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Abstract

One of the most challenging tasks of the post-genome-wide association studies (GWAS)
research era is the identification of functional variants among those associated with a
trait for an observed GWAS signal. Several methods have been developed to evaluate
the potential functional implications of genetic variants. Each of these tools has its own
scoring system which forces users to become acquainted with each approach to interpret
their results. From an awareness of the amount of work needed to analyze and integrate
results for a single locus, we proposed a flexible and versatile approach designed to help
the prioritization of variants by aggregating the predictions of their potential functional
implications. This approach has been made available through a web interface called
DSNetwork which acts as a single-point of entry to almost 60 reference predictors for
both coding and non-coding variants and displays predictions in an easy-to-interpret
visualization. We confirmed the usefulness of our methodology by successfully
identifying functional variants in four breast cancer susceptibility loci. DSNetwork is an
integrative web application implemented through the Shiny framework and available at:
http://romix.genome.ulaval.ca/dsnetwork.

Author summary

Over the past years, GWAS have enabled the identification of numerous susceptibility
loci associated with complex traits (https://www.ebi.ac.uk/gwas/). However, many
of those signals contain hundreds or even thousands of significantly associated variants
among which only a few are really responsible of the phenotype. Substantial efforts
have been made in the development of prediction methods to prioritize variants within
GWAS-associated regions to go from statistical associations, to the identification of
functional variants modulating gene expression, in order to ultimately gain insight into
disease pathophysiology. Unfortunately, these numerous prediction tools generate
contradictory predictions rendering the interpretation of results challenging. Some tools
such as VEP [McLaren et al., 2016] report their scores using a color scheme, thus
acknowledging the need to assist the user in the interpretation of predictor results.
Nonetheless, the multiplication of approaches can often result in an extensive amount of
data that is hard to synthesize. Aware of the challenge of evaluating the potential
deleteriousness of variants in the context of fine mapping analyses, we created a
customizable visualization approach that was implemented it in the decision support
tool called DSNetwork for Decision Support Network. This tool enables quick access
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to gold standard and new predictors for both coding and non-coding variants through
an easily interpretable visualization of these predictions for a set of variants.

Introduction

Since 2006, thousands of susceptibility loci have been identified through genome-wide

association studies (GWAS) for numerous traits and complex diseases, including breast
cancer [MacArthur et al., 2017]. GWAS build on the concept of linkage disequilibrium
(LD) to identify statistical associations between genetic variants and diseases [Visscher
et al., 2017]. While this approach is powerful for locus discovery, it cannot distinguish

between truly causal variants and non-functional highly correlated neighboring variants.

Thus, for the vast majority of these loci, the causal variant(s) and their functional
mechanisms have not yet been elucidated.

Statistical fine-mapping analyses combined with the functional annotation of genetic
variants can help pinpoint the genetic variant (or variants) responsible for complex
traits, or at least narrow down the number of variants underlying the observed
association for further functional studies. In this regard, tremendous efforts have been
put forth to assist the functional assessment of variants at risk loci and numerous
scoring methods and tools have been developed to predict the deleteriousness of variants
based on a number of characteristics such as sequence conservation, characteristics of
amino acid substitution, and location of the variant within protein domains or
3-dimensional protein structure.

In recent years, efforts have been made towards the aggregation of many different
functional annotations resulting from these scoring methods in a single integrative value
called metascore [Feng, 2017, Tonita-Laza et al., 2016], an approach which seems to yield
better performances than any predictor individually [Dong et al., 2015]. Although these
methods demonstrate themselves to be useful, they have some limitations, notably they
are not directly comparable to each other and their prediction results are sometimes
contradictory.

In order to allow a quick survey of a wide range of predictors for a given list of
variants and assist in the interpretation of the resulting prediction scores, we propose a
flexible and integrative method capable of gathering information from multiple sources
in an easy-to-interpret representation rather than a static new metascore. For this
purpose, we created a single-point of entry fetching predictors for coding and
non-coding variants and presenting them as a network, where the nodes represent the
variants of interest and the edges the linkage disequilibrium between variants. The
network is built with the aim of rendering the predictor results easier to peruse during
analyses involving multiple variants, and therefore, assist in the variant prioritization
process in the context of fine-mapping analyses.

This approach has been made available through a web interface called DSNetwork at:

http://romix.genome.ulaval.ca/dsnetwork.

Materials and methods

Annotations retrieval

Variant annotations and scoring data are fetched on-the-fly from MyVariant.info
high-performance web services [Xin et al., 2016] using their third-party R package.
SNPnexus [Dayem Ullah et al., 2018] scorings are fetched upon request through a
Python script kindly provided by the SNPnexus team. Due to their novelty and
relevance for our purpose, three complementary whole-genome resources are included :
LINSIGHT [Huang et al., 2017], BayesDel [Feng, 2017] and predictions and sequence
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constraint data [di Tulio et al., 2018] which can be used as a proxy to score functionality
and the consequences of mutations. BayesDel, LINSIGHT and Context-Dependent
Tolerance scores were extracted from a local copy. LD data are computed from 1000
Genomes Phase 3 [1000 Genomes Project Consortium et al., 2015].

