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Abstract

One of the most challenging tasks of the post-genome-wide association studies (GWAS)
research era is the identification of functional variants among those associated with a
trait for an observed GWAS signal. Several methods have been developed to evaluate
the potential functional implications of genetic variants. Each of these tools has its own
scoring system which forces users to become acquainted with each approach to interpret
their results. From an awareness of the amount of work needed to analyze and integrate
results for a single locus, we proposed a flexible and versatile approach designed to help
the prioritization of variants by aggregating the predictions of their potential functional
implications. This approach has been made available through a web interface called
DSNetwork which acts as a single-point of entry to almost 60 reference predictors for
both coding and non-coding variants and displays predictions in an easy-to-interpret
visualization. We confirmed the usefulness of our methodology by successfully
identifying functional variants in four breast cancer susceptibility loci. DSNetwork is an
integrative web application implemented through the Shiny framework and available at:
http://romix.genome.ulaval.ca/dsnetwork.

Author summary

Over the past years, GWAS have enabled the identification of numerous susceptibility
loci associated with complex traits (https://www.ebi.ac.uk/gwas/). However, many
of those signals contain hundreds or even thousands of significantly associated variants
among which only a few are really responsible of the phenotype. Substantial efforts
have been made in the development of prediction methods to prioritize variants within
GWAS-associated regions to go from statistical associations, to the identification of
functional variants modulating gene expression, in order to ultimately gain insight into
disease pathophysiology. Unfortunately, these numerous prediction tools generate
contradictory predictions rendering the interpretation of results challenging. Some tools
such as VEP [McLaren et al., 2016] report their scores using a color scheme, thus
acknowledging the need to assist the user in the interpretation of predictor results.
Nonetheless, the multiplication of approaches can often result in an extensive amount of
data that is hard to synthesize. Aware of the challenge of evaluating the potential
deleteriousness of variants in the context of fine mapping analyses, we created a
customizable visualization approach that was implemented it in the decision support
tool called DSNetwork for Decision Support Network. This tool enables quick access
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to gold standard and new predictors for both coding and non-coding variants through
an easily interpretable visualization of these predictions for a set of variants.

Introduction 1

Since 2006, thousands of susceptibility loci have been identified through genome-wide 2

association studies (GWAS) for numerous traits and complex diseases, including breast 3

cancer [MacArthur et al., 2017]. GWAS build on the concept of linkage disequilibrium 4

(LD) to identify statistical associations between genetic variants and diseases [Visscher 5

et al., 2017]. While this approach is powerful for locus discovery, it cannot distinguish 6

between truly causal variants and non-functional highly correlated neighboring variants. 7

Thus, for the vast majority of these loci, the causal variant(s) and their functional 8

mechanisms have not yet been elucidated. 9

Statistical fine-mapping analyses combined with the functional annotation of genetic 10

variants can help pinpoint the genetic variant (or variants) responsible for complex 11

traits, or at least narrow down the number of variants underlying the observed 12

association for further functional studies. In this regard, tremendous efforts have been 13

put forth to assist the functional assessment of variants at risk loci and numerous 14

scoring methods and tools have been developed to predict the deleteriousness of variants 15

based on a number of characteristics such as sequence conservation, characteristics of 16

amino acid substitution, and location of the variant within protein domains or 17

3-dimensional protein structure. 18

In recent years, efforts have been made towards the aggregation of many different 19

functional annotations resulting from these scoring methods in a single integrative value 20

called metascore [Feng, 2017, Ionita-Laza et al., 2016], an approach which seems to yield 21

better performances than any predictor individually [Dong et al., 2015]. Although these 22

methods demonstrate themselves to be useful, they have some limitations, notably they 23

are not directly comparable to each other and their prediction results are sometimes 24

contradictory. 25

In order to allow a quick survey of a wide range of predictors for a given list of 26

variants and assist in the interpretation of the resulting prediction scores, we propose a 27

flexible and integrative method capable of gathering information from multiple sources 28

