. S8: Classification obtained from the PAM-based method. We applied
Partition Around Medoids (PAM) to FUCCI scores to cluster the 888 single-cell samples
into G1, S, or G2/M phase (384, 172 332 cells in each phase, respectively), using pam
function in the R package clust [44]. X- and Y-axis correspond to EGFP and mCherry
score, respectively. The blue lines represent phase boundaries obtained from the PAM
method.
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Supplemental Figure S9A
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Supplemental Fig. S9A: We identified 54 significant cyclic genes that are also known to
be cell cycle genes in Whitfield et al. [31]. This figure shows the top 30 of the 54 genes
(from top row, left to right). We applied the PAM-based method to FUCCI scores to
classify the 888 single-cell samples to G1, S, or G2/M phase (384, 172, and 332 cells in
each phase, respectively). In each boxplot, we plot the distribution of expression levels
of the single-cell samples in each phase. Using Analysis of Variance, we found significant
differences between phases in average gene expression levels for most genes (ANOVA,
P-value < .01 for 53 genes and and P-value = .27 for CDC6).
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Supplemental Fig. S9B: We identified 54 significant cyclic genes that are also known to
be cell cycle genes in Whitfield et al. [31]. This figure shows the bottom 24 of the 54
genes (from top row, left to right). We applied the PAM-based method to FUCCI scores
to classify the 888 single-cell samples to G1, S, or G2/M phase (384, 172, and 332 cells in
each phase, respectively). In each boxplot, we plot the distribution of expression levels
of the single-cell samples in each phase. Using Analysis of Variance, we found significant
differences between phases in average gene expression levels for most genes (ANOVA,
P-value < .01 for 53 genes and and P-value = .27 for CDC6).
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Supplemental Figure S10
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Supplemental Fig. S10: Performance of peco in unthinned and thinned data. We ap-
plied six-fold cross-validation. In each fold, we trained our predictor on cells from five
individuals and tested its performance on cells from the remaining individual. In panel
(A), (C), (D), Y-axis corresponds to prediction error (between 0 to 25%, or 7/4), and
X-axis corresponds to the number of top cyclic genes used in the predictor. The six lines
correspond to performances in the six folds, specifically average prediction error among
cells in the test samples, and error bars correspond to standard errors. (A) The perfor-
mance of our predictor built between 5 to 50 genes in unthinned data. In (C) and (D),
we repeated the analysis in (A) after thinning the test data (total sample molecule count
in the un-thinned data was 56,724 + 12,762) by a factor of 2.2 (total sample molecule
count 25,581 + 15,220) and 4.4 (total sample molecule count 13,651+13,577. (C) and
(D) show the performance of our predictor in data thinned by a factor of 2.2 and 4.4,
respectively. (B) shows that number of cells was not correlated with prediction error of
FUCCI phase using our predictor of 5 genes.
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Supplemental Figure S11
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Supplemental Fig. S11: Comparison of FUCCI phase with phase assignment of ex-
isting tools. In (A) and (B), classification obtained from PAM is compared with
Seurat/Cyclone-based classification. In (C) and (E), we plot FUCCI phase (X-axis)
against continuous phase (Y-axis) based on Oscope and reCAT, respectively. In (D) and
(F), we order FUCCI scores by Oscope/Cyclone based phase, respectively. Red and green
points represent FUCCI scores of EGFP and mCherry, respectively.
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Supplemental Fig. S12: FUCCI scores and inferred phase from peco in individual cell
lines. In (A) to (F), we order FUCCI scores by inferred phase from peco in each individual
cell line (using our cross-validation results). We also estimated proportion of variance
explained by inferred phase from peco in EGFP and mCherry scores (as shown on top
of each plot). Red and green points represent FUCCI scores of EGFP and mCherry,
respectively.
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Supplemental Figure S13

Seurat-based continuous cell cycle phase
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Supplemental Fig. S13: Continuous cell cycle phase assignment based on the two Seurat
phase-specific scores for samples from cell line NA19098. Seurat uses the mean expression
levels of 43 S-phase marker genes and 54 G2/M phase genes to compute two phase-specific
scores for each cell. We applied PCA to transform the two phase-specific scores to PC
scores. X- and Y-axis correspond to PC1 and PC2 score. The dots inside the circle
correspond to the cells and their PC scores. We transformed these scores to angles on
the unit circle (see Methods for details). The colors correspond to Seurat-based G1, S,
G2/M phase assignment.
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Supplemental Figure S14

Comparison of prediction error on our data.

peco Cyclone Seurat Oscope reCAT
NA18511 10.3(.72) | 15.2(1.27) | 19.6(1.51)* | 20.4(1.39)" | 21.4(1.39)*
NA18855 | 13.2(1.21) | 18.4(1.02)* | 18.6(.01)" | 15.9(.99)* | 21.5(1.08)*
NA18870 | 16.5(.96) | 18.6(.98) | 21.7(.99)" |22.9(1.03)* | 23.9(1.01)*
NA19098 | 13.2(1.09) @ 14.3(.79)* | 19.4(.96)* |24.5(1.04)* | 20.9(.96)"
NA19101 | 13.1(.97) | 15.1(1.03) | 20.2(1.28)* | 18.8(1.17)* | 23.3(1.34)*
NA19160 | 17.8(1.44) | 22.9(1.41)* | 21.9(1.35)* | 24.1(1.35)* | 24.3(1.37)*

Note. Reported in each cell are percent of a unit cirlce with
standard error sin parentheses

*We compared prediction error between methods and peco
using Wilcoxon test and determined signficance at P-value < .05

