

1 **The genomes of polyextremophilic Cyanidiales contain 1%**
2 **horizontally transferred genes with diverse adaptive functions**

3
4 Alessandro W. Rossoni^{1#}, Dana C. Price², Mark Seger³, Dagmar Lyska¹, Peter Lammers³,
5 Debashish Bhattacharya⁴ & Andreas P.M. Weber^{1*}

6
7 ¹Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich
8 Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany

9 ²Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
10 ³Arizona Center for Algae Technology and Innovation, Arizona State University, Mesa, AZ
11 85212, USA

12 ⁴Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ
13 08901, USA

14
15 ***Corresponding author:** Prof. Dr. Andreas P.M. Weber,
16 e-mail: andreas.weber@uni-duesseldorf.de

17

18 **Abstract**

19 The role and extent of horizontal gene transfer (HGT) in eukaryotes are hotly disputed topics
20 that impact our understanding regarding the origin of metabolic processes and the role of
21 organelles in cellular evolution. We addressed this issue by analyzing 10 novel Cyanidiales
22 genomes and determined that 1% of their gene inventory is HGT-derived. Numerous HGT
23 candidates originated from polyextremophilic prokaryotes that live in similar habitats as the
24 Cyanidiales and encodes functions related to polyextremophily. HGT candidates differ from
25 native genes in GC-content, number of splice sites, and gene expression. HGT candidates are
26 more prone to loss, which may explain the nonexistence of a eukaryotic pan-genome.
27 Therefore, absence of a pan-genome and cumulative effects fail to provide substantive
28 arguments against our hypothesis of recurring HGT followed by differential loss in
29 eukaryotes. The maintenance of 1% HGTs, even under selection for genome reduction
30 underlines the importance of non-endosymbiosis related foreign gene acquisition.

31 **Introduction**

32 Eukaryotes transmit their nuclear and organellar genomes from one generation to the next in a
33 vertical manner. As such, eukaryotic evolution is primarily driven by the accumulation,
34 divergence (e.g., due to mutation, insertion, duplication), fixation, and loss of gene variants
35 over time. In contrast, horizontal gene transfer (HGT) is the is the inter- and intraspecific
36 transmission of genes from parents to their offspring. HGT in Bacteria [1-3] and Archaea [4]
37 is widely accepted and recognized as an important driver of evolution leading to the formation
38 of pan-genomes [5, 6]. A pan-genome comprises all genes shared by any defined
39 phylogenetic clade and includes the so-called core (shared) genes associated with central
40 metabolic processes, dispensable genes present in a subset of lineages often associated with
41 the origin of adaptive traits, and lineage-specific genes [6]. This phenomenon is so pervasive
42 that it has been questioned whether prokaryotic genealogies can be reconstructed with any
43 confidence using standard phylogenetic methods [7, 8]. In contrast, as eukaryote genome
44 sequencing has advanced, an increasing body of data has pointed towards the existence of
45 HGT in these taxa, but at much lower rates than in prokaryotes [9]. The frequency and impact
46 of eukaryotic HGT outside the context of endosymbiosis and pathogenicity however, remain
47 hotly debated topics in evolutionary biology. Opinions range from the existence of ubiquitous
48 and regular occurrence of eukaryotic HGT [10] to the almost complete dismissal of any
49 eukaryotic HGT outside the context of endosymbiosis as being Lamarckian, thus false, and
50 resulting from analysis artefacts [11, 12]. HGT sceptics favor the alternative hypothesis of
51 differential loss (DL) to explain the current data. DL imposes strict vertical inheritance
52 (eukaryotic origin) on all genes outside the context of pathogenicity and endosymbiosis,
53 including putative HGTs. Therefore, all extant genes have their root in LECA, the last
54 eukaryotic common ancestor. Patchy gene distributions are the result of multiple ancient
55 paralogs in LECA that have been lost over time in some eukaryotic lineages but retained in
56 others. Under this view, there is no eukaryotic pan-genome, there are no cumulative effects
57 (e.g., the evolution of eukaryotic gene structures and accrual of divergence over time), and
58 therefore, mechanisms for the uptake and integration of foreign DNA in eukaryotes are
59 unnecessary.

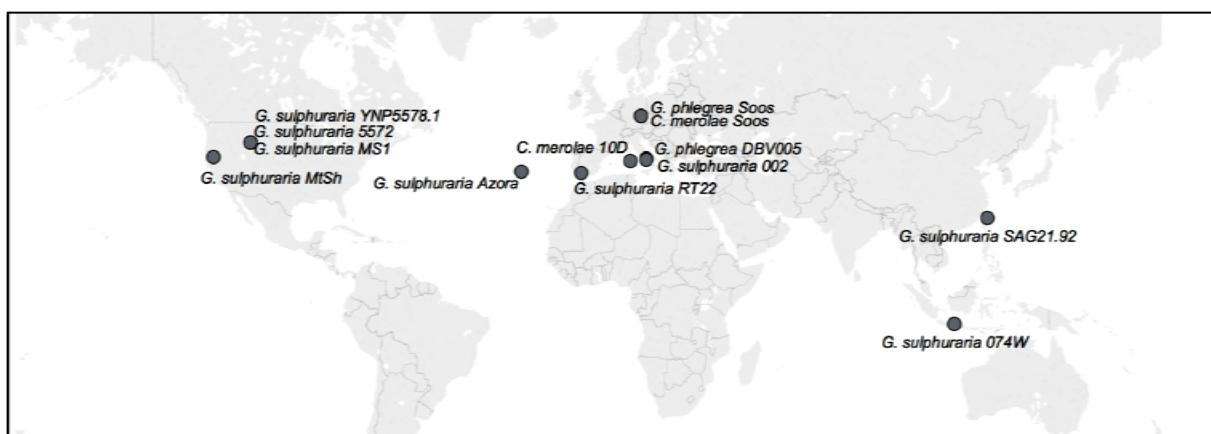
60 A comprehensive analysis of the frequency of eukaryotic HGT was recently done by
61 Ku et al. [13]. These authors reported the absence of eukaryotic HGT candidates sharing over
62 70% protein identity with their putative non-eukaryotic donors (for very recent HGTs, this
63 figure could be as high as 100%). Furthermore, no continuous sequence identity distribution
64 was detected for HGT candidates across eukaryotes and the “the 70% rule” was proposed

65 (“*Coding sequences in eukaryotic genomes that share more than 70% amino acid sequence*
66 *identity to prokaryotic homologs are most likely assembly or annotation artifacts.*”)[13].
67 However, as noted by others [14, 15], this result was obtained by categorically dismissing all
68 eukaryotic HGT singletons located within non-eukaryotic branches as assembly/annotation
69 artefacts, as well as those remaining that exceeded the 70% threshold. In addition, all genes
70 that were presumed to be of organellar origin were excluded from the analysis, leaving a
71 small dataset extracted from already under-sampled eukaryotic genomes.

72 Given these uncertainties, the aim of our work was to systematically analyze
73 eukaryotic HGT using the Cyanidiales as model organisms. The Cyanidiales comprise a
74 monophyletic clade of polyextremophilic, unicellular red algae (Rhodophyta) that thrive in
75 acidic and thermal habitats worldwide (e.g., volcanoes, geysers, acid mining sites, acid rivers,
76 urban wastewaters, geothermal plants) [16]. With a divergence age estimated to be around
77 1.92 - 1.37 billion years [17], the Cyanidiales are the earliest split within Rhodophyta and
78 define one of oldest surviving eukaryotic lineages. They are located near the root of the
79 supergroup Archaeplastida, whose ancestor underwent the primary plastid endosymbiosis
80 with a cyanobacterium that established photosynthesis in eukaryotes [18, 19]. In the context
81 of HGT, the Cyanidiales became more broadly known after publication of the genome
82 sequences of *Cyanidioschyzon merolae* 10D [20, 21], *Galdieria sulphuraria* 074W [22], and
83 *Galdieria phlegrea* DBV009 [23]. The majority of putative HGTs in these taxa was
84 hypothesized to have provided selective advantages during the evolution of polyextremophily,
85 contributing to the ability of *Galdieria*, *Cyanidioschyzon*, and *Cyanidium* to cope with
86 extremely low pH values, temperatures above 70°C, as well as high salt and toxic heavy metal
87 ion concentrations [16, 24-26]. In such environments, they can represent up to 90% of the
88 total biomass, competing with specialized Bacteria and Archaea [27], although some
89 Cyanidiales strains also occur in more temperate environments [23, 28-31]. The integration
90 and maintenance of HGT-derived genes, in spite of strong selection for genome reduction in
91 these taxa [32] underlines the potential ecological importance of this process to niche
92 specialization [22, 23, 33-36]. For this reason, we chose the Cyanidiales as a model lineage
93 for studying eukaryotic HGT.

94 It should be appreciated that the correct identification of HGT based on sequence
95 similarity and phylogeny is rarely trivial and unambiguous, leaving much space for
96 interpretation and erroneous assignments. In this context, previous findings regarding HGT in
97 Cyanidiales were based on single genome analyses and have therefore been questioned [13].

98 Many potential error sources need to be excluded during HGT analysis, such as possible
99 bacterial contamination in the samples, algorithmic errors during genome assembly and
100 annotation, phylogenetic model misspecification, and unaccounted for gene paralogy [14]. In
101 addition, eukaryotic HGT reports based on single gene tree analysis are prone to
102 misinterpretation and may be a product of deep branching artefacts and low genome
103 sampling. Indeed, false claims of prokaryote-to-eukaryote HGT have been published [37, 38]
104 which were later corrected [39, 40].


105 Here, we used multi-genomic analysis with 13 Cyanidiales lineages (including 10
106 novel long-read genome sequences) from 9 geographically isolated habitats. This approach
107 increased phylogenetic resolution within Cyanidiales to allow more accurate assessment of
108 HGT while avoiding many of the above-mentioned sources of error. The following questions
109 were addressed by our research: (i) did HGT have a significant impact on Cyanidiales
110 evolution? (ii) Are previous HGT findings in the sequenced Cyanidiales genomes an artefact
111 of short read assemblies, limited genome databases, and uncertainties associated with single
112 gene trees, or do they hold up with added sampling? (iii) And, assuming that evidence of
113 eukaryotic HGT is found across multiple Cyanidiales species, are cumulative effects
114 observable, or is DL the better explanation for these results?

115

116 **Materials and Methods**

117 ***Cyanidiales strains used for draft genomic sequencing***

118 Ten Cyanidiales strains (**Figure 1**) were sequenced in 2016/2017 using the PacBio RS2
119 (Pacific Biosciences Inc., Menlo Park, CA) technology [41] and P6-C4 chemistry (the only
120 exception being *C. merolae* Soos, which was sequenced as a pilot study using P4-C2
121 chemistry in 2014). Seven strains, namely *G. sulphuraria* 5572, *G. sulphuraria* 002, *G.*
122 *sulphuraria* SAG21.92, *G. sulphuraria* Azora, *G. sulphuraria* MtSh, *G. sulphuraria* RT22
123 and *G. sulphuraria* MS1 were sequenced at the University of Maryland Institute for Genome
124 Sciences (Baltimore, MD). The remaining three strains, *G. sulphuraria* YNP5578.1, *G.*
125 *phlegrea* Soos, and *C. merolae* Soos were sequenced at the Max-Planck-Institut für
126 Pflanzenzüchtungsforschung (Cologne, Germany). To obtain axenic and monoclonal genetic
127 material for sequencing, single colonies of each strain were grown at a temperature of 37°C in
128 the dark on plates containing glucose as the sole carbon source (1% Gelrite mixed 1:1 with 2x
129 Allen medium [42], 50 µM Glucose). The purity of single colonies was assessed using
130 microscopy (Zeiss Axio Imager 2, 1000x) and molecular markers (18S, *rbcL*). Long read
131 DNA was extracted using a genomic-tip 20/G column following the steps of the "YEAST"

Species	Origin	Country	Habitat	Habitat pH	Habitat Temp (°C)	Source
<i>C. merolae</i> 10D*	Sardinia	Italy	Acidic Hot Spring	1.5	Up to 45°C	ATCC®, T. Kuroiwa
<i>C. merolae</i> Soos	Soos National Park	CZ	Diatom field	0.8 - 2	< 0° - 30°C	W. Gross, M. Seger
<i>G. phlegrea</i> DBV009*	Nepi	Italy	Sulphur Spring	0.8	12°C	G. Pinto, ACUF
<i>G. phlegrea</i> Soos	Soos National Park	CZ	Diatom field	0.8 - 2	< 0° - 30°C	W. Gross, M. Seger
<i>G. sulphuraria</i> 002 (S)	La Solfatara	Italy	na	1	36°C	G. Pinto
<i>G. sulphuraria</i> 074W*	Mount Lawu	Indonesia	Fumaroles	na	35°C	W. Gross, P. De Luca
<i>G. sulphuraria</i> 5572	Norris Basin, YNP	USA	Acidic soil	1	55°C	M. Seger, R. W. Castenholz
<i>G. sulphuraria</i> Azora	Azores	Portugal	Porous sandstone, endolithic	2.1	na	W. Gross, A. Flechner
<i>G. sulphuraria</i> MS1	Nymph Creek, YNP	USA	Acid stream	3	42°C	M. Seger, R. W. Castenholz
<i>G. sulphuraria</i> MtSh	Mount Shasta	USA	Soil, close to mountain peak (4300m)	2.2	na	W. Gross, R. R. Pausewein
<i>G. sulphuraria</i> RT22	Rio Tinto, Berrocal	Spain	Riverbank, endolithic	2.5	na	W. Gross, R. R. Pausewein
<i>G. sulphuraria</i> SAG21.92	Yangmingshan	Taiwan	Hot spring	na	na	J. T.
<i>G. sulphuraria</i> YNP5578.1	Nymph Creek, YNP	USA	Acid stream	3	42°C	M. Seger, R. W. Castenholz

132
133 **Figure 1** – Geographic origin and habitat description of the analyzed Cyanidiales strains. Available
134 reference genomes are marked with an asterisk (*), whereas “na” indicates missing information.
135

136 DNA extraction protocol (QIAGEN N.V., Hilden, Germany). The size and quality of DNA
137 were assessed via gel electrophoresis and the Nanodrop instrument (Thermo Fisher Scientific
138 Inc, Waltham, MA).

139

140 **Assembly**

141 All genomes (excluding the already published *G. sulphuraria* 074W, *G. phlegrea* DBV009
142 and *C. merolae* 10D) were assembled using canu version 1.5 [43]. The genomic sequences
143 were polished three times using the Quiver algorithm [44]. Different versions of each genome
144 were assessed using BUSCO v.3 [45] and the best performing genome was chosen as
145 reference for gene model prediction. Each genome was queried against the National Center
146 for Biotechnology Information (NCBI) nr database [46] in order to detect contigs consisting
147 exclusively of bacterial best blast hits (i.e., possible contamination). None were found.

148

149 **Gene prediction**

150 Gene and protein models for the 10 sequenced Cyanidiales were predicted using MAKER v3
151 beta [47]. MAKER was trained using existing protein sequences from *Cyanidioschyzon*
152 *merolae* 10D and *Galdieria sulphuraria* 074W, for which we used existing RNA-Seq (*A. W.*
153 *Rossoni* & *G. Schoenknecht*, *under review*) data with expression values >10 FPKM [48]
154 combined with protein sequences from the UniProtKB/Swiss-Prot protein database [49].

155 Augustus [50], GeneMark ES [51], and EVM [52] were used for gene prediction. MAKER
156 was run iteratively and using various options for each genome. The resulting gene models
157 were again assessed using BUSCO v.3 [45] and PFAM 31.0 [53]. The best performing set of
158 gene models was chosen for each species.

159

160 ***Sequence annotation***

161 The transcriptomes of all sequenced species and those of *Cyanidioschyzon merolae* 10D,
162 *Galdieria sulphuraria* 074W and *Galdieria phlegrea* DB10 were annotated (re-annotated)
163 using BLAST2GO PRO v.5 [54] combined with INTERPROSCAN [55] in order to obtain the
164 annotations, Gene Ontology (GO)-Terms [56], and Enzyme Commission (EC)-Numbers [57].
165 KEGG orthology identifiers (KO-Terms) were obtained using KAAS [58, 59] and PFAM
166 annotations using PFAM 31.0 [53].

167

168 ***Orthogroups and phylogenetic analysis***

169 The 81,682 predicted protein sequences derived from the 13 genomes listed in Table 1 were
170 clustered into orthogroups (OGs) using OrthoFinder v. 2.2 [60]. We queried each OG member
171 using DIAMOND v. 0.9.22 [61] to an in-house database comprising NCBI RefSeq sequences
172 with the addition of predicted algal proteomes available from the JGI Genome Portal [62],
173 TBestDB [63], dbEST [64], and the MMETSP (Moore Microbial Eukaryote Transcriptome
174 Sequencing Project) [65]. The database was partitioned into four volumes: Bacteria, Metazoa,
175 remaining taxa, and the MMETSP data. To avoid taxonomic sampling biases due to
176 under/overabundance of particular lineages in the database, each volume was queried
177 independently with an expect (*e*-value) of 1×10^{-5} , and the top 2,000 hits were saved and
178 combined into a single list that was then sorted by descending DIAMOND bitscore. Proteins
179 containing one or more bacterial hits (and thus possible HGT candidates) were retained for
180 further analysis, whereas those lacking bacterial hits were removed. A taxonomically broad
181 list of hits was selected for each query (the maximum number of genera selected for each
182 taxonomic phylum present in the DIAMOND output was equivalent to 180 divided by the
183 number of unique phyla), and the corresponding sequences were extracted from the database
184 and aligned using MAFFT v7.3 [66] together with queries and hits selected in the same
185 manner for remaining proteins assigned to the same OG (duplicate hits were removed). A
186 maximum-likelihood phylogeny was then constructed for each alignment using IQTREE v7.3
187 [67] under automated model selection, with node support calculated using 2,000 ultrafast
188 bootstraps. Single-gene trees for the referenced HGT candidates from previous research

189 regarding *G. sulphuraria* 074W [22] and *G. phlegrea* DBV009 [23] were constructed in the
190 same manner, without assignment to OG. To create the algal species tree, the OG assignment
191 was re-run with the addition of proteomes from outgroup taxa *Porphyra umbilicalis* [68],
192 *Porphyridium purpureum* [34], *Ostreococcus tauri* RCC4221 [69], and *Chlamydomonas*
193 *reinhardtii* [70]. Orthogroups were parsed and 2,090 were selected that contained single-copy
194 representative proteins from at least 12/17 taxa; those taxa with multi-copy representatives
195 were removed entirely from the OG. The proteins for each OG were extracted and aligned
196 with MAFFT, and IQTREE was used to construct a single maximum-likelihood phylogeny
197 via a partitioned analysis in which each OG alignment represented one partition with unlinked
198 models of protein evolution chosen by IQTREE. Consensus tree branch support was
199 determined by 2,000 UF bootstraps.

200

201 ***Detection of HGTs***

202 All phylogenies containing bacterial sequences were inspected manually. Only trees in which
203 there were at least two different Cyanidiales sequences and at least three different non-
204 eukaryotic donors were retained. Phylogenies with cyanobacteria and Chlamydiae as sisters
205 were considered as EGT and excluded from the analysis. Genes that were potentially
206 transferred from cyanobacteria were only accepted as HGT candidates when homologs were
207 absent in other photosynthetic eukaryotes; i.e., the cyanobacterium was not the closest
208 neighbor, and when the annotation did not include a photosynthetic function, to discriminate
209 from EGT. Furthermore, phylogenies containing inconsistencies within the distribution
210 patterns of species, especially at the root, or UF values below 70% spanning over multiple
211 nodes, were excluded. Each orthogroup was queried against NCBI nr to detect eukaryotic
212 homologs not present in our databases. The conservative approach to HGT assignment used
213 here allowed identification of robust candidates for in-depth analysis. This may however have
214 come at the cost of underestimating HGT at the single species level. Furthermore, some of the
215 phylogenies that were rejected because < 3 non-eukaryotic donors were found may have
216 resulted from current incomplete sampling of prokaryotes. For example, OG0001817 is
217 present in the sister species *G. sulphuraria* 074W and *G. sulphuraria* MS1 but has a single
218 bacterial hit (*Acidobacteriaceae bacterium* URHE0068, CBS domain-containing protein,
219 GI:651323331).

220

221 **Results**

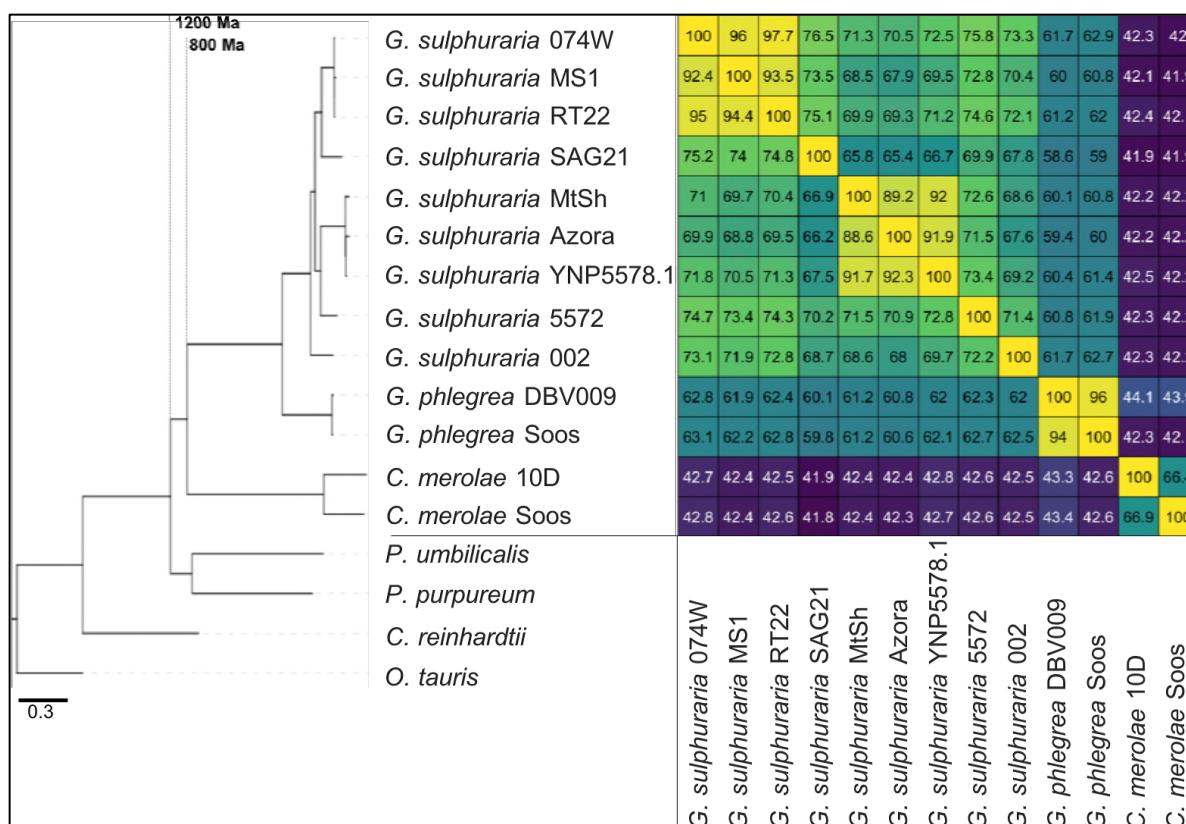
222 **Features of the newly sequenced Cyanidiales genomes**

223 Genome sizes of the 10 targeted Cyanidiales range from 12.33 Mbp - 15.62 Mbp, similar to
 224 other members of this red algal lineage [20, 22, 23] (**Table 1**). PacBio sequencing yielded
 225 0.56 Gbp – 1.42 Gbp of raw sequence reads with raw read N50 ranging from 7.9 kbp – 14.4
 226 kbp, which translated to a coverage of 28.91x – 70.99x at the unitigging stage (39.46x –
 227 91.20x raw read coverage) (**Supplementary Material, Figure 1S and Table 1S**). We
 228 predicted a total of 61,869 novel protein coding sequences which, together with the protein
 229 data sets of the already published Cyanidiales species (total of 81,682 predicted protein
 230 sequences), capture 295/303 (97.4%) of the highly conserved eukaryotic BUSCO dataset.
 231 Each species, taken individually, scored an average of 92.7%. In spite of massive gene losses
 232 observed in the Cyanidiales [32], these results corroborate previous observations that genome
 233 reduction has only had a minor influence on the core eukaryotic gene inventory in free-living
 234 organisms [71]. Even *C. merolae* Soos, the species with the most limited coding capacity
 235 (4,406 protein sequences), includes 89.5% of the eukaryotic BUSCO dataset. The number of
 236 contigs obtained from the *Galdieria* genomes ranged between 101 – 135. *G. sulphuraria*
 237 17.91 (a strain different from the ones sequenced) was reported to have 40 chromosomes, and
 238 strains isolated from Rio Tinto (Spain), 47 or 57 chromosomes [72]. Pulsed-field gel
 239 electrophoresis indicates that *G. sulphuraria* 074W has approximately 42 chromosomes that
 240 are between 100 kbp and 1 Mbp in size [73]. The genome assembly of *C. merolae* Soos

Strain	Genome Stats				Gene Stats		HGT Stats		HGT vs Native Gene Subsets						Annotations			
	Genome Size (Mb)	Contigs	Contig N50 (kb)	%GC Content	Genes	Orthogroups	HGT Orthogroups	HGT Genes	%GC Native	%GC HGT	% Multixon Native	% Multixon HGT	Exon/ Gene Native	Exon/ Gene HGT	EC	PFAM	KEGG	GO
<i>G. sulphuraria</i> 074W*	13.78	433	172.3	36.89	7174	5265	51	55	38.99	39.62*	73.6	47.3*	2.25	3.2*	938	3073	3241	6572
<i>G. sulphuraria</i> MS1	14.89	129	172.1	37.62	7441	5389	54	58	39.59	40.79*	83.4	62.1*	2.5	3.88*	930	3077	3178	6564
<i>G. sulphuraria</i> RT22	15.62	118	172.9	37.43	6982	5186	51	54	39.54	40.85*	74.7	51.9*	2.63	3.95*	941	3118	3223	6504
<i>G. sulphuraria</i> SAG21	14.31	135	158.2	37.92	5956	4732	44	47	40.04	41.47*	84.8	83.0	4.02	5.03*	931	3047	3143	6422
<i>G. sulphuraria</i> MtSh	14.95	101	186.6	40.04	6160	4746	46	47	41.33	42.48*	79.7	63.8*	3.15	4.32*	939	3114	3244	6450
<i>G. sulphuraria</i> Azora	14.06	127	162.3	40.10	6305	4905	49	58	41.34	42.57*	84.5	75.9*	2.68	4.03*	934	3072	3181	6474
<i>G. sulphuraria</i> YNP5587.1	14.42	115	170.8	40.05	6118	4846	46	46	41.33	42.14*	74.5	54.3*	2.61	3.65*	938	3084	3206	6516
<i>G. sulphuraria</i> 5572	14.28	108	229.7	37.99	6472	5009	46	53	39.68	40.5*	78.4	45.3*	2.15	3.53*	936	3108	3252	6540
<i>G. sulphuraria</i> 002	14.11	107	189.3	39.16	5912	4701	46	52	40.76	41.35*	97.1	50.0*	2.37	3.73*	927	3060	3184	6505
<i>G. phlegra</i> DBV009*	11.41	9311	2.0	37.86	7836	5562	54	62	39.97	40.58*	na	na	na	na	935	3018	3125	6512
<i>G. phlegra</i> Soos	14.87	108	201.1	37.52	6125	4624	44	47	39.57	40.73*	77.5	43.2*	2.19	3.33*	929	3034	3197	6493
<i>C. merolae</i> 10D*	16.73	22	859.1	54.81	4803	3980	33	33	56.57	56.57	0.5	0.0	1	1.01	883	2811	2832	6213
<i>C. merolae</i> Soos	12.33	35	567.5	54.33	4406	3574	34	34	54.84	54.26	9.4	2.9	1.06	1.1	886	2787	2823	6188

241 **Table 1** – Summary of the 13 analyzed Cyanidiales genomes. The existing genomes of *Galdieria sulphuraria*
 242 074W, *Cyanidioschyzon merolae* 10D, and *Galdieria phlegra* are marked with “#”. The remaining 10 genomes
 243 are novel. **Genome Size (Mb)**: size of the genome assembly in Megabases. **Contigs**: number of contigs
 244 produced by the genome assembly. The contigs were polished with quiver **Contig N50 (kb)**: Contig N50. **%GC**
 245 **Content**: GC content of the genome given in percent. **Genes**: transcriptome size of species. **Orthogroups**: All
 246 Cyanidiales genes were clustered into a total of 9075 OGs. Here we show how many OGs there are per species.
 247 **HGT Orthogroups**: Number of OGs derived from HGT. **HGT Genes**: Number of HGT gene candidates found
 248 in species. **%GC Native**: GC content of the native transcriptome given in percent. **%GC HGT**: GC content of
 249 the HGT gene candidates given in percent **% Multixon Native**: % of multiallelic genes in the native
 250 transcriptome. **% Multixon HGT**: percent of multiallelic genes in the HGT gene candidates. **S/M Native**:
 251 Ratio of Multixonic vs Singleexonic genes in native transcriptome. **S/M HGT**: Ratio of Multixonic vs
 252 Singleexonic genes in HGT candidates. Asterisks (*) denote a significant difference ($p \leq 0.05$) between native
 253 and HGT gene subsets. **EC, PFAM, GO, KEGG**: Number of species-specific annotations in EC, PFAM, GO,
 254 KEGG.
 255

256 produced 35 contigs, which approximates the 22 chromosomes (including plastid and
257 mitochondrion) of the *C. merolae* 10D telomere-to-telomere assembly. Whole genome
258 alignments indicate that a portion of the assembled contigs represent complete chromosomes.