in an easy-to-interpret representation rather than a static new metascore. For this 29

purpose, we created a single-point of entry fetching predictors for coding and 30

non-coding variants and presenting them as a network, where the nodes represent the 31

variants of interest and the edges the linkage disequilibrium between variants. The 32

network is built with the aim of rendering the predictor results easier to peruse during 33

analyses involving multiple variants, and therefore, assist in the variant prioritization 34

process in the context of fine-mapping analyses. 35

This approach has been made available through a web interface called DSNetwork at: 36

http://romix.genome.ulaval.ca/dsnetwork. 37

Materials and methods 38

Annotations retrieval 39

Variant annotations and scoring data are fetched on-the-fly from MyVariant.info 40

high-performance web services [Xin et al., 2016] using their third-party R package. 41

SNPnexus [Dayem Ullah et al., 2018] scorings are fetched upon request through a 42

Python script kindly provided by the SNPnexus team. Due to their novelty and 43

relevance for our purpose, three complementary whole-genome resources are included : 44

LINSIGHT [Huang et al., 2017], BayesDel [Feng, 2017] and predictions and sequence 45
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constraint data [di Iulio et al., 2018] which can be used as a proxy to score functionality 46

and the consequences of mutations. BayesDel, LINSIGHT and Context-Dependent 47

Tolerance scores were extracted from a local copy. LD data are computed from 1000 48

Genomes Phase 3 [1000 Genomes Project Consortium et al., 2015]. 49

Visual integration 50

Once fetched for the variants of interest, prediction results are displayed as a network, 51

whose components, namely the edges and nodes, are used to convey different types of 52

information in an easy-to-comprehend way. 53

Nodes correspond to annotated variants and their color scheme displays prediction 54

scores as a pie chart, where each slice represents the score of a variant for a particular 55

predictor. For each predictor, the selected variants are ranked according to their 56

deleteriousness and the rankings are reflected using a color gradient, ranging from green 57

to red, where a red slice indicates a variant more likely to be damaging with regard to a 58

particular predictor. The edges between the nodes can be used to map Linkage 59

Disequilibrium (LD) levels between two variants. LD (squared correlation r2) is based 60

on a user-chosen 1000 genomes population and is represented by an absolute color 61

gradient ranging from yellow to red. Red indicates a high disequilibrium. 62

In addition to standard individual predictors, our approach includes overall measures 63

called “metascores”. We provided two types of metascores. The first type consists in an 64

average ranking of all selected predictors, which enables a quick visualization of the 65

global ranking of variants across a particular region. The second type of metascore 66

incorporated several existing integrative approaches namely BayesDel, LINSIGHT, 67

Eigen, Eigen-PC [Ionita-Laza et al., 2016] and an integrative weighted scoring for 68

variations in the noncoding genome called IW-Scoring. This type of metascore provides 69

absolute values comparable between analyses and gives insight into the relevance of each 70

variant regardless of the other candidates. Figure 1 illustrates some networks related to 71

the case studies which will be detailed hereafter. 72

Fig 1. Networks displaying impact prediction scores for a subset of
variants of interest. A) network representing all the available predictions; B) relative
metascores with missing values ranked at the end; C) absolute metascores showing
rs7484123 as the best candidate with regards to deleteriousness predictions.

Implementation 73

The DSNetwork was created using the Shiny framework [Chang et al., 2017]. This tool 74

provides the users with deleteriousness predictions for a selected set of coding and 75

non-coding human variants (hg19 build) and generates a set of prioritized results for 76

further analysis. These prediction scores are recovered from several trusted sources and 77

presented in a user-friendly web interface. The interface is organized in three sections, 78

namely Input, Selection and Visualization, as illustrated and described in Figure 2. For 79

complete user guide, see S1 File. 80

Fig 2. Architecture overview. The first panel is dedicated to user input and
parameters for data retrieval. The middle panel presents a relevant subset of
annotations for each submitted variant and enables the selection of variants to be
integrated in the final visualization. The bottom part on the interface is dedicated to the
integrated visualization of the deleteriousness predictions under the form of a network.
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Case studies 81

