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Abstract— Fluorescence lifetime imaging (FLI) provides
unique quantitative information in biomedical and
molecular biology studies, but relies on complex data fitting
techniques to derive the quantities of interest. Herein, we
propose a novel fit-free approach in FLI image formation
that is based on Deep Learning (DL) to quantify complex
fluorescence decays simultaneously over a whole image and
at ultra-fast speeds. Our deep neural network (DNN), named
FLI-Net, is designed and model-based trained to provide all
lifetime-based parameters that are typically employed in the
field. We demonstrate the accuracy and generalizability of
FLI-Net by performing quantitative microscopic and
preclinical experimental lifetime-based studies across the
visible and NIR spectra, as well as across the two main data
acquisition technologies. Our results demonstrate that FLI-
Net is well suited to quantify complex fluorescence lifetimes,
accurately, in real time in cells and intact animals without
any parameter settings. Hence, it paves the way to
reproducible and quantitative lifetime studies at
unprecedented speeds, for improved dissemination and
impact of FLI in many important biomedical applications,
especially in clinical settings.

Index terms—FIluorescence Lifetime Imaging, Deep
Learning, inverse-solver optimization, ultra-fast

|. INTRODUCTION

OLECULAR imaging has become an

indispensable tool in biomedical studies with great

impact on numerous fields from fundamental
biological investigations to transforming clinical practice.
Among all molecular imaging modalities, fluorescence
optical imaging is a central technique thanks to its high
sensitivity, the numerous molecular probes available, either
endogenous or exogenous, and its ability to simultaneously
image multiple biomarkers or biological processes at various
spatio-temporal scales?. Especially, fluorescence lifetime
imaging (FLI) has become an ever increasingly popular
method as it provides unique insights into the cellular micro-
environment, by non-invasively examining numerous
intracellular parameters® such as metabolic status®, reactive
oxygen species® and intracellular pH®. Moreover, FLI’s
exploitation of native fluorescent signatures has been

extensively investigated for enhanced diagnostic of
numerous pathologies.”'® FLI is also the most accurate
approach to quantify Forster Resonance Energy Transfer
(FRET), an invaluable technique used to quantify protein-
protein interactions, biosensor activity and ligand-receptor
engagement in vivo.!! FLI is not a direct imaging modality
and beyond dedicated imaging platforms, the acquired
temporal data set needs to be post-processed to quantify the
lifetime or lifetime-based parameters. Such post-processing
typically involves a model-based process in which iterative
optimization methods are employed to estimate the different
parameters of interest (mean-lifetime, FRET efficiencies or
population fractions). Mono- or bi-exponential models,
depending on the application at hand, are the most widely
employed to analyze FLI datasets. Yet, it is notorious that the
accuracy of these methods is often associated with user
defined parameter settings employed to constrain the inverse
problem. These methods are also relatively slow and/or
computationally expensive.*? This complexity together with
a lack of standardized methods has limited the widespread
use and impact of FLI, especially clinically. Recently, a fit-
free lifetime quantification methodology has been proposed,
the phasor approach.r® The phasor method is a graphical
representation of excited-state fluorescence lifetimes for in
vitro systems. The phasor technique has been widely adopted
due to its simplicity that allows non-imaging experts to
perform simple and fit-free analyses of the information
contained in the many thousands of pixels constituting an
image!*. However, although the phasor method provides a
graphical interface that simplifies FLI data interpretation, the
mathematics underlying its computation can be challenging.
The approach needs to be modified for techniques such as
time-gated fluorescence® and typically requires some
calibration samples to be quantitative.®

In parallel, interests in data driven and model-free
processing of imaging methodologies has boomed over the
last decade. Of particular note, Machine Learning (ML) and
Deep Learning (DL) methods have recently profoundly
impacted the image processing field. For example, deep-
neural networks (DNNSs) are currently providing high level,
robust performances in numerous biomedical applications —
such as in pathology through multiple imaging modalities,'”
19 natural language processing,?’ image reconstruction via
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direct mapping from the sensor-image domain?' and
reinforcement learning applied to drug discovery.?? DL
methods are increasingly employed in molecular optical
imaging applications from resolution enhancement in
histopathology®?,  super  resolution  microscopy?*,
fluorescence signal prediction from label-free images®,
single molecular localization®, fluorescence microscopy
image restoration?” and hyperspectral single pixel lifetime
imaging for instance?®. However, the typical application of
DL methods to image processing is data driven and hence,
requires large data sets that are either difficult to acquire
and/or not readily available. Moreover, the performances of
DL methods can be limited to the specific data set employed
for training and hence, not generalized.

Herein, we present a 3D Convolutional Neural Network
(CNN) that is designed to process the classical data sets
acquired by current fluorescence imaging systems to
provide, in quasi real-time, the lifetime maps as well as
associated quantities (i.e.: mean-lifetime, fractional
amplitude of fluorescence species, FRET Efficiency (E%) or
FRET Donor Fraction (FD%)). Our 3D CNN approach,
unlike previous methods, does not require any user-defined
parameter entry, is able to tackle either mono- or bi-
exponential data sets, is accurate for a large range of lifetimes
(even ones close to the instrument response) and provides
superior performances in photon starved conditions.
Furthermore, the 3D CNN can be trained efficiently using a
synthetic data generator and validated with experimental
data sets, avoiding the need to acquire massive training
datasets experimentally. Additionally, we demonstrate that

