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ABSTRACT 15 

Our survival depends on how well we can rapidly detect threats in our environment. To facilitate this, the brain is 16 

faster to bring threatening or rewarding visual stimuli into conscious awareness than neutral stimuli. Unexpected 17 

events may indicate a potential threat, and yet we tend to respond slower to unexpected than expected stimuli. It 18 

is unclear if or how these effects of emotion and expectation interact with one’s conscious experience. To 19 

investigate this, we presented neutral and fearful faces with different probabilities of occurance in a breaking 20 

continuous flash suppression (bCFS) paradigm. Across two experiments, we discovered that fulfilled prior 21 

expectations hastened responses to neutral faces but had either no significant effect (Experiment 1) or the opposite 22 

effect (Experiment 2) on fearful faces. Drift diffusion modelling revealed that, while prior expectations accelerated 23 

stimulus encoding time (associated with the visual cortex), evidence was accumulated at an especially rapid rate 24 

for unexpected fearful faces (associated with activity in the right inferior frontal gyrus). Hence, these findings 25 

demonstrate a novel interaction between emotion and expectation during bCFS, driven by a unique influence of 26 

surprising fearful stimuli that expedites evidence accumulation in a fronto-occipital network. 27 

INTRODUCTION 28 

The ability to predict, detect, and make decisions about danger is essential for maximising one’s chances of 29 

survival. In humans, threatening visual stimuli are detected more quickly and are more difficult to disengage from 30 

than non-threatening stimuli (Smith and Lane, 2016). Danger, however, is not always clearly visible. We must 31 

also be able to detect potential threats in visually ambiguous situations, such as when observing from a distance, 32 
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in low light conditions, or when hunted by a camouflaged predator. Threats and other emotionally-salient stimuli 33 

are, indeed, more consciously accessible under difficult viewing conditions (Vieira et al., 2017). At the same time, 34 

however, our conscious perception of ambiguous visual stimuli is highly susceptible to the influence of our prior 35 

expectations, such that we tend to see what we expect to see (Hohwy et al., 2008). These prior expectations may 36 

be formed from statistical regularities in the environment that allow an organism to more efficiently respond to 37 

forthcoming stimuli. How, then, do these two neural processes interact when we are faced with a threat that we 38 

did not expect? This question has been relatively unexplored in human neuroscience, and yet it may provide 39 

important insights as to how emotion might modulate surprise signals that are propagated throughout the visual 40 

system.  41 

Predictive coding theory suggests that our conscious perception is the result of a constant stream of hypothesis 42 

testing, where both sensory evidence and our prior expectations are integrated in a way that resembles Bayes’ rule 43 

(Rao and Ballard, 1999, Friston and Kiebel, 2009). This framework accounts for empirical evidence showing that, 44 

when sensory input is imprecise, our prior expectations or biases are weighted more heavily, consequently 45 

distorting our conscious experience (Panichello et al., 2013). For example, the perceived direction of motion is 46 

biased towards our prior expectations when motion is less coherent and thus more ambiguous (Hesselmann et al., 47 

2010, Vetter et al., 2014). Similarly, when two different stimuli are simultaneously presented to each eye using 48 

dichoptic presentation techniques, conscious perception tends to be more stable for (Hohwy et al., 2008), and 49 

switch more rapidly to (Pinto et al., 2015), the more predictable stimulus. The expectations themselves can be 50 

established explicitly, for instance by a cue preceding the stimulus (Pinto et al., 2015, Chang et al., 2015, Meijs et 51 

al., 2018, Costello et al., 2009), or implicitly, such as by the number of stimulus presentations in the past (Barbosa 52 

et al., 2017, Aru et al., 2016, Gordon et al., 2017).  53 

Behavioural models of perceptual decision making, like drift-diffusion modelling (DDM; Ratcliff and McKoon, 54 

2008), have shown that prior expectations may bias the starting point of evidence accumulation such that we are 55 

predisposed towards one conclusion over another before the decision process has even begun (Barbosa et al., 2017, 56 

Mulder et al., 2012, Wiech et al., 2014, Dunovan et al., 2014, White et al., 2018, White et al., 2016). Prior 57 

expectations have also been shown to increase the drift rate of evidence accumulation (Dunovan et al., 2014, White 58 

et al., 2016) and may lower the threshold for awareness (De Loof et al., 2016). Other components of the decision 59 

making process, such as sensory processing and/or motor response execution (known collectively as non-decision 60 

time; Ratcliff and McKoon, 2008) have also been shown to speed up with prior expectations (Jepma et al., 2012) 61 

or when stimuli are self-relevant (Macrae et al., 2017). 62 

Like predictable events, threatening stimuli are also prioritised for conscious access (Otten et al., 2017). For 63 

example, fearful faces , snakes and spiders (Gomes et al., 2017), and fear-conditioned stimuli (Gayet et al., 2016) 64 

are consciously perceived earlier than neutral stimuli during breaking continuous flash suppression (bCFS; 65 

Tsuchiya and Koch, 2005, Jiang et al., 2007). Fearful stimuli have been shown to increase the rate of evidence 66 
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accumulation (Tipples, 2015) even when unconsciously-presented (Lufityanto et al., 2016), as well as bias the 67 

starting point towards threat (Zaman et al., 2017). There has, however, been very little investigation into how the 68 

prioritisation of fearful stimuli for conscious access might be influenced by prior expectations.  69 

We propose three testable hypotheses for how prior expectations might influence conscious access to suppressed 70 

threatening and neutral stimuli. The first is the Emotional Exaggeration Hypothesis, which proposes that. the 71 

effect of expectation on conscious perception is exaggerated for emotional stimuli. Previous studies have found 72 

that surprise-related evoked potentials are larger and earlier for emotional than neutral stimuli (Vogel et al., 2015, 73 

Kovarski et al., 2017, Chen et al., 2017). If the effect of expectation is even larger for emotional stimuli, as this 74 

suggests, then we might expect that earlier conscious perception of expected than unexpected stimuli (after an 75 

initial period of unawareness) is even more extreme for emotional stimuli. Indeed, previous inattentional blindness 76 

research suggests that both emotional and neutral stimuli are missed equally as often when they are unexpected 77 

but emotional stimuli are detected more frequently than neutral stimuli when expected (Beanland et al., 2017, 78 

Wiemer et al., 2013). 79 

As an alternative to the Exaggeration Hypothesis (where the effect of threat on expectation is synergistic), we 80 

might consider a Survival Hypothesis, such that threat negates or reverses the effect of expectation on conscious 81 

perception. This captures the notion that, even in situations where a threat is unexpected, it is still vital (or, 82 

arguably, even more vital) that we can rapidly respond (Den Ouden et al., 2012).  Studies on attentional capture 83 

and inattentional blindness have found that, while neutral stimuli evoke slower responses when they are 84 

unexpected, threatening stimuli elicit the fastest responses in visual search tasks regardless of prior expectations 85 