259

260 Orthogroups and phylogeny

261 The 81,682 predicted protein sequences from all 13 genomes clustered into a total of 9,075
262 orthogroups and phylogenetic trees were built for each orthogroup. The reference species tree
263 was constructed using 2,090 OGs that contained a single-copy gene in at least 12 of the 17
264 taxa (*Porphyra umbilicalis* [68], *Porphyridium purpureum* [34], *Ostreococcus tauri*
265 RCC4221 [69], and *Chlamydomonas reinhardtii* [70] were added to the dataset as outgroups).
266 As a result, the species previously named *G. sulphuraria* Soos and *C. merolae* MS1 were
267 reannotated as *G. phlegrea* Soos and *G. sulphuraria* MS1. Given these results, we sequenced
268 a second genome of *C. merolae* and a representative of the *G. phlegrea* lineage. The species
269 tree reflects previous findings that suggest more biodiversity exists within the Cyanidiales
270 [29]. This is represented by the taxa in the phylogeny (Figure 2).

271

272 **Figure 2 (below)** – Species tree of the 13 analyzed Cyanidiales genomes using other unicellular and aquatic red
273 (*Porphyra umbilicalis*, *Porphyridium purpureum*) and green algae (*Ostreococcus tauri*, *Chlamydomonas*
274 *reinhardtii*) as outgroups. IQTREE was used to construct a single maximum-likelihood phylogeny based on
275 orthogroups containing single-copy representative proteins from at least 12 of the 17 taxa (13 Cyanidiales + 4
276 Other). Each orthogroup alignment represented one partition with unlinked models of protein evolution chosen
277 by IQTREE. Consensus tree branch support was determined by 2,000 rapid bootstraps. All nodes in this tree had
278 100% bootstrap support, and are therefore not shown. Divergence time estimates are taken from Yang et al.,
279 2016 [74]. Similarity is derived from the average one-way best blast hit protein identity (minimum protein
280 identity threshold = 30%). The minimal protein identity between two *G. sulphuraria* strains was 65.4%,
281 measured between *G. sulphuraria* SAG21.92, which represent the second most distant sampling locations
282 (12,350 km). Similar lineage boundaries were obtained for the *C. merolae* samples (66.4% protein identity),
283 which are separated by only 1150 km.

284
285

286 Analysis of HGTs

287 The most commonly used approach to identify HGT candidates is to determine the position of
288 eukaryotic and non-eukaryotic sequences in a maximum likelihood tree. Using this approach,
289 96 OGs were identified in which Cyanidiales genes shared a monophyletic descent with
290 prokaryotes, representing 1.06% of all OGs. A total of 641 single Cyanidiales sequences are
291 considered as HGT candidates (Table 1). The amount of HGT per species varied considerably
292 between members of the *Cyanidioschyzon* (33 - 34 HGT events, all single copy genes) and
293 *Galdieria* lineages with 44 – 54 HGT events (52.6 HGT origins on average, 47 – 62 HGT
294 gene candidates). In comparison to previous studies [22, 23], no evidence of massive gene
295 family expansion regarding HGT genes was found because the maximum number of gene
296 copies in HGT orthogroups was three. We note, however, that one large gene family of
297 STAND-type ATPases that was previously reported to originate from an archaeal HGT [22]
298 did not meet the criteria used in our restrictive Blast searches; i.e., the 10^{-5} *e*-value cut-off for
299 consideration and a minimum of three different non-eukaryotic donors. This highly diverged
300 family requires more sophisticated comparative analyses that were not done here
(Supplementary Material, Chapter 1S).

302

303 **Gene co-localization on raw sequence reads**

304 One major issue associated with previous HGT studies is the incorporation of contaminant
305 DNA into the genome assembly, leading to incorrect results [37-40]. Here, we screened for
306 potential bacterial contamination in our tissue samples using PCR analysis of extracted DNA
307 with the *rbcL* and 18S rRNA gene markers prior to sequencing. No instances of
308 contamination were found. Furthermore, our work relied on PacBio RSII long-read
309 sequencing technology, whereby single reads frequently exceed 10 kbp of DNA. Given these
310 robust data, we also tested for co-occurrence of HGT gene candidates and “native” genes in
311 the same read. The protein sequences of each species were queried with *tblastn* (10^{-5} *e*-value,
312 75 bitscore) against a database consisting of the uncorrected PacBio RSII long reads. This
313 analysis showed that 629/641 (98.12%) of the HGT candidates co-localize with native red
314 algal genes on the same read (38,297 reads in total where co-localization of native genes and
315 HGT candidates was observed). It should be noted that the 10 novel genomes we determined
316 share HGT candidates with *C. merolae* 10D, *G. sulphuraria* 074W, and *G. phlegrea*
317 DBV009, which were sequenced in different laboratories, at different points in time, using
318 different technologies, and assembly pipelines. Hence, we consider it highly unlikely that
319 these HGT candidates result from bacterial contamination. As the accuracy of long read
320 sequencing technologies further increases, we believe this criterion for excluding bacterial
321 contamination provides an additional piece of evidence that should be added to the guidelines
322 for HGT discovery [14].

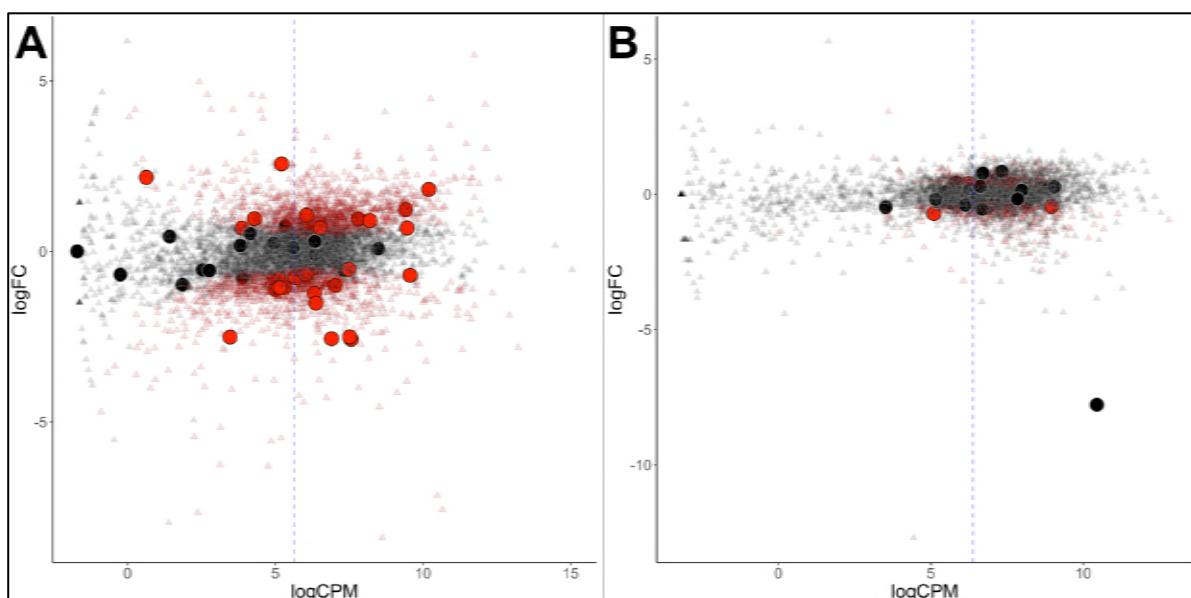
323

324 **Differences in molecular features between native and HGT-derived genes**

325 A core prerequisite of the HGT theory (and cumulative effects) is that horizontally acquired
326 genes have different structural characteristics when compared to native genes. The passage of
327 time is required (and expected) to erase these differences. Therefore, we searched for
328 differences in genomic features between HGT candidates and native Cyanidiales genes with
329 regard to: (1) GC-content, (2) the number of spliceosomal introns and the exon/gene ratio, (3)
330 differential transcription, (4) percent protein identity between HGT genes and their non-
331 eukaryotic donors, and (5) cumulative effects as indicators of their non-eukaryotic origin [9,
332 13, 22].

333

334 **GC-content:** All 11 *Galdieria* species showed significant differences (GC-content of
335 transcripts is normally distributed, Student's *t*-test, two-sided, $p \leq 0.05$) in percent GC-content
336 between native sequences and HGT candidates (**Table 1**). Sequences belonging to the

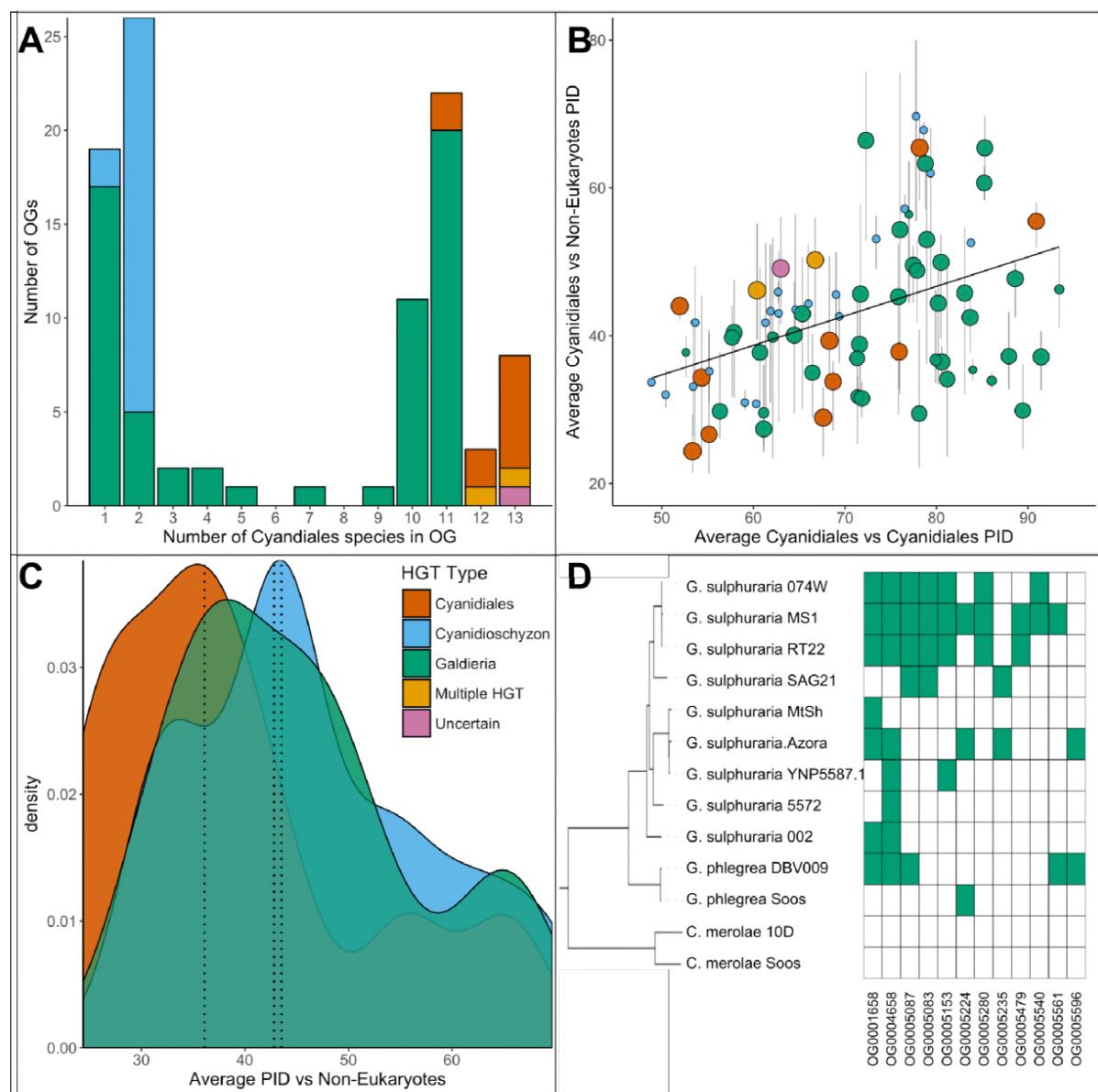

337 *Galdieria* lineage have an exceptionally low GC-content (39% – 41%) in comparison to the
338 majority of thermophilic organisms that exhibit higher values (~55%). On average, HGT
339 candidates in *Galdieria* display 1% higher GC-content in comparison to their native
340 counterparts. No significant differences were found for *C. merolae* 10D and *C. merolae* Soos
341 in this respect. Because native *Cyanidioschyzon* genes have an elevated GC-content (54% -
342 56%), this makes it difficult to distinguish between them and HGT-derived genes
343 (**Supplementary Material, Table 2S and Figures 2SA-2SM**).

344

345 **Spliceosomal Introns and Exon/Gene:** Bacterial genes lack spliceosomal introns and
346 therefore the spliceosomal machinery. Consequently, genes acquired through HGT are
347 initially single-exons and may acquire introns over time due to the invasion of existing
348 intervening sequences. We detected significant discrepancies in the ratio of single-exon to
349 multi-exon genes between HGT candidates and native genes in the *Galdieria* lineage. On
350 average, 42% of the *Galdieria* HGT candidates are single-exon genes, whereas only 19.2% of
351 the native gene set are comprised of single-exons. This difference is significant (categorical
352 data, “native” vs “HGT” and “single exon” vs. “multiple exon”, Fisher’s exact test, $p \leq 0.05$)
353 in all *Galdieria* species except *G. sulphuraria* SAG21.92 (**Table 1**). The *Cyanidioschyzon*
354 lineage contains a highly reduced spliceosomal machinery [75], therefore only ~10% of
355 native genes are multi-exonic in *C. merolae* Soos and only 1/34 HGT candidates has gained
356 an intron. *C. merolae* 10D has only 26 multi-exonic genes (~0.5% of all transcripts) and none
357 of its HGT candidates has gained an intron. Enrichment testing is not possible with these
358 small sample sizes (**Supplementary Material, Table 3SA**).

359 We analyzed the number of exons that are present in multi-exonic genes and obtained
360 similar results for the *Galdieria* lineage (**Table 1**). All *Galdieria* species show significant
361 differences regarding the exon/gene ratio between native and HGT genes (non-normal
362 distribution regarding the number of exons per gene, Wilcoxon-Mann-Whitney-Test, 1000
363 bootstraps, $p \leq 0.05$). HGT candidates in *Galdieria* have 0.97 - 1.36 fewer exons per gene in
364 comparison to their native counterparts. Because the multi-exonic HGT subset in both
365 *Cyanidioschyzon* species combined includes only one multi-exonic HGT candidate, no further
366 analysis was performed (**Supplementary Material, Table 3SB and Figures 3SA-3SM**).
367

368 **Differential transcription:** Several RNA-seq datasets are publicly available for *G.*
369 *sulphuraria* 074W (*A. W. Rossoni & G. Schoenknecht, under review*) and *C. merolae* 10D


370
371 **Figure 3** – Differential gene expression of *G. sulphuraria* 074W (A) and *C. merolae* 10D (B), here measured as
372 log fold change (logFC) vs transcription rate (logCPM). Differentially expressed genes are colored red (quasi-
373 likelihood (QL) F-test, Benjamini-Hochberg, $p \leq 0.01$). HGT candidates are shown as large circles. The blue
374 dashes indicate the average logCPM of the dataset. Although HGT candidates are not significantly more or less
375 expressed than native genes, they react significantly stronger to temperature changes in *G. sulphuraria* 074W
376 (“more red than black dots”). This is not the case in high CO₂ treated *C. merolae* 10D.

377 [48]. We aligned [76] the transcriptome reads to the respective genomes, using an identical
378 data processing pipeline [77] for both datasets to exclude potential algorithmic errors (Figure
379 3). The average read count per gene (measured as counts per million, CPM), of native genes
380 was 154 CPM in *G. sulphuraria* 074W and 196 CPM *C. merolae* 10D. The average read
381 counts for HGT candidates in *G. sulphuraria* 074W and *C. merolae* 10D were 130 CPM and
382 184 CPM, respectively. No significant differences in RNA abundance between native genes
383 and HGT candidates were observed for these taxa (non-normal distribution of CPM,
384 Wilcoxon-Mann-Whitney-Test, $p < 0.05$). We also tested whether HGT candidates responded
385 differentially to stress in comparison to native genes. This is the case for temperature-stressed
386 *G. sulphuraria* 074W (categorical data, “native” vs. “HGT” and “differentially expressed” vs.
387 “no differential expression”, Fisher’s exact test, $p = 0$). Consequently, HGT candidates are not
388 only well integrated into the transcriptional machinery of *G. sulphuraria* 074W, but they
389 show significant differential expression under fluctuating temperature, which may reflect an
390 adaptation to thermal stress (Figure 3A) [22, 75]. However, no significant enrichment of
391 HGT-derived genes within the differentially transcribed gene set was detected in the
392 transcriptional response of *C. merolae* 10D towards high and low CO₂ conditions (Figure
393 3B), which are not stressful for a wild type *C. merolae* 10D (categorical data, “native” vs.
394 “HGT” and “differential expression” vs. “no differential expression”, Fisher’s exact test, $p =$
395 0.75).

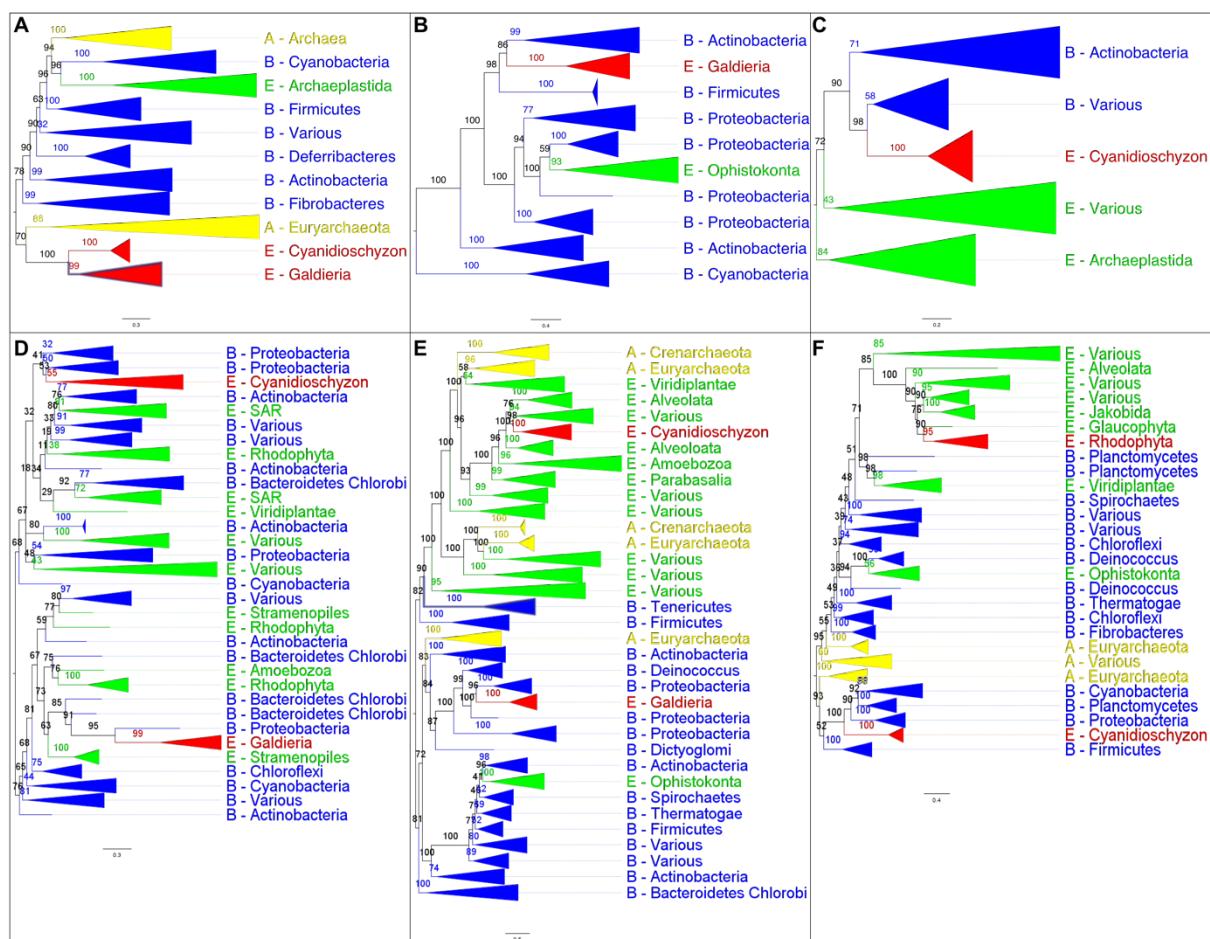
396

397 **Gene function – not passage of time – explains percent protein identity (PID) between**
 398 **Cyanidiales HGT candidates and their non-eukaryotic donors**

399 Once acquired, any HGT-derived gene may be fixed in the genome and propagated across the
 400 lineage. The PID data can be further divided into different subsets depending on species
 401 composition of the OG. Of the total 96 OGs putatively derived from HGT events, 60 are
 402 exclusive to the *Galdieria* lineage (62.5%), 23 are exclusive to the *Cyanidioschyzon* lineage
 403 (24%), and 13 are shared by both lineages (13.5%) (Figure 4A). Consequently, either a strong
 404 prevalence for lineage specific DL exists, or both lineages underwent individual sets of HGT
 405 events because they share their habitat with other non-eukaryotic species (which is what the
 406 HGT theory would assume). The 96 OGs in question are affected by gene loss or partial
 407 fixation. Once acquired only 8/13 of the “Cyanidiales” (including “Multiple HGT” and

408

409 **Figure 4** – Comparative analysis of the 96 OGs potentially derived from HGT. **A**| OG count vs. the number of
410 Cyanidiales species contained in an OG (=OG size). Only genes from the sequenced genomes were considered
411 (13 species). A total of 60 OGs are exclusive to the *Galdieria* lineage (11 species), 23 OGs are exclusive to the
412 *Cyanidioschyzon* lineage (2 species), and 13 OGs are shared by both lineages. A total of 46/96 HGT events seem
413 to be affected by later gene erosion/partial fixation. **B**| OG-wise PID between HGT candidates vs. their potential
414 non-eukaryotic donors. Point size represents the number of sequenced species contained in each OG. Because
415 only two genomes of *Cyanidioschyzon* were sequenced, the maximum point size for this lineage is 2. The
416 whiskers span minimum and maximum shared PID of each OG. The PID within Cyanidiales HGTs vs. PID
417 between Cyanidiales HGTs and their potential non-eukaryotic donors is positively correlated (Kendall's tau
418 coefficient, $p = 0.000747$), showing evolutionary constraints that are gene function dependent, rather than time-
419 dependent. **C**| Density curve of average PID towards potential non-eukaryotic donors. The area under each curve
420 is equal to 1. The average PID of HGT candidates found in both lineages (“ancient HGT”, left dotted line) is
421 ~5% lower than the average PID of HGT candidates exclusive to *Galdieria* or *Cyanidioschyzon* (“recent HGT”,
422 right dotted lines). This difference is not significant (pairwise Wilcoxon rank-sum test, Benjamini-Hochberg, $p >$
423 0.05). **D**| Presence/Absence pattern (green/white) of Cyanidiales species in HGT OGs. Some patterns strictly
424 follow the branching structure of the species tree. They represent either recent HGTs that affect a monophyletic
425 subset of the *Galdieria* lineage, or are the last eukaryotic remnants of an ancient gene that was eroded through
426 differential loss. In other cases, the presence/absence pattern of *Galdieria* species is random and conflicts with
427 the *Galdieria* lineage phylogeny. HGT would assume either multiple independent acquisitions of the same HGT
428 candidate, or a partial fixation of the HGT candidate in the lineage, while still allowing for gene erosion.
429 According to DL, these are the last existing paralogs of an ancient gene, whose erosion within the eukaryotic
430 kingdom is nearly complete.