We chose to demonstrate the utility of DSNetwork in the context of the functional 82

analysis of four breast cancer susceptibility loci identified through the latest published 83

breast cancer association study (full description in [Michailidou et al., 2017]). This 84

paper reports the discovery of 65 new breast cancer risk loci and deepens the functional 85

characterisation for four regions namely 1p36, 1p34, 7q22 and 11p15. For each of these 86

regions, the authors defined sets of credible risk variants and investigated their impact 87

through functional assays in order to to identify the functional variants. 88

Results and Discussion 89

Prioritization of four breast cancer susceptibility loci 90

The original analysis defined for each of the 65 regions, a set of credible risk variants 91

(CRV) containing variants with P-values within two orders of magnitude of the most 92

significant SNPs in this region. They selected four loci for further evaluation namely 93

1p36, 1p34, 7q22 and 11p15. Initially, those regions contained respectively 54, 13, 19 94

and 85 significantly associated variants. The p-value cut off enabled to reduce the 95

number of variants to respectively 1, 4, 6 and 19 CRVs. The list of variants for these 96

loci was extracted from the original paper’s Supplementary Tables 8 and 13 in the 97

context the present analysis. Following data extraction, the analysis procedure was: 1) 98

upload the variants of interest on the web tool, 2) fetch the annotations, 3) Visualise the 99

variants through the overview plot, 4) visualise the available deleteriousness scores in 100

the decision network, 5) use relative metascore visualizations to quickly identified the 101

best candidates and finally 6) conclude. 102

Locus 1p36 103

This region contains a single CRV, rs2992756 (P = 1.6x10−15). For demonstration 104

purposes, we selected the 30 most associated variants to put to the test. Amongst these 105

30 variants, 2 variants (rs200439143, rs71018084) weren’t annotated by DSNetwork 106

because of their absence from MyVariant.info service, 24 were identified as regulatory 107

variants and 4 as non-synonymous variants. We focused our analysis on the regulatory 108

variants. 109

Based on the deleteriousness scores available for this subset of variants, a quick 110

overview of variant nodes has allowed to easily identify rs2992756 as the best candidate. 111

Indeed, the node for this variant contained the largest proportion of red, indicating a 112

good ranking for most of the scoring approaches (Figure 3.A). To confirm this 113

observation, we used the relative metascore visualization (Figure 3.B). The mean 114

rankings, clearly materialized by both the color code and the values, enabled the 115

confirmation of rs2992756 as best candidate among the 30 most breast cancer-associated 116

variants at the 1p36 locus. Using reporter assays, Michailidou et al. [Michailidou et al., 117

2017] demonstrated that the presence of the risk T-allele of this variant within 118

KLHDC7A promoter significantly lowers its activity. 119

Fig 3. Prioritization analysis of locus 1p36. Networks representing for the 4
CRVs associated variants with breast cancer at the 1p34 locus. A) all available
predictions ; B) relative metascore with missing values ranked at the end.

December 27, 2018 4/9

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 21, 2019. ; https://doi.org/10.1101/526335doi: bioRxiv preprint 

https://doi.org/10.1101/526335
http://creativecommons.org/licenses/by/4.0/


Locus 1p34 120

This region contains 4 CRVs among 13 significantly associated variants. All the variants 121

were found by DSNetwork and identified as regulatory variants. Based on the 122

deleteriousness scores available for this subset of variants, a quick overview of variant 123

nodes has allowed to easily identify two variants, rs42334486 and rs7554973 as the best 124

candidates. Indeed, the nodes for these variants contained the largest proportion of red, 125

indicating a good ranking for most of the scoring approaches (Figure 4.A). The 126

visualization of the mean ranking confirms rs4233486 as the most credible candidate 127

among the CRVs (Figure 4.B). This observation is in accordance with results from 128

Michailidou et al. [Michailidou et al., 2017], which demonstrated, using reporter assays, 129

that the presence of the risk T-allele of this variant within a putative regulatory element 130

(PRE) reduce CITED4 promoter activity. 131

Fig 4. Prioritization analysis of locus 1p34. Networks representing for the 4
CRVs associated variants with breast cancer at the 1p34 locus. A) all available
predictions ; B) relative metascore with missing values ranked at the end.