our 3D CNN is capable of processing experimental
fluorescent decays acquired by either Time Correlated Single
Photon Counting (TCSCP)- or gated ICCD- based
instruments, which are the two main technologies employed
in the field. Herein, the potential of the proposed approach is
demonstrated by performing FLI microscopy to quantify the
metabolic status of live cells as well as reporting FRET to
measure levels of receptor engagement. Moreover, the
experimental demonstration includes applications in the
visible as well as the near-infrared (NIR) range, allowing for
a large range of lifetimes to be considered. In all cases, the
3D CNN performances are benchmarked against the widely
used FLIM processing software SPClmage®. Lastly, we
demonstrate the potential of our 3D CNN to quantify whole-
body dynamic lifetime-based FRET occurrence in a live
animal at unprecedented time frames (= 32ms per full
whole-body image). Overall, these results demonstrate that
DL methodologies, beyond classical image processing tasks,
are well suited for image formation paradigms that to date
were based on inverse problem solvers. Our reported 3D
CNN architecture and training strategy provide a versatile
and generalized new tool for fit-free analysis of complex
fluorescence lifetime imaging processes. Due to its ease of
use and ultra-fast qualities, our 3D CNN should further
stimulate the widespread use of FLI techniques, provide
standardized quantification capabilities (as no parameter
settings are required) and enable new applications such as
real-time wide-field FLI in pre-clinical and clinical studies,
especially facilitating optical guided surgery.

I1. 3D-CNN ARCHITECTURE, TRAINING AND VALIDATION
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Figure 1. llustration of our 3D-CNN (“FLI-Net”) structure and corresponding metrics of note. During the training phase, the input
to our DNN (a) was a set of simulated data voxels containing a TPSF at every non-zero value of a randomly chosen MNIST image.
After a series of spatially-independent 3D-convolutions, the voxel underwent a reshape (from 4D to 3D) and subsequently branched
into three separate series of fully-convolutional downsampling for simultaneous three-image reconstruction. b, 30 MSE validation
curve average with corresponding standard deviation (shaded) for each parameter. c, t-SNE visualization obtained via the last
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activation map before the tri-junction reconstruction, where each point represents a TPSF voxel assigned a randomized trio of
lifetime and amplitude ratio values. FLI-Net performance (d) versus LSF (e) upon evaluation of simulated TPSF voxels over three

ranges of maximum photon count.

The 3D CNN, named “FLI-Net” (Fluorescence Lifetime
Imaging - Network) hereafter is designed to mimic a curve-
fitting approach using layers of convolutional operations and
non-linear activation functions. FLI-Net is designed such that
time- and spatially resolved fluorescence decays are input as 3D
data cube (x,y,t) and bi-exponential parameters (two lifetimes
and one fractional amplitude) are estimated at each pixel to be
provided in output images of the same dimension as the input
(x,y). A rendering of the architecture of FLI-Net is provided in
Fig. 1a.

The network architecture consists of two main parts: 1) a
shared branch for temporal feature extraction and 2) a
subsequent three-junction split into separate branches for
simultaneous reconstruction of short lifetime (z4), long lifetime
(r2) and fractional amplitude of the short lifetime (Ag). There
are a couple of design choices that are critical to the performance
of FLI-Net; providing the basis for a consequently high level of
sensitivity, stability, speed and reconstructive accuracy. First, it
is crucial to introduce convolutions (Conv3D) along the
temporal dimension at each spatially located pixel at the first
layer in order to maximize spatially-independent feature
extraction along each TPSF. After this step, a residual block
(ResBlock) of reduced kernel length is employed. This second
step enables further extraction of temporal information while
reaping the benefits obtained through residual learning
(elimination of vanishing gradients, no overall increase in
computational complexity or parameter count, etc.)*®. The
beneficial implementation of residual learning has been
thoroughly documented in not only image classification and
segmentation®! but also in areas of speech recognition®. Fully-
convolutional networks®, or networks designed such that input
of any spatial dimensionality can be analyzed with no loss in
performance, offer enormous benefit to problems where 1) prior
knowledge of input size is inherently variable and 2) the
experimental data of interest is memory exhaustive. After
performing the common features of the whole input, the network
splits into three dedicated branches to estimate the individual
lifetime-based parameters of interest. In each of these branches,
a sequence of convolutions is employed for down-sampling to
the intended 2D image. A more detailed description of the
network architecture is provided in the Methods section.

To obtain large data sets to train FLI-Net and validate its
architecture robustness, feature extraction efficiency as well as
quantitative accuracy, we generated 10,000 temporal point-
spread function (TPSF) voxels using a bi-exponential model
convolved with an experimental instrument response function
(IRF). The parameters of the bi-exponential model were varied
over the lifetime range considered in the application (Visible
(T4, T2)€[0.2-3]ns; NIR (4, T2)€[0.2-1.1]ns) and the fractional
amplitude Ap varied from 0 to 100% (Ar = 0 or 100% are
corresponding to mono-exponential decays whereas every value
between these extreme corresponds to bi-exponential decays).
See Table S1 in the Supplementary Material section for a full