Visual integration

Once fetched for the variants of interest, prediction results are displayed as a network,
whose components, namely the edges and nodes, are used to convey different types of
information in an easy-to-comprehend way.

Nodes correspond to annotated variants and their color scheme displays prediction
scores as a pie chart, where each slice represents the score of a variant for a particular
predictor. For each predictor, the selected variants are ranked according to their
deleteriousness and the rankings are reflected using a color gradient, ranging from green
to red, where a red slice indicates a variant more likely to be damaging with regard to a
particular predictor. The edges between the nodes can be used to map Linkage
Disequilibrium (LD) levels between two variants. LD (squared correlation 7?) is based
on a user-chosen 1000 genomes population and is represented by an absolute color
gradient ranging from yellow to red. Red indicates a high disequilibrium.

In addition to standard individual predictors, our approach includes overall measures
called “metascores”. We provided two types of metascores. The first type consists in an
average ranking of all selected predictors, which enables a quick visualization of the
global ranking of variants across a particular region. The second type of metascore
incorporated several existing integrative approaches namely BayesDel, LINSIGHT,
Eigen, Eigen-PC [lonita-Laza et al., 2016] and an integrative weighted scoring for
variations in the noncoding genome called IW-Scoring. This type of metascore provides
absolute values comparable between analyses and gives insight into the relevance of each
variant regardless of the other candidates. Figure 1 illustrates some networks related to
the case studies which will be detailed hereafter.

Fig 1. Networks displaying impact prediction scores for a subset of
variants of interest. A) network representing all the available predictions; B) relative
metascores with missing values ranked at the end; C) absolute metascores showing
rs7484123 as the best candidate with regards to deleteriousness predictions.

Implementation

The DSNetwork was created using the Shiny framework [Chang et al., 2017]. This tool
provides the users with deleteriousness predictions for a selected set of coding and
non-coding human variants (hgl9 build) and generates a set of prioritized results for
further analysis. These prediction scores are recovered from several trusted sources and
presented in a user-friendly web interface. The interface is organized in three sections,
namely Input, Selection and Visualization, as illustrated and described in Figure 2. For
complete user guide, see S1 File.

Fig 2. Architecture overview. The first panel is dedicated to user input and
parameters for data retrieval. The middle panel presents a relevant subset of
annotations for each submitted variant and enables the selection of variants to be
integrated in the final visualization. The bottom part on the interface is dedicated to the
integrated visualization of the deleteriousness predictions under the form of a network.
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Case studies

We chose to demonstrate the utility of DSNetwork in the context of the functional
analysis of four breast cancer susceptibility loci identified through the latest published
breast cancer association study (full description in [Michailidou et al., 2017]). This
paper reports the discovery of 65 new breast cancer risk loci and deepens the functional
characterisation for four regions namely 1p36, 1p34, 7q22 and 11p15. For each of these
regions, the authors defined sets of credible risk variants and investigated their impact
through functional assays in order to to identify the functional variants.

Results and Discussion

Prioritization of four breast cancer susceptibility loci

The original analysis defined for each of the 65 regions, a set of credible risk variants
(CRV) containing variants with P-values within two orders of magnitude of the most
significant SNPs in this region. They selected four loci for further evaluation namely
1p36, 1p34, 7q22 and 11pl5. Initially, those regions contained respectively 54, 13, 19
and 85 significantly associated variants. The p-value cut off enabled to reduce the
number of variants to respectively 1, 4, 6 and 19 CRVs. The list of variants for these
loci was extracted from the original paper’s Supplementary Tables 8 and 13 in the
context the present analysis. Following data extraction, the analysis procedure was: 1)
upload the variants of interest on the web tool, 2) fetch the annotations, 3) Visualise the
variants through the overview plot, 4) visualise the available deleteriousness scores in
the decision network, 5) use relative metascore visualizations to quickly identified the
best candidates and finally 6) conclude.

Locus 1p36

This region contains a single CRV, 152992756 (P = 1.621071%). For demonstration
purposes, we selected the 30 most associated variants to put to the test. Amongst these
30 variants, 2 variants (rs200439143, rs71018084) weren’t annotated by DSNetwork
because of their absence from MyVariant.info service, 24 were identified as regulatory
variants and 4 as non-synonymous variants. We focused our analysis on the regulatory
variants.