431
432 “Uncertain”) OGs and 20/60 of the *Galdieria* specific OGs are encoded by all species. Once
433 acquired by the *Cyanidioschyzon* ancestor, the HGT candidates were retained by both *C.*
434 *merolae* Soos and *C. merolae* 10D in 22/23 *Cyanidioschyzon* specific OGs. It is not possible
435 to verify whether the only *Cyanidioschyzon* OG containing one HGT candidate is the result of
436 gene loss, individual acquisition, or due to erroneously missing this gene model during gene
437 prediction. The average percent PID between HGT gene candidates of the 13 OGs shared by
438 all Cyanidiales and their non-eukaryotic donors is 41.2% (min = 24.4%; max = 65.4%)
439 (**Figure 4B**). From the HGT perspective, these OGs are derived from ancient HGT events that
440 occurred at the root of the Cyanidiales, well before the split of the *Galdieria* and
441 *Cyanidioschyzon* lineages. The OGs were retained over time in all Cyanidiales, although
442 evidence of subsequent gene loss is observed. Under the DL hypothesis, this group of OGs
443 contains genes that have been lost in all other eukaryotic lineages except the Cyanidiales.
444 Similarly, the average PID between HGT candidates their non-eukaryotic donors in OGs
445 exclusive to the *Cyanidioschyzon* lineage is 46.4% (min = 30.8%; max = 69.7%) and 45.1%
446 (min = 27.4%; max = 69.5%) for those OGs exclusive to the *Galdieria* lineage. According to
447 the HGT view, these subsets of candidates were horizontally acquired either in the
448 *Cyanidioschyzon* lineage, or in the *Galdieria* lineage after the split between *Galdieria* and
449 *Cyanidioschyzon*. DL would impose gene loss on all other eukaryotic lineages except
450 *Galdieria* or *Cyanidioschyzon*. Over time, sequence similarity between the HGT candidate
451 and the non-eukaryotic donor is expected to decrease at a rate that reflects the level of
452 functional constraint. The average PID of “ancient” HGT candidates shared by both lineages

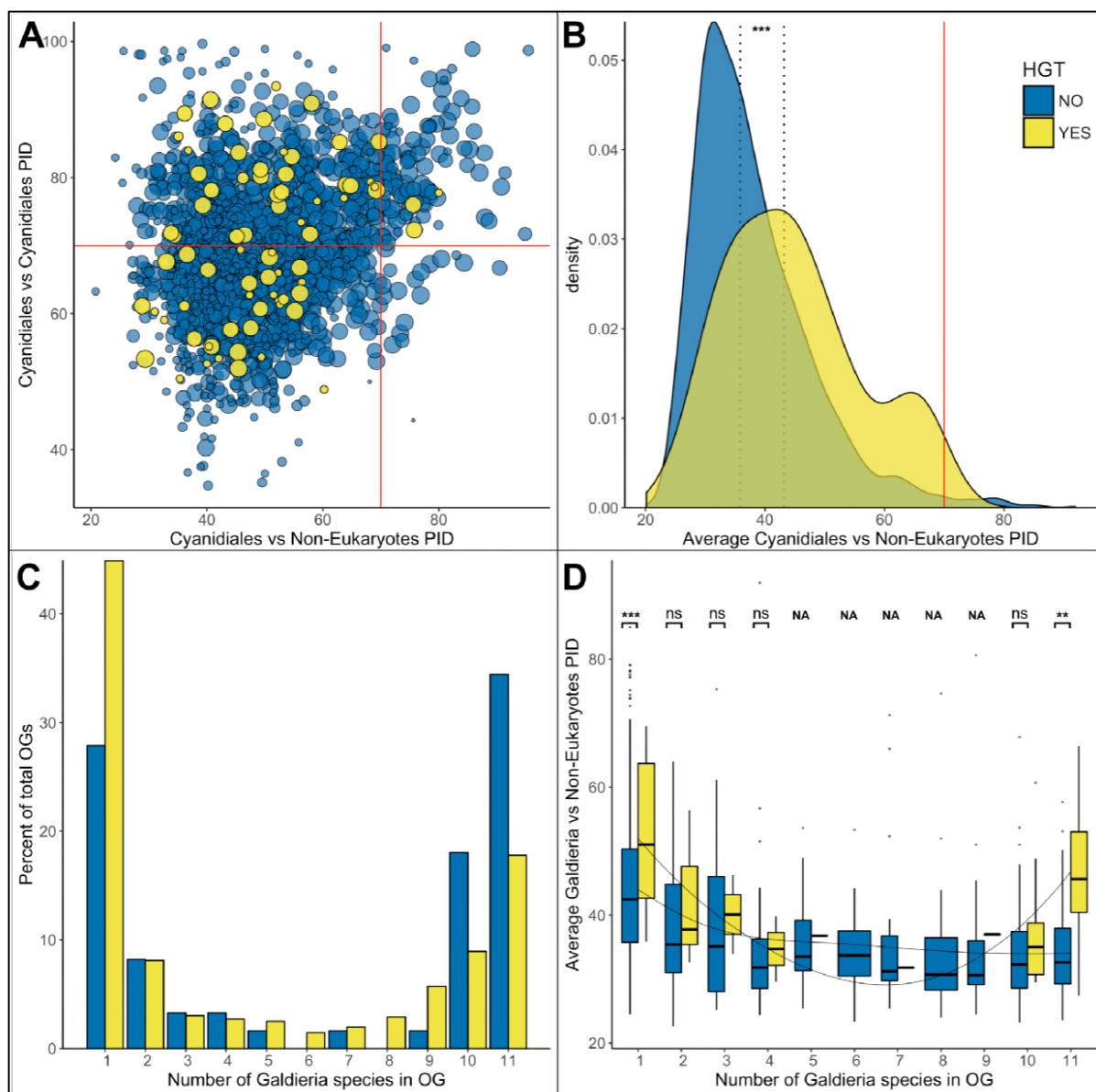
453 (before the split into *Galdieria* and *Cyanidioschyzon* approx. 800 Ma years ago [74]) is ~5%
454 lower than the average PID of HGT candidates exclusive to one lineage which, according to
455 HGT would represent more recent HGT events because their acquisition occurred only after
456 the split (thus lower divergence) (**Figure 4C**). However, no significant difference between
457 *Galdieria*-exclusive HGTs, *Cyanidioschyzon*-exclusive HGTs, and HGTs shared by both
458 lineages was found (non-normal distribution of percent protein identity, Shapiro-Wilk
459 normality test, $W = 0.95, p = 0.002$; Pairwise Wilcoxon rank-sum test, Benjamini-Hochberg,
460 all comparisons $p > 0.05$). Therefore, neither *Cyanidioschyzon* nor *Galdieria* specific HGTs,
461 or HGTs shared by all Cyanidiales, are significantly more, or less, similar to their potential
462 prokaryotic donors. We also addressed the differences in PID within the three groups. The
463 average PID within HGT gene candidates of the 13 OGs shared by all Cyanidiales is 75.0%
464 (min = 51.9%; max = 90.9%) (**Figure 4B**). Similarly, the average PID within HGT candidates
465 in OGs exclusive to the *Cyanidioschyzon* lineage is 65.1% (min = 48.9%; max = 83.8%) and
466 75.0% (min = 52.6%; max = 93.4%) for those OGs exclusive to the *Galdieria* lineage.
467 Because we sampled only two *Cyanidioschyzon* species in comparison to 11 *Galdieria*
468 lineages that are also much more closely related (**Figure 2A**), a comparison between these
469 two groups was not done. However, a significant positive correlation (non-normal distribution
470 of PID across all OGs, Kendall's tau coefficient, $p = 0.000747$) exists between the PID within
471 Cyanidiales HGTs versus PID between Cyanidiales HGTs and their non-eukaryotic donors
472 (**Figure 4B**). Hence, the more similar Cyanidiales sequences are to each other, the more
473 similar they are to their non-eukaryotic donors, showing gene function dependent
474 evolutionary constraints.
475

476 **Complex origins of HGT-impacted orthogroups**

477 While comparing the phylogenies of HGT candidates, we also noticed that not all Cyanidiales
478 genes within one OG are necessarily originate via HGT. Among the 13 OGs that contain HGT
479 candidates present in both *Galdieria* and *Cyanidioschyzon*, we found two cases (**Figure 4A**,
480 “Multiple HGT”), OG0002305 and OG0003085, in which *Galdieria* and *Cyanidioschyzon*
481 HGT candidates cluster in the same orthogroup. However, these have different non-
482 eukaryotic donors and are located on distinct phylogenetic branches that do not share a
483 monophyletic descent (**Figure 5A**). This is potentially the case for OG0002483 as well, but
484 we were uncertain due to low bootstrap values (**Figure 4A**, “Uncertain”). These OGs either
485 represent two independent acquisitions of the same function or, according to DL, the LECA
486 encoded three paralogs of the same gene which were propagated through evolutionary time.

487 One of these was retained by the *Galdieria* lineage (and shares sequence similarity with one
488 group of prokaryotes), the second was retained by *Cyanidioschyzon* (and shares sequence
489 similarity with a different group of prokaryotes), and a third paralog was retained by all other
490 eukaryotes. It should be noted that the “other eukaryotes” do not always cluster in one
491 uniformly eukaryotic clade which increases the number of required paralogs in LECA to
492 explain the current pattern. Furthermore, some paralogs could also have already been
493 completely eroded and do not exist in extant eukaryotes. Similarly, 6/60 *Galdieria* specific
494 OGs also contain *Cyanidioschyzon* genes (OG0001929, OG0001938, OG0002191,
495 OG0002574, OG0002785 and OG0003367). Here, they are nested within other eukaryote
496 lineages and would not be derived from HGT (**Figure 5B**). Also, eight of the 23
497 *Cyanidioschyzon* specific HGT OGs contain genes from *Galdieria* species (OG0001807,
498 OG0001810, OG0001994, OG0002727, OG0002871, OG0003539, OG0003929 and
499 OG0004405) which cluster within the eukaryotic branch and are not monophyletic with
500 *Cyanidioschyzon* HGT candidates (**Figure 5C**). According to the HGT view, this subset of
501 candidates was horizontally acquired in either the *Cyanidioschyzon* lineage, or the *Galdieria*
502 lineage only after the split between *Galdieria* and *Cyanidioschyzon*, possibly replacing the
503 ancestral gene or functionally complementing a function that was lost due to genome
504 reduction. According to DL, the LECA would have encoded two paralogs of the same gene.
505 One was retained by all eukaryotes, red algae, and *Galdieria* or *Cyanidioschyzon*, the other
506 exclusively by *Cyanidioschyzon* or *Galdieria* together with non-eukaryotes.

507


508 **Figure 5** - The analysis of OGs containing HGT candidates revealed different patterns of HGT acquisition.
 509 Some OGs contain genes that are shared by all Cyanidiales, whereas others are unique to the *Galdieria* or
 510 *Cyanidioschyzon* lineage. In some cases, HGT appears to have replaced the eukaryotic genes in one
 511 lineage, whereas the other lineage maintained the eukaryotic ortholog. Here, some examples of OG
 512 phylogenies are shown, which were simplified for ease of presentation. The first letter of the tip labels
 513 indicates the kingdom. A = Archaea (yellow), B = Bacteria (blue), E = Eukaryota (green). Branches
 514 containing Cyanidiales sequences are highlighted in red. **A** Example of an ancient HGT that occurred before
 515 *Galdieria* and *Cyanidioschyzon* split into separate lineages. As such, both lineages are monophyletic (e.g.,
 516 OG0001476). **B** HGT candidates are unique to the *Galdieria* lineage (e.g. OG0001760). **C** HGT
 517 candidates are unique to the *Cyanidioschyzon* lineage (e.g. OG0005738). **D** *Galdieria* and
 518 *Cyanidioschyzon* HGT candidates are derived from different HGT events and share monophyly with
 519 different non-eukaryotic organisms (e.g., OG0003085). **E** *Galdieria* HGT candidates cluster with non-
 520 eukaryotes, whereas the *Cyanidioschyzon* lineage clusters with eukaryotes (e.g., OG0001542). **F**
 521 *Cyanidioschyzon* HGT candidates cluster with non-eukaryotes, whereas the *Galdieria* lineage clusters with
 522 eukaryotes (e.g., OG0006136).

523

524 Stronger erosion of HGT genes impedes assignment to HGT or DL

525 As already noted above, only 50/96 of the sampled HGT-impacted OGs do not appear to be
 526 affected by erosion. Dense sampling of 11 taxa within the *Galdieria* lineage allowed a more
 527 in-depth analysis of this issue. Here, a bimodal distribution is observed regarding the number
 528 of species per OG in the native and HGT dataset (**Figure 6C**). Only 52.5% of the native gene
 529 set is present in all *Galdieria* strains (defined as 10 and 11 strains in order to account for
 530 potential misassemblies and missed gene models during prediction). Approximately 1/3 of the

native OGs (36.1%) has been affected by gene erosion to such a degree that it is present in only one, or two *Galdieria* strains. In comparison, 26.7% of the candidate HGT-impacted OGs are encoded in >10 *Galdieria* strains, whereas 53.0% are present in less than three. The latter number might be an underestimation due to the strict threshold for HGT discovery which led to the removal of HGT candidates that were singletons. The HGT distribution is therefore skewed towards OGs containing only a few or one *Galdieria* species as the result of recent HGT events that occurred; e.g., after the split of *G. sulphuraria* and *G. phlegrea*. In spite of the strong erosion which would also lead to partial fixation of presumably recent HGT events, we analyzed whether the distribution patterns of HGT candidates across the sequenced genomes reflect the branching pattern of the species trees (**Figure 4C**). This is true for all HGT candidates that are exclusive to the *Cyanidioschyzon* or *Galdieria* lineage. Either the HGT candidates were acquired after the split of the two lineages (according to HGT), or differentially lost in one of the two lineages (according to DL). In the 60 *Galdieria* specific OGs we found 12 OGs containing less than 10 and more than one *Galdieria* species (**Figure 4C**). In 5/12 of the cases, the presence absence pattern reflects the species tree (OG0005087, OG0005083, GO0005479, OG0005540). Here, the potential HGT candidates are not found in any other eukaryotic species. According to HGT, they were acquired by a monophyletic sub-clade of the *Galdieria* lineage. According to DL, they were lost in all eukaryotes with the exception of this subset of the *Galdieria* lineage (e.g., OG0005280 and OG0005083 were potentially acquired or maintained exclusively by the last common ancestor of *G. sulphuraria* 074W, *G. sulphuraria* MS1, *G. sulphuraria* RT22, and *G. sulphuraria* SAG21). In the remaining OGs, the HGT gene candidate is distributed across the *Galdieria* lineage and conflicts with the branching pattern of the species tree. HGT would assume either multiple independent acquisitions of the same HGT candidate, or partial fixation of the HGT candidate in the lineage, while still allowing for gene erosion. According to DL, these are the last existing paralogs of an ancient gene, whose erosion within the eukaryotic kingdom is nearly complete. However, it must be considered that in some cases, DL must have occurred independently across multiple species in a brief of time after the gene was maintained for hundreds of millions of years across the lineage (e.g., OG0005224 contains *G. phlegrea* Soos, *G. sulphuraria* Azora and *G. sulphuraria* MS1). This implies that the gene was present in the ancestor of the *Galdieria* lineage and also in the last common ancestor of closely related *G. sulphuraria* MS1, *G. sulphuraria* 074W and *G. sulphuraria* RT22 (as well as *G. sulphuraria* SAG21) and the last common ancestor of closely related *G. sulphuraria* MtSh, *G. sulphuraria*

564

565 **Figure 6** – HGT vs. non-HGT orthogroup comparisons. **A** Maximum PID of Cyanidiales genes in native (blue)
566 and HGT (yellow) orthogroups when compared to non-eukaryotic sequences in each OG. The red lines denote
567 the 70% PID threshold for assembly artifacts according to “the 70% rule”. Dots located in the top-right corner
568 depict the 73 OGs that appear to contradict this rule, plus the 5 HGT candidates that score higher than 70%.
569 18/73 of those OGs are not derived from EGT or contamination within eukaryotic assemblies. **B** Density curve
570 of average PID towards non-eukaryotic species in the same orthogroup (potential non-eukaryotic donors in case
571 of HGT candidates). The area under each curve is equal to 1. The average PID of HGT candidates (left dotted
572 line) is 6.1% higher than the average PID of native OGs also containing non-eukaryotic species (right dotted
573 line). This difference is significant (Wilcoxon rank-sum test, $p > 0.01$). **C** Distribution of OG-sizes (=number of
574 *Galdieria* species present in each OG) between the native and HGT dataset. A total of 80% of the HGT OGs and
575 89% of the native OGs are present in either ≤ 10 species, or ≤ 2 species. Whereas 52.5% of the native gene set is
576 conserved in ≤ 10 *Galdieria* strains, only 36.1% of the HGT candidates are conserved. In contrast, about 50% of
577 the HGT candidates are present in only one *Galdieria* strain. **D** Pairwise OG-size comparison between HGT
578 OGs and native OGs. A significantly higher PID when compared to non-eukaryotic sequences was measured in
579 the HGT OGs at OG-sizes of 1 and 11 (Wilcoxon rank-sum test, BH, $p < 0.01$). No evidence of cumulative
580 effects was detected in the HGT dataset. However, the fewer *Galdieria* species that are contained in one OG, the
581 higher the average PID when compared to non-eukaryotic species in the same tree (Jonckheere-Terpstra, $p <$
582 0.01) in the native dataset.
583

584 Azora and *G. sulphuraria* YNP5578.1 (as well as *G. sulphuraria* 5572). A gene that was
585 encoded and maintained since LECA, was lost independently in 6/8 species within the past
586 few million years.

587

588 **The seventy percent rule**

589 In their analysis regarding eukaryotic HGT [13], Ku and co-authors reach the conclusion that
590 prokaryotic homologs of genes in eukaryotic genomes that share >70% PID are not found
591 outside individual genome assemblies (unless derived from endosymbiotic gene transfer,
592 EGT). Hence, they are assembly artifacts. We analyzed whether our dataset supports this rule,
593 or alternatively, it is arbitrary and a byproduct of the analysis approach used, combined with
594 low eukaryotic sampling [14, 15]. In addition to the 96 OGs potentially acquired through
595 HGT, 2,134 of the 9,075 total OGs contained non-eukaryotic sequences, in which the
596 Cyanidiales sequences cluster within the eukaryotic kingdom, but are similar enough to non-
597 eukaryotic species to produce blast hits. Based on the average PID, no OG contains HGT
598 candidates that share over 70% PID to their non-eukaryotic donors with OG0006191 having
599 the highest average PID (69.68%). However, 5/96 HGT-impacted OGs contain one or more
600 individual HGT candidates that exceed this threshold (5.2% of the HGT OGs) (**Figure 6A**).
601 These sequences are found in OG0001929 (75.56% PID, 11 *Galdieria* species), OG0002676
602 (75.76% PID, 11 *Galdieria* species), OG0006191 (80.00% PID, both *Cyanidioschyzon*
603 species), OG0008680 (72.37% PID, 1 *Galdieria* species), and OG0008822 (71.17% PID, 1
604 *Galdieria* species). Moreover, we find 73 OGs with eukaryotes as sisters sharing over 70%
605 PID to non-eukaryotic sequences (0.8% of the native OGs) (**Figure 6A**). On closer inspection,
606 the majority are derived from endosymbiotic gene transfer (EGT): 16/73 of the OGs are of
607 proteobacterial descent and 33/73 OGs are phylogenies with gene origin in Cyanobacteria
608 and/or Chlamydia. These annotations generally encompass mitochondrial/plastid components
609 and reactions, as well as components of the phycobilisome, which is exclusive to
610 Cyanobacteria, red algae, and red algal derived plastids. Of the remaining 24 OGs, 18 cannot
611 be explained through EGT or artifacts alone unless multiple eukaryotic genomes would share
612 the same artifact (and also assuming all gene transfers from Cyanobacteria, Chlamydia, and
613 Proteobacteria are derived from EGT). A total of 6 /24 OGs are clearly cases of contamination
614 within the eukaryotic assemblies. Although “the 70% rule” captures a large proportion of the
615 dataset, increasing the sampling resolution within eukaryotes increased the number of
616 exceptions to the rule. This number is likely to increase as more high-quality eukaryote
617 nuclear genomes are determined. Considering the paucity of these data across the eukaryotic

618 tree of life and the rarity of eukaryotic HGT, the systematic dismissal of eukaryotic singletons
619 located within non-eukaryotic branches as assembly/annotation artifacts (or contamination)
620 may come at the cost of removing true positives.

621

622 **Cumulative Effects**

623 We assessed our dataset for evidence of cumulative effects within the candidate HGT-derived
624 OGs. If cumulative effects were present, then recent HGT candidates would share higher
625 similarity to their non-eukaryotic ancestors than genes resulting from more ancient HGT.
626 Hence, the fewer species that are present in an OG, the higher likelihood of a recent HGT
627 (unless the tree branching pattern contradicts this hypothesis, such as in OG 0005224, which
628 is limited to 3 *Galdieria* species, but is ancient due to its presence in *G. sulphuraria* and *G.*
629 *phlegrea*). In the case of DL, no cumulative effects as well as no differences between the
630 HGT and native dataset are expected because the PID between eukaryotes and non-eukaryotes
631 is irrelevant to this issue because all genes are native and occurred in the LECA. According to
632 DL, the monophyletic position of Cyanidiales HGT candidates with non-eukaryotes is
633 determined by the absence of other eukaryotic orthologs (given the limited current data) and
634 may be the product of deep branching effects.

635 First, we tested for general differences in PID with regard to non-eukaryotic sequences
636 between the native and HGT datasets (**Figure 6B**). Neither the PID with non-eukaryotic
637 species in the same OG for the native dataset, nor the PID with potential non-eukaryotic
638 donors in the same OG for the HGT dataset was normally distributed (Shapiro-Wilk
639 normality test, $p = 2.2\text{e-}16/0.00765$). Consequently, exploratory analysis was performed using
640 non-parametric testing. On average, the PID with non-eukaryotic species in OGs containing
641 HGT candidates is higher by 6.1% in comparison to OGs with eukaryotic descent. This
642 difference is significant (Wilcoxon rank-sum test, $p = 0.000008$).

643 Second, we assessed if OGs containing fewer *Galdieria* species would have a higher
644 PID with their potential non-eukaryotic donors in the HGT dataset. We expected a lack of
645 correlation with OG size in the native dataset because the presence/absence pattern of HGT
646 candidates within the *Galdieria* lineage is dictated by gene erosion and thus independent of
647 which non-eukaryotic sequences also cluster in the same phylogeny. Jonckheere's test for
648 trends revealed a significant trend within the native subset: the fewer *Galdieria* species that
649 are contained in one OG, the higher the average PID with non-eukaryotic species in the same
650 tree (Jonckheere-Terpstra, $p = 0.002$). This was not the case in the "HGT" subset. Here, no
651 general trend was observed (Jonckheere-Terpstra, $p = 0.424$).

652 Third, we compared the PID between HGT-impacted OGs and native OGs of the same
653 size (OGs containing the same number of *Galdieria* species). This analysis revealed a
654 significantly higher PID with non-eukaryotic sequences in favor of the HGT subset in OGs
655 containing either one *Galdieria* sequence, or all eleven *Galdieria* sequences (Wilcoxon rank-
656 sum test, Benjamini-Hochberg, $p = 2.52\text{e-}08$ | $3.39\text{e-}03$) (**Figure 6D**). Hence, the “most
657 recent” and “most complete ancient” HGT candidates share the highest identity with their
658 non-eukaryotic donors, which is also significantly higher when compared to native genes in
659 OGs of the same size.

660

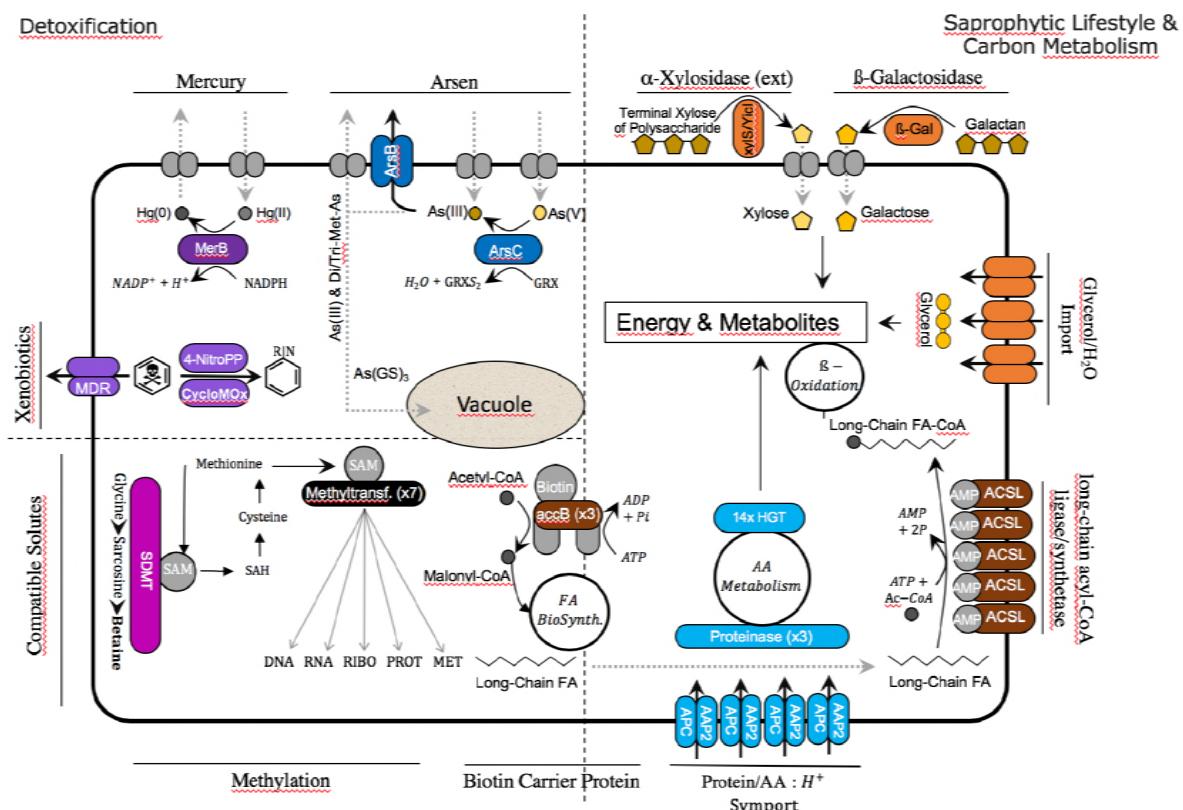
661 **Potential HGT donors share the same habitats with Cyanidiales**

662 To identify the potential sources of HGT, we counted the frequency at which any non-
663 eukaryotic species shared monophyly with Cyanidiales (**Table 2**). A total of 568 non-
664 eukaryotic species (19 Archaea, 549 Bacteria), from 365 different genera representing 24
665 divisions share monophyly with the 96 OGs containing HGT candidates. The most prominent
666 source of HGT are Proteobacteria that are sister phyla to 53/96 OGs. This group is followed
667 by Firmicutes (28), Actinobacteria (19), Chloroflexi (12), and Bacteroidetes/Chlorobi (10).
668 The only frequently occurring Archaeal donors were the Euryarchaeota, which may be the
669 potential source of HGT in 6 OGs. Because the Cyanidiales are extremophiles, we
670 hypothesized that potential non-eukaryotic HGT donors might share similar habitats because
671 proximity is thought to favor HGT. We evaluated the habitats of the most frequently
672 identified HGT donors. The most prominent was *Sulfbacillus thermosulfidooxidans*
673 (Firmicutes), a mixotrophic, acidophilic (pH 2.0) and moderately thermophilic (45°C)

674

675 **Table 2 (below)** – List of the most recurring potential non-eukaryotic HGT donors. Numbers in brackets
676 represent how many times HGT candidates from Cyanidiales shared monophyly with non-eukaryotic
677 organisms. E.g. Proteobacteria were found in 53/96 of the OG monophylies. **Kingdom**: Taxon at kingdom
678 level. **Species**: Scientific species name. **Habitat**: habitat description of the original sampling site. **pH**: pH
679 of the original sampling site. **Temp**: Temperature in Celsius of the sampling site. **Salt**: Ion concentration of
680 the original sampling site. **na**: no information available.