summary of the parameters used for training. The IRF was
acquired from our gated-1CCD. Last, the photon counts (p.c.) of
the maximum of the TPSF were set between 250 and 2,000
counts followed by the addition of Poisson noise. The training
data set was split into training (8,000) and validation (2,000) data
sets. Additional information on the generation of this data set can
be found in the Methods. To demonstrate the robustness of FLI-
Net, training and validation were performed over 30 times with
randomly initialized training/validation partitions. The plotted
average of 30 validation mean-squared error (MSE) curves
trained over 150 epochs with corresponding standard deviation
bounds for all three output branches is provided in Fig. 1b and
illustrates the DNN’s excellent convergence stability. To
evaluate if the feature extraction of the shared branch was robust
and effective, we registered the output of the shared branch’s
final activation layer during feed-through of 5,000 newly
simulated TPSF data voxels (not used in training or validation).
These high-dimension features were flattened and projected to a
3D feature space via t-SNE3*. Their display as a scatter plot is
provided in Fig. 1c. The continuous gradient observed in the 3D
plot of the t-SNE values versus the mean lifetimes simulated
T, = ArTy + (1 — AR)Ty; Ty € ([0.2, 0.65] ns) indicates an
efficient and sensitive feature extraction for lifetime-based
parameter estimation. Beyond feature extraction, we provide
also the summary of the quantitative accuracy of the network in
estimating the three above mentioned lifetime-based parameters
(T4, T2, Ag). The accuracy of the results is evaluated via the
Structural Similarity Index (SSIM) between the simulated and
estimated values (SSIM=1 indicating perfect one-to-one
concordance). The SSIMs are also reported for three ranges of
maximum  photon  counts  (i.e.,  P.C.go0a€[250-500];
P.C.challengingE[100-250];  p.C.1ow€[25,100]) as lifetime-based
biomedical imaging is notoriously a photon-starved application.
In all three cases, FLI-Net (Fig. 1d) significantly outperforms
the classical LSF (Fig. le) method, which as expected,
demonstrates worsening performances at very low photon
counts (SSIM = 0.82). Note, that although the network was only
trained using TPSF data possessing intensity values greater than
500 maximum photon counts in this specific instance, it
performs extremely well for low photon counts levels too (even
in the 25-100 range with a SSIM = 0.95 for the worse case).
Overall, these training and validating results establish that FLI-
Net can be efficiently and robustly trained via synthetic data
representing both mono- and bi-exponential decays. Moreover,
FLI-Net outperforms the classical LSF approach in estimating
the three lifetime-based parameters that are commonly
employed in FLI applications. To further establish the usefulness
and unique potential of FLI-Net, we evaluated its performance
when using experimental data sets after training with simulation
data generated through the workflow previously described.
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Figure 2. Visible FLIM microscopy data of NAD(P)H. a-d, Representative maps of NAD(P)H t,, obtained with the commercial
software SPClImage and FLI-Net (e-h). i-j, Averaged NAD(P)H t,, values obtained across all FLIM data using both techniques. Kk,
Linear regression with corresponding 95% confidence band (grey shading) of averaged NAD(P)H t,,, values from all cell-lines pre
and post-exposure to Na cyanide (n = 3) obtained via SPCImage and our DNN (slope = 1.01 (SE =.05); p < le-5; intercept = -6.9e-3
(SE =4.2e-2); R?=0.985). The microscopy data acquired post-exposure are notated with an asterisk. I, SSIM measurements for all
NAD(P)H t,, images. Further metrics of note are included in the Supplementary Material.

I11. FLUORESCENCE LIFETIME IMAGING MICROSCOPY

Fluorescence lifetime imaging microscopy (FLIM) is the most
widely used FLI application. For this study, we have selected
metabolic and FRET imaging as they are some of the most
challenging, yet sought after, FLIM applications. We report first
the performance of FLI-Net in quantifying the metabolic status
of live cells as reported by NAD(P)H imaging. Secondly, we
report on FLI-Net’s accuracy in quantifying ligand-receptor
engagement via lifetime-based FRET in the visible and NIR
range.

Metabolic imaging: Quantification of the fractional
concentration between free and protein-bound NADH provides
important information regarding cellular metabolic state. Given
that both free and protein-bound NADH possess the same
absorption and emission profiles, but differ significantly in
fluorescence lifetime, FLIM has been used extensively for
sensitive free vs. bound NADH quantification in vitro.® First,
confocal FLIM data were collected from four human cell lines

(MCF10A as a non-cancerous mammary epithelial cell line, the
remaining being cancer cell lines representing different types of
breast cancer) using a Zeiss LSM 880 Airyscan NLO
multiphoton confocal microscope equipped with HPM-100-40
high speed hybrid FLIM detector (GaAs 300-730 nm; Becker &
Hickl) and a Titanium: Sapphire laser (Ti: Sa) (680-1040 nm;
Chameleon Ultra Il, Coherent, Inc.). These different cell lines
have been shown to exhibit markedly different metabolic states,
as reported by NADH t,,,.% Additionally, the cells were exposed
to 2.5 mM of Na cyanide (NaCN), which is a well-known
inhibitor of many metabolic processes leading to reduced NADH
7,,%6. FLIM acquisition was performed prior to exposure and
after 30-minute incubation of live cells with NaCN. The FLIM
NADH t,, images for each case are provided in Fig. 2, both for
FLI-Net and SPClmage. A visual inspection of these images
shows that FLI-Net and SPCImage provides strikingly similar
results. The descriptive statistics of NADH t,,, of SPCimage
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versus FLI-Net for each case is summarized in Fig. 2i-l. The
excellent concordance between the two analytic frameworks is
highlighted in Fig. 2k by very high coefficients of determination
(R?€[0.985]) and low p-value (p < le-5). Additionally, we
provide the SSIM between FLI-Net and SPCImage in Fig. 2l.
The SSIM values indicate an excellent spatial congruence
between FLI-Net and SPClImage in all cases, with the lowest
measured value obtained for MDA-NaCN (SSIM = 0.87).
Ligand-receptor engagement: FLIM-FRET imaging enables
the quantification of biosensor activity that can report on many
cellular processes and/or ligand-receptor engagement and
subsequent cellular internalization. FLIM-FRET is typically
performed using visible light and by quantifying the reduction in
the donor t,,, associated with FRET quenching. Herein, visible
FRET-FLI microscopy data were collected using a Zeiss LSM
510 equipped with HPM-100-40 high speed hybrid FLIM
detector (GaAS 300-730 nm; Becker & Hickl) and a Titanium:
Sapphire laser (Ti: Sa) (Chameleon) (apparatus, fluorescence
labeling, and data acquisition details described elsewhere®).
T47D human breast cancer cells were incubated with Tf-AF488
and Tf-AF555 visible FRET pair with a range of acceptor-donor
(A:D) ratio from 0:1 to 2:1. As the A:D ratio increases, it is
expected that FRET occurrence increases with the donor t,,
decreasing accordingly. The t,, for each condition as estimated
via FLI-Net are provided in Fig. 3 (upper panel). In all cases, the
T,, estimated are within the expected range and, overall, follow
the decreasing trend expected as A:D ratio increases. To assess
if FLI-Net provides similar results as SPCImage, we show in
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Fig. 3c and Fig. 3d the respective distribution of estimated t,,.
For the four A:D ratios reported, the mean-lifetime distributions
are in excellent agreement between FLI-Net and SPClimage.
Furthermore, we computed the Bhattacharyya coefficient (BC)
to measure the similarity of these paired probability
distributions. As displayed in Fig. 3e (further discussed in
Methods), the BCs are all very close to = 1 indicating that FLI-
Net and SPCImage provide almost identical t,, distributions for
all cases. Additionally, we computed the MSE to assess spatial
congruency between the two post-processing methods. As
reported in Fig. 3f, the MSEs values are low, indicating a very
good pixel-pixel correspondence.