(Aue et al., 2016, Aue et al., 2013). Other research, however, has shown that novelty detection and attentional 86 

biases towards threat are enhanced in contexts where threats are unpredictable (Garcia-Garcia et al., 2010, Aue 87 

and Okon-Singer, 2015, Bar-Haim et al., 2007, Notebaert et al., 2010). Additionally, unexpected threats are more 88 

frequently detected than unexpected neutral images (New and German, 2015) and evoke stronger physiological 89 

responses (Wiemer et al., 2013), even under high perceptual load (Gao and Jia, 2017). It is thought that subcortical 90 

‘survival circuits’ involving the amygdala facilitate rapid modulation of conscious perception, such as faster threat 91 

detection in visual search and attentional blink paradigms (Tamietto and De Gelder, 2010, Mitchell and Greening, 92 

2012). Hence, such facilitation may circumvent or interact with the influence of top-down expectations, resulting 93 

in earlier conscious access to emotional stimuli that is unmodulated or hastened by surprise (Hohwy, 2012).   94 

In contrast to the first two hypotheses that predict a synergistic (Emotional Exaggeration Hypothesis) or 95 

antagonistic (Survival Hypothesis) interaction between threat and expectation, a third possibility is that threat and 96 

expectation do not interact. Some inattentional blindness research has found no advantage of unexpected threats 97 

versus non-threats in entering awareness (Calvillo and Hawkins, 2016, Beanland et al., 2017). Hence, we also 98 

considered the Additive Hypothesis, which is that both expectation and emotional content independently 99 

accelerate conscious perception without interacting. 100 
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To test the three hypotheses above, we conducted two bCFS experiments and one control experiment (see 101 

Supplementary Materials). In Experiment 1, we established how expectation interacts with threat in bringing 102 

stimuli into conscious perception. In Experiment 2, we adapted the design of Experiment 1 to incorporate EEG so 103 

that we could observe the spatio-temporal maps of neural activity underlying the effects of emotion and expectation 104 

during bCFS. We also conducted drift diffusion modelling (DDM) to examine which parameters of the decision-105 

making process explained the differences in response time between conditions and how this was reflected in neural 106 

activity. DDM has been used in previous studies investigating consciousness that equate the upper decision 107 

boundary to the threshold for awareness (De Loof et al., 2016, Kang et al., 2017). Here, response times in the 108 

bCFS paradigm reflected a perceptual decision (whether the face was rotated clockwise or anticlockwise) that 109 

required conscious perception (Kang et al., 2017). We investigated how the rate of evidence accumulation (drift 110 

rate; v), sensory processing and/or motor execution (non-decision time; t0), and the decision boundary (a) might 111 

be influenced by threat and expectation.  112 

METHODS 113 

Participants 114 

We recruited 30 participants for Experiment 1 and 33 participants for Experiment 2 through the University of 115 

Queensland’s Participation Scheme, which draws from adults within the local community. Our sample for 116 

Experiment 1 consisted of 13 males and 17 females aged between 18 and 27 years (M = 21.50, SD = 2.36). For 117 

Experiment 2, we removed 2 participants for having insufficient trial numbers (see Analysis section), leaving 17 118 

males and 14 females aged between 18 and 28 years (M = 22.00, SD = 2.08). All participants reported having 119 

normal short- and long-distance vision without the need for glasses or contact lenses. Participants were 120 

compensated AUD$20 per hour for their time and provided written consent. This study was approved by the 121 

University of Queensland’s Human Research Ethics Committee. 122 

Stimuli 123 

We collected face stimuli from a variety of experimentally-validated databases to maximise the number of unique 124 

stimuli presented throughout the experiment. This included 24 images from the Amsterdam Dynamic Facial 125 

Expressions Set (ADFES; van der Schalk, Hawk, Fischer, & Doosje, 2011), 132 images from the Karolinska 126 

Directed Emotional Faces set (KDEF; Lundqvist, Flykt, & Öhman, 1998), 52 images from the NimStim set 127 

(Tottenham et al., 2009), and 58 images from the Warsaw Set of Emotional Facial Expression Pictures (WSEFEP; 128 

Olszanowski et al., 2015). The final selection consisted of 267 images of Caucasian adults (66 females and 71 129 

males) displaying either a neutral or fearful facial expression. We cropped the hair, neck, and shoulders from all 130 

face stimuli (see Fig. 1). We then centred the faces within a 365 x 365 pixel square with a grey background for 131 

Experiment 1 and a black background for Experiment 2 (to maximise the visually-evoked EEG response to the 132 

face, due to the greater contrast difference for greyscale stimuli fading in from black than grey). We equated 133 

luminance and root-mean square contrast (of pixels in the entire image, including the face and grey background) 134 
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across all images using the SHINE toolbox (Willenbockel et al., 2010), such that they did not differ significantly 135 

between neutral and fearful faces (luminance: neutral = 125.080, fearful = 124.681, t(130) = 1.954, p = .106; 136 

contrast: neutral = 125.903, fearful = 125.472, t(130) = 2.038, p = .088; Bonferroni-corrected for two 137 

comparisons). 138 

We used Mondrian images to mask the stimuli (see Fig. 1). These images were made using code available online 139 

(http://martin-hebart.de/webpages/code/stimuli.html; as used in Stein, Seymour, Hebart, & Sterzer, 2014). The 140 

Mondrian images were presented at 125% of the size of the face stimuli to ensure that faces were sufficiently well-141 

masked.  142 

Procedure 143 

Dichoptic presentation set-up 144 

After completing the consent form, participants completed the self-report 40-item State-Trait Anxiety Inventory 145 

(STAI; Spielberger, Gorsuch, & Lushene, 1970). We then determined the participants’ ocular dominance using 146 

the Miles Test (Miles, 1930). Participants then sat approximately 1.1m (Experiment 1) or 0.55m (Experiment 2) 147 

from a 22” LCD monitor (1980 × 1020 resolution) with a black screen divider placed in front (see Supplementary 148 

Fig. 1). For Experiment 1, the participant positioned their head in a chin and head rest, to which prism lenses (12 149 

prism diopters, base out) were attached and secured with a foam strap. For Experiment 2, stereoscopic mirrors 150 

were used instead of prism lenses as they were faster to set up. Both methods result in dichoptic presentation (see 151 

Supplementary Fig. 1).  152 

In both experiments, participants completed a short calibration task (using placeholder stimuli the size of the mask) 153 

and the apparatus was adjusted (i.e. angle of mirrors/prism lenses, computer monitor height, etc.) to ensure that 154 

the stimuli presented to each eye were perceived to be in the same location in space (i.e. completely overlapping 155 

in the centre of field of vision) and that only one stimulus could be perceived with each eye. Note that in 156 

Experiment 1, an eye tracker was also used to ensure that participants did not close one eye during the experiment 157 

(which would interrupt the interocular suppression). 158 

Behavioural paradigm 159 

Each trial began with the mask presented at 100% contrast to the participant’s dominant eye and a face stimulus 160 

presented at 0% to the other eye (see Fig. 1). In Experiment 1, the stimuli were set to fade over a period of 6 s, 161 

with the mask fading out from 100% to 0% contrast and the face fading in from 0% to 100% contrast. Experiment 162 