Kingdom	Phylogeny		Natural habitat of potential HGT donor				
	Division	Species	Habitat description	pH	Max. Temp	Salt	
Bacteria		<i>Acidithiobacillus thiooxidans</i> (4)	Mine drainage/Mineral ores	2.0 - 2.5	30°C	"hypersaline"	
		<i>Carmimonas nigricans</i> (4)	Raw cured meat	3	35°C	8% NaCl	
		<i>Methylosarcina fibrata</i> (4)	Landfill	5 - 9	37°C	1% NaCl	
		<i>Sphingomonas phyllosphearae</i> (3)	Phyllosphere of Acacia caven	na	28°C	na	
		<i>Gluconacetobacter diazotrophicus</i> (3)	Symbiont of various plant species	2 - 6	na	"high salt"	
		<i>Gluconobacter frateurii</i> (3)	na	na	na	na	
		<i>Luteibacter yeojuensis</i> (3)	River	na	na	na	
		<i>Thioalkalivibrio sulfidiphilus</i> (3)	Soda lake	8 - 10.5	40°C	15% total salts	
		<i>Thiomonas arsenitoxydans</i> (3)	Disused mine site	3 - 8	30°C	"halophilic"	
		<i>Sulfobacillus thermosulfidooxidans</i> (6)	Copper mining	2 - 2.5	45°C	"salt tolerant"	
Firmicutes (28)		<i>Alicyclobacillus acidoterrestris</i> (4)	Soil sample	2 - 6	53°C	5% NaCl	
		<i>Gracilibacillus facialis</i> (3)	Salt lake	7.2-7.6	50°C	25% total salts	
		<i>Actinobacteria</i> (19)	<i>Amycolatopsis halophila</i> (3)	Salt lake	6 - 8	45°C	15% NaCl
		<i>Rubrobacter xylanophilus</i> (3)	Thermal industrial runoff	6 - 8	60°C	6.0% NaCl	
		<i>Chloroflexi</i> (12)	<i>Caldilinea aerophila</i> (4)	Thermophilic granular sludge	6 - 8	65°C	3% NaCl
		<i>Ardentibacter maritima</i> (3)	Coastal hydrothermal field	5.5 - 8.0	70°C	6% NaCl	
		<i>Ktedonobacter racemifer</i> (3)	Soil sample	4.8 - 6.8	33°C	> 3% NaCl	
		<i>Bacteroidetes Chlorobi</i> (10)	<i>Salinibacter ruber</i> (4)	Saltern crystallizer ponds	6.5 - 8	52°C	30% total salts
		<i>Salisaeta longa</i> (3)	Experimental mesocosm (Salt)	6.5-8.5	46°C	20% NaCl	
		<i>Nitrospirae</i> (7)	<i>Leptospirillum ferriphilum</i> (4)	Arsenopyrite biooxidation tank	0 - 3	40°C	2% NaCl
681	682	<i>Fibrobacteres</i> (6)	<i>Acidobacteriaceae bacterium TAA166</i> (3)	na	na	na	
		<i>Deinococcus</i> (5)	<i>Truepera radiovictrix</i> (3)	Hot spring runoffs	7.5 - 9.5	na	6% NaCl
		Archaea	<i>Euryarchaeota</i> (6)	<i>Ferroplasma acidarmanus</i> (3)	Acid mine drainage	0 - 2.5	40°C


683 bacterium that was isolated from acid mining environments in northern Chile (where
 684 *Galdieria* is also present). *Sulfobacillus thermosulfidooxidans* shares monophyly in 6/96
 685 HGT-derived OGs and is followed in frequency by several species that are either
 686 thermophiles, acidophiles, or halophiles and share habitats common with Cyanidiales (**Table**
 687 **2**).

688

689 **Functions of horizontally acquired genes in Cyanidiales**

690 We analyzed the putative molecular functions and processes acquired through HGT.
 691 Annotations were curated using information gathered from blast, GO-terms, PFAM, KEGG,
 692 and EC. A total of 72 GO annotations occurred more than once within the 96 HGT-impacted
 693 OGs. Furthermore, 37/72 GO annotations are significantly enriched (categorical data,
 694 "native" vs "HGT", Fisher's exact test, Benjamini-Hochberg, $p \leq 0.05$). The most frequent
 695 terms were: "decanoate-CoA ligase activity" (5/72 GOs, $p = 0$), "oxidation-reduction process"
 696 (16/72 GOs, $p = 0.001$), "transferase activity" (14/72 GOs, $p = 0.009$), "carbohydrate
 697 metabolic process" (5/72 GOs, $p = 0.01$), "oxidoreductase activity" (9/72 GOs, $p = 0.012$),
 698 "methylation" (6/72 GOs, $p = 0.013$), "methyltransferase activity" (5/72 GOs, $p = 0.023$),
 699 "transmembrane transporter activity" (4/72 GOs, $p = 0.043$), and "hydrolase activity" (9/72
 700 GOs, $p = 0.048$). In comparison to previous studies, our analysis did not report a significant
 701 enrichment of membrane proteins in the HGT dataset ("membrane", 11/72 OGs, $p = 0.699$;
 702 "integral component of membrane", 22/72 GOs, $p = 0.416$. The GO annotation "extracellular
 703 region" was absent in the HGT dataset) [22]. As such, we report a strong bias for metabolic
 704 functions among HGT candidates (**Figure 7**).

705

Figure 7 – Cyanidiales live in hostile habitats, necessitating a broad range of adaptations to polyextremophily. The majority of the 96 HGT-impacted OGs were annotated and putative functions identified (in the image, colored fields are from HGT, whereas gray fields are native functions). The largest number of HGT candidates is involved in carbon and amino acid metabolism, especially in the *Galdieria* lineage. The excretion of lytic enzymes and the high number of importers (protein/AA symporter, glycerol/H₂O symporter) within the HGT dataset suggest a preference for import and catabolic function.

Metal and xenobiotic resistance/detoxification

Geothermal environments often contain high arsenic (Ar) concentrations, up to a several g/L as well as high levels of mercury (Hg), such as > 200 g/g in soils of the Norris Geyser Basin (Yellowstone National Park) and volcanic waters in southern Italy [78, 79], both known Cyanidiales habitats [16, 29, 80, 81]. Studies with *G. sulphuraria* have shown an increased efficiency and speed regarding the biotransformation of HgCl₂ compared to eukaryotic algae [82]. Orthologs of OG0002305, which are present in all 13 Cyanidiales genomes, encode mercuric reductase that catalyzes the critical step in Hg²⁺ detoxification, converting cytotoxic Hg²⁺ into the less toxic metallic mercury, Hg⁰. Arsenate (As(V)) is imported into the cell by high-affinity P_i transport systems [83, 84], whereas aquaporins regulate arsenite (As(III)) uptake [85]. *Galdieria* and *Cyanidioschyzon* possess a eukaryotic gene-set for the chemical detoxification and extrusion of As through biotransformation and direct efflux [22]. Arsenic tolerance was expanded in the *Galdieria* lineage through the acquisition (OG0001513) of a bacterial *arsC* gene, thus enabling the reduction of As(V) to As(III) using thioredoxin as the electron acceptor. It is known that As(III) can be converted into volatile dimethylarsine and

728 trimethylarsine through a series of reactions, exported, or transported to the vacuole in
729 conjugation with glutathione. Two separate acquisitions of a transporter annotated as ArsB
730 are present in *G. sulphuraria* RT22 and *G. sulphuraria* 5572 (OG0006498, OG0006670), as
731 well as a putative cytoplasmic heavy metal binding protein (OG0006191) in the
732 *Cyanidioschyzon* lineage.

733 In the context of xenobiotic detoxification, we found an aliphatic nitrilase
734 (OG0001760) involved in styrene degradation and three (OG0003250, OG0005087,
735 OG0005479) *Galdieria* specific 4-nitrophenylphosphatases likely involved in the
736 bioremediation of highly toxic hexachlorocyclohexane (HCH) [86], or more generally other
737 cyclohexyl compounds, such as cyclohexylamine. In this case, bioremediation can be
738 achieved through the hydrolysis of 4-nitrophenol to 4-nitrophenyl phosphate coupled with
739 phosphoesterase/metallophosphatase activity. The resulting cyclohexyl compounds serve as
740 multifunctional intermediates in the biosynthesis of various heterocyclic and aromatic
741 metabolites. A similar function in the *Cyanidioschyzon* lineage could be taken up by
742 OG0006252, a cyclohexanone monooxygenase [87] oxidizing phenylacetone to benzyl
743 acetate that can also oxidize various aromatic ketones, aliphatic ketones (e.g., dodecan- 2-one)
744 and sulfides (e.g., 1-methyl-4-(methylsulfanyl)benzene). In this context, a probable
745 multidrug-resistance/quaternary ammonium compound exporter (OG0002896), which is
746 present in all Cyanidiales, may control relevant efflux functions whereas a
747 phosphatidylethanolamine (penicillin?) binding protein (OG0004486) could increase the
748 stability of altered peptidoglycan cell walls. If these annotations are correct, then *Galdieria* is
749 an even more promising target for industrial bioremediation applications than previously
750 thought [88, 89].

751

752 *Cellular oxidant reduction*

753 Increased temperature leads to a higher metabolic rate and an increase in the production of
754 endogenous free radicals (FR), such as reactive oxygen species (ROS) and reactive nitrogen
755 species (RNS), for example during cellular respiration [90]. Furthermore, heavy metals such
756 as lead and mercury, as well as halogens (fluorine, chlorine, bromine, iodine) stimulate
757 formation of FR [91]. FR are highly biohazard and cause damage to lipids [92], proteins [93]
758 and DNA [94]. In the case of the superoxide radical ($\bullet\text{O}_2^-$), enzymes such as superoxide
759 dismutase enhance the conversion of $2 \times \bullet\text{O}_2^-$, into hydrogen peroxide (H_2O_2) which is in turn
760 reduced to H_2O through the glutathione-ascorbate cycle. Other toxic hydroperoxides (R-
761 OOH) can be decomposed various peroxidases to H_2O and alcohols (R-OH) at the cost of

762 oxidizing the enzyme, which is later recycled (re-reduced) through oxidation of thioredoxin
763 [95]. The glutathione and thioredoxin pools and their related enzymes are thus factors
764 contributing to a successful adaptation to geothermal environments. Here, we found a
765 cytosolic and/or extracellular peroxiredoxin-6 (OG0005984) specific to the *Cyanidioschyzon*
766 lineage and two peroxidase-related enzymes (probable alkyl hydroperoxide reductases acting
767 on carboxymuconolactone) in the *Galdieria* lineage (OG0004203, OG0004392) [96]. In
768 addition, a thioredoxin oxidoreductase related to alkyl hydroperoxide reductases
769 (OG0001486) as well as a putative glutathione-specific gamma-glutamylcyclotransferase 2
770 (OG0003929) are present in all Cyanidiales. The latter has been experimentally linked to the
771 process of heavy metal detoxification in *Arabidopsis thaliana* [97].
772

773 **Carbon Metabolism**

774 *Galdieria sulphuraria* is able to grow heterotrophically using a large variety of different
775 carbon sources and compounds released from dying cells [98, 99]. In contrast, *C. merolae* is
776 strictly photoautotrophic [100]. *G. sulphuraria* can be maintained on glycerol as the sole
777 carbon source [98] making use of a family of glycerol uptake transporters likely acquired via
778 HGT [22]. We confirm the lateral acquisition of glycerol transporters in *G. sulphuraria* RT22
779 (OG0006482), *G. sulphuraria* Azora and *G. sulphuraria* SAG21 (OG0005235). The putative
780 HGT glycerol transporters found in *G. sulphuraria* 074W did not meet the required threshold
781 of two Cyanidiales sequences (from different strains) in one OG. In addition, another MIP
782 family aquaporin, permeable to H₂O, glycerol and other small uncharged molecules [101] is
783 encoded by *G. sulphuraria* Azora (OG0007123). This could be an indication of a very diverse
784 horizontal acquisition pattern regarding transporters. OG0003954 is the only exception to this
785 rule, because it is present in all *Galdieria* lineages and is orthologous to AcpA|SatP acetate
786 permeases involved with the uptake of acetate and succinate [102, 103].

787 We found evidence of saprophytic adaptations in *Galdieria* through the potential
788 horizontal acquisition of an extracellular beta-galactosidase enzyme [104, 105]. This enzyme
789 contains all five bacterial beta-galactosidase domains (OG0003441) involved in the
790 catabolism of glycosaminoglycans, a polysaccharide deacetylase/peptidoglycan-N-
791 acetylglucosamine deacetylase (OG0004030) acting on glucosidic (but note peptide bonds)
792 that may degrade chitooligosaccharides, chitin, and/or xylan [106, 107] as well as an α -
793 amylase (OG0004658) converting starch/glycogen to dextrin/maltose [108] which is missing
794 only in *G. sulphuraria* SAG21. All other HGT OGs involved in sugar metabolism are
795 involved in the intercellular breakdown and interconversions of sugar carbohydrates.

796 OG0006623 contains a non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase
797 found in hyperthermophile archaea [109] (*G. sulphuraria* 002). The OG0005153 encodes a
798 glycosyl transferase family 1 protein involved in carbon metabolism (*G. sulphuraria* 074W,
799 *G. sulphuraria* MS1, *G. sulphuraria* RT22, *G. sulphuraria* YNP5587.1). All *Galdieria* have
800 an alpha-xylosidase resembling an extremely thermo-active and thermostable α -galactosidase
801 (OG0001542) [110, 111]. The only horizontal acquisition in this category present in all
802 Cyanidiales is a cytoplasmic ribokinase involved in the D-ribose catabolic process
803 (OG0001613).

804 The irreversible synthesis of malonyl-CoA from acetyl-CoA through acetyl-CoA
805 carboxylase (ACCase) is the rate limiting and step in fatty acid biosynthesis. The bacterial
806 ACCase complex consists of three separate subunits, whereas the eukaryotic ACCase is
807 composed of a single multifunctional protein. Plants contain both ACCase isozymes. The
808 eukaryotic enzyme is located in the cytosol and a bacterial-type enzyme consisting of four
809 subunits is plastid localized. Three of the HGT orthogroups (OG0002051, OG0007550 and
810 OG0007551) were annotated as bacterial biotin carboxyl carrier proteins (AbbB/BCCP),
811 which carry biotin and carboxybiotin during the critical and highly regulated carboxylation of
812 acetyl-CoA to form malonyl-CoA [ATP + Acetyl-CoA + HCO³⁻ \rightleftharpoons ADP + Orthophosphate +
813 Malonyl-CoA]. Whereas OG0002051 is present in all Cyanidiales and located in the
814 cytoplasm, OG0007550 and OG0007551 are unique to *C. merolae* Soos and annotated as
815 “chloroplastic”. Prior to fatty acid (FA) beta-oxidation, FAs need to be transformed to a FA-
816 CoA before entering cellular metabolism as an exogenous or endogenous carbon source
817 (eicosanoid metabolism is the exception). This process is initiated by long-chain-fatty-acid-
818 CoA ligases/acyl-CoA synthetases (ACSL) [112][ATP + long-chain carboxylate + CoA \rightleftharpoons
819 AMP + diphosphate + Acyl-CoA]. Five general non-eukaryotic ACSL candidates were found
820 (OG0001476, OG0002999, OG0005540, OG0008579, OG0008822). Only OG0001476 is
821 present in all species, whereas OG0002999 is present in all *Galdieria*, OG0005540 in *G.*
822 *sulphuraria* 074W and *G. sulphuraria* MS1, and OG0008579 and OG0008822 are unique to
823 *G. phlegrea* DBV009. The GO annotation suggests moderate specificity to decanoate-CoA.
824 However, OG0002999 also indicates involvement in the metabolism of linoleic acid, a
825 C₁₈H₃₂O₂ polyunsaturated acid found in plant glycosides. ACSL enzymes share significant
826 sequence identity but show partially overlapping substrate preferences in terms of length and
827 saturation as well as unique transcription patterns. Furthermore, ACSL proteins play a role in
828 channeling FA degradation to various pathways, as well as enhancing FA uptake and FA
829 cellular retention. Although an annotation of the different ACSL to their specific functions

830 was not possible, their involvement in the saprophytic adaptation of *Cyanidioschyzon* and
831 especially *Galdieria* appears to be plausible.

832

833 ***Amino Acid Metabolism***

834 Oxidation of amino acids (AA) can be used as an energy source. Once AAs are deaminated,
835 the resulting α -ketoacids (“carbon backbone”) can be used in the tricarboxylic acid cycle for
836 energy generation, whereas the remaining NH_4^+ can be used for the biosynthesis of novel
837 AAs, nucleotides, and ammonium containing compounds, or dissipated through the urea
838 cycle. In this context, we confirm previous observations regarding a horizontal origin of the
839 urease accessory protein UreE (OG0003777) present in the *Galdieria* lineage [23] (the other
840 urease genes reported in *G. phlegrea* DBV009 appear to be unique to this species and were
841 thus removed from this analysis as singletons; e.g., *ureG*, OG0008984). AAs are continuously
842 synthesized, interconverted, and degraded using a complex network of balanced enzymatic
843 reactions (e.g., peptidases, lyases, transferases, isomerases). Plants maintain a functioning AA
844 catabolism that is primarily used for the interconversion of metabolites because
845 photosynthesis is the primary source of energy. The Cyanidiales, and particularly the
846 *Galdieria* lineage is known for its heterotrophic lifestyle. We assigned 19/96 HGT-impacted
847 OGs to this category. In this context, horizontal acquisition of protein|AA:proton symporter
848 AA permeases (OG0001658, OG0005224, OG0005596, OG0007051) may be the first
849 indication of adaptation to a heterotrophic lifestyle in *Galdieria*. Once a protein is imported,
850 peptidases cleave single AAs by hydrolyzing the peptide bonds. Although no AA permeases
851 were found in the *Cyanidioschyzon* lineage, a cytoplasmic threonine-type endopeptidase
852 (OG0001994) and a cytosolic proline iminopeptidase involved in arginine and proline
853 metabolism (OG0006143) were potentially acquired through HGT. At the same time, the
854 *Galdieria* lineage acquired a Clp protease (OG0007596). The remaining HGT candidates are
855 involved in various amino acid metabolic pathways. The first subset is shared by all
856 Cyanidiales, such as a cytoplasmic imidazoleglycerol-phosphate synthase involved in the
857 biosynthetic process of histidine (OG0002036), a phosphoribosyltransferase involved in
858 phenylalanine/tryptophan/tyrosine biosynthesis (OG0001509) and a peptydilproline peptidyl-
859 prolyl cis-trans isomerase acting on proline (OG0001938) [113]. The second subset is specific
860 to the *Cyanidium* lineage. It contains a glutamine/leucine/phenylalanine/valine dehydrogenase
861 (OG0006136) [114], a glutamine cyclotransferase (OG0006251) [115], a cytidine deaminase
862 (OG0003539) as well as an adenine deaminase (OG0005683) and a protein binding hydrolase
863 containing a NUDIX domain (OG0005694). The third subset is specific to the *Galdieria*

864 lineage and contains an ornithine deaminase, a glutaryl-CoA dehydrogenase (OG0007383)
865 involved in the oxidation of lysine, tryptophan, and hydroxylysine [116], as well as an
866 ornithine cyclodeaminase (OG0004258) involved in arginine and/or proline metabolism.
867 Finally, a lysine decarboxylase (OG0007346), a bifunctional ornithine acetyltransferase/N-
868 acetylglutamate synthase [117] involved in the arginine biosynthesis (OG0008898) and an
869 aminoacetone oxidase family FAD-binding enzyme (OG0007383), probably catalytic activity
870 against several different L-amino acids were found as unique acquisitions in *G. sulphuraria*
871 SAG21, *G. phlegrea* DBV009 and *G. sulphuraria* YNP5578.1 respectively.
872

873 ***One Carbon Metabolism and Methylation***

874 One-carbon (1C) metabolism based on folate describes a broad set of reactions involved in the
875 activation and transfer C1 units in various processes including the synthesis of purine,
876 thymidine, methionine, and homocysteine re-methylation. C1 units can be mobilized using
877 tetrahydrofolate (THF) as a cofactor in enzymatic reactions, vitamin B12 (cobalamin) as a co-
878 enzyme in methylation/rearrangement reactions and S-adenosylmethionine (SAM) [118]. In
879 terms of purine biosynthesis, OG0005280 encodes an ortholog of a bacterial FAD-dependent
880 thymidylate (dTMP) synthase converting dUMP to dTMP by oxidizing THF present in *G.*
881 *sulphuraria* 074W, *G. sulphuraria* MS1, and *G. sulphuraria* RT22. In terms of vitamin B12
882 biosynthesis, an ortholog of the cobalamin biosynthesis protein CobW was found in the
883 *Cyanidioschyzon* lineage (OG0002609). Much of the methionine generated through C1
884 metabolism is converted to SAM, the second most abundant cofactor after ATP, which is a
885 universal donor of methyl (-CH₃) groups in the synthesis and modification of DNA, RNA,
886 hormones, neurotransmitters, membrane lipids, proteins and also play a central role in
887 epigenetics and posttranslational modifications. Within the 96 HGT-impacted dataset we
888 found a total of 9 methyltransferases (OG0003901, OG0003905, OG0002191, OG0002431,
889 OG0002727, OG0003907, OG0005083 and OG0005561) with diverse functions, 8 of which
890 are SAM-dependent methyltransferases. OG0002431 (Cyanidiales), OG0005561 (*G.*
891 *sulphuraria* MS1 and *G. phlegrea* DBV009) and OG0005083 (*G. sulphuraria* SAG21)
892 encompass rather unspecific SAM-dependent methyltransferases with a broad range of
893 possible methylation targets. OG0002727, which is exclusive to *Cyanidioschyzon*, and
894 OG0002191, which is exclusive to *Galdieria*, both methylate rRNA. OG0002727 belongs to
895 the Erm rRNA methyltransferase family that methylate adenine on 23S ribosomal RNA [119].
896 Whether it confers macrolide-lincosamide-streptogramin (MLS) resistance, or shares only

897 adenine methylating properties remains unclear. The OG0002191 is a 16S rRNA
898 (cytidine1402-2'-O)-methyltransferase involved the modulation of translational fidelity [120].
899

900 ***Osmotic resistance and salt tolerance***

901 Cyanidiales withstand salt concentrations up to 10% NaCl [121]. The two main strategies to
902 prevent the accumulation of cytotoxic salt concentrations and to withstand low water potential
903 are the active removal of salt from the cytosol and the production of compatible solutes.
904 Compatible solutes are small metabolites that can accumulate to very high concentrations in
905 the cytosol without negatively affecting vital cell functions while keeping the water potential
906 more negative in relation to the saline environment, thereby avoiding loss of water. The *G.*
907 *sulphuraria* lineage produces glycine/betaine as compatible solutes under salt stress in the
908 same manner as halophilic bacteria [122] through the successive methylation of glycine via
909 sarcosine and dimethylglycine to yield betaine using S-adenosyl methionine (SAM) as a
910 cofactor [123-125]. This reaction is catalyzed by the enzyme sarcosine dimethylglycine
911 methyltransferase (SDMT), which has already been characterized in *Galdieria* [126]. Our
912 results corroborate the HGT origin of this gene, supporting two separate acquisitions of this
913 function (OG0003901, OG0003905). In this context, a inositol 2-dehydrogenase possibly
914 involved in osmoprotective functions [127] in *G. phlegrea* DBV009 was also found in the
915 HGT dataset (OG0008335).

916

917 ***Non-Metabolic functions***

918 Outside the context of HGT involving enzymes that perform metabolism related functions, we
919 found 6/96 OGs that are annotated as transcription factors, ribosomal components, rRNA, or
920 fulfilling functions not directly involved in metabolic fluxes. Specifically, two OGs associated
921 with the bacterial 30S ribosomal subunit were found, whereas OG0002627 (*Galdieria*) is
922 orthologous to the tRNA binding translation initiation factor eIF1a which binds the fMet-
923 tRNA(fMet) start site to the ribosomal 30S subunit and defines the reading frame for mRNA
924 translation [128], and OG0004339 (*Galdieria*) encodes the S4 structural component of the
925 S30 subunit. Three genes functioning as regulators were found in *Cyanidioschyzon*, a low
926 molecular weight phosphotyrosine protein phosphatase with an unknown regulator function
927 (OG0002785), a SfsA nuclease [129], similar to the sugar fermentation stimulation protein A
928 and (OG0002871) a MRP family multidrug resistance transporter connected to parA plasmid
929 partition protein, or generally involved in chromosome partitioning (mrp). Additionally, we
930 found a *Cyanidioschyzon*-specific RuvX ortholog (OG0002578) involved in chromosomal

931 crossovers with endonucleolytic activity [130] as well as a likely Hsp20 heat shock protein
932 ortholog (OG0004102) unique to the *Galdieria* lineage.

933

934 ***Various functions and uncertain annotations***

935 The remaining OGs were annotated with a broad variety of functions. For example,
936 OG0001929, OG0001810, OG0004405, and OG0001087 are possibly connected to the
937 metabolism of cell wall precursors and components and OG0001929 (*Galdieria*) is an
938 isomerizing glutamine-fructose-6-phosphate transaminase most likely involved in regulating
939 the availability of precursors for N- and O-linked glycosylation of proteins, such as for
940 peptidoglycan. In contrast, OG0004405 (*Cyanidioschyzon*) synthesizes exopolysaccharides on
941 the plasma membrane and OG0001087 (*Cyanidiales*) and OG0001810 (*Cyanidioschyzon*) are
942 putative undecaprenyl transferases (UPP) which function as lipid carrier for glycosyl transfer
943 in the biosynthesis of cell wall polysaccharide components in bacteria [131]. The OGs
944 OG0002483 and OG0001955 are involved in purine nucleobase metabolic processes,
945 probably in cAMP biosynthesis [132] and IMP biosynthesis [133]. A *Cyanidioschyzon*
946 specific 9,15,9'-tri-cis-zeta-carotene isomerase (OG0002574) may be involved in the
947 biosynthesis of carotene [134]. Two of the 96 HGT OGs obtained the tag “hypothetical
948 protein” and could not be further annotated. Others had non-specific annotations, such as
949 “selenium binding protein” (OG0003856) or contained conflicting annotations.

950

951 **Discussion**

952 Making an argument for the importance of HGT in eukaryote (specifically, *Cyanidiales*)
953 evolution, as we do here, requires that three major issues are addressed: a mechanism for
954 foreign gene uptake and integration, the apparent absence of eukaryotic pan-genomes, and the
955 lack of evidence for cumulative effects [12]. The latter two arguments are dealt with below
956 but the first concern no longer exists. For example, recent work has shown that red algae
957 harbor naturally occurring plasmids, regions of which are integrated into the plastid DNA of a
958 taxonomically wide array of species [135]. Genetic transformation of the unicellular red alga
959 *Porphyridium purpureum* has demonstrated that introduced plasmids accumulate episomally
960 in the nucleus and are recognized and replicated by the eukaryotic DNA synthesis machinery
961 [136]. These results suggest that a connection can be made between the observation of
962 bacterium-derived HGTs in *P. purpureum* [34] and a putative mechanism of bacterial gene
963 origin *via* long-term plasmid maintenance. Other proposed mechanisms for the uptake and

964 integration of foreign DNA in eukaryotes are well-studied, observed in nature, and can be
965 successfully recreated in the lab [15, 136].

966

967 *HGT- the eukaryotic pan-genome*

968 Eukaryotic HGT is rare and affected by gene erosion. Within the 13 analyzed genomes of the
969 polyextremophilic Cyanidiales [35, 36], we identified and annotated 96 OGs containing 641
970 single HGT candidates. Given an approximate age of 1,400 Ma years and ignoring gene
971 erosion, on average, one HGT event occurs every 14.6 Ma years in Cyanidiales. This figure
972 ranges from one HGT every 33.3 Ma years in *Cyanidioschyzon* and one HGT every 13.3 Ma
973 in *Galdieria*. Still, one may ask, given that eukaryotic HGT exists, what comprises the
974 eukaryotic pan-genome and why does it not increase in size as a function of time due to HGT
975 accumulation? In response, it should be noted that evolution is “blind” to the sources of genes
976 and selection does not act upon native genes in a manner different from those derived from
977 HGT. In our study, we report examples of genes derived from HGT that are affected by gene
978 erosion and/or partial fixation (**Figure 4A**). As such, only 8/96 of the HGT-impacted OGs
979 (8.3%) are encoded by all 13 Cyanidiales species. Looking at the *Galdieria* lineage alone
980 (**Figure 6C**), 28 of the 60 lineage-specific OGs (47.5%) show clear signs of erosion (HGT
981 orthologs are present in ≤ 10 *Galdieria* species), to the point where a single ortholog of an
982 ancient HGT event may remain.

983 When considering HGT in the Cyanidiales it is important to keep in mind the
984 ecological boundaries of this group, the distance between habitats, the species composition of
985 habitats, and the mobility of Cyanidiales within those borders that control HGT. Hence, we
986 would not expect the same HGT candidates derived from the same non-eukaryotic donors to
987 be shared between Cyanidiales and marine/freshwater red algae (unless they predate the split
988 between Cyanidiales and other red algae), but rather between Cyanidiales and other
989 polyextremophilic organisms. In this context, inspection of the habitats and physiology of
990 potential HGT donors revealed that the vast majority is extremophilic and, in some cases,
991 shares the same habitat as Cyanidiales (**Table 2**). A total of 84/96 of the inherited gene
992 functions could be connected to ecologically important traits such as heavy metal
993 detoxification, xenobiotic detoxification, ROS scavenging, and metabolic functions related to
994 carbon, fatty acid, and amino acid turnover. In contrast, only 6/96 OGs are related to
995 methylation and ribosomal functions. We did not find HGTs contributing other traits such as
996 ultrastructure, development, or behavior (**Figure 7**). If cultures were exposed to abiotic stress,
997 the HGT candidates were significantly enriched within the set of differentially expressed

998 genes (**Figure 3**). These results not only provide evidence of successful integration into the
999 transcriptional circuit of the host, but also support an adaptive role of HGT as a mechanism to
1000 acquire beneficial traits. Because eukaryotic HGT is the exception rather than the rule, its
1001 number in eukaryotic genomes does not need to increase as a function of time and may have
1002 reached equilibrium in the distant past between acquisition and erosion.