Beyond the quantitative and spatial accuracy of FLI-Net as
demonstrated by its benchmarking against SPCIlmage, we
compared its computational speed versus SPCImage on the same
computational platform. The time required for analysis of each
TCSPC voxel, which possessed 256 time-points (visible FLIM)
with a pixel resolution of 512 x 512, was just 2.5 seconds on
average using our 3D CNN compared to = 45 seconds with
SPClImage. Though it is important to note that one input
parameter of importance to SPClmage is the photon count
restrictions that leads to fitting only a small subset of the pixel
in the input voxel, whereas FLI-Net processes the voxel’s
entirety. Taking into account this embedded constraint under
SPClImage, FLI-net is = 30 times faster than SPCImage per pixel
processed (FLI-Net = 9.5e-3 ms/pixel; SPCIimage = 0.28
ms/pixel).
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Figure 3. Visible FLIM microscopy data. Representative t,, maps obtained via FLI-Net using T47D cells containing Tf-AF488 (A:D
=0:1) or different donor-acceptor ratios of Tf-AF488 and Tf-AF555 (0.5:1, 1:1 and 2:1). a-b, Representative ROl comparison between
FLI-Net (a) and SPClImage (b). c-d, Distribution histograms of z,,, obtained via FLI-Net compared to SPCImage. e-f, Bhattacharyya
coefficient and MSE results for three microscopy voxels at each A:D ratio.
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Figure 4. NIR TCSPC FLIM microscopy data. Representative FRET-Donor percentage maps obtained via FLI-Net using T47D
cells containing Tf-AF700 (A:D = 0:1) or A:D ratios of Tf-AF700 and Tf-AF750 (0.5:1, 1:1 and 2:1). a-b, Example ROI comparison
between FLI-Net (a) and SPCImage (b). c-d, FRET percentage distribution overlays for both techniques. e-f, Bhattacharyya coefficient
and MSE results for three microscopy voxels at each volumetric fraction.

Visible FLIM is favored by relatively large lifetimes
compared to the IRF temporal spread. This facilitates fitting
methodologies as the IRF has minimal impact on the
quantification accuracy. Though, with the impetus of translating
optical molecular imaging to deep tissue imaging, great efforts
have been deployed over the last two decades to develop NIR
dyes. Yet, NIR dyes are typically characterized by shorter
lifetimes that can be of the order of the IRF full-width at half-
maximum (FWHM), rendering FLI quantification far more
challenging. NIR microscopy data collected using a Zeiss LSM
880 confocal microscope equipped with same NIR FLIM
detector (apparatus, fluorescence labeling, and data acquisition
details described here)®” were used to further test FLI-Net’s
robustness during in vitro NIR FLIM FRET analysis. T47D cells
were incubated with Tf-AF700 and Tf-AF750 NIR FRET pairs
with a range of acceptor-donor (A:D) ratio from 0:1 to 2:1. For
the NIR FRET analysis and especially its in vivo applications,

the parameter of interest is the fractional amplitude AR that
reports on the fraction of donor undergoing FRET (FD%- or
Ag)®. We provide in Fig. 4, upper panel, the estimated FD% for
all cases investigated herein via FLI-Net (the corresponding
SPClImage images are provided in the Fig. S-D2). As expected,
as the A:D ratios increase, the FD% increases as well. Moreover,
FLI-Net results, as in the previous FLIM examples, are in
remarkable agreement both spatially and quantitatively with
SPClImage results as evidenced with BCs close to =1 and very
low MSE for all A:D ratios (see Fig. 4(c,d)). Similarly, to the
visible FLI, FLI-net is = 30 times faster than SPClmage per
pixel processed (FLI-Net = 6.8e-3 ms/pixel; SPCImage = 0.21
ms/pixel). Even in challenging case of NIR dyes with short
lifetimes, FLI-Net shows remarkable speed and precision in
measuring FRET signal as indicative of receptor engagement in
cancer cells.