2 was the same, except the time period was reduced to 3 s (to reduce experiment length and increase the number 163 

of trials) and the mask contrast was fixed at 100% (to avoid an onset effect in the EEG signal). In both experiments, 164 

the face images were pseudo-randomly rotated 5° clockwise or counter-clockwise. Participants were instructed to 165 

click the left or right mouse button as soon as they could perceive the orientation of the face. Participants were 166 

told to maintain accuracy as close to 100% as possible while also making the responses as fast as possible. In 167 
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Experiment 1, trials ended upon response (if responses were over 6 s, the face remained at 100% and the mask at 168 

0% until response), whereas in Experiment 2, trials always ended after 3 s regardless of response. Between trials, 169 

a fixation cross was presented at the centre of each left and right image frame. The duration of the inter-trial 170 

interval (ITI) jittered randomly between 0.5 and 1 s at a step of 0.1 s for Experiment 1, and between 0.25 to 0.50 171 

s at a step of 0.05 s for Experiment 2.  172 

There were eight blocks in Experiment 1 and fourteen blocks in Experiment 2. In both experiments, participants 173 

were informed that some blocks would contain more of one emotional expression than others but that this was 174 

irrelevant to their task (i.e. they were to respond to every face they saw, regardless of emotion). Half of the blocks 175 

contained predominantly (83%) neutral faces while the other half of the blocks contained predominantly fearful 176 

faces. The dominant emotional expression was indicated at the beginning of each block by a 5 s presentation of 177 

the word “Neutral” or “Fearful”. Neutral and fearful blocks were alternated, with the starting block emotion 178 

counterbalanced across participants. There were 90 trials per block and each block began with at least two trials 179 

for the predominant emotion. The presentations of rare and unexpected (17%) emotional faces were thereafter 180 

spaced apart by 2 to 7 trials (following a Gaussian distribution). There were 720 total trials for Experiment 1 (300 181 

expected and 60 unexpected trials per neutral/fearful expression) and 1,260 total trials for Experiment 2 (525 182 

expected and 105 unexpected trials per neutral/fearful expression).  183 

 184 
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Figure 1. Schematic for the basic paradigm across experiments. In Experiment 1 (A), the face linearly faded from 0% to 185 

maximum contrast over 6 s, while the mask did the opposite in the non-dominant eye. Experiment 2 (B) was the same except 186 

that the fade period was 3 s, the mask remained at maximum contrast, and the face background was black rather than grey. In 187 

both experiments, participants perceived the mask at first, followed by a period of mixed percept of the mask and the face (as 188 

shown in the ‘Percept’ column). For Experiment 1, the trial ended upon response, whereas for Experiment 2, the trial always 189 

ended at 3 s regardless of response. The inter-trial interval (ITI) was jittered between 0.5s and 1s for Experiment 1, and 190 

between 0.25 and 0.5s for Experiment 2 (the mask was also shown throughout the ITI for Experiment 2). Note that identifying 191 

information (facial features hidden by red boxes) has been redacted from this preprint. 192 

Behavioral titration procedure for EEG recording (Experiment 2) 193 

In Experiment 2, participants completed a titration task while the EEG cap was set up. The purpose of the titration 194 

task was to ensure that responses could be made on the majority of trials (e.g. participants more susceptible to 195 

masking effects might take longer than the 3-second trial window to consciously perceive the face, thus making 196 

less responses overall). The titration task consisted of four blocks: two neutral-dominant and two fearful-dominant 197 

blocks in an alternate order, with the starting block counterbalanced across participants. Each block contained 90 198 

trials, with 83% dominant emotion presentations and 17% rare emotion presentations. All aspects of the titration 199 

trials (e.g., stimuli, timing) were the same as the trials in Experiment 2 (see Fig. 1). 200 

The titration began with the mask at low contrast relative to the face (100% face, 0% mask). Using the Palamedes 201 

toolbox (Prins and Kingdom, 2009), contrast was adjusted per trial, such that if the response was faster than 2 s, 202 

the next trial’s face contrast would be decreased and mask contrast increased (hence, mask contrast always 203 

equalled 1 minus the face contrast), and vice versa for responses slower than 2 seconds. Thus, the face and mask 204 

contrasts were adjusted so that conscious breakthrough occurred approximately two thirds of the way into each 205 

trial for each participant, accommodating for individual differences in sensitivity to interocular suppression. The 206 

stepwise function used for these trial-by-trial adjustments began with 10% contrast adjustments, which were 207 

reduced by 2% each time a reversal (i.e. a change in response type; fast to slow, or slow to fast) was made. After 208 

4 reversals, contrast adjustments were fixed at 2%. These staircases were constructed independently for the first 209 

two blocks of titration trials (one neutral, one fearful), resulting in one ending set of contrasts per emotion. This 210 

value was used as the starting point for the second block of each dominant emotion, giving a fine-tuned contrast 211 

set built across two blocks of 90 trials each per neutral and fearful block type. The neutral-dominant and fearful-212 

dominant contrast sets were then averaged together, giving face contrast values ranging from 53.23% to 91.68% 213 

(M = 76.75%, SD = 10.25%) across participants (mask contrast values were equal to 1 minus the face contrast). 214 

Each participant’s final titrated face contrast value was used for all face stimuli (neutral or fearful, in any block 215 

type) presented in the main experiment, where faces faded in from 0% to the titrated value over 3 seconds. 216 

Although the first two participants did not complete the titration task, their mean reaction times throughout the 217 

experiment were 1.803 s and 2.288s, respectively, and so they were included in further behavioural and EEG 218 

analyses. 219 
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EEG recording 220 

EEG acquisition 221 

Neural activity was continuously recorded using a BioSemi Active Two 64 Ag-AgCl electrode system (BioSemi, 222 

Amsterdam, Netherlands) throughout the 14 experiment blocks. Participants were fitted with a nylon cap 223 

containing 64 Ag/AgCl scalp electrodes positioned according to the international 10-20 system. Continuous data 224 

were recorded using BioSemi ActiView software (BioSemi, 2007), referenced to the standard BioSemi reference 225 

electrodes, filtered online (0.01 to 208 Hz amplifier band pass filter), and then were digitised and stored at a 226 

sampling rate of 1024 Hz with 24-bit A/D conversion. We measured horizontal and vertical electrooculograph 227 

(EOG) signals with flat biploar Ag/AgCl electrodes. The experiment was conducted in an electrically-shielded 228 

Faraday cage to minimise noise and all data was recorded with electrode impedance levels under 25 µV. 229 

EEG preprocessing 230 

All preprocessing was done via MATLAB 2016a (MathWorks). Data were imported into SPM12 (Wellcome Trust 231 

