

1 **A genome-wide association study identifies that the GDF5 and COL27A1 genes are associated with knee pain in UK
2 Biobank (N = 171, 516)**

3 Weihua Meng, PhD^{1*}, Mark J Adams, PhD^{2*}, Colin NA Palmer, PhD¹, The 23andMe Research Team³, Jingchunzi Shi, PhD³, Adam
4 Auton, PhD³, Kathleen A. Ryan, PhD⁴, Joanne M. Jordan, MD⁵, Braxton D. Mitchell, PhD^{4,6}, Rebecca D. Jackson, MD⁷, Michelle S.
5 Yau, PhD⁸, Andrew M McIntosh, MD², Blair H Smith, MD¹

6 ¹ Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, UK, DD2 4BF

7 ² Division of Psychiatry, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK, EH10 5HF

8 ³ 23andMe, Inc., Mountain View, CA 94061, USA

9 ⁴ Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA

10 ⁵ Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA

11 ⁶ Geriatric Research, Education and Clinical Center, Veterans Affairs Medical Center, Baltimore, MD, USA

12 ⁷ Division of Endocrinology, Diabetes and Metabolism, The Ohio State University, Columbus, OH, USA

13 ⁸ Institute for Aging Research, Hebrew SeniorLife, Harvard Medical School, Boston, MA, USA

14

15 *Weihua Meng and Mark J Adams contributed equally to this paper.

16 *Corresponding author: Dr Weihua Meng, w.meng@dundee.ac.uk

17 Address: Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, UK, DD2 4BF. Tel.: +44

18 1382383419; fax: +44 1382383802

19 Running title: GWAS on knee pain

20

21

22 **SUMMARY**

23 *Objective:* Knee pain is one of the most common musculoskeletal complaints that brings people to medical attention. We sought to
24 identify the genetic variants associated with knee pain in 171,516 subjects from the UK Biobank cohort and replicate them using
25 cohorts from 23andMe, the Osteoarthritis Initiative (OAI), and the Johnston County Osteoarthritis Study (JoCo).

26 *Methods:* We performed a genome-wide association study of knee pain in the UK Biobank, where knee pain was ascertained
27 through self-report and defined as “knee pain in the last month interfering with usual activities”. A total of 22,204 cases and
28 149,312 controls were included in the discovery analysis. We tested our top and independent SNPs ($P < 5 \times 10^{-8}$) for replication in
29 23andMe, OAI, and JoCo, then performed a joint meta-analysis between discovery and replication cohorts using GWAMA. We
30 calculated the narrow-sense heritability of knee pain using Genome-wide Complex Trait Analysis (GCTA).

31 *Results:* We identified 2 loci that reached genome-wide significance, rs143384 located in the *GDF5* ($P = 1.32 \times 10^{-12}$), a gene
32 previously implicated in osteoarthritis, and rs2808772, located near *COL27A1* ($P = 1.49 \times 10^{-8}$). These findings were subsequently
33 replicated in independent cohorts and increased in significance in the joint meta-analysis (rs143384: $P = 4.64 \times 10^{-18}$; rs2808772: P
34 = 2.56×10^{-11}). The narrow sense heritability of knee pain was 0.08.

35 *Conclusion:* In this first reported genome-wide association meta-analysis of knee pain, we identified and replicated two loci in or
36 near *GDF5* and *COL27A1* that are associated with knee pain.

37 **Key words:** knee pain, genome-wide association study, *GDF5*, *COL27A1*, UK Biobank.

38

39 **Introduction**

40 The knee supports body weight when walking, standing upright and bending. Knee pain describes a specific area of pain inside the
41 knee or diffuse pain around knee area¹. It is one of the most common musculoskeletal complaints that brings people to medical
42 attention². The knee pain experience varies from person to person and can present as a dull ache to a sharp, stabbing pain and
43 from intermittent weight bearing pain to persistent pain³.

44 Knee pain is highly prevalent in older individuals, with ~50% of individuals over the age of 50 reporting an experience of knee pain
45 within the past 12 months⁴. In one US general population cohort, knee pain prevalence has increased from 15.7% to 32.9% in
46 females and from 8.7% to 27.7% in males between 1983 to 2005, regardless of knee osteoarthritis status⁵. In another estimate, the
47 prevalence of knee osteoarthritis in the US increased from 8% in 1950s to 16% currently⁶. There are currently over 8 million
48 patients suffering from knee osteoarthritis in the UK⁷. According to the Global Burden of Diseases 2016, osteoarthritis including
49 knee osteoarthritis is the 12th leading cause of years of life lived with disability (YLDs) globally⁸. It is estimated that ~ 50% of all
50 people with knee osteoarthritis have reported knee pain symptoms and of those without knee osteoarthritis, 20% have reported
51 knee pain⁵. There are many underlying mechanisms that can cause knee pain, including injuries, gout, and infection, as well as
52 arthritis. Among these, osteoarthritis is the most common cause, particularly in people over the age of 50⁵. People with knee pain
53 will experience progressive loss of knee function and declining quality of daily life, and display increasing dependence in daily
54 activities⁹. Further, knee pain caused by osteoarthritis frequently accompanies pain in other joints such as hips and hands, which
55 further reduces quality of life¹⁰. The disease has generated huge economic burdens to the health care systems across the world.

56 For example, although no figures exist specifically on knee osteoarthritis, the total direct cost of osteoarthritis as a whole in the UK
57 in 2010 was around £1 billion and the corresponding total indirect cost of osteoarthritis in 2010 was over £3.2 billion¹¹.

58 Epidemiological studies have suggested multiple risk factors for knee pain, including female sex, age, obesity, previous knee
59 injuries, knee-straining work, and smoking¹². Similar risk factors are reported in studies of knee osteoarthritis specifically, which
60 also included kneeling and squatting as further risk factors^{12,13}. With aging populations and increasing rates of obesity, the
61 prevalence of knee pain is likely to increase. Psychological factors are also important risk factors of knee pain¹⁴. These
62 environmental and lifestyle factors are likely to interact with genetic factors, and are important to understand in genetic association
63 studies.