I\VV. MACROSCOPIC FLUORESCENCE LIFETIME IMAGING (GATED ICCD)

Another important application of FLI is in the imaging of
large tissue at the macroscopic scale (MFLI). The applications
hence range from high-throughput in vitro imaging®®, ex vivo*
or in vivo tissue imaging** for diagnostics, especially within the
framework of optical guided surgery*?, and preclinical studies*.
Particularly, there is great interest in employing NIR MFLI as in
this spectral window the background fluorescence is reduced,
and deep tissue imaging can be performed with high sensitivity.
The technology of choice to perform MFLI is gated ICCD as it

provides fast acquisition speeds over a large field of view. As a
tradeoff, MFLI does not provide the efficiency of TCSPC
collection and is characterized by IRF of the size of the gate
employed (typically 300ps or above). Hence, quantification of
lifetime-based quantities can be very challenging. To
demonstrate the potential of FLI-Net for MFLI based on gated
ICCD (and hence its potential for widespread FLI applications),
we evaluated its performance in two settings: well-plate imaging
with concentration-controlled mixtures of two NIR dye mixtures
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and dynamic NIR-FRET in vivo imaging in live intact, small
animals.
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Figure 5. Sensitive comparison of FLI-Net with LSF via MFLI of NIR dyes possessing sub-nanosecond lifetime. a-c, Mean-lifetime
values obtained through MFLI of six intricately prepared samples (a) each containing various volumetric fractions of two NIR dyes:
HITCI (356 + 4 ps) and ATTO 740 (576 * 11 ps) in PBS buffer, both of which are excited at 740 nm and emit around 770 nm.® The
values obtained from the DNN (b) show a similar z,, trend to that of the least-squares fit (c) but possess a histogram that is centered

much more closely to the ground-truth values of both 7, and .

A series of MFLI data acquired from multi-well plates, each
containing a volumetric fraction of two fluorescent dyes
prepared as (further described in Methods), were used as a
highly sensitive test of the FLI-Net’s capability to quantitatively
retrieve accurate lifetimes and fractional amplitudes in
controlled settings (ranging from mono- to bi-exponential). Each
TPSF was captured with a time-gated, wide-field MFLI
apparatus described in detail elsewhere.** Fig. 5 illustrates a
sensitive comparison of FLI-Net with an LSF approach
implemented in MATLAB (further described in Methods). For
a one-to-one comparison, the range of 7, and t, values used

for TPSF generation to train the network was set to the bounds
chosen for the LSF fitting. The summary of the quantification of
the two dye lifetimes (4, T3), as well as the t,, associated with
the different dye ratios, for both FLI-Net and LSF are provided
in Fig. 5b/c respectively. As can be observed, the trends
exhibited for t,, are not only following the expected trendline
but are also in excellent agreement between the two estimation
techniques. Though, in all cases, FLI-Net provides lifetime
distributions for both T and T, that are centered on the expected
lifetime values with a relative narrow spread.

V. IN VIVO DYNAMICAL LIFETIME BASED IMAGING

To demonstrate the applicability of FLI-Net in a dynamic
setting, we performed in vivo NIR FRET imaging in live and
intact small animals. As demonstrated in previous studies'#4,
the occurrence of FRET reports on the labeled Tf/TfR
(ligand/receptor) engagement non-invasively. The NIR-Tf
probes label the liver, as a major site of iron homeostasis
regulation displaying higher levels of TfR expression. In
contrast, the urinary bladder is labeled via its role as an excretion
organ due to the accumulation of free dye or small labeled
peptides via degradation. A total of 170 frames were acquired
over a two-hour time span. Each frame consisted of 256 x 320-
pixel x 160 time-gates. An experiment with a delayed injection
of the acceptor compared to the donor at A:D ratio of 2:1 was
performed (donor: Tf-AF700 and acceptor: Tf-AF750) as well
as a FRET negative control in which only donor was injected.
Fig. 6 a/b report on the spatially resolved FRET donor fraction
(FD% or Ap) as estimated via FLI-Net for a few frames and for
the above mentioned two conditions. In all cases the two main

organs of interest, the liver and the bladder, are well resolved.
Additionally, we provide the time trace of FD% over the whole
170 frames as computed for the liver and bladder ROI, both for
FLI-Net and LSF (Fig. 6¢/d and e/f, respectively). As expected,
the FD% is reduced throughout the imaging period in the bladder
as no TfR-Tf binding occurs, while the FD% increases sharply
in the liver at A:D ratio of 2:1 due to abundant TfR expression
in this organ. Such results are in accordance with our previous
studies using the same biological system*. Of importance, FLI-
Net provided a smoother mean FD% estimate over the organs
with lower standard deviation range. Additionally, at the onset
of the experiments, at which time point only the donor has been
injected in the animal and hence, no FRET can occur, the
baseline of FD% in the liver and bladder are similar (as
expected) as estimated using FLI-Net conversely to the LSF
estimates. Lastly, FLI-Net demonstrated these remarkable
performances at speeds readily employable for real-time use, =
32 ms/frame versus = 7.5 x 10° ms/frame with assistance of a
binary mask for the LSF.
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Figure 6. Dynamical FRET-MFLI performed over a two-hour time span. Four equally-spaced (in-time) MFLI-FRET image overlays
obtained from two mice: tail-vein injected Tf-AF700 (donor-only control) (a) and tail-vain injected Tf-AF700 followed 20 min later
by injection of Tf-AF750 (b). Imaging was performed over a time-span of approximately 2 hours after Tf-AF700 injection (further
detailed in the Supplementary Materials). c-f, comparison of LSF versus FLI-Net results for FRET donor percentage (< Tf/TfR
engagement). The shaded region associated with each curve corresponds to the standard deviation of all values obtained for both the
liver and urinary bladder at each time-point. The computation time required for the LSF was > 2 hours using only the masked regions
(liver and urinary bladder), whereas FLI-Net produced all ~ 170 parameter maps, using the entire 256 x 320-pixel acquisition, in < 48

seconds (~ 32 ms/voxel).