Centre for Neuroimaging, London). The data were then re-referenced to the average across all 64 EEG scalp 232 

channels and the pairs of vertical and horizontal EOG electrodes were referenced to each other. Noisy channels 233 

were interpolated using FieldTrip (Oostenveld et al., 2011). Eyeblinks were marked using the vertical EOG and 234 

the associated spatial confounds were corrected using SPM12’s signal-space projection (SSP) method. The data 235 

were then bandpass filtered between 0.1 and 40 Hz and epoched into -0.1 to 3 s segments around stimulus onset 236 

for event-related potential (ERP) analyses. Each epoch was baseline-corrected (mean amplitude subtraction) using 237 

the -0.1 to 0 s period pre-stimulus-onset. Trials with incorrect responses or response times more than 3 standard 238 

deviations from the mean (within-participant, collapsed across each condition) were excluded, so that the EEG 239 

data represented the typical responses for each participant. The data were then robust-averaged (i.e. the 240 

contribution of each trial to the average, iteratively weighted by noise level; Wager et al., 2005) and the bandpass 241 

filter and baseline correction were re-applied. Finally, in order to conduct statistical parametric mapping (Penny 242 

et al., 2011) in SPM 12, we converted the robust-averaged ERPs into three-dimensional images (x and y space, ms 243 

time) and smoothed them with a 12 mm x 12 mm x 12 ms FWHM Gaussian kernel to accommodate for intersubject 244 

variability.  245 

Analysis 246 

Behavioral preprocessing 247 

Within each participant’s data, we first removed responses faster than 500 ms (e.g. accidentally pressing the mouse 248 

button too quickly; median = 0, range = 0 to 90 trials removed per participant for Experiment 1 and median = 4, 249 

range = 0 to 87 trials for Experiment 2). Accuracy on the orientation task was near ceiling in both experiments 250 

(mean and standard deviation of accuracy for Experiment 1: expected neutral = 98.0% ± 1.8%, unexpected neutral 251 

= 97.5% ± 2.2%, expected fearful = 96.9% ± 2.6%, unexpected fearful = 97.9% ± 2.5%; Experiment 2: expected 252 
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neutral = 94.5% ± 5.9%, unexpected neutral = 95.1% ± 4.0%, expected fearful = 94.2% ± 5.3%, unexpected fearful 253 

= 94.9% ± 4.9%). We only entered the correct trials into our response time analysis and EEG analysis. We removed 254 

responses more than five standard deviations from the mean (e.g. lapse in attention to experiment; approximately 255 

M = 1, SD = 1 trials removed per participant for Experiment 1 and no outliers detected in Experiment 2) collapsed 256 

across conditions. For Experiment 1, the average trial counts were 291 for expected neutral (225 to 300), 292 for 257 

expected fearful (277 to 300), 58 for unexpected neutral (54 to 60), and 58 for unexpected fearful (45 to 60) faces. 258 

For Experiment 2, two participants had less than 80 trials in at least one condition (due to very slow responses that 259 

went into the next trial) and thus were deemed to have insufficient data for EEG analysis. After removing these 260 

two participants, the average trial counts for 31 participants were 493 for expected neutral (379 to 522), 496 for 261 

expected fearful (429 to 523), 99 for unexpected neutral (80 to 104), and 99 for unexpected fearful (84 to 105) 262 

faces.  263 

Linear mixed effects modelling 264 

To investigate differences in response time between conditions, we entered the data into a hierarchical series of 265 

linear mixed effects (LME) models using the “lme4” package (Bates et al., 2014) in R v3.4.3 (Team, 2014). The 266 

LME is an extension of linear regression that estimates both fixed and random effects (Gelman and Hill, 2006). 267 

This approach allowed us to encapsulate all data from all participants (rather than taking a mean or median 268 

response time per participant) and to account for different trial numbers per experimental condition (Baayen et al., 269 

2008). LME also allowed us to model fixed and random effects of no interest to maximise statistical power (Barr 270 

et al., 2013). These included the fixed effects of participant gender and block order (i.e. whether participants were 271 

assigned a neutral or fearful block first), and the random effects of participant (as the experiment was a repeated-272 

measures design), trial number (indicating fatigue and/or learning effects across the duration of the experiment) 273 

and anxiety (summed state/trait score from the STAI questionnaire). Summed anxiety scores (which can range 274 

from 40 to 160) for Experiment 1 ranged from 46 to 107 (M = 69.97, SD = 15.90) and for Experiment 2 ranged 275 

from 40 to 108 (M = 71.94, SD = 16.02). We constructed a series of 5 hierarchical models, with the first 276 

encapsulating just the effects of no interest and then each subsequent model incorporating an additional effect of 277 

interest (in this case, the main effects of emotion, expectation, and their interaction). To test for significant 278 

differences between these models, we performed likelihood ratio tests. 279 

Drift diffusion modelling 280 

To better elucidate the mechanism by which expectation influences response times to neutral and fearful faces, we 281 

employed drift diffusion modelling (Ratcliff, 1978). DDM depicts binary decision-making as a stochastic process, 282 

whereby evidence gradually accumulates (with added noise) from a starting point (z) towards one of two thresholds 283 

(a). Several other parameters influence the resultant response, such as the drift rate (v; the rate of evidence 284 

accumulation) and non-decision time (t0; the duration of stimulus encoding; Ratcliff and McKoon, 2008). We 285 

focused on the parameters for the decision threshold (a), drift rate of evidence accumulation (v), and the non-286 
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decision time for stimulus encoding (t0). Specifically, we were interested in how these parameters might differ 287 

between emotion and expectation conditions. 288 

For the parameter optimisation, rather than allowing all three parameters of interest to vary per condition (resulting 289 

in 12 parameters instead of 3), we constructed a series of eight models to see which combination of condition-290 

specific parameters (e.g. 4 a parameters, one per condition, with 1 v and 1 t0 parameter for all the data, versus 4 v 291 

and 4 t0 parameters, one per condition, with 1 a parameter for all the data, etc.) best explained the group data (all 292 

trials pooled across participants). The eight models were: 1) no condition-specific parameter optimisation, 2) a, 3) 293 

v, 4) t0, 5) a and v, 6) a and t0, 7) v and t0, and 8) a, v, and t0. We pooled the data across all participants so that we 294 

maximised our power, due to the relatively lower number of incorrect trials (correct responses: count = 36,802, 295 

count per condition = 3,055 to 15,390, mean RT = 1.844 ± 0.423; incorrect responses: count = 801, count per 296 

condition = 52 to 356, mean RT = 1.887 ± 0.501).  297 

We used the fast-dm software (Voss and Voss, 2007) to optimise the parameters using maximum likelihood 298 

estimation. For the estimation, we fixed four variables based on the design features of our task. First, we fixed z 299 

to 0.5 because face orientation was randomised and thus participants could not be biased towards a correct or 300 

incorrect orientation before the trial had begun. Second, we fixed differences in speed of response execution to 0 301 

because we expected motor responses to be relatively uninfluenced by expectation or emotion. Third, we fixed  302 

inter-trial variability of z and v to 0 because there were low trial numbers for the incorrect responses to reliably 303 

estimate inter-trial variability. This left a, v, t0, inter-trial variability in t0 (as recommended by Voss and Voss, 304 

2007), and percentage of contaminants (i.e. guesses) as free parameters that could vary either generally or 305 

condition-specifically (expected/unexpected and neutral/fearful faces), depending on the model. We then 306 

compared the minimised log likelihood across all eight models, as well as the AIC (criteria for best model ≥ 3; 307 