64 Genetic studies to date have focused on knee osteoarthritis, but not knee pain more generally. Studies in siblings have reported
65 heritabilities for knee osteoarthritis as high as 0.62¹⁵. The genetic architecture of knee osteoarthritis was considered to follow an
66 additive genetic model, involving multiple genes or loci but each with small effect size¹⁶. Candidate genes including *GDF5*, *COL9A1*,
67 *IL1B*, *IL1RN*, *LRCH1*, *CLIP*, *TNA*, and *BMP2* have been reported to be associated with knee osteoarthritis¹⁷⁻²¹. Genome-wide
68 association studies (GWAS) have also reported that the *GDF5*, *DVWA*, *HLA-DQB1*, *BTNL2*, *COG5*, *MCF2L*, *TP63*, *FTO*,
69 *SUPT3H/RUNX2*, *GLN3/GLT8D1*, and *LSP1P3* genes contribute specifically to knee osteoarthritis²²⁻²⁸. Recently, Zengini et al
70 reported 9 novel genetic loci associated with osteoarthritis based on 5 different osteoarthritis definitions according to the self-

71 reported status questionnaire and the Hospital Episode Statistics data from the UK Biobank cohort²⁹. However, these analyses did
72 not specifically focus on the knee area.

73 To identify the genetic variants associated with knee pain, we conducted a GWAS using the large UK Biobank cohort. We defined
74 knee pain as 'knee pain in the last month interfering with usual activity', based on the information available from the study
75 questionnaire. Since there are no well-defined knee pain cohorts available, we chose to replicate our genome-wide significant
76 findings on knee pain using three independent cohorts that defined osteoarthritis using either questionnaire data (i.e., 23andMe) or
77 radiographic criteria (i.e., the Osteoarthritis Initiative (OAI) and the Johnston County Osteoarthritis Study (JoCo)).

78 As far as we know, this is the first GWAS on knee pain to screen for genetic variants. Similar approaches have been taken for
79 headache and back pain using the UK Biobank cohort^{30,31}.

80

81 **Method**

82 **Participants and genetic information of the UK Biobank, 23andMe, OAI, and JoCo participants**

83 Discovery cohort - UK Biobank: Over 500,000 people aged between 40 and 69 years were recruited by the UK Biobank cohort in
84 2006-2010 across England, Scotland and Wales. All participants provided informed consent that their health records could be

85 accessed for research purposes. Further information about the UK Biobank cohort can be found at www.ukbiobank.ac.uk. Ethical
86 approval was granted by the National Health Service National Research Ethics Service (reference 11/NW/0382).

87 DNA extraction and quality control (QC) were standardized and the detailed methods can be found at
88 <http://www.ukbiobank.ac.uk/wp-content/uploads/2014/04/DNA-Extraction-at-UK-Biobank-October-2014.pdf>. The detailed QC steps
89 can be found at <http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=155580>.

90 In July 2017, the UK Biobank released the genetic information (including directly genotyped genotypes and imputed genotypes) of
91 501,708 samples to all approved researchers. The detailed QC steps of imputation were described by Bycroft et al³².

92 Stage 1 replication cohort - 23andMe Inc: The 23andMe company is a privately held personal genomics and biotechnology
93 company based in USA. It includes more than 1,500,000 genotyped subjects who have consented to participate in research. The
94 DNA extraction from saliva and the QC of the genotyping and imputation results were all based on the company's standardised
95 procedures. Further methodological details can be found in the supplementary file of a previous publication³³.

96 Stage 2 replication cohorts - 1. The OAI is a prospective longitudinal study designed to identify risk factors for the incidence and
97 progression of symptomatic tibiofemoral knee osteoarthritis. Participants aged between 45 and 79 years were recruited at four
98 different clinical sites in the USA. Details of the study protocol, including recruitment procedures and eligibility criteria are available
99 on the OAI web site. (<http://oai.epi-ucsf.org/datarerelease/docs/StudyDesignProtocol.pdf>). 2. The JoCo is an ongoing, community-

100 based study of the occurrence of knee and hip osteoarthritis in African American and Caucasian residents, aged 45 years and
101 above from Johnston County, North Carolina in the US. A total of 3,068 individuals were recruited at baseline. A detailed
102 description of the cohort has been reported³⁴.

103 Standard procedures of imputation and QC were applied when genotyping OAI and JoCo samples. The detailed description of the
104 cohorts has been previously published.²⁸

105 **Phenotypic information on knee pain of the UK Biobank, 23andMe, OAI, and JoCo**

106 Discovery cohort - UK Biobank: We used a bespoke pain-related questionnaire adapted by the UK Biobank, which included the
107 question: 'in the last month have you experienced any of the following that interfered with your usual activities?'. The options were:
108 1. Headache; 2. Facial pain; 3. Neck or shoulder pain; 4. Back pain; 5. Stomach or abdominal pain; 6. Hip pain; 7. Knee pain; 8.
109 Pain all over the body; 9. None of the above; 10. Prefer not to say. More than one option could be selected. (UK Biobank
110 Questionnaire field ID: 6159)

111 The knee pain cases in this study were those who selected the 'knee pain' option for the above question, regardless of whether
112 they had selected other options.

113 The controls in this study were those who selected the 'None of the above' option.

114 Stage 1 replication cohort - 23andMe, Inc: The 23andMe cohort used an online survey to determine the phenotypic status of
115 osteoarthritis of all participants.

116 Cases were defined as those self-reported having been diagnosed or treated for osteoarthritis.

117 Controls were defined as those self-reporting as having not been diagnosed or treated for osteoarthritis.

118 The cohort included 253,880 cases and 1,286,245 controls.

119 Stage 2 replication cohorts - OAI and JoCo:

120 Cases: Knee osteoarthritis was evaluated with fixed-flexion posteroanterior radiographs for OAI samples and for JoCo participants,
121 weight-bearing anteroposterior extended radiographs were taken during initial recruitments and fixed-flexion posteroanterior
122 radiographs were taken during follow up. Cases were those with definitive knee osteoarthritis, defined as radiographic evidence of
123 the presence of definite osteophytes and possible joint space narrowing (Kellgren-Lawrence grade ≥ 2) or total joint replacement in
124 one or both knees. Controls were those having no or doubtful evidence of OA (KL grade = 0 or 1) in both knees at all available
125 time points.