V1. DISCUSSION

FLI imaging is a popular technique that enables accurate
probe quantification in biological tissues revealing unique
information of great value for the biomedical community. To
derive the lifetime-based quantities, model-based methodologies
or graphical approaches have been proposed but they rely on
relatively complex inverse formulation, may necessitate
calibration samples and/or need to be adapted to the application
investigated and instrumentation employed. In contrast, Deep
Learning methodologies can deliver ultra-fast and parameter-
free processing performance. Our proposed 3D CNN
architecture, as well as training methodology, offers the potential
of a generalized tool for ultrafast, parameter/fit- free,
quantitative FLI imaging for a wide range of applications and
technologies. Especially, our methodology is centered on model-
based learning that is efficient, robust and accurate. Such
approach avoids the need to acquire massive training datasets
experimentally and can encompass numerous applications
and/or technologies.

Beyond the unique features of FLI-Net, our FLIM and MFLI
studies establish our analytic framework as a robust and
guantitatively accurate tool for FLI studies over a large range of
lifetimes (visible-NIR), photon count and technologies
employed. Of particular note, FLI-Net was robust in estimating
lifetime-based parameters both in the cases of mono- and bi-

exponential decays without setting any parameters (see Table
S4/S5 and Fig. S9) As FLI-Net was trained using both these
models, there was no need to have it trained on a specific case,
whereas, fit techniques require the user to select the model based
on its preferences/expectations. Hence, FLI-Net is free of such
bias. Additionally, we have selected to benchmark FLI-Net
versus the commonly employed fitting software in the field.*’
However, it is important to note that such methodologies are
well known to perform poorly in the cases of low photon counts.
This was also a fundamental limitation in a previous study
proposing to use a basic Artificial Neural Network, ANN-
FLIM“ that was not able to retrieve the life-time based
parameters in all cases, especially with low p.c. Conversely,
FLI-Net produced robust estimate in such conditions as depicted
in Fig. 1d (p.c.1owe[25,100]). These results indicate that FLI-Net
performs well in photon starved conditions which are prevalent
in biological studies. Last, FLI-Net is an approach that estimates,
by design, the lifetime-based parameters for whole image at
once. The computational time reported herein are hence for the
full FLI acquisition and not limited to an ROI, as typically done
for fitting techniques. Moreover, in the case of MFLI, the
computational times were enabling real-time live animal
imaging (= 32 ms/frame). Hence, FLI-Net is well positioned to
profoundly impact clinical applications such as fluorescence
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guided surgery currently employed in a few scenarios. In this
context, FLI is expected to play a major role either by providing
unique contrast mechanisms such in pH-transistor like probes*?
or improve sensitivity for current clinically approved dyes*.
However, to date, FLI imaging formation was not attainable at
speed relevant to current clinical practice, but FLI-Net can
overcome this important barrier for clinical translation.

Herein, we have demonstrated the quantitative accuracy, as
benchmarked against current methods, both in microscopic and
preclinical settings. Of note, all experiments provided quantities
in agreement with the expected biological outcomes. For
instance, FLI-Net was able to clearly discriminate between non-
cancerous and cancerous cells, as well as between different types
of cancer cells (AU565 and T47D vs. MDA-MB-231). In
contrast to SPClmage, FLI-Net reported on a significant
difference between the t,, of untreated and Na cyanide across
all cell types (Fig. 2i). In the case of the cell line AU565,
SPCImage quantified an increase in metabolic status after Na
cyanide exposure conversely to FLI-Net and the expected effect
of this metabolic inhibitor. Moreover, a crucial advantage of
FLI-Net vs. SPCImage is that it takes into consideration all
pixels in the image instead of relying on biased ROI selection.
Beyond the overall image quantification as reported, it is
important to note also that FLI-Net images show punctate

distribution of Tf-containing endosomes and heterogeneity of Tf
uptake across cancer cells. This illustrates the potential of FLI-
Net to report on important biological information without
requiring any parameter settings or ROI selection by the users.
Such findings in the microscopic settings are also confirmed in
the preclinical studies in which the FRET Donor fraction (FD%)
prior to the delayed injection of the Acceptor were in accordance
with expectation for FLI-Net but overestimated when using LSF
in the case of the liver. Taken altogether, these results suggest
that FLI-Net provides highly reliable results with increased
sensitivity and reproducibility compared to current iterative
methodologies.

Beyond the topical application of fit-free FLI, the overall
architecture of FLI-Net and the associated training methodology
has potential for application across a myriad of biomedical
imaging techniques that currently utilize a least-squares model-
based fit for parameter extraction. It is common for many of
these techniques to cite speed as a main hurdle they have yet to
overcome for successful adoption into the clinical or commercial
realm. We believe that this work provides ample supporting
information and a robust proof of concept for similar adaptation
and implementation in projects regarding analytic optimization
across the field.

VIl. METHODS

FLI-Net architecture and training methodology:

The FLI-Net architecture consists of two main parts — 1) a
shared branch focused on spatially-independent temporal feature
extraction and 2) a subsequent three-junction split for
independent reconstruction of t,, T, and Ay images
simultaneously. Within the shared branch, spatially-independent
convolutions along time (illustrated in Fig. S1 as the blue
rectangular prism with kernel size of (1 x 1x10)) was set as the
network’s first layer in order maximize TPSF feature extraction.
A corresponding stride of k = (1,1,5), used initially to reduce
parameter count and increase computational speed, resulted in
no observable decrease in performance. A residual block,
possessing a kernel size of (1 x 1 x 5), followed immediately
afterwards to further extract time-domain information.