Supplemental Fig. S14: Comparison of prediction error on our data in cross-validation.
We performed Wilcoxon test to compare prediction error between peco and each method
in each test data set (samples from an individual cell line). We report prediction error as
percentage of the unit circle, along with standard error associated with mean prediciton
error in parentheses.
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Supplemental Fig. S15A: peco prediction results for the six cell lines, using the simple
predictor of 5 genes (CDK1, UBE2C, TOP2A, HIST1H/FE, HIST1H/C'). Rows correspond
to results for individual cell lines. For example, for cell line NA19098, we ordered samples
by FUCCI phase and used trendfilter to estimate the cyclic trend of gene expression in
the top 5 cyclic genes. The colored line represents the predicted cyclic trend.
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B Top 5 cyclical genes based on Cyclone predicted phase
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Supplemental Fig. S15B: Cyclone prediction results for the six cell lines. As described in
the Results, we transform the three phase-specific Cyclone scores to angles on the unit
cirlce, using the same approach for deriving FUCCI phase from FUCCI scores. Rows
correspond to results for individual cell lines. For example, for cell line NA19098, we
ordered samples by Cyclone-based predicted phase and used trendfilter to estimate the
cyclic trend of gene expression in the top 5 cyclic genes.
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Cc Top 5 cyclical genes based on Seurat predicted phase
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Seurat-based predicted cell cycle phase

Supplemental Fig. S15C: Seurat prediction results for the six cell lines. As described
in the Results, we transform the two phase-specific Seurat scores to angles on the unit
cirlce, using the same approach for deriving FUCCI phase from FUCCI scores. Rows
correspond to results for individual cell lines. For example, for cell line NA19098, we
ordered samples by Seurat-based predicted phase and used trendfilter to estimate the
cyclic trend of gene expression in the top 5 cyclic genes.
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Oscope-based predicted cell cycle phase

Supplemental Fig. S15D: Oscope prediction results for the six cell lines. As described in
the Results, we estimated the cyclic ordering of cells across the 888 high-quality single-cell
samples in the data. We then assigned each cell an angle on the unit circle based on the
ordering per individual cell line. Rows correspond to results for individual cell lines. For
example, for cell line NA19098, we ordered samples by Oscope predicted phase and used
trendfilter to estimate the cyclic trend of gene expression in the top 5 cyclic genes.
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E Top 5 cyclical genes based on reCAT predicted phase
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reCAT-based predicted cell cycle phase

Supplemental Fig. S15E: reCAT prediction results for the six cell lines. As described in
the Results, we estimated the cyclic ordering of cells across the 888 high-quality single-cell
samples in the data. We then assigned each cell an angle on the unit circle based on the
ordering per individual cell line. Rows correspond to results for individual cell lines. For
example, for cell line NA19098, we ordered samples by reCAT predicted phase and used
trendfilter to estimate the cyclic trend of gene expression in the top 5 cyclic genes.
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Supplemental Figure 16
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Supplemental Fig. S16: Comparison of global gene expression profiles obtain from genome
build hgl9 vs hg38 (A) Histogram of Pearson correlation for each gene comparing its
counts across single cells when mapping to genome build hgl9 vs hg38. The median
correlation was 0.983919, and 1,070 genes (9.8%) had a correlation less than 0.9. (B)
Histogram of Pearson correlation for each single-cell sample comparing its gene counts
when mapped to genome build hgl9 vs hg38. The median correlation was 0.9849, and
306 single cells (19.9%) had a correlation less than 0.9. (C) A scatterplot of cell cycle
gene CDK1 (ENSG00000131747) gene counts for hgl9 (x-axis) vs hg38 (y-axis). The
Pearson correlation across single cells was 0.99542. (D) A scatterplot of cell cycle gene
UBE2C (ENSG00000170312) gene counts for hgl9 (x-axis) versus hg38 (y-axis). The
Pearson correlation across single cells was 0.99814. (E) A scatterplot of cell cycle gene
TOP2A (ENSGO00000175063) gene counts for hgl9 (x-axis) versus hg38 (y-axis). The
Pearson correlation across single cells was 0.99948. (F) A scatterplot of cell cycle gene
HIST1H4E (ENSG00000197061) gene counts for hgl9 (x-axis) versus hg38 (y-axis). The
Pearson correlation across single cells was 0.99998. The dashed red line represents the 1-1
line. All plots used data for the 10,297 protein-coding genes that were shared between
genome builds hg19 and hg38. Note that cell cycle gene HIST1H/C (ENSG00000198518)
was deprecated in the annotation for genome build hg38.
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Supplemental Figure 17

LDA model: no. cells per well ~ gene molecules + cDNA concentration
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LDA model: no. cells per well ~ ERCC conversion efficiency + endogeneous gene conversion effiency
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Supplemental Fig. S17: As a part of the quality control analysis, we used LDA to
determine the number of cells captured in each well. Specifically, we fitted two LDA
models: 1) number of cells ~ gene molecule count + ¢cDNA amplicons concentration,
and 2) number of cells ~ ERCC spike-in control read-to-molecule conversion efficiency
+ endogenous gene read-to-molecule conversion efficiency. We determined the observed
number of cells captured in each C1 well based on DAPI staining results. (A) plots
the relationship between ¢cDNA concentration and gene molecule, with sample points
colored by the predicted number of cells per well in LDA analysis. (B) and (C) show
the distribution of gene molecule and ¢cDNA concentration in wells predicted to have 1
cell and wells predicted to have 2 cells. (D) plots the relationship between the read-
to-molecule conversion efficiency of ERCC controls and endogenous genes, with sample
points colored by the predicted number of cells per well in LDA analysis. (E) and (F) show
the distribution of ERCC and endogenous gene read-to-molecule conversion efficiency in
wells predicted to have 0, 1, and 2 cells in LDA analysis.
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