126 These definitions were previously used by Yau et al²⁸. In the current study, there were 2,672 cases (2,014 from OAI and 658 from
127 JoCo) and 1,776 controls (953 from OAI and 823 from JoCo).

128 **Statistical analysis**

129 GWAS analysis: In the discovery stage, the BGENIE (<https://jmarchini.org/bgenie/>) was used as the main GWAS software
130 recommended by the UK Biobank. Routine QC steps included removal of single nucleotide polymorphism (SNPs) with INFO scores
131 less than 0.1, SNPs with minor allele frequency less than 0.5%, or SNPs that failed Hardy-Weinberg tests ($P < 10^{-6}$). SNPs on the X
132 and Y chromosomes and mitochondrial SNPs were also removed. We further removed data from individuals whose ancestry was
133 not white British based on principal component analysis, those who were related to at least one other participant in the cohort (a
134 cut-off value of 0.025 in the generation of the genetic relationship matrix), and those who failed QC. Association tests based on
135 standard Frequentist association were performed using BGENIE adjusting for age, sex, body mass index (BMI), 9 population
136 principal components, genotyping arrays, and assessment centres. A Chi-square test was used to test for gender differences
137 between cases and controls. Age and BMI were compared using independent t testing in IBM SPSS 22 (IBM Corporation, New
138 York). A P value less than 5×10^{-8} was considered to indicate a significant association. Independent SNPs were defined as those
139 that were not correlated ($r^2 < 0.6$) with any other significantly associated SNP. GCTA
140 (<https://cnsgenomics.com/software/gcta/#Overview>) was used to calculate the narrow-sense heritability using a genomic
141 relationship matrix calculated from genotyped autosomal SNPs.

142 In the replication stage, details of the identified significant and independent SNPs associated with knee pain in the discovery stage
143 were sent to 23andMe Inc and the combined OAI and JoCo cohorts. The significant and independent SNPs were defined as those

144 with P value $< 5 \times 10^{-8}$ and with linkage disequilibrium value $r^2 < 0.6$. The 23andMe and the combined OAI and JoCo cohorts then
145 extracted the summary statistics of these SNPs from their GWAS results, correspondingly.

146 23andMe performed GWAS on self-reported osteoarthritis in any joint using the logistic regression method assuming an additive
147 genetic model for allelic effects adjusting for age, sex, 5 principal components, and 4 DNA chip platforms. Participants were
148 restricted to a set of individuals who had $>97\%$ European ancestry, as determined through an analysis of local ancestry. A maximal
149 set of unrelated individuals was chosen for the GWAS analysis using a segmental identity-by-descent (IBD) estimation algorithm.
150 Further details can be found in the supplementary file of a previous publication³³.

151 OAI and JoCo performed GWAS on radiographic knee osteoarthritis using logistic regression assuming an additive genetic model
152 for allelic effects adjusting for age, sex, study site, and principal components. Summary statistics from both cohorts were then
153 combined in a meta-analysis. Only participants of Caucasian origin were included in the GWAS study. Standard procedures were
154 used to remove data from non-Caucasian individuals and related individuals. Further details can be found²⁸.

155 The Genome-Wide Association Meta-Analysis (GWAMA) software (<https://www.geenivaramu.ee/en/tools/gwama>) was used to
156 perform a meta-analysis combining the results from the UK Biobank, 23andMe, OAI, and JoCo cohorts.

157 GWAS-associated analysis: The FUMA web application was used as the main annotation tool, and a Manhattan plot and a Q-Q
158 plot were also generated by this³⁵. LocusZoom (<http://locuszoom.org/>) was used to provide regional visualization.

159 FUMA mainly provides 3 types of analysis: the gene analysis, the gene-set analysis and the tissue expression analysis. In gene
160 analysis, summary statistics of SNPs were aggregated to the level of whole genes to test the associations between genes with the
161 phenotype. In gene-set analysis, groups of genes sharing certain biological, functional or other characteristics were tested together
162 to provide insight into the involvement of specific biological pathways or cellular functions in the genetic aetiology of a phenotype.
163 The tissue expression analysis was based on GTEx (<https://www.gtexportal.org/home/>), which is integrated into FUMA.
164 To identify genetic correlations between knee pain and all other 234 complex traits, we used linkage disequilibrium score
165 regression through LD Hub v1.9.0 (available at <http://ldsc.broadinstitute.org/ldhub/>)³⁶. The LD Hub estimates the bivariate genetic
166 correlations of a phenotype with 234 traits using individual SNP allele effect sizes and the average linkage disequilibrium in a region.
167 Those with *P* values less than 2.1×10^{-4} (0.05/234) were considered significant surviving Bonferroni correction for multiple testing.

168

169 **Results:**

170 **GWAS analysis results (Discovery cohort – UK Biobank)**

171 A total of 501,708 UK Biobank participants were invited to respond to the pain questionnaire during the initial assessment visit
172 (2006-2010). Among those who responded, 29,995 participants selected the 'Knee pain' option (cases), and 197,149 participants
173 selected the 'None of the above' option (controls). After removing samples from non-British participants, those who were related

174 with another individual in the cohort and those who failed QC, we identified 22,204 cases (12,062 males and 10,142 females) and
175 149,312 controls (71,480 males and 77,832 females) for the GWAS association analysis and there were 15,377,520 SNPs
176 available for the GWAS analysis. The genomic control value (lambda) was 1.06.

177 Table I summarises the clinical characteristics of these cases and controls. There were statistical differences ($P < 0.001$) in sex, age
178 and BMI between cases and controls in the UK Biobank samples.

179 We identified 2 SNP clusters that were associated with knee pain, with genome-wide significance ($P < 5 \times 10^{-8}$, Fig. 1, Table II).
180 Four independent significantly associated SNPs within 2 clusters are shown in the Table II. All significantly associated SNPs
181 (N=107) in the discovery stage are shown in Supplementary Table I.

182 The most significantly associated SNP cluster was in the *GDF5* gene in the chromosome 20q11.22 region with a P value of $1.32 \times$
183 10^{-12} for rs143384 (A allele, odds ratio (OR): 0.992). The second most significantly associated cluster was in the *LOC105376225*
184 gene (near the *COL27A1* gene) in chromosome 9 with a lowest P value of 1.49×10^{-8} for rs2808772 (A allele, OR: 1.006). The
185 regional plots for loci in *GDF5* and *COL27A1* are shown in the Supplementary Fig. 1 and 2.