To ultimately obtain image reconstruction of size (x X y) via
a sequence of downsampling, a transformation from 4D to 3D
was required. Thus, after the 3D-residual block (output of x X y
X n x 50) the tensor was reshaped to dimension (x X y X (n X
50)), where n corresponds to a scalar value dependent on the
number of TPSF time-points as well as the chosen network
hyperparameters. This value can be determined via the following
expressions:

F
P = TLO (nrp%S)

n = ((npp —Fp + P)/S + 1)

Where np, P, Fyo, and S denote the number of time-points,
padding (obtained through first equation), filter length along the
temporal direction of the first 3D-convolutional layer (length of
10 in this study) and the corresponding stride value used in the

first convolutional layer (value of 5 in this study), respectively.
After this transformation, a convolutional layer of size (1x1)
possessing 256 filters along with a subsequent residual block
couplet possessing size (1x1) was employed before the tri-
reconstruction junction. The (1x1) size of these 2D
convolutional filters proved crucial in maintaining spatially-
independent feature-extraction.

FLI-Net was written and trained using the machine-learning
library Keras*® with Tensorflow*® backend in python. 10,000
TPSFS voxels were used during training (8000) and validation
(2000), along with a batch size dependent on the target input
length along time (32 for NIR, 20 for visible). Mean-squared
error (MSE) was set as the loss function for each branch. The
RMSprop® optimizer was chosen with an initial learning rate set
to 1e-6. The network was normally trained for 250 epochs using
a NVIDIA TITAN Xp GPU. This training time varied slightly
depending on TPSF length; ranging between 50s and 80s per
epoch (for voxels possessing 160 and 256 time-points,
respectively).

Generation of the Simulation Data:

For every training sample, an MNIST5! binary image was
chosen at random and every non-zero pixel was assigned a value
of intensity (I), short lifetime (z;), long lifetime (z,) and
fractional amplitude (Ag) (Fig. S2a). These values at each pixel,
along with a randomly selected IRF (an example of which is
given in Fig. S2b as the pink dashed line), were subsequently
used in the generation of each TPSF (I'(t)) via the equation:

[(t) =IRF(t) * I[Are~t/"L + (1 — Ap)e~t/12 ]
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Each TPSF was normalized to a maximum intensity value of
one in the last step.

Pre-processing of gated-1CCD data:

It is common for raw fluorescence time decay data to be
represented initially at each time-point using a separate TIFF
image. Concatenation of these along the temporal axis along
with a subsequent removal of pixels possessing maximum
photon counts of less than 250 was performed before the use of
a Savitzky-Golay filter®? (length five, 3rd order) The effect of
dark-noise was removed via subtraction with the mean value of
time-points 1-10 (before the IRF begins ascent). Afterwards,
each value was normalized to one by division with its maximum
value.

Use of the Savitzky-Golay filter, or a filter that preserves the
slope of the TPSF’s ascent while also having no broadening
effect on the curve (as is the case with gaussian or moving
average filters) was essential for analysis of the mice data given
FLI-Net sensitivity along time and seemingly useful for future
work regarding extraction of depth-related parameters from the
TPSF. Fig. S3 further illustrates this reasoning.

Pre-processing of TCPSC microscopy data:

Given that the TCSPC microcopy data possessed
significantly lower photon counts spatially relative to MFLI,
local neighborhood binning was employed. The SPCimage
software’s pre-processing technique involves performing this
binning, along with discounting any pixels possessing a
maximum photon count below a specific threshold, at every
pixel before fitting.?° This allows the software to somewhat keep
the initial resolution while simultaneously fitting every pixel to
a TPSF of enhanced photon count. This processing sequence was
replicated for FLI-Net data sets. A maximum photon count
threshold was placed initially (normally at 3 or 4), directly
followed by a local neighborhood binning (5x5 kernel). Each
subsequent pixel was convolved with a Savitzky-Golay filter
(length 5, 3rd order). Prior work has illustrated the accurate
retrieval of FRET parameters over a large variation in gate-width
during MFLI as well as after introduction of artificial gating in
TCSPC FLIM analysis.>**® Given that the IRFs used in our data
generation procedure were obtained from a gated-ICCD system,
a floating average filter of length eight was introduced to mimic
this effect without any reduction in temporal length. The
processing methodology following steps are the same as was
described in the prior section.

NAD(P)H FLIM in vitro:

All cell lines were obtained from ATCC (Manassas, VA,
USA) and cultured in respective media at 37°C and 5% CO2.
T47D and MDA-MB231 cells were grown in Dulbecco's
modified Eagle's medium (Life Technologies) supplemented
with 10% fetal bovine serum (ATCC), 4 mM l-glutamine (Life
Technologies), 10 mM HEPES (Sigma). AUS565 cells were
cultured in RPMI medium (Life Technologies) supplemented
with 10% FBS and 10 mM HEPES. MCF10A cells were
cultured in DMEM/F12 medium (Life Technologies)
supplemented with 5% horse serum (Life Technologies), 20
ng/mL EGF (Peprotech), 0.5 mg/mL hydrocortisone (Sigma), 10
ug/mL bovine insulin (Sigma), 100 ng/mL cholera toxin (Sigma)
and  50Units/mL/50pg/mL  penicillin/streptomycin  (Life

Technologies). For imaging experiment, the cells were plated
on MatTec 35 mm glass bottom plates (Ashland, MA) 400,000
cells per plate, cultured overnight in corresponding phenol red-
free complete medium and imaged in the same medium. In
parallel, cells were incubated for 30 minutes with 2.5 mM NaCN
in complete medium for metabolic inhibition. For FLIM imaging
of NAD(P)H autofluorescence emission was performed using
the Becker & Hickl HPM-100-40 detector which was attached
to the NDD port on the LSM 880 using a Zeiss T-adapter that
contained a 680 nm SP blocking filter (Semrock FF01-680-/SP-
25 blocking edge multiphoton short-pass filter) followed by a
550/88 BP (Semrock FF01-550/88-25 single band pass filter) at
spectral range of 506-594 nm. The pixel dwell time was 2.58 s
and the frame size 512 x 512 pixels. The emission was collected
for 60 seconds.