Raftery, 1995) to account for models with more parameters, to see which parameter optimisation set-up resulted 308 

in the best explanation of the data. We also used the Kolmogorov-Smirnov test statistic (p) as a measure of model 309 

fit, where p > .05 indicates sufficient goodness-of-fit. We adjusted p for models with condition-specific free 310 

parameters by calculating p1-k, where k is the number of conditions (Voss and Voss, 2007).  311 

After establishing the best parameter optimisation set-up across all participants, we took the winning model 312 

architecture and conducted parameter optimisation on each participant so that we could statistically compare 313 

differences in condition-specific parameters using a 2 × 2 repeated-measures ANOVA (between emotion and 314 

expectation).  315 

EEG analysis 316 

Robust-averaged ERPs 317 

We conducted general linear model (GLM) analyses in SPM 12 on the robust-averaged ERPs per condition using 318 

each participant’s smoothed 3D images. Each GLM consisted of a 2 (expected, unexpected) × 2 (neutral, fearful) 319 
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repeated-measures design, where we investigated the main effects of emotion and expectation, and their 320 

interaction. Each participant’s gender, block order (i.e. whether the experiment began with a predominantly neutral 321 

or fearful block), and anxiety (summed state and trait scores) were also entered as covariates of no interest and 322 

mean-centred. We compared four variations on this GLM, each of which incoporated the behavioral data to explain 323 

the observed ERP data in a distinct way. The first GLM consisted of the above design without any additional 324 

components. The second GLM included participant’s average response time per condition as a covariate of interest. 325 

The third and fourth GLMs were ‘model-based’ GLMs (O'doherty et al., 2007), such that they included covariates 326 

for either the v or t0 parameter estimates per condition derived from DDM per condition. For each of these GLMs, 327 

the resultant SPMs were corrected for multiple comparisons according to Random Field Theory (Worsley, 2006). 328 

Given the large number of multiple comparisons in this particular experimental design (due to the long epoch 329 

duration of 3 seconds – 3,072 samples), we applied a small volume correction so that we only examined results 330 

across the scalp from 0 to 2 seconds as we were primarily interested in neural activity preceding response time 331 

(average response times =  1.844 s, SD = 0.423 s). Only clusters with p < .05 family-wise-error (FWE) corrected 332 

were considered.  333 

Source reconstruction 334 

For cortical source reconstruction from our EEG data, we used the Multiple Sparse Priors (MSP) method (Friston 335 

et al., 2008) implemented in SPM12. This method is a Bayesian solution to the EEG inverse problem that puts 336 

certain constraints (i.e. priors) on likely sources of observed EEG activity, including that the sources are likely 337 

multiple and sparse. First, a head model was constructed for each participant’s EEG data using a canonical T1 338 

image provided by SPM12 and estimated using a single-sphere Boundary Element Model (Mattout et al., 2007). 339 

We then optimised the inversion process by simultaneously inverting the data for each condition across all 31 340 

participants (i.e. group inversion), thus assuming that the responses in all participants (who each completed the 341 

same experimental task) should be explained by the same set of sources (Litvak and Friston, 2008). After group 342 

inversion, we then extracted cortically-smoothed images over space (8 × 8 × 8 mm FWHM Gaussian kernel) of 343 

the estimated source activity per condition across several time windows of interest. The first window was 0 to 2 344 

seconds (similar to the ERP analysis described above). The second, third, and fourth were 500 ms bins from 0.5 345 

to 1 s, 1 to 1.5 s, and 1.5 to 2 s, allowing us to observe how source activity changed over time.  346 

Our first statistical analysis was a 2 (emotion) × 2 (expectation) full factorial GLM, where the levels of each factor 347 

were dependent and the variance was assumed to be unequal. We entered in gender, block order, and anxiety as 348 

mean-centred covariates of no interest and then examined the main effects and interactions (F tests). If significant, 349 

these were followed up with t-tests to examine the specific direction of each effect. We then conducted separate 350 

GLMs to examine how cortical sources evolved over time as a function of two key DDM parameters: drift rate (v) 351 

and non-decision time (t0), which were found to vary in the winning model from the DDM group optimisation 352 

stage described earlier. Hence, there were six separate GLMs (2 parameters (v and t0) × 3 time windows – 500 ms 353 
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each). The design of each was the same as the first (i.e. 2 × 2 full factorial with 3 covariates of no interest) but had 354 

an additional DDM covariate of interest (either v or t0 value per condition, per participant). To follow up the 355 

behavioural results we observed earlier, we computed specific t contrasts. Specifically, for drift rate (v), we found 356 

behavioural evidence that v is interactively influenced by emotion and expectation, and so we tested if the v 357 

parameter covaried with interactive effects at the source level (that is, greater activity for unexpected than expected 358 

fearful faces, compared with neutral faces). Similarly, we found behavioural evidence that non-decision time (t0) 359 

was influenced by expectation, and so we tested if the t0 parameter covaried with stronger (contrast 1) or weaker 360 

(contrast 2) source activity for surprise. For all GLMs, the SPM Anatomy Toolbox was used to identify the 361 

significant sources (Eickhoff et al., 2005), p < .05 cluster-level family-wise-error-corrected. 362 

RESULTS 363 

Prior expectations speed up breakthrough of neutral but not fearful faces 364 

Experiment 1 was our first investigation into how emotion and expectation might interactively influence 365 

breakthrough times in a bCFS paradigm. Using LME to model all trial data (accounting for inter-participant 366 

variance, gender, block order, trial number, and anxiety score; see Fig. 2C), we discovered that the interaction 367 

model (response time ~ emotion × expectation + gender + block order + random effect of subject + random effect 368 

of anxiety + random effect of trial number) was the highest performing (χ2 = 9.282, p = .002; see Fig. 2A) compared 369 

to the other nested models (i.e. the null model, emotion model, expectation model, and emotion + expectation 370 

model). The least-squares means (in seconds) predicted by the winning model revealed a significantly slower 371 

estimated response time for unexpected (M = 3.355; 95% CI [2.782 3.927]) than expected (M = 3.443; 95% CI 372 

[2.889, 4.047]) neutral faces (p = .0001), while there was no significant difference between expected (M = 3.158; 373 

95% CI [2.610, 3.754]) and unexpected (M = 3.148; 95% CI [2.601, 3.759]) fearful faces (p =.954; see Fig. 2B), 374 

which were faster than neutral faces overall.  375 

 376 
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 377 

Figure 2. Winning interaction models from Experiments 1 and 2. The LME results are displayed for Experiment 1 (A and 378 

B) and Experiment 2 (C and D). A and C display the likelihood of each model as given by the log likelihood and the Akaike 379 

information criteria (AIC) during likelihood ratio estimation (both measures are better when the height of the bars are lower). 380 

Asterisks (* p < .05, ** p < .01, *** p < .001) indicate the significance of log likelihood ratio tests between models, and 381 

arrows point towards the smallest AIC values. B and D display each participant’s mean response time (y-axis) per condition 382 