186 The Q-Q plot of the GWAS in the discovery stage is shown in the Supplementary Fig. 3. The SNP-based heritability of knee pain
187 was 0.08 (standard error = 0.03).

188 **Replication stage results (23andMe, OAI, JoCo)**

189 In the stage 1 replication, the *P* value of rs143384 was 2.44×10^{-9} in the 23andMe cohort and in the stage 2 replication, the *P* value
190 of rs143384 was 0.01 in the combined OAI and JoCo cohorts. The *P* values of rs2808772 were 4.43×10^{-5} in the 23andMe and
191 0.36 in the combined OAI and JoCo cohorts. (Table II)

192 **Meta-analysis results (UK Biobank, 23andMe, OAI, JoCo)**

193 In the joint meta-analysis between the discovery and replication cohorts, the meta-analysis *P* values of all 4 independent and
194 significant SNPs from 2 loci remained genome-wide significant and increased in significance. The meta-analysis results showed
195 that the combined *P* values for rs143384 and rs2808772 were 4.64×10^{-18} (A allele, OR: 0.9905) and 2.56×10^{-11} (A allele,
196 OR: 1.007), respectively (Table II).

197 **Gene analysis, gene-set analysis and tissue expression analysis by FUMA**

198 In the gene analysis, all the SNPs that are located within genes were mapped to 19,436 protein coding genes. *GDF5* demonstrated
199 the most significant association, with a *P* value of 1.09×10^{-11} . The 11 associated genes with *P* values less than 3×10^{-6}
200 ($0.05/19436$) were *GDF5*, *UQCC1*, *CEP250*, *PODXL*, *C20orf173*, *SPAG4*, *MTMR3*, *ERGIC3*, *FBLN2*, *CPNE1*, *CDC42SE2*. The
201 results are included in the Supplementary Table II.

202 In the gene-set analysis, a total of 10,894 gene sets were tested. The regulation pathway of breast_cancer_20q11_amplicon
203 demonstrated a P value of 2.59×10^{-8} and this was the only gene set with a statistically significant association ($P < 5 \times 10^{-6}$
204 (0.05/10,894)). The top 10 gene sets from this analysis are shown in the Supplementary Table III.

205 In the tissue expression analysis, none of the tissue types demonstrated statistically significant associations ($P < 0.001$), either in
206 the expression analysis of 30 general tissue types from multiple organs or in the 53 specific tissue types within some of these
207 organs. See Supplementary Fig. 4 and 5.

208 **Genetic correlation analysis by LD Hub**

209 We identified multiple significant and negative genetic correlations for knee pain with all other traits (Supplementary Table IV). The
210 genetic correlations (r_g) surviving multiple testing correction were: Years of schooling 2016 ($r_g = -0.29, P = 4.97 \times 10^{-8}$), College
211 completion ($r_g = -0.36, P = 6.55 \times 10^{-6}$), Age of having first baby ($r_g = -0.30, P = 1.92 \times 10^{-5}$).

212

213 **Discussion**

214 In the first reported GWAS of knee pain using the UK Biobank resource, we identified genome-wide significant variants in or near
215 *GDF5* and *COL27A1*, which were subsequently replicated in osteoarthritis cohorts from the 23andMe, OAI, and JoCo cohorts. In

216 addition, we found that knee pain was genetically and negatively correlated with a number of socioeconomic factors such as years
217 of schooling and college completion.

218 The generic pain question used by the UK Biobank is useful as a screening tool and a useful step to test whether heterogeneous
219 pain phenotypes (such as knee pain) have genetic components at all. We have successfully used the same question to identify the
220 genetic variants of broadly-defined headache, and our findings were similar to those for well-defined migraine phenotypes^{30,39}. The
221 benefit of using UK Biobank on heterogeneous phenotypes will allow researchers to overcome potential issues with reduced power
222 due to heterogeneity by using very large numbers to cut through the statistical noise.

223 In this GWAS, we have identified 2 loci for knee pain. The top locus was in the *GDF5* gene in chromosome 20q11.2 with a lowest *P*
224 value of 1.32×10^{-12} for rs143384 while the locus itself was 140kb long spanning from the *UQCC1* gene to the *GDF5* gene
225 containing 104 significant SNPs (Supplementary Table I). The *GDF5* gene encodes a secreted ligand of the transforming growth
226 factor-beta (TGF-beta) superfamily of proteins⁴⁰. This protein not only regulates the development of numerous tissue and cell types,
227 but also promotes the maintenance and repair of synovial joint tissues, particularly cartilage and bones^{40,41}. Mutations in the gene
228 can cause cartilage or bone related disorders such as chondrodysplasia, acromesomelic dysplasia, and brachydactyly, suggesting
229 a protective role in skeletal development⁴⁰. The *GDF5* gene has been repeatedly reported to be associated with osteoarthritis
230 through genetic studies^{17,27}. Functional studies have suggested that knee morphology is profoundly affected by *Gdf5* absence in
231 mice models, and downstream regulatory sequences mediate its effects by controlling *Gdf5* expression in knee tissues⁴². It was

232 also suggested that osteoarthritis susceptibility mediated by variants in the *GDF5* gene was not restricted to cartilage but joint
233 wide⁴³. Recently, Terence et al combined transgenic mice model with population genetic analyses in humans to identify a *GDF5*
234 enhancer that influences human growth and osteoarthritis risk⁴⁴. Overall, there is sufficient and solid biological evidence relating the
235 *GDF5* gene with knee osteoarthritis, and we assume that this finding is due to detection of knee pain caused by osteoarthritis,
236 rather than other pathologies.