Based on the deleteriousness scores available for this subset of variants, a quick
overview of variant nodes has allowed to easily identify rs2992756 as the best candidate.
Indeed, the node for this variant contained the largest proportion of red, indicating a
good ranking for most of the scoring approaches (Figure 3.A). To confirm this
observation, we used the relative metascore visualization (Figure 3.B). The mean
rankings, clearly materialized by both the color code and the values, enabled the
confirmation of rs2992756 as best candidate among the 30 most breast cancer-associated
variants at the 1p36 locus. Using reporter assays, Michailidou et al. [Michailidou et al.,
2017] demonstrated that the presence of the risk T-allele of this variant within
KLHDC7A promoter significantly lowers its activity.

Fig 3. Prioritization analysis of locus 1p36. Networks representing for the 4
CRVs associated variants with breast cancer at the 1p34 locus. A) all available
predictions ; B) relative metascore with missing values ranked at the end.
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Locus 1p34

This region contains 4 CRVs among 13 significantly associated variants. All the variants
were found by DSNetwork and identified as regulatory variants. Based on the
deleteriousness scores available for this subset of variants, a quick overview of variant
nodes has allowed to easily identify two variants, rs42334486 and rs7554973 as the best
candidates. Indeed, the nodes for these variants contained the largest proportion of red,
indicating a good ranking for most of the scoring approaches (Figure 4.A). The
visualization of the mean ranking confirms rs4233486 as the most credible candidate
among the CRVs (Figure 4.B). This observation is in accordance with results from
Michailidou et al. [Michailidou et al., 2017], which demonstrated, using reporter assays,
that the presence of the risk T-allele of this variant within a putative regulatory element
(PRE) reduce CITED/ promoter activity.

Fig 4. Prioritization analysis of locus 1p34. Networks representing for the 4
CRVs associated variants with breast cancer at the 1p34 locus. A) all available
predictions ; B) relative metascore with missing values ranked at the end.

Locus 7q22

This region contains 6 CRVs among 19 significantly associated variants. All the variants
were found by DSNetwork and identified as regulatory variants. Based on the
deleteriousness scores available for this subset of variants, a quick overview of variant
nodes has allowed to easily identify two variants, rs6961094 and rs71559437 as the best
candidates. Indeed, the nodes for these variant contained the largest proportion of red,
indicating a good ranking for most of the scoring approaches (Figure 5.A). The
visualization of the mean ranking confirms rs6961094 and rs71559437 as the most
credible candidates among the CRVs (Figure 5.B). This observations are supported by
the functional experiments performed by Michailidou et al. [Michailidou et al., 2017],
which demonstrated, using allele-specific Chromatin conformation capture (3C) assays,
that the presence of the risk-haplotype (rs6961094 combined with rs71559437) is
associated with chromatin looping between CUX1, RASA/ and PRKRIP1 promoters
suggesting that the protective alleles abrogate this phenomenon.

Fig 5. Prioritization analysis of locus 7q22. Networks representing for the 19
CRVs associated variants with breast cancer at the 11p15 locus. A) relative metascore
with missing values ranked at the end ; B) absolute metascores show rs7484123 and
rs11246314 as the best candidates with regard to deleteriousness predictions.

Locus 11p15

This region contains 19 CRVs among 85 candidate variants. All the variants were found
by DSNetwork and 18 were identified as regulatory variants and 1 as a non-synonymous
variant. Among the 19 CRVs, five variants, located in the proximal promoter of PIDD1
(a gene implicated in DNA-damage-induced apoptosis and tumorigenesis [Lin et al.,
2000], namely rs7484123, rs7484068, rs11246313, rs11246314, rs11246316 were further
analysed by [Michailidou et al., 2017]. They demonstrated, using reporter assays, that
these variants, incorporated in a construct, significantly increased PIDD1 promoter
activity.

A quick overview of the relative and absolute metascores visualization allowed to
easily prioritize the 19 CRVs (Figure 6 A and B). First, the prioritised list based on the
metascores confirms the selection of these five variants as functional credible SNPs.
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Indeed they are ranked at the first, second, third, fifth and eighth place out of nineteen.

Moreover, we notice that variants rs7484123 and rs11246314 demonstrate a higher level
of coloration, confirming them as the best candidates among the variants located in the
proximal promoter of PIDDI1. The variant rs7484123 particularly stands out as a very
promising candidate for subsequent experiments.

Fig 6. Prioritization analysis of locus 11p15. Networks representing for the 19
CRVs associated variants with breast cancer at the 11p15 locus. A) relative metascore
with missing values ranked at the end ; B) absolute metascores show rs7484123 and
rs11246314 as the best candidates with regard to deleteriousness predictions.

Conclusion

We analysed the four regions through DSNetwork and were able to pinpoint the same
most plausible causal variants than those proposed in the original paper. DSNetwork
provides a user-friendly interface integrating predictors for both coding and non-coding
variants in an easy-to-interpret visualization to assist the prioritization process. The use
of DSNetwork greatly facilitates the selection process by aggregating the results of
nearly sixty prediction approaches and easily highlights the best candidate variants for
further functional analysis.

Supporting information

S1 File. User guide
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