Locus 7q22 132

This region contains 6 CRVs among 19 significantly associated variants. All the variants 133

were found by DSNetwork and identified as regulatory variants. Based on the 134

deleteriousness scores available for this subset of variants, a quick overview of variant 135

nodes has allowed to easily identify two variants, rs6961094 and rs71559437 as the best 136

candidates. Indeed, the nodes for these variant contained the largest proportion of red, 137

indicating a good ranking for most of the scoring approaches (Figure 5.A). The 138

visualization of the mean ranking confirms rs6961094 and rs71559437 as the most 139

credible candidates among the CRVs (Figure 5.B). This observations are supported by 140

the functional experiments performed by Michailidou et al. [Michailidou et al., 2017], 141

which demonstrated, using allele-specific Chromatin conformation capture (3C) assays, 142

that the presence of the risk-haplotype (rs6961094 combined with rs71559437) is 143

associated with chromatin looping between CUX1, RASA4 and PRKRIP1 promoters 144

suggesting that the protective alleles abrogate this phenomenon. 145

Fig 5. Prioritization analysis of locus 7q22. Networks representing for the 19
CRVs associated variants with breast cancer at the 11p15 locus. A) relative metascore
with missing values ranked at the end ; B) absolute metascores show rs7484123 and
rs11246314 as the best candidates with regard to deleteriousness predictions.

Locus 11p15 146

This region contains 19 CRVs among 85 candidate variants. All the variants were found 147

by DSNetwork and 18 were identified as regulatory variants and 1 as a non-synonymous 148

variant. Among the 19 CRVs, five variants, located in the proximal promoter of PIDD1 149

(a gene implicated in DNA-damage-induced apoptosis and tumorigenesis [Lin et al., 150

2000], namely rs7484123, rs7484068, rs11246313, rs11246314, rs11246316 were further 151

analysed by [Michailidou et al., 2017]. They demonstrated, using reporter assays, that 152

these variants, incorporated in a construct, significantly increased PIDD1 promoter 153

activity. 154

A quick overview of the relative and absolute metascores visualization allowed to 155

easily prioritize the 19 CRVs (Figure 6 A and B). First, the prioritised list based on the 156

metascores confirms the selection of these five variants as functional credible SNPs. 157

December 27, 2018 5/9

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 21, 2019. ; https://doi.org/10.1101/526335doi: bioRxiv preprint 

https://doi.org/10.1101/526335
http://creativecommons.org/licenses/by/4.0/


Indeed they are ranked at the first, second, third, fifth and eighth place out of nineteen. 158

Moreover, we notice that variants rs7484123 and rs11246314 demonstrate a higher level 159

of coloration, confirming them as the best candidates among the variants located in the 160

proximal promoter of PIDD1. The variant rs7484123 particularly stands out as a very 161

promising candidate for subsequent experiments. 162

Fig 6. Prioritization analysis of locus 11p15. Networks representing for the 19
CRVs associated variants with breast cancer at the 11p15 locus. A) relative metascore
with missing values ranked at the end ; B) absolute metascores show rs7484123 and
rs11246314 as the best candidates with regard to deleteriousness predictions.

Conclusion 163

We analysed the four regions through DSNetwork and were able to pinpoint the same 164

most plausible causal variants than those proposed in the original paper. DSNetwork 165

provides a user-friendly interface integrating predictors for both coding and non-coding 166

variants in an easy-to-interpret visualization to assist the prioritization process. The use 167

of DSNetwork greatly facilitates the selection process by aggregating the results of 168

nearly sixty prediction approaches and easily highlights the best candidate variants for 169

further functional analysis. 170

Supporting information 171

S1 File. User guide 172
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