237 The second SNP cluster was in the *LOC105376225* area (which is next to the *COL27A1* gene) in chromosome 6 with a lowest *P*
238 value of 1.49×10^{-8} for rs2808772. There have been no specific studies published about *LOC105376225* and its relationship with
239 knee pain or knee osteoarthritis. However, the neighbouring *COL27A1* gene is clearly a good candidate gene. This gene encodes a
240 member of the fibrillar collagen family, and plays a role during the calcification of cartilage and the transition of cartilage to bone⁴⁵.
241 Mutations in the *COL27A1* gene have been reported to be associated with the Steel syndrome. This syndrome is characterized by
242 bone changes such as bilateral hip and radial head dislocations, short stature, characteristic facies, fusion of carpal bones,
243 scoliosis, *pes cavus*, and cervical spine anomalies⁴⁶. Further, the gene was reported to be associated with knee osteoarthritis in the
244 first stage, but did not replicate in the second stage in a recent GWAS study on knee osteoarthritis²⁸. Thus, our large study on knee
245 pain has suggested that the *COL27A1* gene might play a role in the knee area. Importantly, polymorphisms in the gene have been
246 associated with tendinopathy around the ankle joint⁴⁷. The concordance between radiographically defined knee osteoarthritis and

247 knee pain is quite poor, with between 15% and 81% of patients diagnosed by radiographic methods having pain symptoms⁴⁸. It is
248 therefore likely that many people reporting knee pain have pain that is not bone or cartilage related, but tendon related.

249 Our study focused on knee pain as a broad phenotype and the genes that we identified and replicated are suggested to be related
250 to knee osteoarthritis. This suggests that the phenotype we chose was genetically similar to the phenotype of knee osteoarthritis.
251 The relationship between knee pain and knee osteoarthritis deserves further investigation. Studies have shown that people with
252 end-stage knee osteoarthritis all presented with knee pain⁴⁹, but this might not be the case for early stage knee osteoarthritis. As
253 described above, 20% of knee pain was not caused by knee osteoarthritis and only 50% of knee osteoarthritis patients with
254 radiographic evidence had knee pain symptoms⁵.

255 The gene-analysis by FUMA also supports our finding that *GDF5* was the strongest gene for knee pain. The gene-set analysis by
256 FUMA revealed that the regulation pathway of *Nikolsky_breast_cancer_20q11_amplicon* signaling was associated with the
257 phenotype we use. We noticed that *GDF5* and this amplicon were both located in chromosome 20q11 area and it was reported that
258 *GDF5* protein regulates TGF-beta dependent angiogenesis in breast carcinoma MCF-7 Cells⁵⁰.

259 The SNP-based heritability for knee pain was 0.08 in our study, which is the first report of its kind. We identified that knee pain was
260 genetically and negatively correlated with a number of phenotypes such as years of schooling, college completion and age of
261 having first baby. This means that those with more years of schooling, those with completed college education, and those who were

262 older when they had their first baby were less likely to report current troublesome knee pain. These factors could be related to
263 lifestyle and occupation.

264 Using the CaTS power calculator (<http://csg.sph.umich.edu/abecasis/cats/>), we had 80% power to identify SNP associations with a
265 significance level of 5×10^{-8} , based on 22,204 cases and 149,312 controls, assuming an additive model, a minor disease allele
266 frequency of 0.20, a genotypic relative risk of 1.06, and an estimated prevalence of knee pain in the general population of 0.2.

267 In this study, we used different but similar phenotypes in discovery and replication stages. We defined cases and controls based on
268 the responses by UK Biobank participants to a specific pain question. This question focused on knee pain occurrence, sufficient to
269 cause interference with activities, during the previous month. The question does not ask information of the severity and frequency
270 and the exact area of knee pain. Therefore, our phenotyping should be considered as widely defined. The situation was similar for
271 the 23andMe cohort, in which disease status was also self-reported via survey and self-reported osteoarthritis in the 23andMe
272 cohort was not specific to the knee. Self-reported knee pain has been widely used in other studies as well, though not for studies of
273 genetic associations^{37,38}. The OAI and JoCo assessed radiographic evidence of knee osteoarthritis but with limited sample size.

274 In conclusion, we have identified 2 loci (*GDF5* and *COL27A1*) for knee pain in a GWAS using the UK Biobank resource and
275 replicated them in the 23andMe, OAI, and JoCo cohorts. In addition, we found several significant and negative genetic correlations

276 between knee pain and a number of educational phenotypes, suggesting that the genetic aetiology of knee pain may also be
277 related to these traits.

278

279 **Acknowledgements**

280 We would like to thank all participants of the UK Biobank, 23andMe and the OAI and JoCo cohorts who have provided necessary
281 genetic and phenotypic information. The current study was conducted under approved UK Biobank data application number 4844.

282 Members of the 23andMe Research Team: Michelle Agee, Babak Alipanahi, Robert K. Bell, Katarzyna Bryc, Sarah L. Elson, Pierre
283 Fontanillas, Nicholas A. Furlotte, Barry Hicks, David A. Hinds, Karen E. Huber, Ethan M. Jewett, Yunxuan Jiang, Aaron Kleinman,
284 Keng-Han Lin, Nadia K. Litterman, Jennifer C. McCreight, Matthew H. McIntyre, Kimberly F. McManus, Joanna L. Mountain,
285 Elizabeth S. Noblin, Carrie A.M. Northover, Steven J. Pitts, G. David Poznik, J. Fah Sathirapongsasuti, Janie F. Shelton, Suyash
286 Shringarpure, Chao Tian, Joyce Y. Tung, Vladimir Vacic, Xin Wang, Catherine H. Wilson.

287 **Author contributions**

288 WM organised project, drafted the paper and contributed to the analysis. MA performed the main UK Biobank GWAS analysis. CP,
289 BM, MY provided essential comments. KR, JJ, BM, RJ and MY provided the OAI and JoCo GWAS summary statistics on knee
290 osteoarthritis. JS and AA performed replication in the 23andMe cohort. AM and BS organised the project and provided comments.

291 **Role of the funding source**

292 This work was supported by the STRADL project (Wellcome Trust, grant number: 104036/Z/14/Z). The Osteoarthritis Initiative (OAI)
293 was public-private partnership comprised of five contracts (N01-AR-2-2258; N01-AR-2-2259; N01-AR-2-2260; N01-AR-2-2261;
294 N01-AR-2-2262) funded by the NIH. The the Johnston County Osteoarthritis Study (JoCo) was supported in part by S043, S1734,
295 & S3486 from the CDC/Association of Schools of Public Health; 5-P60-AR30701 & 5-P60-AR49465-03 from NIAMS/NIH;
296 genotyping was supported by Algynomics, Inc. Additional support was obtained from NIH grant P30-DK072488.