(x-axis), as represented by the smaller dots (error bars represent standard error across trials). The lines connect expected and 383 
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unexpected conditions for a single participant, with solid lines indicating faster responses to expected faces and dashed lines 384 

indicating faster responses to unexpected faces. The least-squares mean estimated across the entire dataset by the winning 385 

model is represented by the larger circles, where error bars represent 95% confidence interval. Asterisks indicate the 386 

significance of the simple effects of prediction for each emotion (as given by least-squares means).  387 

We conducted Experiment 2 on 31 new participants to investigate whether patterns of neural activity unfolded 388 

differently over time between emotion and expectation conditions during interocular suppression. We modified 389 

the paradigm from Experiment 1 to accommodate the EEG recording (see Methods for details). We replicated the 390 

main behavioural results from Experiment 1 using this modified version of the task on a new group of participants. 391 

The interaction model was, again, the highest performing model relative to all others (χ2 = 15.075, p = 1.034 × 10-392 

4; see Fig. 2D). The least-squares means (in seconds) predicted by the winning model revealed a significantly 393 

slower estimated response time for unexpected (M = 1.863; 95% CI [1.782, 1.944]) than expected (M = 1.882; 394 

95% CI [1.800, 1.964]) neutral faces (p = .010). This time, however, the least-square means were significantly 395 

faster for unexpected (M = 1.808; 95% CI [1.726, 1.890]) than expected (M = 1.828; 95% CI [1.747, 1.909]) fearful 396 

faces (p = .007; see Fig. 2E). 397 

Overall, the behavioural results from Experiments 1 and 2 demonstrate that implicitly-learned expectations for 398 

emotional expression accelerated reponses to neutral faces, while there was either no effect (Experiment 1) or the 399 

opposite effect (Experiment 2) on fearful faces. Hence, these results favour the Survival Hypothesis, such that both 400 

expected and unexpected fearful stimuli were prioritised for conscious access. This is in contrast with the Additive 401 

Hypothesis (that there would be an equal influence of prior expectations on neutral and fearful faces) and the 402 

Emotional Exaggeration Hypothesis (that there would be an even larger effect of expectation on fearful than neutral 403 

faces).  404 

Prior expectations shorten non-decision time and unexpected threat accelerates evidence 405 

accumulation 406 

We used drift diffusion modelling to explain the response time patterns  (i.e. faster for expected than unexpected 407 

neutral faces, while the opposite was true for fearful faces). We conducted this analysis on the behavioural data 408 

from Experiment 2, rather than Experiment 1, because Experiment 2 contained considerably more trials and also 409 

allowed us to relatethe resultant decision parameters to the EEG data. In an initial group-level parameter 410 

optimisation step (see Methods for details), we established that the data overall were best explained when the drift 411 

rate (v) and non-decision time (t0) were free to vary per condition (giving four condition-dependent values for each 412 

parameter), while the threshold (a) parameter was free to vary across all the data generally – this was model 7 (v, 413 

t0; see Fig. 3A). This model’s AIC was sufficiently lower (23.7) than the next best model, model 3 (v), and 414 

sufficiently fit the observed data (Kolmogorov-Smirnov test statistic: null model p = 0.111 and winning model p 415 

= 0.593, where an adequate model fit is indicated by p > .05).  416 
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We then applied model 7’s parameter optimisation approach to each participant’s response time data separately, 417 

to derive a v and t0 per participant, per condition. Model 7 provided adequate model fit across all participants 418 

(Kolmogorov-Smirnov test statistic: p = 0.696 ± 0.063, 0.575 to 0.851). We discovered that non-decision time (in 419 

seconds) was significantly shorter for expected (M = 0.882, 95% CI [0.782, 0.981]) than unexpected (M = 0.910, 420 

95% CI [0.809 1.1011]) faces (F(1,30) = 9.352, p = .005, ηp
2 = 0.238), indicating that expectations hastened either 421 

stimulus encoding or response output processes (Ratcliff and McKoon, 2008). There was no significant main effect 422 

of emotion (F(1,30) = 0.036, p = .852, ηp
2 = .001) or interaction (F(1,30) = 0.801, p = .378, ηp

2 = .026). 423 

For the v parameter, we applied a natural log transformation to correct the skewness of the data (original skewness: 424 

EN = 1.01, UN = 1.34, EF = 0.57, UF = 2.01, transformed skewness: EN = 0.41, UN = 0.56, EF = 0.14, UF = 425 

0.94). We discovered that drift rate (in log units per second, towards the estimated threshold from relative starting 426 

point 0.5) was greater overall for fearful (M = 1.477, 95% CI [1.366, 1.587]) than neutral (M = 1.394, 95% CI 427 

[1.290, 1.498]) faces (F(1,30) = 8.122, p = .008, ηp
2 = 0.213), and was also greater overall for unexpected (M = 428 

1.469, 95% CI [1.360, 1.578]) than expected (M = 1.402, 95% CI [1.301, 1.503]) faces (F(1,30) = 13.200, p = 429 

.001, ηp
2 = 0.306). Critically, however, there was an interaction (F(1,30) = 5.933, p = .021, ηp

2 = 0.165), such that 430 

drift rate was only significantly increased for unexpected than expected fearful (difference: M = 0.122, 95% CI 431 

[0.048, 0.197]) faces (t(30) = 3.351, p = 0.002, pbonf = .004), while there was no significant difference between 432 

unexpected and expected neutral (difference: M = 0.013, 95% CI [-0.027,0.052]) faces (t(30) = 0.648, p = .522, 433 

pbonf = 1.00). These results indicate that evidence accumulated at a faster rate for unexpected fearful faces, relative 434 

to all other conditions. 435 

Overall, the DDM results illustrate that the differential effect of prior expectations on response times to neutral 436 

and fearful faces may be explained by a combination of non-decision time and drift rate in the decision-making 437 

process. Non-decision time, representing stimulus encoding and/or motor response time, is hastened by prior 438 

expectations, explaining the faster response times to expected than unexpected neutral faces. For fearful faces, on 439 

the other hand, evidence accumulation is accelerated specifically for unexpected fearful faces; hence, the faster 440 

response times to unexpected than expected fearful faces.  441 

 442 
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 443 

Figure 3. Drift diffusion modelling group-level model comparison and participant-level parameter comparisons. A) 444 

The results of the group-level parameter optimisation are shown. The minimised log likelihood (left) and AIC (right) values 445 

are shown for each of the eight models, where the parameters that were free to vary per condition are indicated along the x 446 

axis. Arrows indicate the model with the lowest value. B) The estimated parameter values for v (top) and t0 (bottom) are 447 

shown per participant. These ‘raincloud’ plots illustrate the distribution of data (histogram) and the individual data points 448 

(each participant). The mean is indicated by vertical solid lines and standard error is represented by dashed vertical lines either 449 

side of the mean. Asterisks (*p < .05) indicate the main effect of expectation on non-decision time (t0) and the interaction 450 

between emotion and expectation on drift rate (v; unexpected fearful > all other conditions).  451 

EEG reveals occipital, temporal, and frontal networks associated with emotional 452 

expectations 453 

The DDM analysis explained the pattern of the response time via modulation of non-decision time and drift rate, 454 

such that  response times to expected faces are accelerated (faster sensory encoding and/or motor execution) but 455 

response times to fearful faces are even faster when they are unexpected (more rapid evidence accumulation). We 456 

investigated this further by examining the timing of neural correlates with emotion and expectation processing. 457 