1003

1004 *HGT vs. DL*

1005 Ignoring the cumulative evidence from this and many other studies, one may still dismiss the
1006 phylogenetic inference as mere assembly artefact and overlook all the significant differences
1007 and trends between native genes and HGT candidates. This could be done by superimposing
1008 vertical inheritance (and thus eukaryotic origin) on all HGT events outside the context of
1009 pathogenicity and endosymbiosis. Under this extreme view, all extant genes would have their
1010 roots in LECA. Consequently, patchy phylogenetic distributions are the result of multiple
1011 putative ancient paralogs existing in the LECA followed by mutation, gene duplication, and
1012 gene loss. Following this line of reasoning, all HGT candidates in the Cyanidiales would be
1013 the product of DL acting on all other eukaryotic species, with the exception of the
1014 Cyanidiales, *Galdieria* and/or *Cyanidioschyzon* (**Figure 5A-C**). However, we found cases
1015 where either *Galdieria* HGT candidates (6 orthogroups), or *Cyanidioschyzon* HGT candidates
1016 (8 orthogroups) show non-eukaryotic origin, whereas the others cluster within the eukaryotic
1017 branch (**Figure 5E-F**). In addition, we find two cases in which *Galdieria* and
1018 *Cyanidioschyzon* HGT candidates are located in different non-eukaryotic branches (**Figure**
1019 **5D**). DL would require LECA to have encoded three paralogs of the same gene, one of which
1020 was retained by *Cyanidioschyzon*, another by *Galdieria*, whereas the third by all other
1021 eukaryotes. The number of required paralogs in the LECA would be further increased when
1022 taking into consideration that some ancient paralogs of LECA may have been eroded in all
1023 eukaryotes and that eukaryote phylogenies are not always monophyletic which would
1024 additionally increase the number of required paralogs in the LECA in order to explain the
1025 current pattern. The strict superimposition of vertical inheritance would thus require a
1026 complex LECA, an issue known as “the genome of Eden”.

1027 Cumulative effects are observed when genes derived from HGT increasingly diverge
1028 as a function of time. Hence, a gradual increase in protein identity towards their non-
1029 eukaryotic donor species is expected the more recent an individual HGT event is. The absence
1030 of cumulative effects in eukaryotic HGT studies has this been used as argument in favor of
1031 strict vertical inheritance followed by DL. Here, we also did not find evidence for cumulative

1032 effects in the HGT dataset. “Recent” HGT events that are exclusive to either the
1033 *Cyanidioschyzon* or *Galdieria* lineage shared 5% higher PID with their potential non-
1034 eukaryotic donors in comparison to ancient HGT candidates that predate the split, but this
1035 difference was not significant (**Figure 4C**). We also tested for cumulative effects between the
1036 number of species contained in orthogroups compared to the percent protein identity shared
1037 with potential non-eukaryotic donors under the assumption that recent HGT events would be
1038 present in fewer species in comparison to ancient HGT events that occurred at the root of
1039 *Galdieria* (**Figure 6D**). Neither a gradual increase in protein identity for potentially recent
1040 HGT events, nor a general trend could be determined. Only orthogroups containing one
1041 *Galdieria* species reported a statistically significant higher protein identity to their potential
1042 non-eukaryotic donors which could be an indication of “most recent” HGT.

1043 What has not been considered thus far, is that the absence of cumulative effects may
1044 speak against HGT, but does not automatically argue in favor of strict vertical inheritance
1045 followed by DL. Here, the null hypothesis would be that no differences exist between HGT
1046 genes and native genes because all genes are descendants of LECA. This null hypothesis is
1047 rejected on multiple levels. At the molecular level, the HGT subset differs significantly from
1048 native genes with respect to various genomic and molecular features (e.g., GC-content,
1049 frequency of multiexonic genes, number of exons per gene, responsiveness to temperature
1050 stress) (**Table 1, Figure 3**). Furthermore, HGT candidates in *Galdieria* are significantly more
1051 similar (6.1% average PID) to their potential non-eukaryotic donors when compared to native
1052 genes and non-eukaryotic sequences in the same orthogroup (**Figure 6B**). This difference
1053 cannot be explained by the absence of eukaryotic orthologs. We also find significant
1054 differences in PID with regard to non-eukaryotic sequences between HGT and native genes in
1055 orthogroups containing either one *Galdieria* sequence, or all eleven *Galdieria* sequences
1056 regarding (**Figure 6D**). Hence, the “most recent” and “most ancient” HGT candidates share
1057 the highest resemblance to their non-eukaryotic donors, which is also significantly higher
1058 when compared to native genes in OGs of the same size. Intriguingly, a general trend towards
1059 “cumulative effects” could be observed for native genes, highlighting the differences between
1060 these two gene sources in Cyanidiales.

1061 Given these results and interpretations, we advocate the following view of eukaryotic
1062 HGT. Specifically, two forces may act simultaneously on HGT candidates in eukaryotes. The
1063 first is strong evolutionary pressure for adaptation of eukaryotic genetic features and
1064 compatibility with native replication and transcriptional mechanisms to ensure integration into
1065 existing metabolic circuits (e.g., codon usage, splice sites, methylation, pH differences in the

1066 cytosol). The second however is that key structural aspects of HGT-derived sequence cannot
1067 be significantly altered by the first process because they ensure function of the transferred
1068 gene (e.g., protein domain conservation, three-dimensional structure, ligand interaction).
1069 Consequently, HGT candidates may suffer more markedly from gene erosion than native
1070 genes due to these countervailing forces, in spite of potentially providing beneficial adaptive
1071 traits. This view suggests that we need to think about eukaryotic HGT in fundamentally
1072 different ways than is the case for prokaryotes, necessitating a taxonomically broad genome-
1073 based approach that is slowly taking hold.

1074 In summary, we do not discount the importance of DL in eukaryotic evolution because
1075 it can impact ca. 99% of the gene inventory in Cyanidiales. What we strongly espouse is that
1076 strict vertical inheritance in combination with DL cannot explain all the data. HGTs in
1077 Cyanidiales are significant because the 1% (values will vary across different eukaryotic
1078 lineages) helps explain the remarkable evolutionary history of these extremophiles. Lastly, we
1079 question the validity of the premise regarding the applicability of cumulative effects in the
1080 prokaryotic sense to eukaryotic HGT. The absence of cumulative effects and a eukaryotic
1081 pan-genome are neither arguments in favor of HGT, nor DL.

1082

1083 **Data Deposit**

1084 The genomic, chloroplast and mitochondrial sequences of the 10 novel genomes, as well as
1085 gene models, ESTs, protein sequences, and gene annotations are available at
1086 <http://porphyra.rutgers.edu>. Raw PacBio RSII reads, and also the genomic, chloroplast and
1087 mitochondrial sequences, have been submitted to the NCBI and are retrievable via BioProject
1088 ID PRJNA512382.

1089

1090 **Disclosures**

1091 The authors have no conflict of interests to declare.

1092

1093 **Acknowledgements**

1094 This work was supported by the Deutsche Forschungsgemeinschaft (EXC 1028 and WE
1095 2231/21-1 to A.P.M.W) and by the Heine Research Academy (A.W.R). We thank Dr. Luke
1096 Tallon and Dr. Bruno Hüttel for the excellent technical assistance for PacBio sequencing. Dr.
1097 Marion Eisenhut for her fantastic Power Point templates. D.C.P and D.B. are grateful to the
1098 New Jersey Agricultural Experiment Station and the Rutgers University School of
1099 Environmental and Biological Sciences Genome Cooperative for supporting this research.

1100 **References**

- 1101 1. Doolittle, W.F., *Lateral genomics*. Trends Cell Biol, 1999. **9**(12): p. M5-8.
- 1102 2. Ochman, H., J.G. Lawrence, and E.A. Groisman, *Lateral gene transfer and the nature*
1103 *of bacterial innovation*. Nature, 2000. **405**(6784): p. 299-304.
- 1104 3. Boucher, Y., et al., *Lateral gene transfer and the origins of prokaryotic groups*. Annu
1105 Rev Genet, 2003. **37**: p. 283-328.
- 1106 4. Nelson-Sathi, S., et al., *Acquisition of 1,000 eubacterial genes physiologically*
1107 *transformed a methanogen at the origin of Haloarchaea*. Proc Natl Acad Sci U S A,
1108 2012. **109**(50): p. 20537-42.
- 1109 5. Tettelin, H., et al., *Genome analysis of multiple pathogenic isolates of Streptococcus*
1110 *agalactiae: implications for the microbial "pan-genome"*. Proc Natl Acad Sci U S A,
1111 2005. **102**(39): p. 13950-5.
- 1112 6. Vernikos, G., et al., *Ten years of pan-genome analyses*. Curr Opin Microbiol, 2015.
1113 **23**: p. 148-54.
- 1114 7. Philippe, H. and C.J. Douady, *Horizontal gene transfer and phylogenetics*. Curr Opin
1115 Microbiol, 2003. **6**(5): p. 498-505.
- 1116 8. Doolittle, W.F. and T.D. Brunet, *What Is the Tree of Life?* PLoS Genet, 2016. **12**(4):
1117 p. e1005912.
- 1118 9. Danchin, E.G., *Lateral gene transfer in eukaryotes: tip of the iceberg or of the ice*
1119 *cube?* BMC Biol, 2016. **14**(1): p. 101.
- 1120 10. Husnik, F. and J.P. McCutcheon, *Functional horizontal gene transfer from bacteria to*
1121 *eukaryotes*. Nat Rev Microbiol, 2018. **16**(2): p. 67-79.
- 1122 11. Martin, W.F., *Eukaryote lateral gene transfer is Lamarckian*. Nat Ecol Evol, 2018.
1123 **2**(5): p. 754.
- 1124 12. Martin, W.F., *Too Much Eukaryote LGT*. Bioessays, 2017. **39**(12).
- 1125 13. Ku, C. and W.F. Martin, *A natural barrier to lateral gene transfer from prokaryotes to*
1126 *eukaryotes revealed from genomes: the 70 % rule*. BMC Biol, 2016. **14**(1): p. 89.
- 1127 14. Richards, T.A. and A. Monier, *A tale of two tardigrades*. Proc Natl Acad Sci U S A,
1128 2016. **113**(18): p. 4892-4.
- 1129 15. Leger, M.M., et al., *Demystifying Eukaryote Lateral Gene Transfer (Response to*
1130 *Martin 2017 DOI: 10.1002/bies.201700115*). Bioessays, 2018. **40**(5): p. e1700242.
- 1131 16. Castenholz, R.W. and T.R. McDermott, *The Cyanidiales: ecology, biodiversity, and*
1132 *biogeography*, in *Red Algae in the Genomic Age*. 2010, Springer. p. 357-371.
- 1133 17. Yoon, H.S., et al., *A molecular timeline for the origin of photosynthetic eukaryotes*.
1134 Mol Biol Evol, 2004. **21**(5): p. 809-18.
- 1135 18. Reyes-Prieto, A., A.P. Weber, and D. Bhattacharya, *The origin and establishment of*
1136 *the plastid in algae and plants*. Annu Rev Genet, 2007. **41**: p. 147-68.
- 1137 19. Price, D.C., et al., *Cyanophora paradoxa genome elucidates origin of photosynthesis*
1138 *in algae and plants*. Science, 2012. **335**(6070): p. 843-7.
- 1139 20. Matsuzaki, M., et al., *Genome sequence of the ultrasmall unicellular red alga*
1140 *Cyanidioschyzon merolae 10D*. Nature, 2004. **428**(6983): p. 653-7.
- 1141 21. Nozaki, H., et al., *A 100%-complete sequence reveals unusually simple genomic*
1142 *features in the hot-spring red alga Cyanidioschyzon merolae*. BMC Biol, 2007. **5**: p.
1143 28.
- 1144 22. Schonknecht, G., et al., *Gene transfer from bacteria and archaea facilitated evolution*
1145 *of an extremophilic eukaryote*. Science, 2013. **339**(6124): p. 1207-10.
- 1146 23. Qiu, H., et al., *Adaptation through horizontal gene transfer in the cryptoendolithic red*
1147 *alga Galdieria phlegrea*. Curr Biol, 2013. **23**(19): p. R865-6.
- 1148 24. Doemel, W.N. and T.J.M. Brock, *The physiological ecology of Cyanidium caldarium*.
1149 1971. **67**(1): p. 17-32.

1150 25. Reeb, V. and D. Bhattacharya, *The thermo-acidophilic cyanidiophyceae*
1151 (*Cyanidiales*), in *Red algae in the genomic age*. 2010, Springer. p. 409-426.

1152 26. Hsieh, C.J., et al., *The effects of contemporary selection and dispersal limitation on*
1153 *the community assembly of acidophilic microalgae*. 2018. **54**(5): p. 720-733.

1154 27. Seckbach, J.J.M., *On the fine structure of the acidophilic hot-spring alga Cyanidium*
1155 *caldarium: a taxonomic approach*. 1972. **5**(18): p. 133-142.

1156 28. Gross, W., et al., *Characterization of a non-thermophilic strain of the red algal genus*
1157 *Galdieria isolated from Soos (Czech Republic)*. 2002. **37**(3): p. 477-483.

1158 29. Ciniglia, C., et al., *Hidden biodiversity of the extremophilic Cyanidiales red algae*.
1159 *Mol Ecol*, 2004. **13**(7): p. 1827-38.

1160 30. Barcytē, D., J. Elster, and L. Nedbalová, *Plastid-encoded rbcL phylogeny suggests*
1161 *widespread distribution of Galdieria phlegrea (Cyanidiophyceae, Rhodophyta)*. 2018.
1162 **36**(7): p. e01794.

1163 31. Iovinella, M., et al., *Cryptic dispersal of Cyanidiophytina (Rhodophyta) in non-acidic*
1164 *environments from Turkey*. 2018: p. 1-11.

1165 32. Qiu, H., et al., *Evidence of ancient genome reduction in red algae (Rhodophyta)*. *J*
1166 *Phycol*, 2015. **51**(4): p. 624-36.

1167 33. Raymond, J.A. and H.J.J.P.o. Kim, *Possible role of horizontal gene transfer in the*
1168 *colonization of sea ice by algae*. 2012. **7**(5): p. e35968.

1169 34. Bhattacharya, D., et al., *Genome of the red alga Porphyridium purpureum*. *Nat*
1170 *Commun*, 2013. **4**: p. 1941.

1171 35. Foflonker, F., et al., *Genomic Analysis of Picochlorum Species Reveals How*
1172 *Microalgae May Adapt to Variable Environments*. *Molecular Biology and Evolution*,
1173 2018: p. msy167-msy167.

1174 36. Schönknecht, G., A.P. Weber, and M.J.J.B. Lercher, *Horizontal gene acquisitions by*
1175 *eukaryotes as drivers of adaptive evolution*. 2014. **36**(1): p. 9-20.

1176 37. Boothby, T.C., et al., *Evidence for extensive horizontal gene transfer from the draft*
1177 *genome of a tardigrade*. *Proc Natl Acad Sci U S A*, 2015. **112**(52): p. 15976-81.

1178 38. Crisp, A., et al., *Expression of multiple horizontally acquired genes is a hallmark of*
1179 *both vertebrate and invertebrate genomes*. *Genome Biol*, 2015. **16**: p. 50.

1180 39. Koutsovoulos, G., et al., *No evidence for extensive horizontal gene transfer in the*
1181 *genome of the tardigrade Hypsibius dujardini*. *Proc Natl Acad Sci U S A*, 2016.
1182 **113**(18): p. 5053-8.

1183 40. Salzberg, S.L., *Horizontal gene transfer is not a hallmark of the human genome*.
1184 *Genome Biol*, 2017. **18**(1): p. 85.

1185 41. Rhoads, A. and K.F. Au, *PacBio Sequencing and Its Applications*. *Genomics*
1186 *Proteomics Bioinformatics*, 2015. **13**(5): p. 278-89.

1187 42. Allen, M.B.J.A.f.M., *Studies with Cyanidium caldarium, an anomalously pigmented*
1188 *chlorophyte*. 1959. **32**(3): p. 270-277.

1189 43. Koren, S., et al., *Canu: scalable and accurate long-read assembly via adaptive k-mer*
1190 *weighting and repeat separation*. *Genome Res*, 2017. **27**(5): p. 722-736.

1191 44. Chin, C.S., et al., *Nonhybrid, finished microbial genome assemblies from long-read*
1192 *SMRT sequencing data*. *Nat Methods*, 2013. **10**(6): p. 563-9.

1193 45. Simao, F.A., et al., *BUSCO: assessing genome assembly and annotation completeness*
1194 *with single-copy orthologs*. *Bioinformatics*, 2015. **31**(19): p. 3210-2.

1195 46. Geer, L.Y., et al., *The NCBI BioSystems database*. *Nucleic Acids Res*, 2010.
1196 **38**(Database issue): p. D492-6.

1197 47. Cantarel, B.L., et al., *MAKER: an easy-to-use annotation pipeline designed for*
1198 *emerging model organism genomes*. *Genome Res*, 2008. **18**(1): p. 188-96.

1199 48. Rademacher, N., et al., *Photorespiratory glycolate oxidase is essential for the survival*
1200 *of the red alga Cyanidioschyzon merolae under ambient CO₂ conditions*. J Exp Bot, 1201
2016. **67**(10): p. 3165-75.

1202 49. UniProt Consortium, T., *UniProt: the universal protein knowledgebase*. Nucleic Acids
1203 Res, 2018. **46**(5): p. 2699.

1204 50. Stanke, M. and B. Morgenstern, *AUGUSTUS: a web server for gene prediction in*
1205 *eukaryotes that allows user-defined constraints*. Nucleic Acids Res, 2005. **33**(Web
1206 Server issue): p. W465-7.

1207 51. Borodovsky, M. and A. Lomsadze, *Eukaryotic gene prediction using GeneMark.hmm-*
1208 *E and GeneMark-ES*. Curr Protoc Bioinformatics, 2011. **Chapter 4**: p. Unit 4 6 1-10.

1209 52. Haas, B.J., et al., *Automated eukaryotic gene structure annotation using*
1210 *EVidenceModeler and the Program to Assemble Spliced Alignments*. Genome Biol,
1211 2008. **9**(1): p. R7.

1212 53. Finn, R.D., et al., *The Pfam protein families database: towards a more sustainable*
1213 *future*. Nucleic Acids Res, 2016. **44**(D1): p. D279-85.

1214 54. Gotz, S., et al., *High-throughput functional annotation and data mining with the*
1215 *Blast2GO suite*. Nucleic Acids Res, 2008. **36**(10): p. 3420-35.

1216 55. Jones, P., et al., *InterProScan 5: genome-scale protein function classification*.
1217 Bioinformatics, 2014. **30**(9): p. 1236-40.

1218 56. Ashburner, M., et al., *Gene ontology: tool for the unification of biology. The Gene*
1219 *Ontology Consortium*. Nat Genet, 2000. **25**(1): p. 25-9.

1220 57. Bairoch, A., *The ENZYME database in 2000*. Nucleic Acids Res, 2000. **28**(1): p. 304-
1221 5.

1222 58. Ogata, H., et al., *KEGG: Kyoto Encyclopedia of Genes and Genomes*. Nucleic Acids
1223 Res, 1999. **27**(1): p. 29-34.

1224 59. Moriya, Y., et al., *KAAS: an automatic genome annotation and pathway*
1225 *reconstruction server*. Nucleic Acids Res, 2007. **35**(Web Server issue): p. W182-5.

1226 60. Emms, D.M. and S. Kelly, *OrthoFinder: solving fundamental biases in whole genome*
1227 *comparisons dramatically improves orthogroup inference accuracy*. Genome Biol,
1228 2015. **16**: p. 157.

1229 61. Buchfink, B., C. Xie, and D.H. Huson, *Fast and sensitive protein alignment using*
1230 *DIAMOND*. Nat Methods, 2015. **12**(1): p. 59-60.

1231 62. Nordberg, H., et al., *The genome portal of the Department of Energy Joint Genome*
1232 *Institute: 2014 updates*. Nucleic Acids Res, 2014. **42**(Database issue): p. D26-31.

1233 63. O'Brien, E.A., et al., *TBestDB: a taxonomically broad database of expressed sequence*
1234 *tags (ESTs)*. Nucleic Acids Res, 2007. **35**(Database issue): p. D445-51.

1235 64. Boguski, M.S., T.M. Lowe, and C.M. Tolstoshev, *dbEST--database for "expressed*
1236 *sequence tags"*. Nat Genet, 1993. **4**(4): p. 332-3.

1237 65. Keeling, P.J., et al., *The Marine Microbial Eukaryote Transcriptome Sequencing*
1238 *Project (MMETSP): illuminating the functional diversity of eukaryotic life in the*
1239 *oceans through transcriptome sequencing*. PLoS Biol, 2014. **12**(6): p. e1001889.

1240 66. Katoh, K. and D.M. Standley, *MAFFT multiple sequence alignment software version*
1241 *7: improvements in performance and usability*. Mol Biol Evol, 2013. **30**(4): p. 772-80.

1242 67. Nguyen, L.-T., et al., *IQ-TREE: a fast and effective stochastic algorithm for*
1243 *estimating maximum-likelihood phylogenies*. 2014. **32**(1): p. 268-274.

1244 68. Brawley, S.H., et al., *Insights into the red algae and eukaryotic evolution from the*
1245 *genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta)*. Proc Natl Acad Sci U
1246 S A, 2017. **114**(31): p. E6361-E6370.

1247 69. Blanc-Mathieu, R., et al., *An improved genome of the model marine alga*
1248 *Ostreococcus tauri unfolds by assessing Illumina de novo assemblies*. BMC
1249 Genomics, 2014. **15**: p. 1103.

1250 70. Merchant, S.S., et al., *The Chlamydomonas genome reveals the evolution of key*
1251 *animal and plant functions*. *Science*, 2007. **318**(5848): p. 245-50.

1252 71. Qiu, H., H.S. Yoon, and D. Bhattacharya, *Red Algal Phylogenomics Provides a*
1253 *Robust Framework for Inferring Evolution of Key Metabolic Pathways*. *PLoS Curr*,
1254 2016. **8**.

1255 72. Moreira, D., et al., *Characterization of two new thermoacidophilic microalgae:*
1256 *genome organization and comparison with Galdieria sulphuraria*. 1994. **122**(1-2): p.
1257 109-114.

1258 73. Weber, A.P., et al., *A genomics approach to understanding the biology of thermo-*
1259 *acidophilic red algae*, in *Algae and Cyanobacteria in Extreme Environments*. 2007,
1260 Springer. p. 503-518.

1261 74. Yang, E.C., et al., *Divergence time estimates and the evolution of major lineages in*
1262 *the florideophyte red algae*. 2016. **6**: p. 21361.

1263 75. Qiu, H., et al., *Unexpected conservation of the RNA splicing apparatus in the highly*
1264 *streamlined genome of Galdieria sulphuraria*. *BMC Evol Biol*, 2018. **18**(1): p. 41.

1265 76. Kim, D., B. Langmead, and S.L. Salzberg, *HISAT: a fast spliced aligner with low*
1266 *memory requirements*. *Nat Methods*, 2015. **12**(4): p. 357-60.

1267 77. Robinson, M.D., D.J. McCarthy, and G.K. Smyth, *edgeR: a Bioconductor package for*
1268 *differential expression analysis of digital gene expression data*. *Bioinformatics*, 2010.
1269 **26**(1): p. 139-40.

1270 78. Stauffer, R.E. and J.M.J.G.e.C.A. Thompson, *Arsenic and antimony in geothermal*
1271 *waters of Yellowstone National Park, Wyoming, USA*. 1984. **48**(12): p. 2547-2561.

1272 79. Aiuppa, A., et al., *The aquatic geochemistry of arsenic in volcanic groundwaters from*
1273 *southern Italy*. 2003. **18**(9): p. 1283-1296.

1274 80. Toplin, J., et al., *Biogeographic and phylogenetic diversity of thermoacidophilic*
1275 *cyanidiales in Yellowstone National Park, Japan, and New Zealand*. 2008. **74**(9): p.
1276 2822-2833.

1277 81. Pinto, G.T., Roberto, *Nuove stazioni italiane di "Cyanidium caldarium"*. Delpinoa
1278 1975. **14-15**: p. 125-139.

1279 82. Kelly, D.J., K. Budd, and D.D.J.A.o.m. Lefebvre, *Biotransformation of mercury in*
1280 *pH-stat cultures of eukaryotic freshwater algae*. 2007. **187**(1): p. 45-53.

1281 83. Meharg, A. and M.J.J.o.E.B. Macnair, *Suppression of the high affinity phosphate*
1282 *uptake system: a mechanism of arsenate tolerance in Holcus lanatus L*. 1992. **43**(4): p.
1283 519-524.

1284 84. Catarecha, P., et al., *A mutant of the Arabidopsis phosphate transporter PHT1; 1*
1285 *displays enhanced arsenic accumulation*. 2007. **19**(3): p. 1123-1133.

1286 85. Zhao, F.-J., S.P. McGrath, and A.A.J.A.r.o.p.b. Meharg, *Arsenic as a food chain*
1287 *contaminant: mechanisms of plant uptake and metabolism and mitigation strategies*.
1288 2010. **61**: p. 535-559.

1289 86. van Doesburg, W., et al., *Reductive dechlorination of β -hexachlorocyclohexane (β -*
1290 *HCH) by a Dehalobacter species in coculture with a Sedimentibacter sp*. 2005. **54**(1):
1291 p. 87-95.

1292 87. Chen, Y., O. Peoples, and C.J.J.o.b. Walsh, *Acinetobacter cyclohexanone*
1293 *monooxygenase: gene cloning and sequence determination*. 1988. **170**(2): p. 781-789.

1294 88. Henkanatte-Gedera, S., et al., *Removal of dissolved organic carbon and nutrients from*
1295 *urban wastewaters by Galdieria sulphuraria: Laboratory to field scale demonstration*.
1296 2017. **24**: p. 450-456.

1297 89. Fukuda, S.-y., et al., *Cellular accumulation of cesium in the unicellular red alga*
1298 *Galdieria sulphuraria under mixotrophic conditions*. 2018: p. 1-5.

1299 90. Phaniendra, A., D.B. Jestadi, and L.J.I.J.o.C.B. Periyasamy, *Free radicals: properties,*
1300 *sources, targets, and their implication in various diseases*. 2015. **30**(1): p. 11-26.

1301 91. Dietz, K.-J., M. Baier, and U. Krämer, *Free radicals and reactive oxygen species as*
1302 *mediators of heavy metal toxicity in plants*, in *Heavy metal stress in plants*. 1999,
1303 Springer. p. 73-97.

1304 92. YLÄ-HERTTUALA, S.J.A.o.t.N.Y.A.o.S., *Oxidized LDL and Atherogenesisa*. 1999.
1305 **874(1)**: p. 134-137.

1306 93. Standman, E. and R.J.A.N.A.S. Levine, *Protein oxidation*. 2000. **899**: p. 191-208.

1307 94. Marnett, L.J.J.c., *Oxyradicals and DNA damage*. 2000. **21(3)**: p. 361-370.

1308 95. Rouhier, N., S.D. Lemaire, and J.-P.J.A.R.P.B. Jacquot, *The role of glutathione in*
1309 *photosynthetic organisms: emerging functions for glutaredoxins and*
1310 *glutathionylation*. 2008. **59**: p. 143-166.