Visible FLIM-FRET in vitro:

T47D cells were plated on MatTec 35 mm glass bottom
plates as described above and cultured overnight. After that cells
were washed with HBSS buffer, incubated for 30 min in DHB
imaging medium (phenol red-free DMEM, 5 mg/mL bovine
serum albumin (Sigma), 4 mM L-glutamine, 20 mM HEPES
(Sigma) pH 7.4) to deplete native transferrin followed by 1h
uptake of holo (iron-loaded) Tf-AF488 and Tf-AF555 (Life
Technologies, NY) with various Acceptor: Donor ratio in DHB
solution keeping Tf-AF488 concentration of 20 pg/mL constant.
The uptake was terminated by washing with phosphate buffer
saline and fixing in 4% paraformaldehyde. The images were
acquired on Zeiss LSM 550 equipped with FLIM detector
(Becker and Hickl) as described previously®t.

NIR FLIM-FRET in vitro:

Human holo Tf (Sigma) was conjugated to Alexa Fluor 700
or Alexa Fluor 750 (Life Technologies) through monoreactive
N-hydroxysuccinimide ester to lysine residues in the presence of
100 mM Na bicarbonate, pH 8.3, according to manufacturer’s
instructions. T47D cells were processed for Tf uptake in the
same manner as described above. NIR FRET FLIM was
performed on Zeiss LSM 880 Airyscan NLO multiphoton
confocal microscope using a HPM-100-40 high speed hybrid
FLIM detector (GaAs 300-730 nm; Becker & Hickl) and a
Titanium: Sapphire laser (Ti: Sa) (680-1040 nm; Chameleon
Ultra 11, Coherent, Inc.). The Ti: Sa laser was used in
conventional one-photon excitation mode. Because of this, the
FLIM detector must be attached to the confocal output of the
scan head. On the LSM 880 with Airyscan, the confocal output
from the scan head was used for the ‘Airy-Scan’ detector and
thus it was not directly accessible. However, to accommodate
the HPM-100-40 detector a Zeiss switching mirror was inserted
between the scan head and the Airyscan detector. The 90°
position of the switching mirror directs the beam to a vertical
port to which the FLIM detector was attached via a Becker &
Hickl beamsplitter assembly. A Semrock FF01-716/40 band
pass filter and a FFO1-715/LP blocking edge short-pass filter
were inserted in the beamsplitter assembly to detect the emission
from Alexa 700 and to block scattered light, respectively. The
80/20 beamsplitter in the internal beamsplitter wheel in the LSM
880 was used to direct the 690nm excitation light to the sample
and to pass the emission fluorescence to the FLIM detector.
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NIR MFLI well-plate series:

To test the sensitivity of FLI-Net for extracting bi-
exponential parameters, we mixed two NIR dyes, ATTO740
(A740, 91394-1MG-F, Sigma-Aldrich, MO) and 1,1',3,3,3",3'-
hexamethylindotricarbocyanine iodide (HITCI, 252034-
100MG, Sigma-Aldrich, MOQ) initially prepared in PBS at
various initial concentrations (Table S2). For each concentration
pair, different volumes of both dyes were mixed to obtain a total
volume of 300 pL. with volume fractions ranging for 0 to 100%
(10% steps, see Table S3).

Dynamic NIR MFLI-FRET in vivo:

In these experiments, the dynamics of FRET were observed
by injecting Tf probes labeled with donor and acceptor at
different time points. For all experiments, athymic nude female
mice (Charles River, MA) were first anesthetized with isoflurane
(EZ-SA800 System, E-Z Anesthesia), placed on the imaging
stage and fixed to the stage with surgical tape (3M Micropore)
to prevent motion. A warm air blower (Bair Hugger 50500, 3M
Corporation) was applied to maintain body temperature. The
animals were monitored for respiratory rate, pain reflex, and
discomfort. The mice were imaged with the time-gated imaging
system in the reflectance geometry, with adaptive greyscale
illumination to ensure appropriate dynamic range between the
regions of interest. In particular, excitation intensity had to be
reduced in the urinary bladder due to accumulation of NIR-
labeled Tf over time. Two hours after tail-injection of 20 pg of
Tf-AF700, the FRET-induced mouse was imaged for ~15
minutes before retro-orbital injection with 40 ug of Tf-AF750

(A:D ratio 2:1). Imaging was continued for another 105 minutes.
For the negative control mouse (0:1), no further probe was
injected throughout the imaging session. Fig. S10 is provided for
further clarity. The time-resolved MFLI-FRET imaging system
used in this study was described in detail elsewhere*,

LSF Analysis:

The LSF implementation chosen for use was based around
the MATLAB’s function fmincon()>’. The lower and upper
bounds of both lifetime values were, for all three cases (Fig. 1d,
Fig. 5(e-f)., Fig 6f., Fig. S9) chosen to match the bounds used in
generation of the TPSF data voxels utilized in training our model
(Table S1).

Bhattacharyya Coefficient:

Given that every in vitro dataset possessed a distribution of
values post-analysis, the addition of a metric for comparison of
these probability distributions between FLI-Net output and
SPCImage’s was included. To measure the degree of overlap
between distributions obtained through both techniques, the
Bhattacharyya coefficient was employed. Given two continuous
probability distributions M(x) and N(x), the Bhattacharyya
coefficient is calculated as follows.

BC(M,N) = fm‘/M(x)\/N(x)dx

Where, when M(x) = N(x), or, the probability distributions
overlap perfectly, the Bhattacharyya coefficient is equal to 1.
The metric is explained in further depth elsewhere®®,
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