We conducted a General Linear Model in SPM to determine when and where in the scalp activity there was  1) a 458 

main effect of emotion (neutral vs. fearful), 2) a main effect of expectation, and 3) an interaction between emotion 459 

and expectation. This was achieved by conducting a full factorial ANOVA, with gender and block order added as 460 
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covariates of no interest. After restricting the time window to 0 to 2 seconds post-stimulus onset (since we were 461 

interested in the activity preceding response times) and correcting for multiple comparisons (p < .05, cluster-level 462 

FWE), we did not observe significant differences in amplitude between expected and unexpected faces across the 463 

scalp. This was the case for both neutral and fearful faces, as there was no significant interaction effect. There 464 

were, however, three significant clusters for fearful versus neutral face activation (not shown). Both clusters 465 

spanned left occipital-parietal electrodes, where fearful faces elicited greater negative activity from 1.353 to 1.439 466 

seconds and then from 1.661 to 1.768 seconds.  467 

In conjunction with our scalp analysis, we also estimated the neural sources underlying the scalp activity from 0 468 

to 2 seconds post-stimulus onset. We first looked at emotion and expectation effects and found significant main 469 

effects of each, as well as an interaction (see Fig. 4). There was significantly (p < .05, clusters FWE-corrected) 470 

greater activity for neutral than fearful faces in left V3/V4 and for fearful than neutral faces in the right middle 471 

temporal gyrus, in line with previous fMRI research (Sabatinelli et al., 2011). For expected faces, there was 472 

significantly greater activity in the left and right inferior frontal gyrus (IFG), left V3/V4, right middle frontal gyrus, 473 

and right temporal pole, supporting previous fMRI studies on expectation across sensory modalities (Hedge et al., 474 

2015, Osnes et al., 2012). In contrast, there was significantly greater activity for unexpected faces in left V1/V2, 475 

consistent with previous fMRI work (Summerfield and Koechlin, 2008, Kok et al., 2012). Finally, the emotion by 476 

expectation interaction consisted of a greater surprise effect (that is, greater activity for unexpected than expected) 477 

for fearful than neutral faces in the right IFG and the left superior temporal gyrus (STG). In contrast, there was a 478 

greater surprise effect for neutral faces in the right middle temporal gyrus (MTG) and STG. These findings are 479 

consistent with previous fMRI studies demonstrating a role for the IFG in anticipating negative stimuli (Ueda et 480 

al., 2003, Sharot et al., 2011). Overall, our scalp and source analyses revealed a network of occipital, temporal, 481 

and frontal areas associated with emotion and expectation. 482 
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Figure 4. Source reconstruction reveals networks underlying emotion and expectation processing. The significant 

sources for emotion (left), expectation (middle), and the emotion by expectation interaction (right) are shown. Here, we show 

the t statistics for Neutral (minus Fearful), Fearful (minus Neutral), Expected (minus Unexpected), Unexpected (minus 

Expected), Neutral Surprise ([UN – EN] minus [UF – EF]), and Fearful Surprise ([UF – EF] minus [UN – EN]). L = left, R = 

right, MTG = middle temporal gyrus, IFG = inferior frontal gyrus, MFG = middle frontal gyrus, TP = temporal pole, IPL = 

inferior parietal lobule, STG = superior temporal gyrus. All clusters shown are p < .05 cluster-level FWE corrected. 

Higher drift rate for fearful surprise covaries with greater activity in the right IFG and 

faster non-decision time covaries with greater activity in visual areas 

We then turned towards a model-based approach to EEG analysis to further elucidate how decision-making 

mechanisms relate to neural activity. This modeling analysis on response time revealed that drift rate was 

accelerated for fearful surprise and also that there was faster non-decision time for expected than unexpected faces. 

To find the neural correlates of these effects, we first conducted a scalp-level GLM similar to the one described 

above except that we also included non-decision time as a covariate of interest. We specifically investigated when 

and where non-decision time covaried with surprise-related neural activity (i.e. expected vs. unexpected). This 

revealed a cluster of central occipital activity from 1.106 to 1.188 seconds(not shown).  

At the source level, we examined activity across three time windows (0.5 to 1 second, 1 to 1.5 seconds, and 1.5 to 

2 seconds) to see whether there might be dynamic changes in significant sources over time. During only the 0.5 to 

1 second window, we found that there was significantly greater activity for surprise in left V1/V2 for people who 

had faster non-decision time (p < .05, clusters FWE-corrected; see Fig. 5). Altogether, these results suggest that 

shorter non-decision time for expected than unexpected trials likely reflects faster stimulus encoding (Ratcliff and 

McKoon, 2008), supporting previous studies finding early spatiotemporal correlates (Nunez et al., 2017) and 

greater activity for surprise in the primary visual cortex (Summerfield and Koechlin, 2008, Kok et al., 2012). 

For the log-transformed drift rate parameter (v), we found that there was greater activity in the right IFG for fearful 

than neutral surprise when drift rate parameters were higher (see Fig. 5). This was the case for time windows 

spanning 1 to 2 seconds. There was also a borderline-significant cluster in the left inferior parietal lobule (p = .067) 

within the 1 to 1.5 second time window. Hence, the right IFG appears to be associated with accelerated evidence 
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accumulation to surprising threats emerging into conscious perception. Note that we did not observe any 

significant clusters of activity at the scalp level after correcting for multiple comparisons (p < .05 cluster-level 

FWE) for the correlation between drift rate and the emotion × expectation interaction (that is, a greater effect of 

surprise for fearful than neutral faces).   

Overall, this model-based neuroimaging analysis revealed the evolution of source activity over time for each of 

our key DDM parameters and how these covaried with emotion-induced and expectation-induced neural activity. 

Particularly, we found an initial, short-lived increase in primary visual cortex activity for surprise when non-

decision time was faster. Finally, there was a consistently greater effect of fearful than neutral surprise when drift 

rate was higher in the right IFG from 1 to 2 seconds, suggesting a potential role for this area in facilitating earlier 

conscious perception of unexpected threats. 

 

Figure 5. EEG source activity correlates with decision-making parameters. Estimated source activity is shown for time 

windows 0.5 to 1, 1 to 1.5, and 1.5 to 2 seconds post-stimulus onset. For each, neural correlates were investigated between 

faster non-decision time (t0) and neural activity for surprise (unexpected – expected) and between faster drift rate (v) and 

neural activity for fearful surprise ([unexpected – expected fearful faces] – [unexpected – expected neutral faces]). Clusters 

are thresholded at p < .10 FWE but note that the left V1/V2 and right IFG clusters are all significant at p < .05 FWE. Pink 

heat maps represent t-values for the surprise vs. t0 correlation and orange heat maps are for the fearful surprise vs. v correlation. 

L = left, R = right, V1/V2 = primary/secondary visual cortex, IFG = inferior frontal gyrus, IPL = inferior parietal lobe. 