297 **Conflict of Interest**

298 J.S., A.A., and members of the 23andMe Research Team are employees of 23andMe, Inc., and hold stock or stock options in
299 23andMe. Other coauthors have no conflicts of interest.

300

301 **Data availability**

302 The summary statistics of the UK Biobank results on knee pain can be shared upon request to non - commercial researchers.

303 **References**

- 304 1. Thompson LR, Boudreau R, Hannon MJ, Newman AB, Chu CR, Jansen M, et al. The knee pain map: reliability of a method
305 to identify knee pain location and pattern. *Arthritis Rheum* 2009;61:725-31.
- 306 2. Neogi T. The epidemiology and impact of pain in osteoarthritis. *Osteoarthritis Cartilage* 2013;21:1145-53.
- 307 3. Hawker GA, Stewart L, French MR, Cibere J, Jordan JM, March L, et al. Understanding the pain experience in hip and knee
308 osteoarthritis--an OARSI/OMERACT initiative. *Osteoarthritis Cartilage* 2008;16:415-22.
- 309 4. Jinks C, Jordan K, Ong BN, Croft P. A brief screening tool for knee pain in primary care (KNEST). 2. Results from a survey
310 in the general population aged 50 and over. *Rheumatology (Oxford)* 2004;43:55-61.
- 311 5. Nguyen US, Zhang Y, Zhu Y, Niu J, Zhang B, Felson DT. Increasing prevalence of knee pain and symptomatic knee
312 osteoarthritis: survey and cohort data. *Ann Intern Med* 2011;155:725-32.
- 313 6. Wallace IJ, Worthington S, Felson DT, Jurmain RD, Wren KT, Maijanen H, et al. Knee osteoarthritis has doubled in
314 prevalence since the mid-20th century. *Proc Natl Acad Sci U S A* 2017;114:9332-6.
- 315 7. National Institute for Health and Care Excellence (NICE). Clinical guideline CG177. Osteoarthritis: care and management in
316 adults. 2014.

- 317 8. GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence,
318 and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the
319 Global Burden of Disease Study 2016. *Lancet* 2017;390:1211-59.
- 320 9. Bindawas SM, Vennu V, Al Snih S. Differences in health-related quality of life among subjects with frequent bilateral or
321 unilateral knee pain: data from the Osteoarthritis Initiative study. *J Orthop Sports Phys Ther* 2015;45:128-36.
- 322 10. Prieto-Alhambra D, Judge A, Javaid MK, Cooper C, Diez-Perez A, Arden NK. Incidence and risk factors for clinically
323 diagnosed knee, hip and hand osteoarthritis: influences of age, gender and osteoarthritis affecting other joints. *Ann Rheum
324 Dis* 2014;73:1659-64.
- 325 11. Chen A, Gupte C, Akhtar K, Smith P, Cobb J. The Global Economic Cost of Osteoarthritis: How the UK Compares. *Arthritis*
326 2012;2012:698709
- 327 12. Miranda H, Viikari-Juntura E, Martikainen R, Riihimäki H. A prospective study on knee pain and its risk factors. *Osteoarthritis
328 and Cartilage* 2002;10:623-30.
- 329 13. Heidari B. Knee osteoarthritis prevalence, risk factors, pathogenesis and features: Part I. *Caspian J Intern Med* 2011;2:205-
330 12.
- 331 14. Iijima H, Aoyama T, Fukutani N, Isho T, Yamamoto Y, Hiraoka M, et al. Psychological health is associated with knee pain
332 and physical function in patients with knee osteoarthritis: an exploratory cross-sectional study. *BMC Psychol* 2018;6:19.

- 333 15. Neame RL, Muir K, Doherty S, Doherty M. Genetic risk of knee osteoarthritis: a sibling study. *Ann Rheum Dis* 2004;63:1022-
334 7.
- 335 16. Ikegawa S. New gene associations in osteoarthritis: what do they provide, and where are we going? *Curr Opin Rheumatol*
336 2007;19:429-34.
- 337 17. Miyamoto Y, Mabuchi A, Shi D, Kubo T, Takatori Y, Saito S, et al. A functional polymorphism in the 5' UTR of GDF5 is
338 associated with susceptibility to osteoarthritis. *Nat Genet* 2007;39:529-33.
- 339 18. Loughlin J, Mustafa Z, Dowling B, Southam L, Marcelline L, Räinä SS, et al. Finer linkage mapping of a primary hip
340 osteoarthritis susceptibility locus on chromosome 6. *Eur J Hum Genet* 2002;10:562-8.
- 341 19. Meulenbelt I, Seymour AB, Nieuwland M, Huizinga TW, van Duijn CM, Slagboom PE. Association of the interleukin-1 gene
342 cluster with radiographic signs of osteoarthritis of the hip. *Arthritis Rheum* 2004;50:1179-86.
- 343 20. Spector TD, Reneland RH, Mah S, Valdes AM, Hart DJ, Kammerer S, et al. Association between a variation in LRCH1 and
344 knee osteoarthritis. *Arthritis Rheum* 2006;54:524-532.
- 345 21. Valdes AM, van Oene M, Hart DJ, Surdulescu GL, Loughlin J, Doherty M, et al. Reproducible genetic associations between
346 candidate genes and clinical knee osteoarthritis in men and women. *Arthritis Rheum* 2006;54:533-9.