1311 96. Chae, H.Z., et al., *Cloning and sequencing of thiol-specific antioxidant from*
1312 *mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define*
1313 *a large family of antioxidant enzymes*. 1994. **91(15)**: p. 7017-7021.

1314 97. Paulose, B., et al., *A γ -glutamyl cyclotransferase protects Arabidopsis plants from*
1315 *heavy metal toxicity by recycling glutamate to maintain glutathione homeostasis*.
1316 2013: p. tpc. 113.111815.

1317 98. Gross, W., C.J.P. Schnarrenberger, and C. Physiology, *Heterotrophic growth of two*
1318 *strains of the acido-thermophilic red alga Galdieria sulphuraria*. 1995. **36(4)**: p. 633-
1319 638.

1320 99. Gross, W., et al., *Cryptoendolithic growth of the red alga Galdieria sulphuraria in*
1321 *volcanic areas*. 1998. **33(1)**: p. 25-31.

1322 100. De Luca, P., R. Taddei, and L.J.W. Varano, «*Cyanidioschyzon merolae*»: *a new alga*
1323 *of thermal acidic environments*. 1978. **33(1)**: p. 37-44.

1324 101. Liu, Y., et al., *Aquaporin 9 is the major pathway for glycerol uptake by mouse*
1325 *erythrocytes, with implications for malarial virulence*. 2007. **104(30)**: p. 12560-12564.

1326 102. Robellet, X., et al., *AcpA, a member of the GPR1/FUN34/YaaH membrane protein*
1327 *family, is essential for acetate permease activity in the hyphal fungus Aspergillus*
1328 *nidulans*. 2008. **412(3)**: p. 485-493.

1329 103. Sá-Pessoa, J., et al., *SATP (YaaH), a succinate-acetate transporter protein in*
1330 *Escherichia coli*. 2013. **454(3)**: p. 585-595.

1331 104. Rojas, A., et al., *Crystal structures of β -galactosidase from Penicillium sp. and its*
1332 *complex with galactose*. 2004. **343(5)**: p. 1281-1292.

1333 105. Rico-Díaz, A., et al., *Crystallization and preliminary X-ray diffraction data of β -*
1334 *galactosidase from Aspergillus niger*. 2014. **70(11)**: p. 1529-1531.

1335 106. Psylinakis, E., et al., *Peptidoglycan N-acetylglucosamine deacetylases from Bacillus*
1336 *cereus, highly conserved proteins in Bacillus anthracis*. 2005. **280(35)**: p. 30856-
1337 30863.

1338 107. Lee, H.-S., et al., *Cyclomaltodextrinase, neopullulanase, and maltogenic amylase are*
1339 *nearly indistinguishable from each other*. 2002. **277(24)**: p. 21891-21897.

1340 108. Diderichsen, B.r. and L.J.F.m.l. Christiansen, *Cloning of a maltogenic alpha-amylase*
1341 *from Bacillus stearothermophilus*. 1988. **56(1)**: p. 53-60.

1342 109. Ettema, T.J., et al., *The non-phosphorylating glyceraldehyde-3-phosphate*
1343 *dehydrogenase (GAPN) of Sulfolobus solfataricus: a key-enzyme of the semi-*
1344 *phosphorylative branch of the Entner-Doudoroff pathway*. 2008. **12(1)**: p. 75-88.

1345 110. van Lieshout, J.F., et al., *Identification and molecular characterization of a novel type*
1346 *of α -galactosidase from Pyrococcus furiosus*. 2003. **21(4-5)**: p. 243-252.

1347 111. Okuyama, M., et al., *Overexpression and characterization of two unknown proteins,*
1348 *YicI and YihQ, originated from Escherichia coli*. 2004. **37(1)**: p. 170-179.

1349 112. Mashek, D.G., L.O. Li, and R.A.J.F.l. Coleman, *Long-chain acyl-CoA synthetases and*
1350 *fatty acid channeling*. 2007. **2(4)**: p. 465-476.

1351 113. Dilworth, D., et al., *The roles of peptidyl-proline isomerases in gene regulation*. 2011.
1352 90(1): p. 55-69.

1353 114. Kloosterman, T.G., et al., *Regulation of glutamine and glutamate metabolism by GlnR*
1354 and *GlnA in Streptococcus pneumoniae*. 2006. 281(35): p. 25097-25109.

1355 115. Dahl, S.W., et al., *Carica papaya glutamine cyclotransferase belongs to a novel plant*
1356 *enzyme subfamily: cloning and characterization of the recombinant enzyme*. 2000.
1357 20(1): p. 27-36.

1358 116. Rao, K.S., et al., *Kinetic mechanism of glutaryl-CoA dehydrogenase*. 2006. 45(51): p.
1359 15853-15861.

1360 117. Martin, P.R. and M.H.J.J.o.b. Mulks, *Sequence analysis and complementation studies*
1361 *of the argJ gene encoding ornithine acetyltransferase from Neisseria gonorrhoeae*.
1362 1992. 174(8): p. 2694-2701.

1363 118. Ducker, G.S. and J.D.J.C.m. Rabinowitz, *One-carbon metabolism in health and*
1364 *disease*. 2017. 25(1): p. 27-42.

1365 119. Yu, L., et al., *Solution structure of an rRNA methyltransferase (ErmAM) that confers*
1366 *macrolide-lincosamide-streptogramin antibiotic resistance*. 1997. 4(6): p. 483.

1367 120. Kimura, S. and T.J.N.a.r. Suzuki, *Fine-tuning of the ribosomal decoding center by*
1368 *conserved methyl-modifications in the Escherichia coli 16S rRNA*. 2009. 38(4): p.
1369 1341-1352.

1370 121. Albertano, P., et al., *The taxonomic position of Cyanidium, Cyanidioschyzon and*
1371 *Galdieria: an update*. 2000. 433(1-3): p. 137-143.

1372 122. Imhoff, J.F. and F.J.J.o.b. Rodriguez-Valera, *Betaine is the main compatible solute of*
1373 *halophilic eubacteria*. 1984. 160(1): p. 478-479.

1374 123. Lu, W.-D., Z.-M. Chi, and C.-D.J.A.o.m. Su, *Identification of glycine betaine as*
1375 *compatible solute in Synechococcus sp. WH8102 and characterization of its N-*
1376 *methyltransferase genes involved in betaine synthesis*. 2006. 186(6): p. 495-506.

1377 124. Waditee, R., et al., *Isolation and Functional Characterization of N-Methyltransferases*
1378 *That Catalyze Betaine Synthesis from Glycine in a Halotolerant Photosynthetic*
1379 *Organism Aphanothece halophytica*. 2003. 278(7): p. 4932-4942.

1380 125. Nyssölä, A., et al., *Extreme halophiles synthesize betaine from glycine by*
1381 *methylation*. 2000. 275(29): p. 22196-22201.

1382 126. McCoy, J.G., et al., *Discovery of sarcosine dimethylglycine methyltransferase from*
1383 *Galdieria sulphuraria*. Proteins, 2009. 74(2): p. 368-77.

1384 127. Kingston, R.L., R.K. Scopes, and E.N.J.S. Baker, *The structure of glucose-fructose*
1385 *oxidoreductase from Zymomonas mobilis: an osmoprotective periplasmic enzyme*
1386 *containing non-dissociable NADP*. 1996. 4(12): p. 1413-1428.

1387 128. Simonetti, A., et al., *A structural view of translation initiation in bacteria*. 2009.
1388 66(3): p. 423.

1389 129. Takeda, K., et al., *Effects of the Escherichia coli sfsA gene on mal genes expression*
1390 *and a DNA binding activity of SfsA*. 2001. 65(1): p. 213-217.

1391 130. Nautiyal, A., et al., *Mycobacterium tuberculosis RuvX is a Holliday junction resolvase*
1392 *formed by dimerisation of the monomeric YqgF nuclease domain*. 2016. 100(4): p.
1393 656-674.

1394 131. Apfel, C.M., et al., *Use of genomics to identify bacterial undecaprenyl pyrophosphate*
1395 *synthetase: cloning, expression, and characterization of the essential uppS gene*. 1999.
1396 181(2): p. 483-492.

1397 132. Galperin, M.Y.J.B.m., *A census of membrane-bound and intracellular signal*
1398 *transduction proteins in bacteria: bacterial IQ, extroverts and introverts*. 2005. 5(1):
1399 p. 35.

1400 133. Schrimsher, J., et al., *Purification and characterization of aminoimidazole*
1401 *ribonucleotide synthetase from Escherichia coli*. 1986. 25(15): p. 4366-4371.

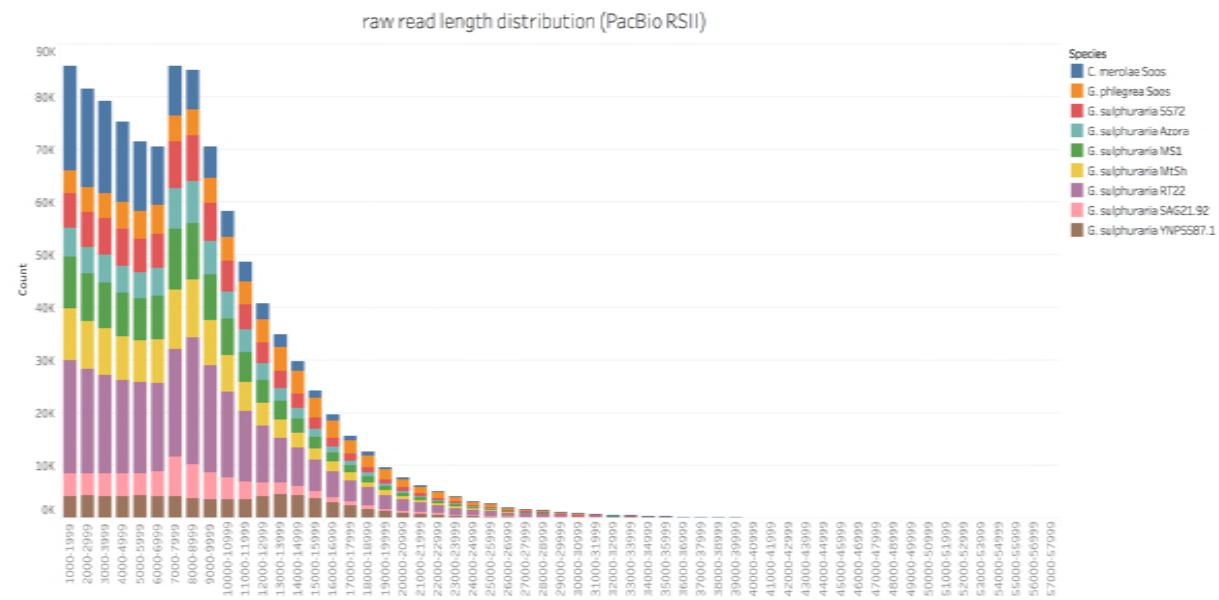
1402 134. Chen, Y., F. Li, and E.T.J.P.P. Wurtzel, *Isolation and characterization of the Z-ISO*
1403 *gene encoding a missing component of carotenoid biosynthesis in plants*. 2010.
1404 **153**(1): p. 66-79.
1405 135. Lee, J., et al., *Reconstructing the complex evolutionary history of mobile plasmids in*
1406 *red algal genomes*. Sci Rep, 2016. **6**: p. 23744.
1407 136. Li, Z. and R. Bock, *Replication of bacterial plasmids in the nucleus of the red alga*
1408 *Porphyridium purpureum*. Nat Commun, 2018. **9**(1): p. 3451.
1409

1 **SUPPLEMENTARY MATERIAL**

2 **The genomes of polyextremophilic Cyanidiales contain 1%** 3 **horizontally transferred genes with diverse adaptive functions**

5
6 Alessandro W. Rossoni^{1#}, Dana C. Price², Mark Seger³, Dagmar Lyska¹, Peter Lammers³,
7 Debashish Bhattacharya⁴ & Andreas P.M. Weber^{1*}

9 ¹Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich
10 Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany


11 ²Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA

12 ³Arizona Center for Algae Technology and Innovation, Arizona State University, Mesa, AZ
13 85212, USA

14 ⁴Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ
15 08901, USA

17 *Corresponding author: Prof. Dr. Andreas P.M. Weber,
18 e-mail: andreas.weber@uni-duesseldorf.de

20 **SUMMPLEMENTARY FIGURE 1S – RAW READ LENGTH DISTRIBUTION**

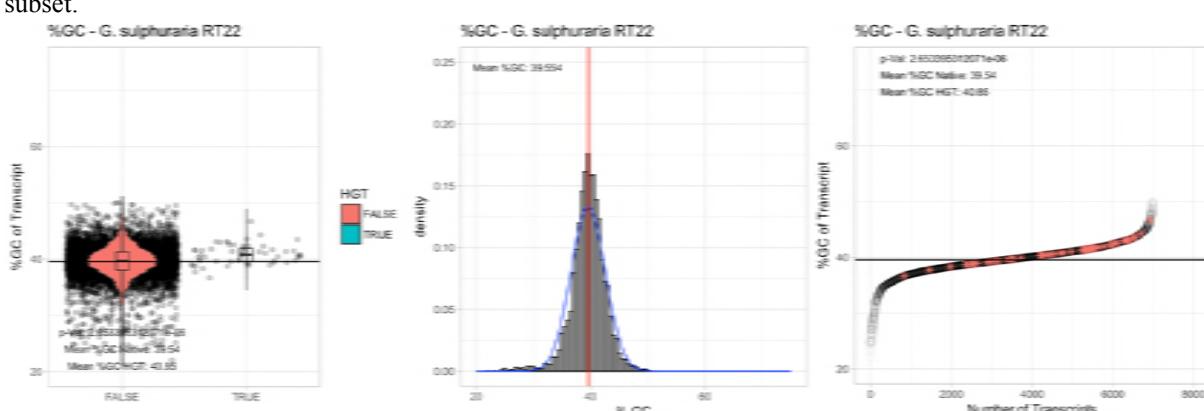
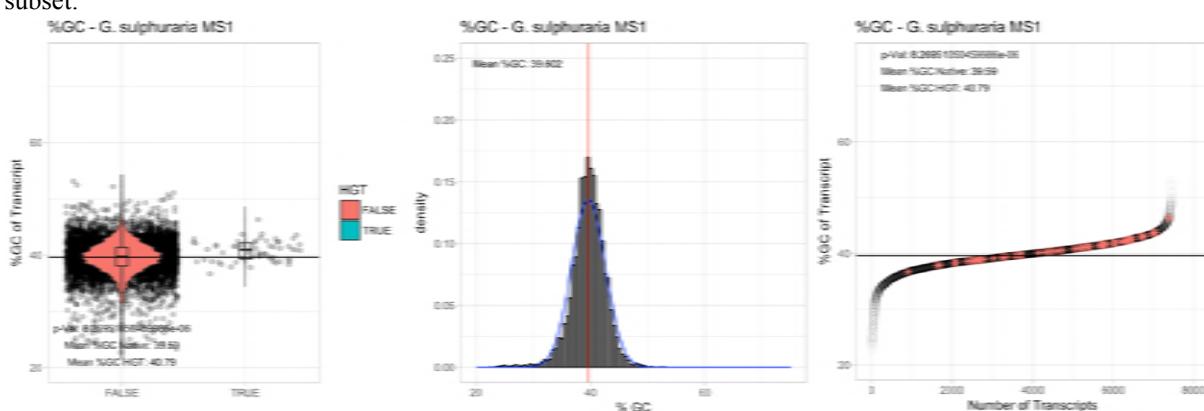
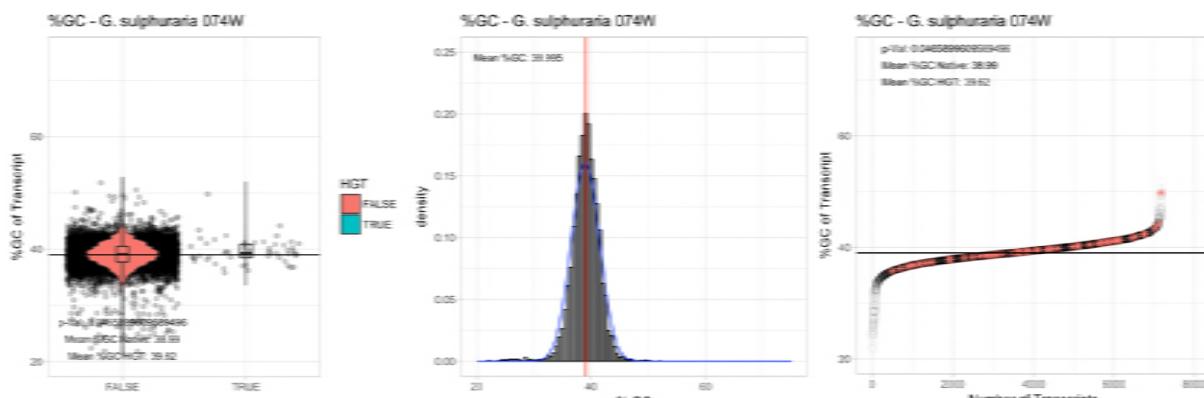
21 Sum of Count for each Window. Color shows details about Species.

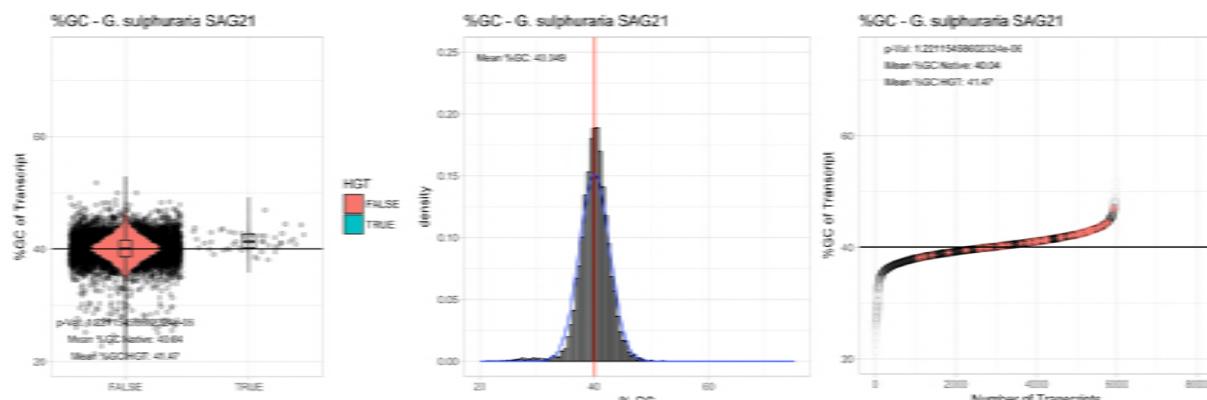
22 **Figure 1S** – Raw read length distribution of the sequenced Cyanidiales strains. The strains were sequenced
23 in 2016/2017 using PacBio's RS2 sequencing technology and P6-C4 chemistry (the only exception being
24 C. merolae Soos, which was sequenced as pilot study using P4-C2 chemistry in 2014). Seven strains,
25 namely G. sulphuraria 5572, G. sulphuraria 002, G. sulphuraria SAG21.92, G. sulphuraria Azora, G.
26 sulphuraria MtSh, G. sulphuraria RT22 and G. sulphuraria MS1 were sequenced at the University of
27 Maryland Institute for Genome Sciences (Baltimore, USA). The remaining three strains, G. sulphuraria
28 YNP5578.1, G. phlegrea Soos and C. merolae Soos, were sequenced at the Max-Planck-Institut für
29 Pflanzenzüchtungsforschung (Cologne, Germany).

32 **SUMMPLEMENTARY TABLE 1S – SEQUENCING AND ASSEMBLY STATS**

33 **Table 1S** – Sequencing and Assembly stats. The strains were sequenced using PacBio's RS2 sequencing
34 technology and P6-C4 chemistry (the only exception being C. merolae Soos, which was sequenced using

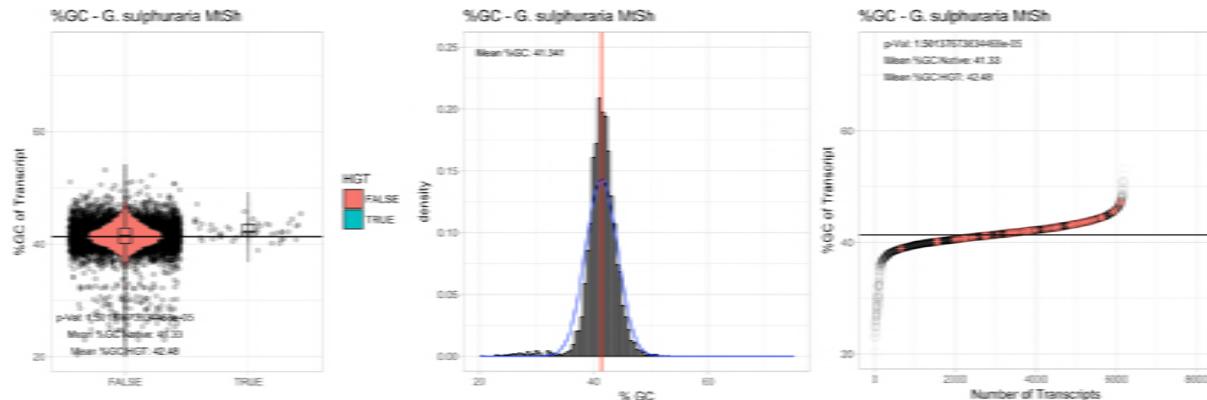
35 P4-C2 chemistry). For genome assembly, canu version 1.5 was used, followed by polishing three times
36 using the Quiver algorithm. Genes were predicted with MAKER v3 beta[1][1]. The performance of
37 genome assemblies (not shown here) and gene prediction was assessed using BUSCO v.3. **Raw Reads**:
38 Number of raw PacBio RSII reads. **Raw Reads N50**: 50% of the raw sequence is contained in reads with
39 sizes greater than the N50 value. **Raw Reads GC**: GC content of the raw reads in percent. **Raw Reads**
40 (**bp**): Total number of sequenced basepairs (nucleotides) per species. **Raw Coverage (bp)**: Genomic
41 coverage by raw reads. This figure was computed once the assembly was finished. **Unitigging (bp)**: Total
42 number of basepairs that survived read correction and trimming. This amount of sequence is what the
43 assembler considered when constructing the genome. **Unitigging Coverage**: Genomic coverage by
44 corrected and trimmed reads. **Genome Size (bp)**: Size of the polished genome. **Genome GC**: GC content
45 of the polished genome. **Contigs**: Number of contigs. **Contig N50**: 50% of the final genomic sequence is
46 contained in contigs sizes greater than the N50 value. **Genes**: Number of genes predicted by Maker v3 beta.
47 **BUSCO (C)**: Percentage of complete gene models. **BUSCO (C + F)**: Percentage of complete and
48 fragmented gene models. Fragmented gene models are also somewhat present. **BUSCO (D)**: Percentage of
49 duplicated gene models. **BUSCO (M)**: Percentage of missing gene models.
50




Species	Raw Reads	Raw Read N50	Raw Read GC	Raw Reads (bp)	Raw Read Coverage	Unitigging (bp)	Unitigging Coverage	Genome Size	Genome GC	Contigs	Contig N50	Genes	BUSCO (C)	BUSCO (C+F)	BUSCO (D)	BUSCO (M)
<i>G. sulphuraria</i> 074W	356794	12083	35.00%	104572480	41.02%	31067768	70.49%	1562951	37.49%	138	128595	4980	91.9	96.5	63	2.2
<i>G. sulphuraria</i> 080	53.978	12035	57.99%	14652551	67.52%	9552450	57.99%	31067768	35.99%	107	128595	5912	91.5	96.5	51	2.2
<i>G. sulphuraria</i> 072	20471	12482	36.45%	10229577	51.37%	9552450	48.22%	14707989	37.29%	138	128595	4972	91.5	96.5	51	2.2
<i>G. sulphuraria</i> 062	32244	12035	56.45%	14652551	67.52%	9552450	57.52%	31067768	35.52%	138	128595	7445	91.6	96.6	40	2.2
<i>G. sulphuraria</i> 065	20955	12037	59.00%	12207955	101.40%	12224943	92.94%	12840279	38.95%	122	128625	6368	91.4	96.7	63	2.2
<i>G. sulphuraria</i> 066	20944	12035	59.00%	12207955	101.40%	12224943	92.94%	12840279	38.94%	122	128625	6368	91.4	96.7	63	2.2
<i>G. sulphuraria</i> 042228	7240	12482	36.87%	14652551	67.52%	9552450	58.02%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042229	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042230	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042231	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042232	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042233	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042234	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042235	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042236	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042237	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042238	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042239	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042240	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042241	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042242	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042243	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042244	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042245	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042246	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042247	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042248	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042249	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042250	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042251	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042252	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042253	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042254	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042255	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042256	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042257	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042258	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042259	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042260	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042261	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042262	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042263	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042264	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042265	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042266	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042267	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042268	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042269	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042270	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042271	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042272	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042273	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042274	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042275	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989	37.29%	138	128595	4988	91.2	96.6	51	2.2
<i>G. sulphuraria</i> 042276	7412	12482	36.88%	14652551	67.52%	9552450	58.03%	14707989</td								


80 As seen in the case of the human and the Tardigrade genome, the overestimation of HGT in
81 eukaryotic genomes, followed by later re-correction, is not a new phenomenon [4-7]. There
82 are several reasons that may have led to the drastic overestimation of HGT candidates in the
83 case of *G. sulphuraria* 074W (100 OGs derived from HGT, instead of 58 OGs). Although
84 published in 2013, the HGT analysis was performed in early 2007. By then, the RefSeq
85 database contained 4.7 million accessions compared to 163.9 million accessions in May 2018.
86 The low resolution regarding eukaryotic species may have led to many singletons, here
87 defined as *Galdieria* being the only eukaryotic species in otherwise bacterial clusters, leading
88 to the mislabelling of HGT. Further, the many small contigs derived from short read
89 sequencing technologies of the last decade, combined with older assembly software [8] are
90 known potential pitfalls [9] for missassembly that may lead to the inclusion of bacterial
91 contigs into the reference genome as a consequence of prior culture contamination. Lastly,
92 this analysis occurred a decade prior to the tardigrade and human case that led to raised
93 awareness and standards regarding HGT annotation as many claims of HGT were later
94 refuted by further analyses. From a biological view the HGT origin of the Archaeal ATPases
95 is disputable as a re-sequencing of the Genome using MinION technology (A. W. Rossoni,
96 data unpublished, October 2017) shows they always occur immediately adjacent to every
97 single telomere, therefore adding another layer of complexity. The “archaeal ATPase” was
98 not only integrated into the genome, but also put under influence a non-random duplication
99 mechanism responsible for spreading copies in a targeted manner to the subtelomeric region
100 of each single contig (no exception!). Examples of similar cases may be found in the Variant
101 Surface Glycoproteins (VSGs) of the Trypanosoma [10] and the Candidates for Secreted
102 Effector Proteins (CSEPs) in the powdery mildew fungus *Blumeria graminis* [11]. As those
103 genes are vital for the infection of the host, they are subjects of very strong natural selection
104 and profit from high evolutionary rates achieved at the subtelomeric regions. But the high
105 evolutionary rates also made it impossible to correctly embed the aforementioned gene
106 families in a phylogenetic tree. As such, it is not to be excluded that a similar case occurred
107 regarding *Galdieria sulphuraria*’s “archaeal ATPases”, although a permissive search might
108 indicate an archaeal origin of single protein domains. Also, as only a patchy subset of the
109 ATPases reacts to temperature fluctuations, it cannot be determined that temperature is the
110 driving factor.

111
112 **SUMMPLEMENTARY TABLE 2S, GC CONTENT COMPARISON**
113 **Table 2S** – %GC analysis of the Cyanidiales transcriptomes. %GC content of HGT genes was compared to the
114 %GC content of native genes using students test. Legend: **HGT Genes**: number of HGT gene candidates found
115 in species. **Avg. %GC Native**: average %GC of native transcripts. **Avg. %GC HGT**: average %GC of HGT
116 candidates. **P-Val (T-test)**: significance value (p-value) of student’s test. **Delta**: difference in %GC between
117 average %GC of native genes and the average %GC of HGT candidates.