DISCUSSION 

Here we set out to explore the interaction between emotion and expectation on the conscious awareness of stimuli, 

and to determine the neural mechanisms underlying these effects. To achieve this, we modelled behavioural 

responses to neutral and fearful faces that emerged from continuous flash suppression (CFS) and were either 

expected or unexpected, and correlated the resulting parameters to human neural activity recorded with EEG. In 

line with previous research, we found that expectation accelerated the conscious perception of faces. Model-based 

EEG analyses revealed that this was driven by faster non-decision time for expected than unexpected faces, which 

correlated with increased activation of early visual cortex shortly after stimulus onset. Fearful faces were fastest 
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to be consciously perceived overall but, crucially, were either unaffected by expectation (Experiment 1) or were 

faster to break through into consciousness when unexpected (Experiment 2). We discovered that this was driven 

by an especially fast rate of evidence accumulation (drift rate) for surprising fearful faces, which correlated with 

sustained activity in the right IFG. These results are consistent with the Survival Hypothesis, and suggest that 

occipital and frontal networks in the human brain facilitate the fast detection of danger, even when such threats 

are improbable and tangential to the task at hand.  

Our results provide experimental evidence for the folk notion that ‘we see what we want to see’. Fearful faces, 

which present an evolutionarily-relevant ambiguous threat signal, were more quickly detected than neutral faces, 

in line with previous research (Hedger et al., 2014, Capitão et al., 2014, Yang et al., 2007, Tsuchiya et al., 2009). 

Our analysis also revealed that fearful faces evoked stronger activity in the right MTG and accelerated the rate of 

evidence accumulation (drift rate), the latter of which supports previous research showing that emotional content 

increases drift rate in perceptual decision-making (Tipples, 2015) even if unconsciously-presented via CFS 

(Lufityanto et al., 2016).  

Our results also support the folk notion that ‘we see what we expect to see’. Consistent with previous literature 

(Pinto et al., 2015, Hesselmann et al., 2010, Vetter et al., 2014, Hohwy et al., 2008), expected stimuli were detected 

faster than unexpected stimuli. Drift-diffusion modelling of reaction time data revealed that this effect was 

underpinned by a reduction in non-decision time with expectation (for both neutral and fearful faces), a finding 

that is consistent with previous research on temporal expectations (Jepma et al., 2012). Subsequent model-based 

EEG analyses revealed that this effect correlated with greater activity in left V1/V2 for surprise in only the earliest 

analysed time window (0.5 to 1 second post-stimulus onset), complementing a previous DDM-based EEG study 

on attention that found early (150-275ms post-stimulus onset) activity related to non-decision time (Nunez et al., 

2017). Together, the early timing and location of these effects suggest that expectation accelerates stimulus 

encoding rather than motor execution, the correlates of which would likely occur in motor areas and much closer 

to the participants’ response (average response time ~1.8 seconds). Consistent with this interpretation, recent 

studies have suggested that expectation ‘sharpens’ sensory representations in the primary visual cortex (Kok et al., 

2012), or, alternatively, neural scaling (Alink et al., 2018), either of which could account for the reduced neural 

activity in response to expected faces that we observed here.  

We discovered that expectation and emotion interacted to influence conscious perception, such that expectation 

hastened the detection of neutral but not fearful faces. Drift-diffusion modelling of reaction time data from 

Experiment 2 revealed that this interaction was driven by a faster rate of evidence accumulation (drift rate) for 

unexpected fearful faces, relative to all other conditions. This interaction effect could explain why previous studies 

using only neutral stimuli have found no influence of expectation on drift rate (De Loof et al., 2016). Similar 

effects on drift rate have previously been seen with attention (Tavares et al., 2017, Nunez et al., 2017), and previous 

work on inattentional blindness has suggested that unexpected threatening stimuli (e.g. spiders, guns or snakes: 
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New and German, 2015, Wiemer et al., 2013, Gao and Jia, 2017) draw more attention and thus are more likely to 

be noticed than unexpected neutral stimuli (but see also (Calvillo and Hawkins, 2016, Beanland et al., 2017). In 

accordance with this literature, we speculate that the enhanced drift rate to unexpected fearful faces and their 

subsequent early conscious perception might reflect an underlying interaction between (exogenous) attention and 

prediction. Consistent with this interpretation, a recent discussion of predictive coding theory suggests that 

attention interacts with prediction to optimise the expected precision of predictions via gain-modulation of 

prediction errors (Feldman and Friston, 2010), and a recent study conducted by our group provided experimental 

evidence for this theory (Smout, Tang, Garrido & Mattingley, 2019). Since prediction errors (in predictive coding) 

and drift rate (in sequential sampling) can be considered to be equivalent (under certain simplifying assumptions, 

see Bitzer et al., 2014), it follows from this theory that attended and unexpected stimuli should exhibit increased 

drift rate (or, equivalently, prediction errors), as we observed here.  

Our source analysis revealed that the right IFG showed persistently greater signal for fearful than neutral surprise 

when drift rate was higher. This is consistent with findings for the involvement of the IFG in generating the 

mismatch negativity ERP response to unexpected stimuli (Garrido et al., 2009, Doeller et al., 2003, Opitz et al., 

2002, Kim, 2014). Critically, our results further extend this finding by demonstrating that this effect is enhanced 

for threatening stimuli and is associated with accelerated evidence accumulation even while stimuli are breaking 

through into conscious perception. Hence, the right IFG may play a significant role in increasing the gain of 

prediction error signals for fearful faces. Indeed, previous research has found the IFG to respond more to fearful 

than neutral faces (Ishai et al., 2004, Luo et al., 2007), with IFG activity being predictive of fearful face perception 

near the threshold of conscious awareness (Pessoa and Padmala, 2005). Our time-resolved source-level GLM 

results suggest that unexpected threat triggers rapid evidence accumulation for dichoptically-suppressed face 

stimuli, involving the right IFG as early as 1 second (see Fig. 5) before a conscious perceptual decision is made. 

Future research could broaden the extent of this network by using MEG or fMRI to tap into both subcortical and 

cortical sources to see whether circuits including the amygdala (Tamietto and De Gelder, 2010, Mitchell and 

Greening, 2012) may contribute to unexpected threat responses in the IFG.  

Overall, our results present a newly-discovered interaction between prior expectations and emotional expression 

that modulates how early we can make conscious perceptual decisions about faces. This effect was driven by an 

acceleration of early stimulus encoding by prior expectations, as well as an early and sustained increase in evidence 

accumulation, involving the right IFG, specifically for unexpected fearful faces. Although we took a measure of 

non-clinical state and trait anxiety that did not significantly correlate with behavioural or neural responses in our 

healthy participants, it is conceivable that the conscious perception of threat might be modulated by prior 

expectations in clinical anxiety, which is characterised by threat overexpectancy (Aue and Okon-Singer, 2015). It 

has also recently been shown that people with schizophrenia have aberrant expectations for threat (Dzafic et al., 

2018, Barbalat et al., 2012). Hence, future computational psychiatric research may yield invaluable findings by 
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exploring this line of research in people with various types of clinical anxiety (e.g. social anxiety, specific phobia, 

or post-traumatic stress disorder) or schizophrenia. 
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