- 347 22. Nakajima M, Takahashi A, Kou I, Rodriguez-Fontenla C, Gomez-Reino JJ, Furuichi T, et al. New sequence variants in HLA
348 class II/III region associated with susceptibility to knee osteoarthritis identified by genome-wide association study. *PLoS One*
349 2010;5.
- 350 23. Miyamoto Y, Shi D, Nakajima M, Ozaki K, Sudo A, Kotani A, et al. Common variants in DVWA on chromosome 3p24.3 are
351 associated with susceptibility to knee osteoarthritis. *Nat Genet* 2008;40:994-8.
- 352 24. Evangelou E, Valdes AM, Kerkhof HJ, Styrkarsdottir U, Zhu Y, Meulenbelt I, et al. Meta-analysis of genome-wide association
353 studies confirms a susceptibility locus for knee osteoarthritis on chromosome 7q22. *Ann Rheum Dis* 2011;70:349-55.
- 354 25. Day-Williams AG, Southam L, Panoutsopoulou K, Rayner NW, Esko T, Estrada K, et al. A variant in MCF2L is associated
355 with osteoarthritis. *Am J Hum Genet* 2011;89:446-50.
- 356 26. arcOGEN Consortium; arcOGEN Collaborators, Zeggini E, Panoutsopoulou K, Southam L, Rayner NW, et al. Identification
357 of new susceptibility loci for osteoarthritis (arcOGEN): a genome-wide association study. *Lancet* 2012;380:815-23.
- 358 27. Valdes AM, Evangelou E, Kerkhof HJ, Tamm A, Doherty SA, Kisand K, et al. The GDF5 rs143383 polymorphism is
359 associated with osteoarthritis of the knee with genome-wide statistical significance. *Ann Rheum Dis* 2011;70:873-5.
- 360 28. Yau MS, Yerges-Armstrong LM, Liu Y, Lewis CE, Duggan DJ, Renner JB, et al. Genome-Wide Association Study of
361 Radiographic Knee Osteoarthritis in North American Caucasians. *Arthritis Rheumatol* 2017;69:343-51.

- 362 29. Zengini E, Hatzikotoulas K, Tachmazidou I, Steinberg J, Hartwig FP, Southam L, et al. Genome-wide analyses using UK
363 Biobank data provide insights into the genetic architecture of osteoarthritis. *Nat Genet* 2018;50:549-58.
- 364 30. Meng W, Adams MJ, Hebert HL, Deary IJ, McIntosh AM, Smith BH. A Genome-Wide Association Study Finds Genetic
365 Associations with Broadly-Defined Headache in UK Biobank (N=223,773). *EBioMedicine* 2018;28:180-6.
- 366 31. Suri P, Palmer MR, Tsepilov YA, Freidin MB, Boer CG, Yau MS, et al. Genome-wide meta-analysis of 158,000 individuals of
367 European ancestry identifies three loci associated with chronic back pain. *PLoS Genet* 2018;14:e1007601.
- 368 32. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. Genome-wide genetic data on ~500,000 UK Biobank
369 participants. *BioRxiv* 2017. doi: <https://doi.org/10.1101/166298>.
- 370 33. Warrington NM, Shevroja E, Hemani G, Hysi PG, Jiang Y, Auton A, et al. Genome-wide association study identifies nine
371 novel loci for 2D:4D finger ratio, a putative retrospective biomarker of testosterone exposure in utero. *Hum Mol Genet*
372 2018;27:2025-38.
- 373 34. Jordan JM, Helmick CG, Renner JB, Luta G, Dragomir AD, Woodard J, et al. Prevalence of knee symptoms and
374 radiographic and symptomatic knee osteoarthritis in African Americans and Caucasians: the Johnston County Osteoarthritis
375 Project. *J Rheumatol* 2007;34:172-80.
- 376 35. Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional mapping and annotation of genetic associations with
377 FUMA. *Nat Commun* 2017;8:1826.

- 378 36. Zheng J, Erzurumluoglu AM, Elsworth BL, Kemp JP, Howe L, Haycock PC, et al. LD Hub: a centralized database and web
379 interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and
380 genetic correlation analysis. *Bioinformatics* 2017;33:272-9.
- 381 37. Baldwin JN, McKay MJ, Simic M, Hiller CE, Moloney N, Nightingale EJ, et al. Self-reported knee pain and disability among
382 healthy individuals: reference data and factors associated with the Knee injury and Osteoarthritis Outcome Score (KOOS)
383 and KOOS-Child. *Osteoarthritis Cartilage* 2017;25:1282-90.
- 384 38. Ho-Pham LT, Lai TQ, Mai LD, Doan MC, Pham HN, Nguyen TV. Prevalence of radiographic osteoarthritis of the knee and its
385 relationship to self-reported pain. *PLoS One* 2014;9:e94563.
- 386 39. Gormley P, Anttila V, Winsvold BS, Palta P, Esko T, Pers TH, et al. Meta-analysis of 375,000 individuals identifies 38
387 susceptibility loci for migraine. *Nat Genet* 2016;48:856-66.
- 388 40. <https://www.ncbi.nlm.nih.gov/gene/8200>
- 389 41. Mikic B. Multiple effects of GDF-5 deficiency on skeletal tissues: implications for therapeutic bioengineering. *Ann Biomed
390 Eng* 2004;32:466-76.
- 391 42. Pregizer SK, Kiapour AM, Young M, Chen H, Schoor M, Liu Z, et al. Impact of broad regulatory regions on Gdf5 expression
392 and function in knee development and susceptibility to osteoarthritis. *Ann Rheum Dis* 2018;77:450.

- 393 43. Egli RJ, Southam L, Wilkins JM, Lorenzen I, Pombo-Suarez M, Gonzalez A, et al. Functional analysis of the osteoarthritis
394 susceptibility-associated GDF5 regulatory polymorphism. *Arthritis Rheum* 2009;60:2055-64.
- 395 44. Capellini TD, Chen H, Cao J, Doxey AC, Kiapour AM, Schoor M, et al. Ancient selection for derived alleles at a GDF5
396 enhancer influencing human growth and osteoarthritis risk. *Nat Genet* 2017;49:1202-10.
- 397 45. <https://www.ncbi.nlm.nih.gov/gene/85301>
- 398 46. Gonzaga-Jauregui C, Gamble CN, Yuan B, Penney S, Jhangiani S, Muzny DM, et al. Mutations in COL27A1 cause Steel
399 syndrome and suggest a founder mutation effect in the Puerto Rican population. *Eur J Hum Genet* 2015;23:342-6.
- 400 47. Saunders CJ, van der Merwe L, Posthumus M, Cook J, Handley CJ, Collins M, et al. Investigation of variants within the
401 COL27A1 and TNC genes and Achilles tendinopathy in two populations. *J Orthop Res* 2013;31:632-7.
- 402 48. Bedson J, Croft PR. The discordance between clinical and radiographic knee osteoarthritis: a systematic search and
403 summary of the literature. *BMC Musculoskelet Disord* 2008;9:116.
- 404 49. Zeni JA Jr, Axe MJ, Snyder-Mackler L. Clinical predictors of elective total joint replacement in persons with end-stage knee
405 osteoarthritis. *BMC Musculoskelet Disord* 2010;11:86.
- 406 50. Margheri F, Schiavone N, Papucci L, Magnelli L, Serrati S, Chillà A, et al. GDF5 regulates TGF β -dependent angiogenesis in
407 breast carcinoma MCF-7 cells: in vitro and in vivo control by anti-TGF β peptides. *PLoS One* 2012;7:e50342.
- 408