	HGT Genes	Avg. %GC N	Avg. %GC HGT	p-Val (T-test)	Delta
<i>Galdieria_sulphuraria_074W</i>	55	38.99	39.62	0.046	0.63
<i>Galdieria_sulphuraria_MS1</i>	58	39.59	40.79	0	1.2
<i>Galdieria_sulphuraria_RT22</i>	54	39.54	40.85	0	1.31
<i>Galdieria_sulphuraria_SAG21</i>	47	40.04	41.47	0	1.43
<i>Galdieria_sulphuraria_MtSh</i>	47	41.33	42.48	0	1.15
<i>Galdieria_sulphuraria_Azora</i>	58	41.34	42.57	0	1.23
<i>Galdieria_sulphuraria_YNP55871</i>	46	41.33	42.14	0.006	0.81
<i>Galdieria_sulphuraria_5572</i>	53	39.68	40.5	0.002	0.82
<i>Galdieria_sulphuraria_002</i>	52	40.76	41.35	0.016	0.59
<i>Galdieria_phlegrea_DBV08</i>	54	39.97	40.58	0.016	0.61
<i>Galdieria_phlegrea_Soos</i>	44	39.57	40.73	0	1.16
<i>Cyanidioschyzon_merolae_10D</i>	33	56.57	56.57	0.996	0
<i>Cyanidioschyzon_merolae_Soos</i>	34	54.84	54.26	0.479	-0.58


118
119 **SUMMPLEMENTARY FIGURES 2S, A – S , GC CONTENT COMPARISON**
120
121

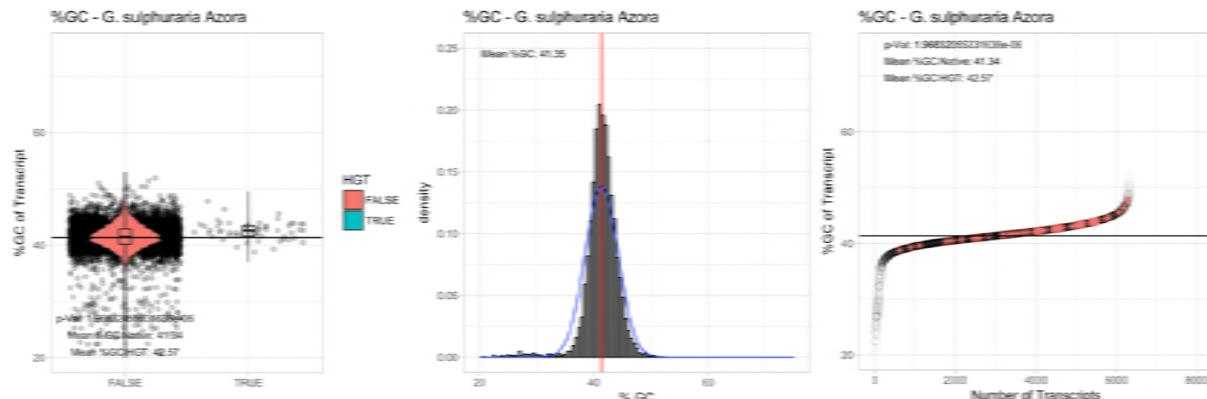
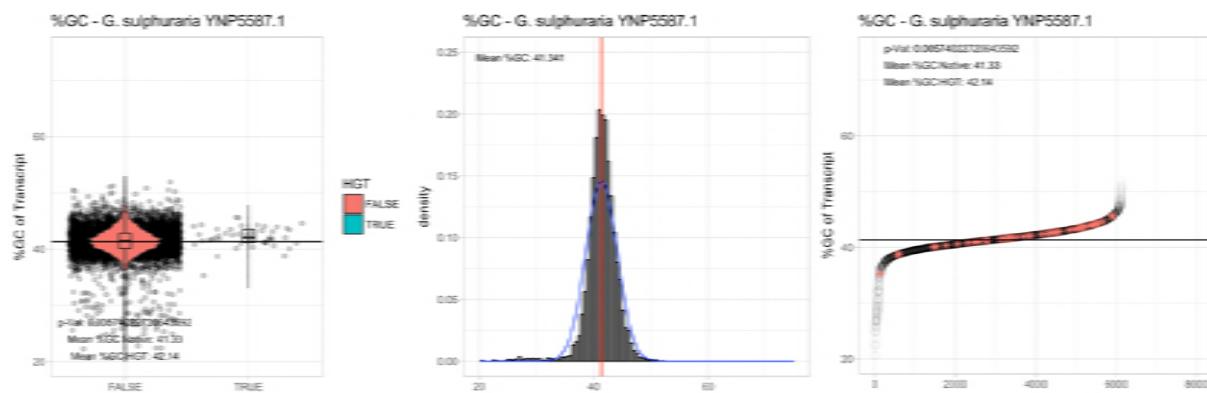
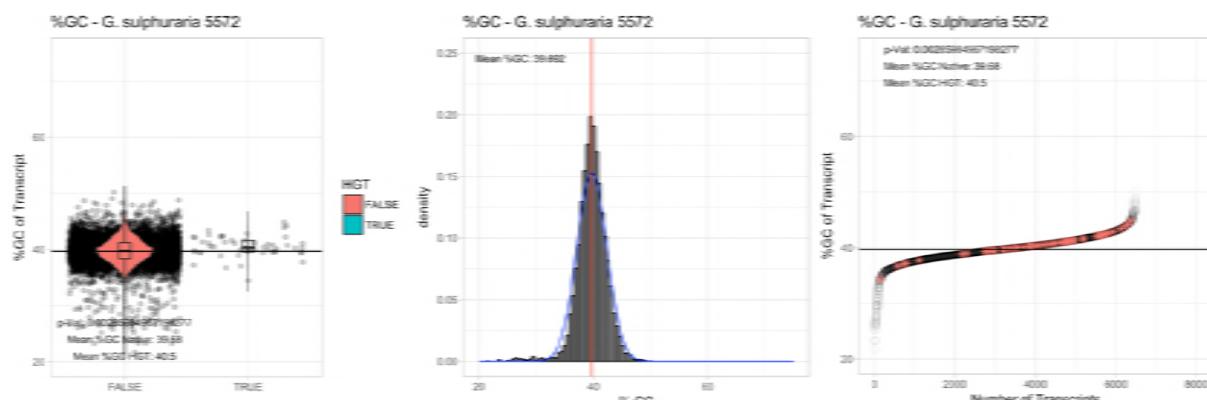
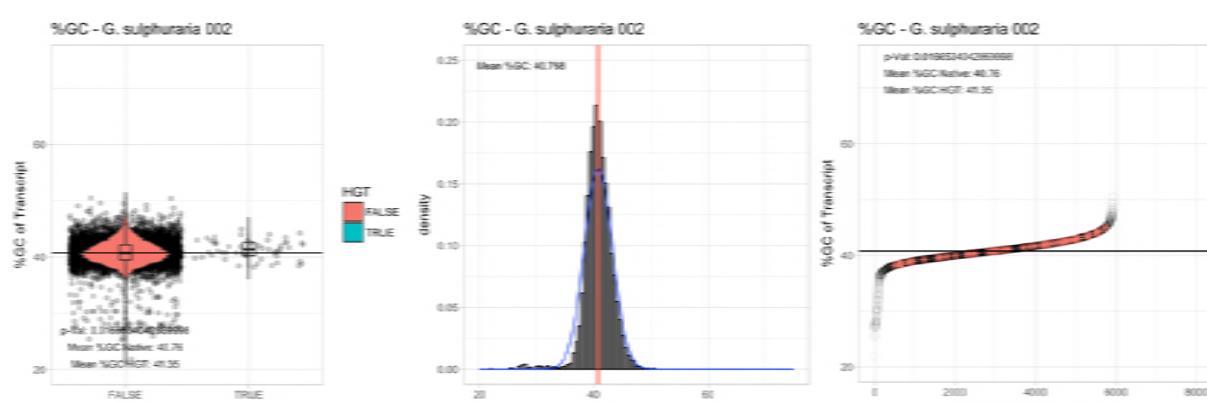

143
144
145
146
147
148
149

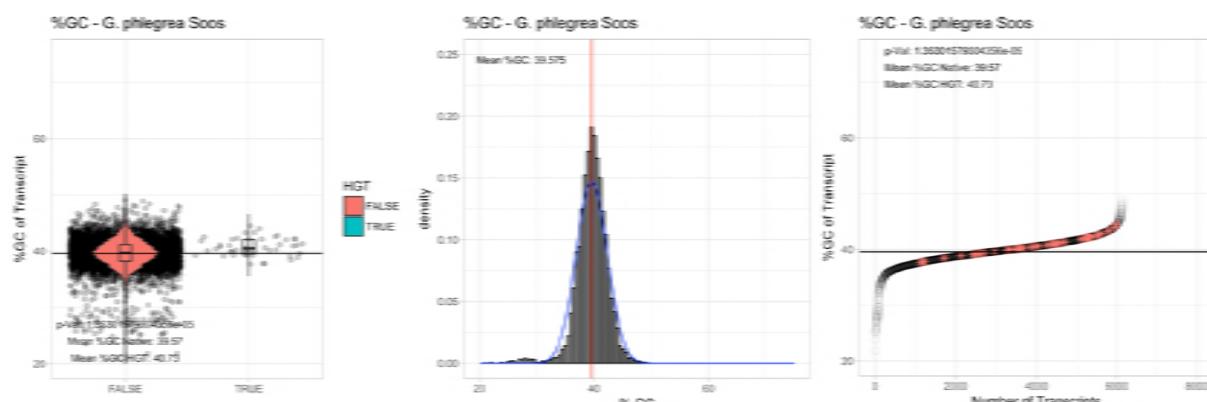
Figure 2SD – %GC – *Galdieria sulphuraria* SAG21: (Left) Violin plot showing the %GC distribution across native transcripts and HGT candidates. (Mid) Cumulative %GC distribution of transcripts. Red line shows the average, blue line a normal distribution based on the average value. (Right) Ranking all transcripts based upon their %GC content. Red “*” marks HGT candidates. As the %GC content was normally distributed, students test was applied for the determination of significant differences between the native gene and the HGT candidate subset.



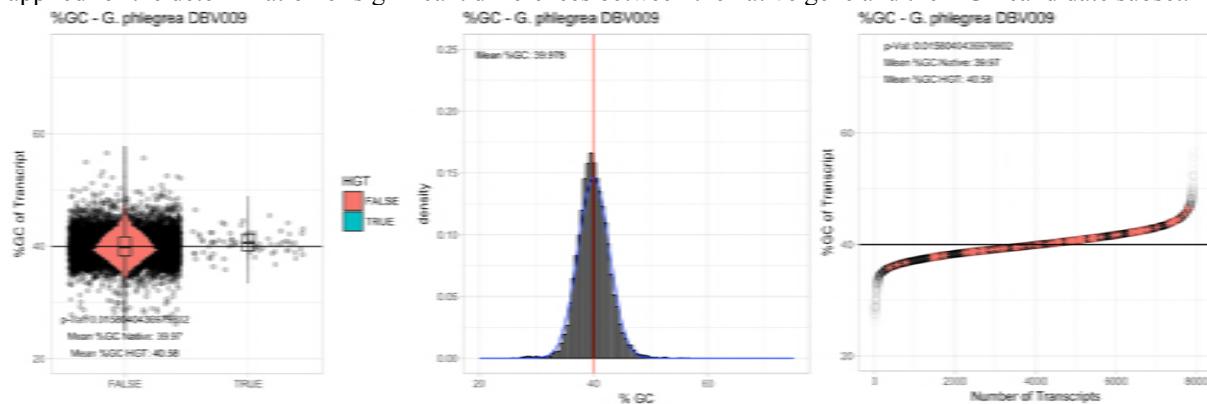
150
151
152
153
154
155
156


Figure 2SE – %GC – *Galdieria sulphuraria* Mount Shasta (MtSh): (Left) Violin plot showing the %GC distribution across native transcripts and HGT candidates. (Mid) Cumulative %GC distribution of transcripts. Red line shows the average, blue line a normal distribution based on the average value. (Right) Ranking all transcripts based upon their %GC content. Red “*” marks HGT candidates. As the %GC content was normally distributed, students test was applied for the determination of significant differences between the native gene and the HGT candidate subset.


157
158
159
160
161
162
163


164
165 **Figure 2SG – %GC – *Galdieria sulphuraria* Mount Shasta YNP5587.1:** (Left) Violin plot showing the %GC
166 distribution across native transcripts and HGT candidates. (Mid) Cumulative %GC distribution of transcripts.
167 Red line shows the average, blue line a normal distribution based on the average value. (Right) Ranking all
168 transcripts based upon their %GC content. Red “*” demarks HGT candidates. As the %GC content was normally
169 distributed, students test was applied for the determination of significant differences between the native gene and
170 the HGT candidate subset.
171

172
173 **Figure 2SH – %GC – *Galdieria sulphuraria* 5572:** (Left) Violin plot showing the %GC distribution across
174 native transcripts and HGT candidates. (Mid) Cumulative %GC distribution of transcripts. Red line shows the
175 average, blue line a normal distribution based on the average value. (Right) Ranking all transcripts based upon
176 their %GC content. Red “*” demarks HGT candidates. As the %GC content was normally distributed, students
177 test was applied for the determination of significant differences between the native gene and the HGT candidate
178 subset.
179



180
181 **Figure 2SI – %GC – *Galdieria sulphuraria* 002:** (Left) Violin plot showing the %GC distribution across native
182 transcripts and HGT candidates. (Mid) Cumulative %GC distribution of transcripts. Red line shows the average,
183 blue line a normal distribution based on the average value. (Right) Ranking all transcripts based upon their %GC
184 content. Red “*” demarks HGT candidates. As the %GC content was normally distributed, students test was
185 applied for the determination of significant differences between the native gene and the HGT candidate subset.

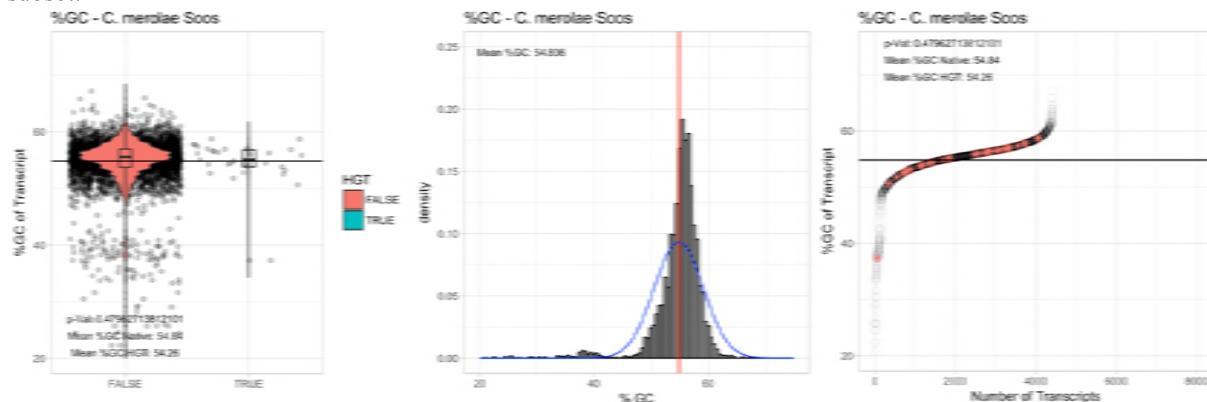

186
187
188
189
190
191

Figure 2SJ – %GC – *Galdieria phlegrea* Soos: (Left) Violin plot showing the %GC distribution across native transcripts and HGT candidates. (Mid) Cumulative %GC distribution of transcripts. Red line shows the average, blue line a normal distribution based on the average value. (Right) Ranking all transcripts based upon their %GC content. Red "*" demarks HGT candidates. As the %GC content was normally distributed, students test was applied for the determination of significant differences between the native gene and the HGT candidate subset.

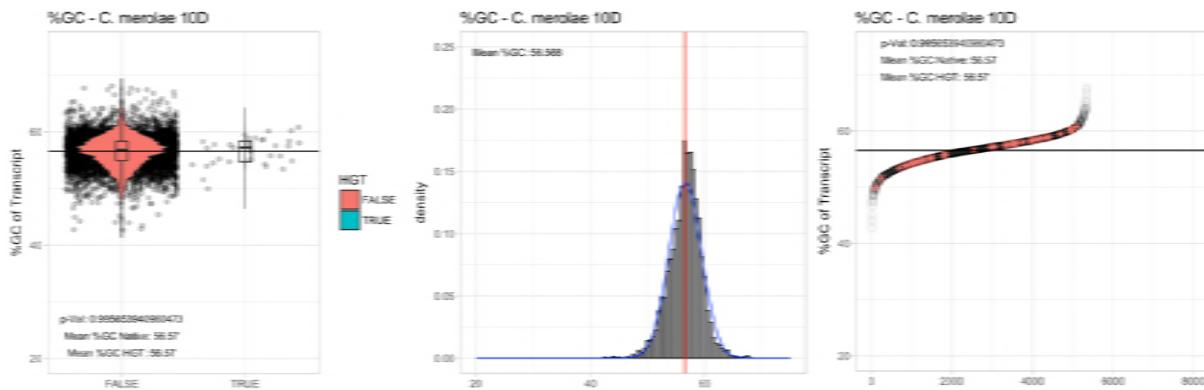

192
193
194
195
196
197
198

Figure 2SK – %GC – *Galdieria phlegrea* DBV009: (Left) Violin plot showing the %GC distribution across native transcripts and HGT candidates. (Mid) Cumulative %GC distribution of transcripts. Red line shows the average, blue line a normal distribution based on the average value. (Right) Ranking all transcripts based upon their %GC content. Red "*" demarks HGT candidates. As the %GC content was normally distributed, students test was applied for the determination of significant differences between the native gene and the HGT candidate subset.

199
200
201
202
203
204
205

Figure 2SL – %GC – *Cyanidioschyzon merolae* Soos: (Left) Violin plot showing the %GC distribution across native transcripts and HGT candidates. (Mid) Cumulative %GC distribution of transcripts. Red line shows the average, blue line a normal distribution based on the average value. (Right) Ranking all transcripts based upon their %GC content. Red "*" demarks HGT candidates. As the %GC content was normally distributed, students test was applied for the determination of significant differences between the native gene and the HGT candidate subset.

206

207 **Figure 2SM – %GC – *Cyanidioschyzon merolae* 10D:** (Left) Violin plot showing the %GC distribution across
 208 native transcripts and HGT candidates. (Mid) Cumulative %GC distribution of transcripts. Red line shows the
 209 average, blue line a normal distribution based on the average value. (Right) Ranking all transcripts based upon
 210 their %GC content. Red “*” marks HGT candidates. As the %GC content was normally distributed, students
 211 test was applied for the determination of significant differences between the native gene and the HGT candidate
 212 subset.

213

214

215

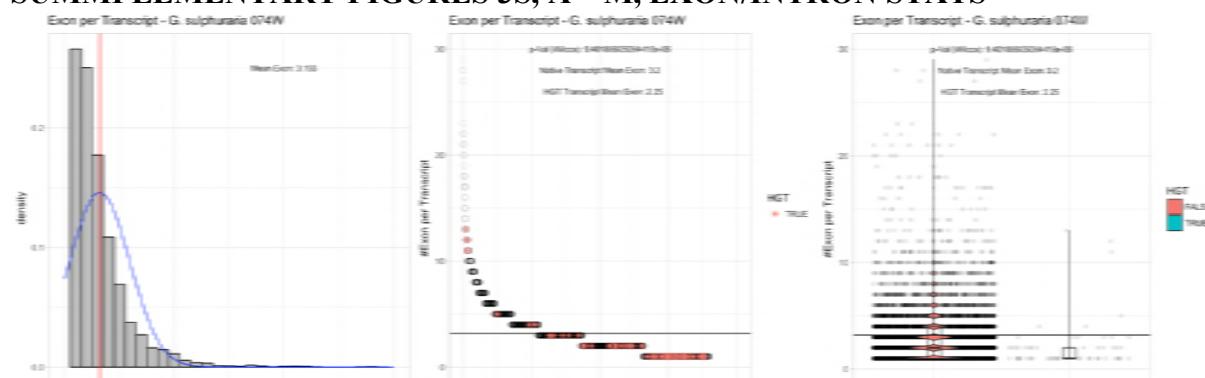
216 SUMMPLEMENTARY TABLE 4S

217 **Table 3SA** – Single exon genes vs multiexonic. The ratio of single exon genes vs multiexonic genes was
 218 compared between HGT candidates and native Cyanidiales genes (Fisher enrichment test). Legend: **HGT**
 219 **Genes**: number of HGT gene candidates found in species. **Single Exon HGT**: number of single exon genes in
 220 HGT candidates. **Multi Exon HGT**: number of multiexonic genes in HGT candidates. **Single Exon Native**:
 221 number of single exon genes in native Cyanidiales genes. **Multi Exon Native**: number of multiexonic genes in
 222 native Cyanidiales genes. **HGT SM Ratio** percentage of single exon genes within the HGT candidate genes.
 223 **Native SM Ratio** percentage of single exon genes within the native genes. **Delta**: difference in percent between
 224 the percentage of single exon genes between the native genes and HGT candidates. **Fisher p-val**: p-value of
 225 fisher enrichment test.

	HGT Genes	Single Exon (HGT)	Multi Exon (HGT)	Single Exon (Native)	Multi Exon (Native)	Fisher's p	Single Exon % (HGT)	Single Exon % (Native)	Multi Exon % (HGT)	Multi Exon % (Native)
<i>Galdieria_sulphuraria_074W</i>	55	29	26	1879	5240	4.05E-05	52.7%	26.4%	47.3%	73.6%
<i>Galdieria_sulphuraria_MS1</i>	58	22	36	1224	6159	0.0001098	37.9%	16.6%	62.1%	83.4%
<i>Galdieria_sulphuraria_RT22</i>	54	26	28	1756	5172	0.0004079	48.1%	25.3%	51.9%	74.7%
<i>Galdieria_sulphuraria_SAG21</i>	47	8	39	901	5008	0.6852	17.0%	15.2%	83.0%	84.8%
<i>Galdieria_sulphuraria_MtSh</i>	47	17	30	1239	4874	0.01054	36.2%	20.3%	63.8%	79.7%
<i>Galdieria_sulphuraria_Azora</i>	58	14	39	966	5286	0.03558	24.1%	15.5%	75.9%	84.5%
<i>Galdieria_sulphuraria_YNP55871</i>	46	21	25	1548	4524	0.00341	45.7%	25.5%	54.3%	74.5%
<i>Galdieria_sulphuraria_5572</i>	53	29	24	1389	5030	1.75E-07	54.7%	21.6%	45.3%	78.4%
<i>Galdieria_sulphuraria_002</i>	52	26	26	140	4720	8.75E-07	50.0%	2.9%	50.0%	97.1%
<i>Galdieria_phlegrea_DBV009</i>	54	na	na	na	na	na	na	na	na	na
<i>Galdieria_phlegrea_Soos</i>	44	25	22	1369	4709	5.17E-06	56.8%	22.5%	43.2%	77.5%
<i>Cyanidioschyzon_merolae_10D</i>	33	33	0	4744	26	1	100.0%	99.5%	0.0%	0.5%
<i>Cyanidioschyzon_merolae_Soos</i>	34	33	1	3960	412	0.367	97.1%	90.6%	2.9%	9.4%

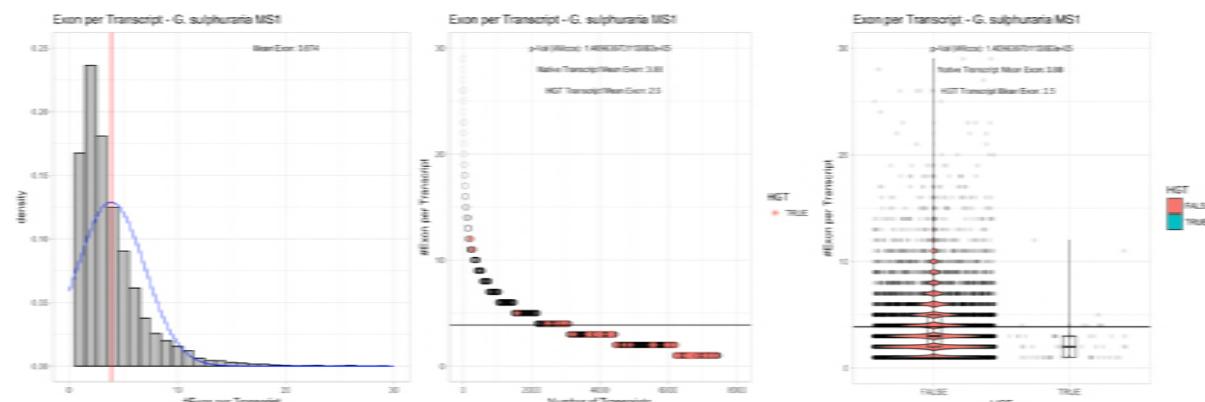
226

227


228 **Table 3SB** – Exon/Gene ratio. The ratio of exons per gene was compared between HGT candidates and native
 229 Cyanidiales genes (Wilcox ranked test). Legend: **HGT Genes**: number of HGT gene candidates found in
 230 species. **E/G All**: average number of exons per gene across the whole transcriptome. **E/G Native**: average
 231 number of exons per gene across in native genes. **E/G HGT**: average number of exons per gene in HGT gene
 232 candidates. **p-Val (Wilcox) SM Ratio** p-value of non-parametric Wilcox test for significant differences. **Delta**:
 233 difference in average number of exons per gene the native genes and HGT candidates.

	HGT Genes	Mean Exon per Transcript (HGT)	Mean Exon per Transcript (Native)	Wilcox (p)	Delta
<i>Galdieria_sulphuraria_074W</i>	55	2.25		3.2	9.40E-06
<i>Galdieria_sulphuraria_MS1</i>	58	2.5		3.88	1.41E-05
<i>Galdieria_sulphuraria_RT22</i>	54	2.63		3.95	3.42E-06
<i>Galdieria_sulphuraria_SAG21</i>	47	4.02		5.03	0.0004
<i>Galdieria_sulphuraria_MtSh</i>	47	3.15		4.32	0.0011
<i>Galdieria_sulphuraria_Azora</i>	58	2.68		4.03	9.92E-05
<i>Galdieria_sulphuraria_YNP55871</i>	46	2.61		3.65	2.30E-04
<i>Galdieria_sulphuraria_5572</i>	53	2.15		3.53	2.25E-07
<i>Galdieria_sulphuraria_002</i>	52	2.37		3.73	2.65E-06
<i>Galdieria_phlegrea_DBV009</i>	54	na		na	na
<i>Galdieria_phlegrea_Soos</i>	44	2.19		3.33	1.19E-05
<i>Cyanidioschyzon_merolae_10D</i>	33	1		1.01	1.00E+00
<i>Cyanidioschyzon_merolae_Soos</i>	34	1.06		1.1	2.10E-01

234


235
236

SUMMPLEMENTARY FIGURES 3S, A – M, EXON/INTRON STATS

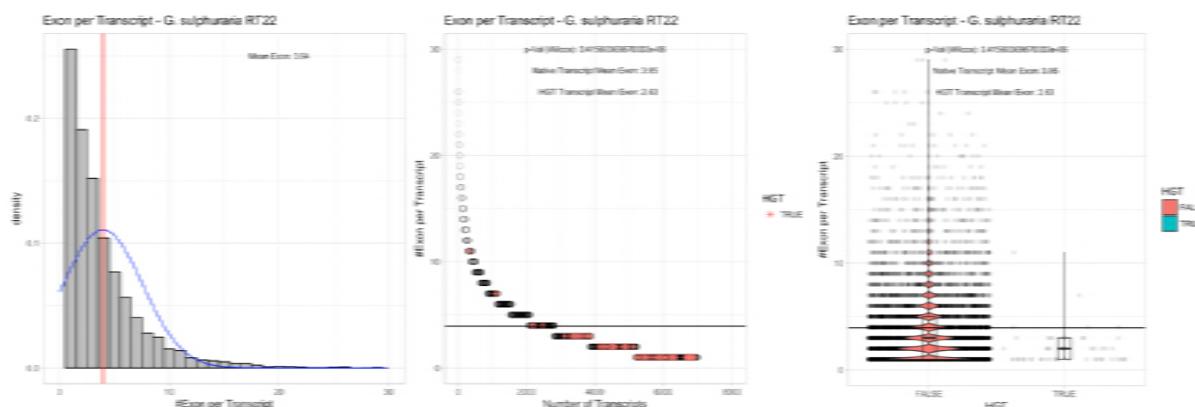

237
238
239
240
241
242
243
244
245
246
247
248

Figure 3SA – Exon/Intron – *Galdieria sulphuraria* 074W: (Left) Mid) Cumulative %GC distribution of transcripts. Red line shows the average, blue line a normal distribution based on the average value. The data is categorical (genes have either one, two, three etc. exons) and does not follow a normal distribution. (Mid) Ranking all transcripts based upon their number of exons. Red “**” demarks HGT candidates. As the number of exons was not normally distributed, transcripts were ranked by number of exons. In order to resolve the high number of tied ranks (e.g. many transcripts have 2 exons) a bootstrap was implied by which the rank of transcripts sharing the same number of exons was randomly assigned 1000 times. Wilcoxon-Mann-Whitney-Test applied for the determination of significant rank differences between the native gene and the HGT candidate subset. (Right) Violin plot showing the number of exons per transcript distribution across native transcripts and HGT candidates.

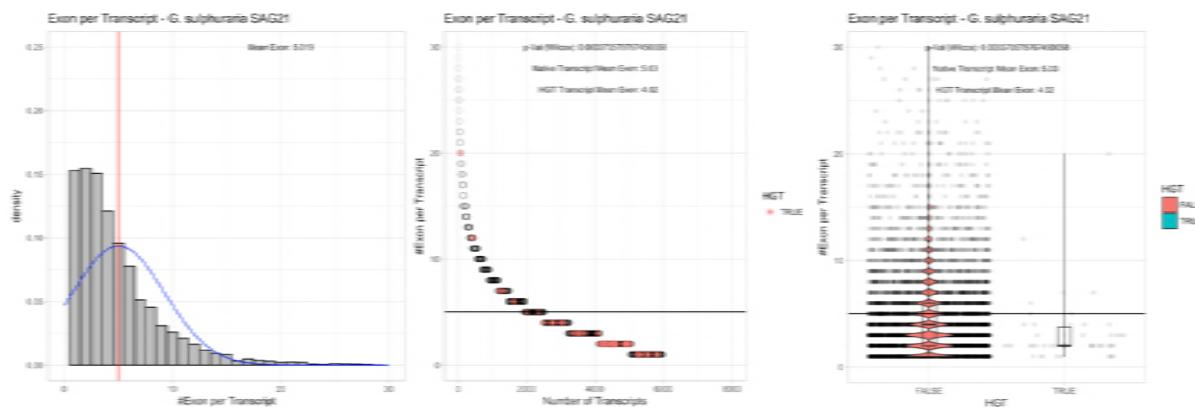
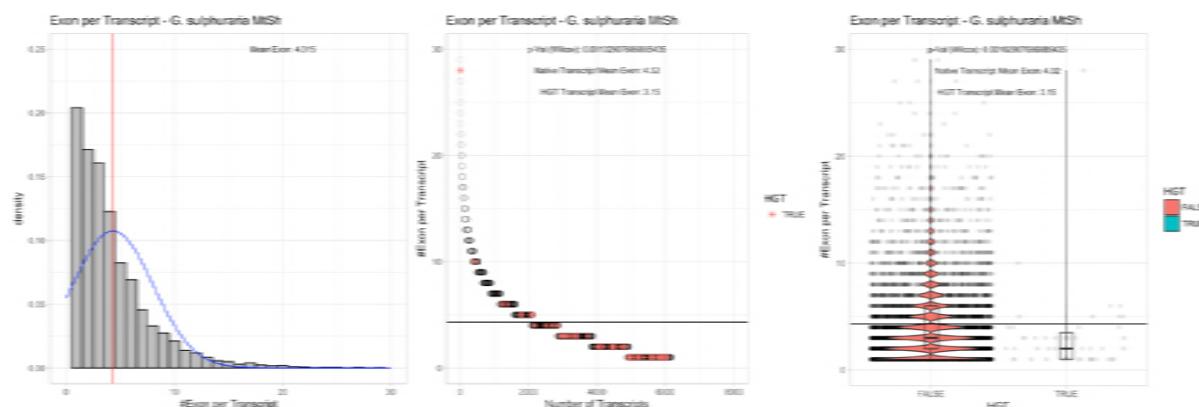
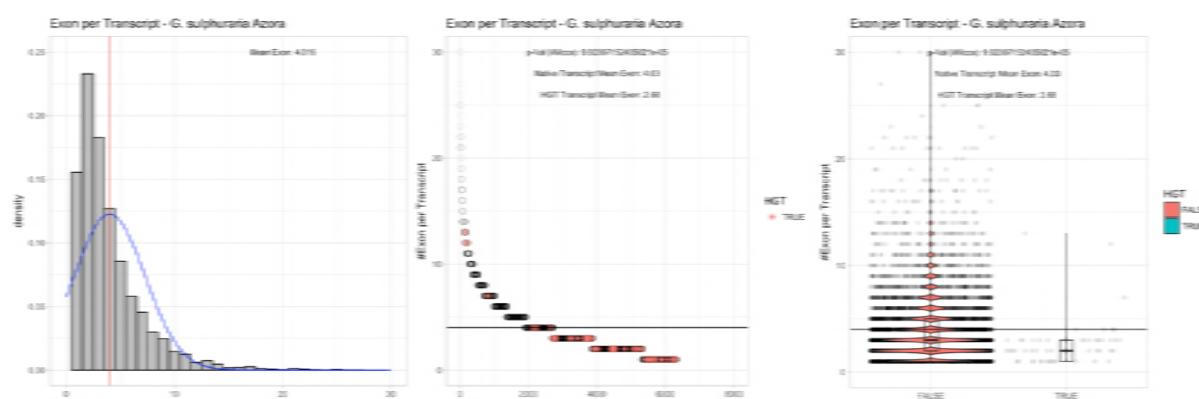

249
250
251
252
253
254
255
256
257
258
259
260

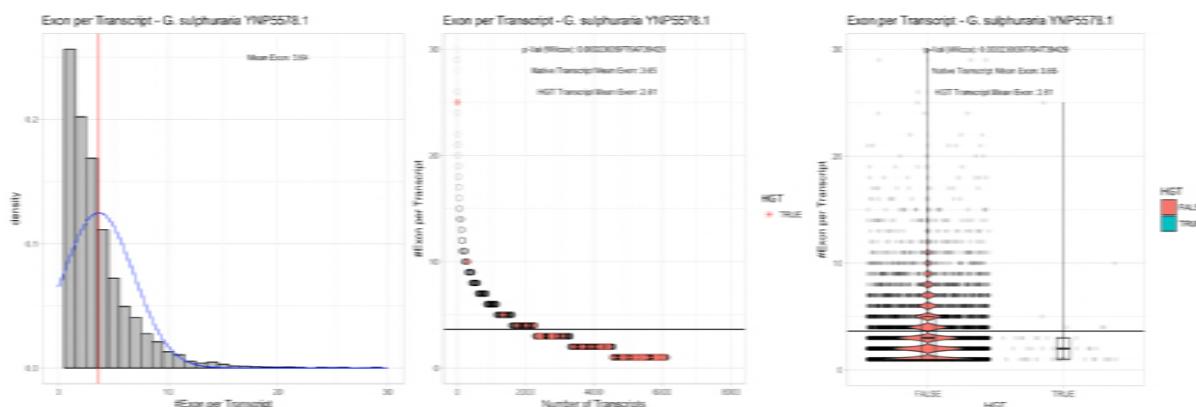
Figure 3SB – Exon/Intron – *Galdieria sulphuraria* MS1: (Left) Mid) Cumulative %GC distribution of transcripts. Red line shows the average, blue line a normal distribution based on the average value. The data is categorical (genes have either one, two, three etc. exons) and does not follow a normal distribution. (Mid) Ranking all transcripts based upon their number of exons. Red “**” demarks HGT candidates. As the number of exons was not normally distributed, transcripts were ranked by number of exons. In order to resolve the high number of tied ranks (e.g. many transcripts have 2 exons) a bootstrap was implied by which the rank of transcripts sharing the same number of exons was randomly assigned 1000 times. Wilcoxon-Mann-Whitney-Test applied for the determination of significant rank differences between the native gene and the HGT candidate subset. (Right) Violin plot showing the number of exons per transcript distribution across native transcripts and HGT candidates.

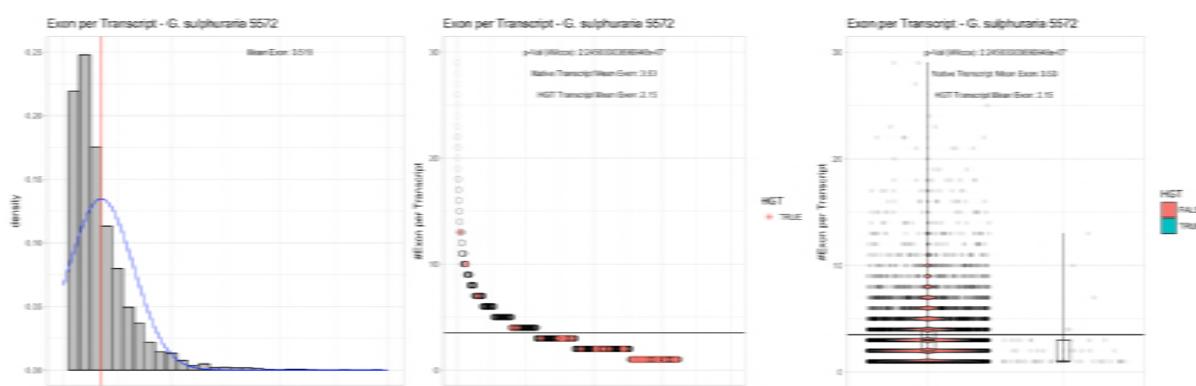

261
262 **Figure 3SC – Exon/Intron – *Galdieria sulphuraria* RT22:** (Left) Mid) Cumulative %GC distribution of
263 transcripts. Red line shows the average, blue line a normal distribution based on the average value. The data is
264 categorical (genes have either one, two, three etc. exons) and does not follow a normal distribution. (Mid)
265 Ranking all transcripts based upon their number of exons. Red “*” demarks HGT candidates. As the number of
266 exons was not normally distributed, transcripts were ranked by number of exons. In order to resolve the high
267 number of tied ranks (e.g. many transcripts have 2 exons) a bootstrap was implied by which the rank of
268 transcripts sharing the same number of exons was randomly assigned 1000 times. Wilcoxon-Mann-Whitney-Test
269 applied for the determination of significant rank differences between the native gene and the HGT candidate
270 subset. (Right) Violin plot showing the number of exons per transcript distribution across native transcripts and
271 HGT candidates.

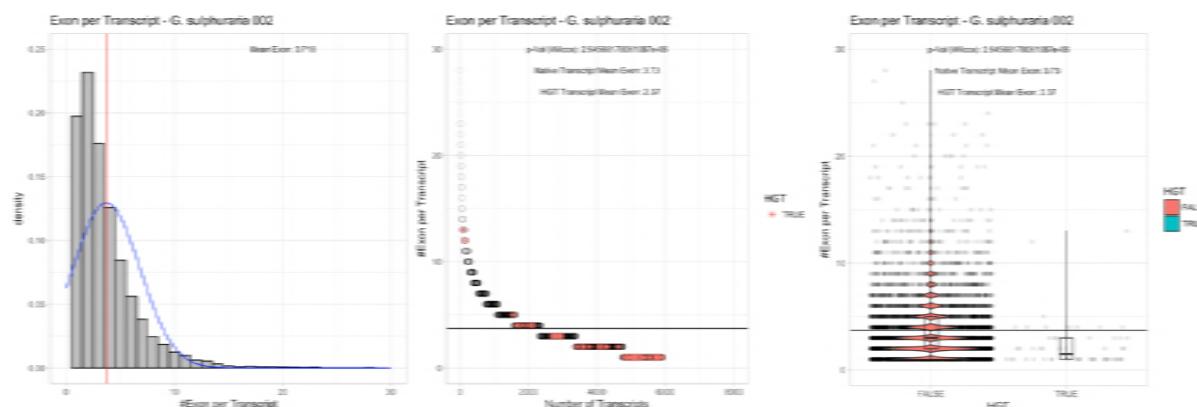
272
273

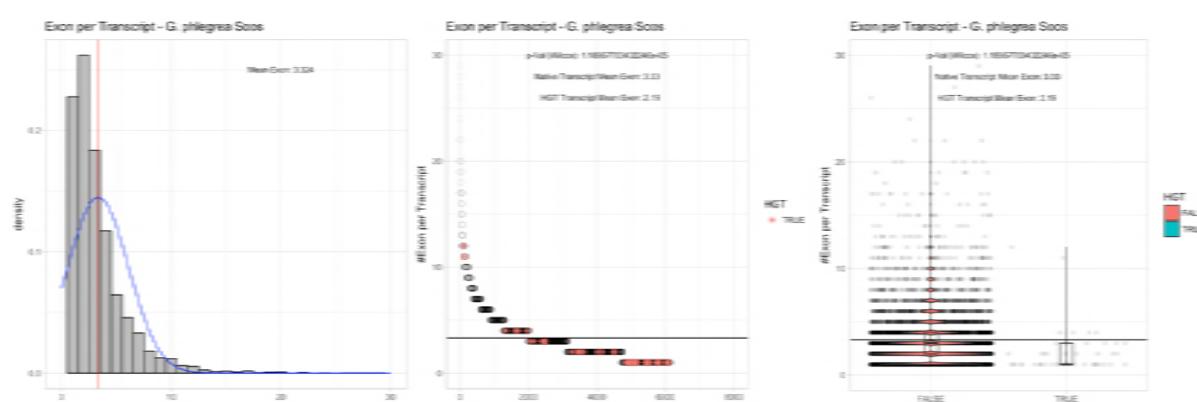


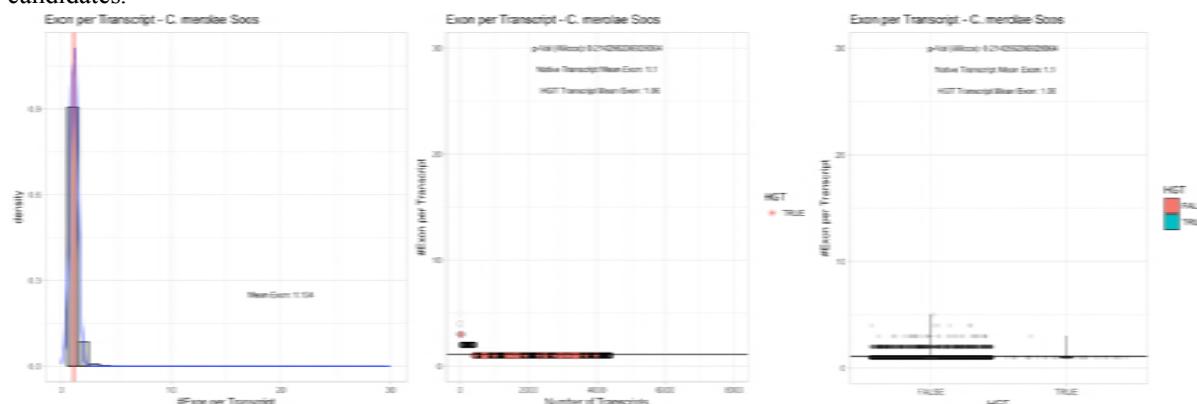
274
275 **Figure 3SD – Exon/Intron – *Galdieria sulphuraria* SAG21:** (Left) Mid) Cumulative %GC distribution of
276 transcripts. Red line shows the average, blue line a normal distribution based on the average value. The data is
277 categorical (genes have either one, two, three etc. exons) and does not follow a normal distribution. (Mid)
278 Ranking all transcripts based upon their number of exons. Red “*” demarks HGT candidates. As the number of
279 exons was not normally distributed, transcripts were ranked by number of exons. In order to resolve the high
280 number of tied ranks (e.g. many transcripts have 2 exons) a bootstrap was implied by which the rank of
281 transcripts sharing the same number of exons was randomly assigned 1000 times. Wilcoxon-Mann-Whitney-Test
282 applied for the determination of significant rank differences between the native gene and the HGT candidate
283 subset. (Right) Violin plot showing the number of exons per transcript distribution across native transcripts and
284 HGT candidates.


285

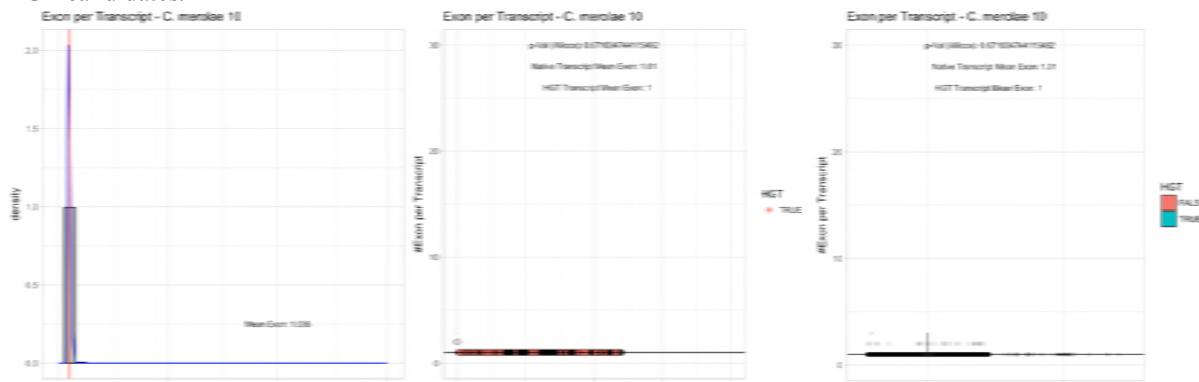

286
287 **Figure 3SE – Exon/Intron – *Galdieria sulphuraria* MtSh:** (Left) Mid) Cumulative %GC distribution of
288 transcripts. Red line shows the average, blue line a normal distribution based on the average value. The data is
289 categorical (genes have either one, two, three etc. exons) and does not follow a normal distribution. (Mid)
290 Ranking all transcripts based upon their number of exons. Red “*” demarks HGT candidates. As the number of
291 exons was not normally distributed, transcripts were ranked by number of exons. In order to resolve the high
292 number of tied ranks (e.g. many transcripts have 2 exons) a bootstrap was implied by which the rank of
293 transcripts sharing the same number of exons was randomly assigned 1000 times. Wilcoxon-Mann-Whitney-Test
294 applied for the determination of significant rank differences between the native gene and the HGT candidate
295 subset. (Right) Violin plot showing the number of exons per transcript distribution across native transcripts and
296 HGT candidates.
297


298
299 **Figure 3SF – Exon/Intron – *Galdieria sulphuraria* Azora:** (Left) Mid) Cumulative %GC distribution of
300 transcripts. Red line shows the average, blue line a normal distribution based on the average value. The data is
301 categorical (genes have either one, two, three etc. exons) and does not follow a normal distribution. (Mid)
302 Ranking all transcripts based upon their number of exons. Red “*” demarks HGT candidates. As the number of
303 exons was not normally distributed, transcripts were ranked by number of exons. In order to resolve the high
304 number of tied ranks (e.g. many transcripts have 2 exons) a bootstrap was implied by which the rank of
305 transcripts sharing the same number of exons was randomly assigned 1000 times. Wilcoxon-Mann-Whitney-Test
306 applied for the determination of significant rank differences between the native gene and the HGT candidate
307 subset. (Right) Violin plot showing the number of exons per transcript distribution across native transcripts and
308 HGT candidates.
309


310
311 **Figure 3SG – Exon/Intron – *Galdieria sulphuraria* YNP5578.1:** (Left) Mid) Cumulative %GC distribution of
312 transcripts. Red line shows the average, blue line a normal distribution based on the average value. The data is
313 categorical (genes have either one, two, three etc. exons) and does not follow a normal distribution. (Mid)
314 Ranking all transcripts based upon their number of exons. Red “*” demarks HGT candidates. As the number of
315 exons was not normally distributed, transcripts were ranked by number of exons. In order to resolve the high
316 number of tied ranks (e.g. many transcripts have 2 exons) a bootstrap was implied by which the rank of
317 transcripts sharing the same number of exons was randomly assigned 1000 times. Wilcoxon-Mann-Whitney-Test
318 applied for the determination of significant rank differences between the native gene and the HGT candidate
319 subset. (Right) Violin plot showing the number of exons per transcript distribution across native transcripts and
320 HGT candidates.
321


322
323 **Figure 3SH – Exon/Intron – *Galdieria sulphuraria* 5572:** (Left) Mid) Cumulative %GC distribution of
324 transcripts. Red line shows the average, blue line a normal distribution based on the average value. The data is
325 categorical (genes have either one, two, three etc. exons) and does not follow a normal distribution. (Mid)
326 Ranking all transcripts based upon their number of exons. Red “*” demarks HGT candidates. As the number of
327 exons was not normally distributed, transcripts were ranked by number of exons. In order to resolve the high
328 number of tied ranks (e.g. many transcripts have 2 exons) a bootstrap was implied by which the rank of
329 transcripts sharing the same number of exons was randomly assigned 1000 times. Wilcoxon-Mann-Whitney-Test
330 applied for the determination of significant rank differences between the native gene and the HGT candidate
331 subset. (Right) Violin plot showing the number of exons per transcript distribution across native transcripts and
332 HGT candidates.
333

334
335 **Figure 3SI – Exon/Intron – *Galdieria sulphuraria* 002:** (Left) Mid) Cumulative %GC distribution of
336 transcripts. Red line shows the average, blue line a normal distribution based on the average value. The data is
337 categorical (genes have either one, two, three etc. exons) and does not follow a normal distribution. (Mid)
338 Ranking all transcripts based upon their number of exons. Red “*” demarks HGT candidates. As the number of
339 exons was not normally distributed, transcripts were ranked by number of exons. In order to resolve the high
340 number of tied ranks (e.g. many transcripts have 2 exons) a bootstrap was implied by which the rank of
341 transcripts sharing the same number of exons was randomly assigned 1000 times. Wilcoxon-Mann-Whitney-Test
342 applied for the determination of significant rank differences between the native gene and the HGT candidate
343 subset. (Right) Violin plot showing the number of exons per transcript distribution across native transcripts and
344 HGT candidates.
345



346
347 **Figure 3SJ – Exon/Intron – *Galdieria phlegrea* Soos:** (Left) Mid) Cumulative %GC distribution of transcripts.
348 Red line shows the average, blue line a normal distribution based on the average value. The data is categorical
349 (genes have either one, two, three etc. exons) and does not follow a normal distribution. (Mid) Ranking all
350 transcripts based upon their number of exons. Red “*” demarks HGT candidates. As the number of exons was
351 not normally distributed, transcripts were ranked by number of exons. In order to resolve the high number of tied
352 ranks (e.g. many transcripts have 2 exons) a bootstrap was implied by which the rank of transcripts sharing the
353 same number of exons was randomly assigned 1000 times. Wilcoxon-Mann-Whitney-Test applied for the
354 determination of significant rank differences between the native gene and the HGT candidate subset. (Right)
355 Violin plot showing the number of exons per transcript distribution across native transcripts and HGT
356 candidates.
357

358 **Figure 3SL – Exon/Intron – *Cyanidioschyzon merolae* Soos:** (Left) Mid) Cumulative %GC distribution of

359 transcripts. Red line shows the average, blue line a normal distribution based on the average value. The data is
360 categorical (genes have either one, two, three etc. exons) and does not follow a normal distribution. (Mid)
361 Ranking all transcripts based upon their number of exons. Red “*” demarks HGT candidates. As the number of
362 exons was not normally distributed, transcripts were ranked by number of exons. In order to resolve the high
363 number of tied ranks (e.g. many transcripts have 2 exons) a bootstrap was implied by which the rank of
364 transcripts sharing the same number of exons was randomly assigned 1000 times. Wilcoxon-Mann-Whitney-Test
365 applied for the determination of significant rank differences between the native gene and the HGT candidate
366 subset. (Right) Violin plot showing the number of exons per transcript distribution across native transcripts and
367 HGT candidates.

368
369 **Figure 3SM – Exon/Intron – *Cyanidioschyzon merolae* 074W:** (Left) Mid) Cumulative %GC distribution of
370 transcripts. Red line shows the average, blue line a normal distribution based on the average value. The data is
371 categorical (genes have either one, two, three etc. exons) and does not follow a normal distribution. (Mid)
372 Ranking all transcripts based upon their number of exons. Red “*” demarks HGT candidates. As the number of
373 exons was not normally distributed, transcripts were ranked by number of exons. In order to resolve the high
374 number of tied ranks (e.g. many transcripts have 2 exons) a bootstrap was implied by which the rank of
375 transcripts sharing the same number of exons was randomly assigned 1000 times. Wilcoxon-Mann-Whitney-Test
376 applied for the determination of significant rank differences between the native gene and the HGT candidate
377 subset. (Right) Violin plot showing the number of exons per transcript distribution across native transcripts and
378 HGT candidates.

379

- 380 1. Cantarel, B.L., et al., *MAKER: an easy-to-use annotation pipeline designed for*
381 *emerging model organism genomes*. *Genome Res*, 2008. **18**(1): p. 188-96.
- 382 2. Schonknecht, G., et al., *Gene transfer from bacteria and archaea facilitated evolution*
383 *of an extremophilic eukaryote*. *Science*, 2013. **339**(6124): p. 1207-10.
- 384 3. Qiu, H., et al., *Adaptation through horizontal gene transfer in the cryptoendolithic red*
385 *alga Galdieria phlegrea*. *Curr Biol*, 2013. **23**(19): p. R865-6.
- 386 4. Boothby, T.C., et al., *Evidence for extensive horizontal gene transfer from the draft*
387 *genome of a tardigrade*. *Proc Natl Acad Sci U S A*, 2015. **112**(52): p. 15976-81.
- 388 5. Crisp, A., et al., *Expression of multiple horizontally acquired genes is a hallmark of*
389 *both vertebrate and invertebrate genomes*. *Genome Biol*, 2015. **16**: p. 50.
- 390 6. Koutsovoulos, G., et al., *No evidence for extensive horizontal gene transfer in the*
391 *genome of the tardigrade *Hypsibius dujardini**. *Proc Natl Acad Sci U S A*, 2016.
392 **113**(18): p. 5053-8.
- 393 7. Salzberg, S.L., *Horizontal gene transfer is not a hallmark of the human genome*.
394 *Genome Biol*, 2017. **18**(1): p. 85.
- 395 8. Boschetti, C., et al., *Biochemical diversification through foreign gene expression in*
396 *bdelloid rotifers*. *PLoS Genet*, 2012. **8**(11): p. e1003035.
- 397 9. Danchin, E.G., *Lateral gene transfer in eukaryotes: tip of the iceberg or of the ice*
398 *cube?* *BMC Biol*, 2016. **14**(1): p. 101.
- 399 10. Horn, D., *Antigenic variation in African trypanosomes*. *Mol Biochem Parasitol*, 2014.
400 **195**(2): p. 123-9.
- 401 11. Pedersen, C., et al., *Structure and evolution of barley powdery mildew effector*
402 *candidates*. *BMC Genomics*, 2012. **13**: p. 694.