409 **Figure legends**

410 **Fig. 1. The Manhattan plot of the GWAS on knee pain using the UK Biobank cohort**

411

412

413

414

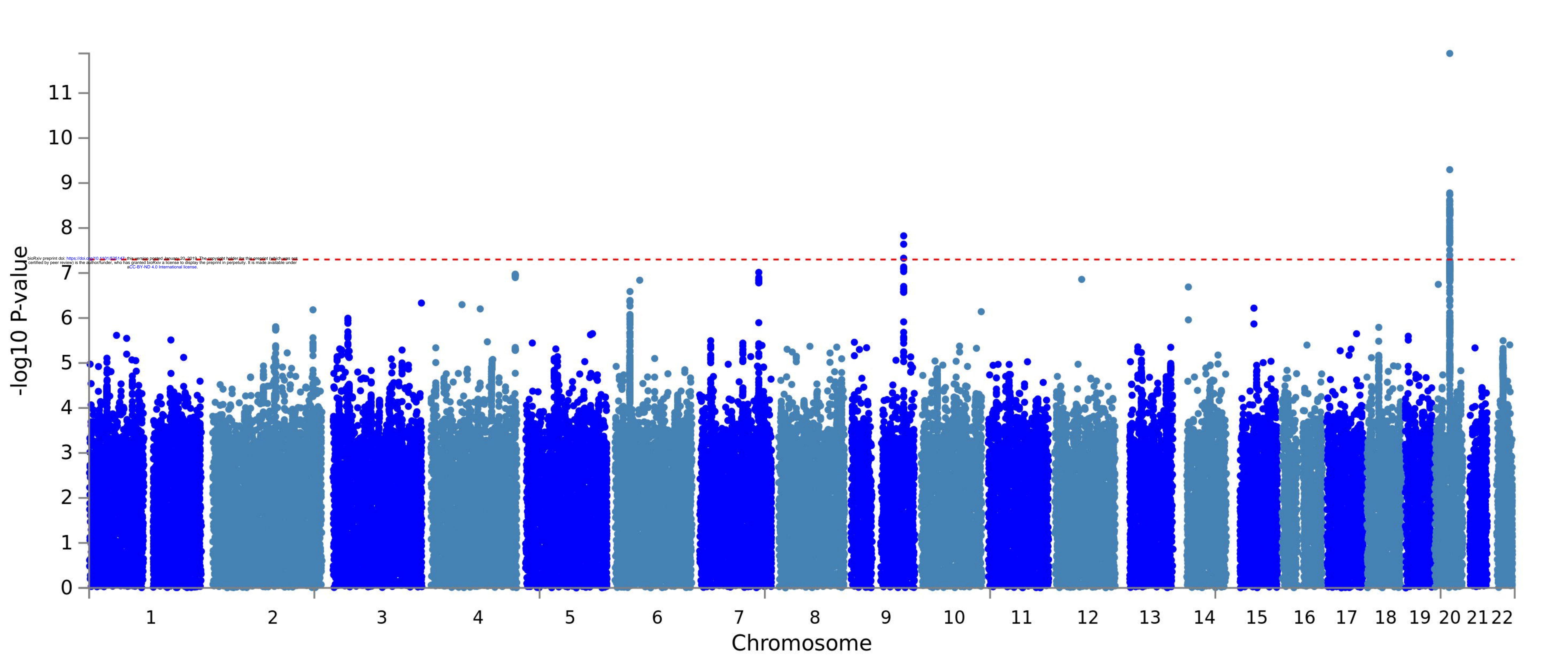
415 **Table I** Clinical characteristics of knee pain and controls in the UK Biobank

UK Biobank			
Covariates	Cases	Controls	P
Sex (male:female)	12062 : 10142	71,480 : 77,832	<0.001
Age (years)	58.3 (7.64)	56.9 (7.97)	<0.001
BMI (kg/m ²)	28.6 (4.88)	26.7 (5.00)	<0.001

416 BMI: body mass index

417 A chi-square test was used to test the difference of gender frequency between cases and controls and an independent t test was
418 used for other covariates.

419 Continuous covariates were presented as mean (standard deviation).


420

421 **Table II** Summary of the 4 independent and significant SNPs associated with knee pain in the *GDF5* and *COL27A1* regions

Chromosome	Gene	SNPID	Effective allele in all cohorts	Effective allele frequency Discovery cohort	P value (Beta) UK Biobank Discovery cohort	P value (Beta) 23andMe Replication stage 1	P value (Beta) OAI-JoCo Replication stage 2	P value meta-analysis	Beta meta-analysis	SE meta-analysis
9	<i>LOC105376225 (near COL27A1)</i>	rs919642	A	73.2%	2.29x10 ⁻⁸ (0.007)	4.84x10 ⁻¹² (0.028)	0.88 (-0.008)	1.20x10 ⁻¹³	0.0093	0.0012
9	<i>LOC105376225(near COL27A1)</i>	rs2808772	A	52.5%	1.49x10 ⁻⁸ (0.006)	4.43x10 ⁻⁵ (0.014)	0.36 (0.041)	2.56x10 ⁻¹¹	0.0073	0.0011
20	<i>GDF5</i>	rs143384	A	60.0%	1.32x10 ⁻¹² (-0.008)	2.44x10 ⁻⁹ (-0.021)	0.01 (-0.12)	4.64x10 ⁻¹⁸	-0.0095	0.0011
20	<i>GDF5</i>	rs6120946	A	78.2%	6.81x10 ⁻⁹ (-0.008)	0.00071 (-0.014)	0.0074 (-0.16)	3.52x10 ⁻¹¹	-0.0088	0.0013

422

423

