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Protein-coding small open reading frames (smORFs) are emerging as an important
class of genes, however, the coding capacity of smORFs in the human genome is
unclear. By integrating de novo transcriptome assembly and Ribo-Seq, we
confidently annotate thousands of novel translated smORFs in three human cell
lines. We find that smORF translation prediction is noisier than for annotated
coding sequences, underscoring the importance of analyzing multiple experiments
and footprinting conditions. These smORFs are located within non-coding and
antisense transcripts, the UTRs of mRNAs, and unannotated transcripts. Analysis
of RNA levels and translation efficiency during cellular stress identifies
regulated smORFs, providing an approach to select smORFs for further
investigation. Sequence conservation and signatures of positive selection indicate
that encoded microproteins are likely functional. Additionally, proteomics data
from enriched human leukocyte antigen complexes validates the translation of
hundreds of smORFs and positions them as a source of novel antigens. Thus,
smORFs represent a significant nhumber of important, yet unexplored human

genes.
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The early annotation of open reading frames (ORFs) from nucleic acid sequencing
was carried out by locating in-frame start (AUG) and stop codons’“. This approach
resulted in unreasonably large numbers of ORFs < 100 codons called small open reading
frames (smORFs)"34. A length cutoff was then introduced to remove smORFs®¢, which
were largely presumed to be meaningless random occurrences’3. With the advent of
more sensitive detection methods, functional proteins encoded by smORFs, dubbed
microproteins, have been characterized with more regularity’-°. Early on, gene deletion
experiments in yeast identified a number of smORFs that control growth under different
environmental conditions™. In fruit flies, a gene called tal/pri was identified, which
contains four smORFs encoding three 11- and one 32-amino acid microproteins that
control proper physiological development''2. These examples highlighted the
importance of investigating smORFs and paved the way for work in higher organisms.
Recently, several mammalian microproteins have been characterized with fundamental
roles in cell biology ranging from DNA repair'®, mitochondrial function''®, and RNA
regulation’®. In addition, microproteins that regulate physiological processes including
muscle development'”, muscle function'®'®, and metabolism?® have been discovered.
Together these studies demonstrated that genomes contain many functional smORFs
and renewed interest in annotating all protein-coding smORFs.

Advances in proteomics and next-generation sequencing (NGS) technologies
have provided the experimental tools necessary to identify protein-coding smORFs. The
integration of RNA-Seq and proteomics approaches identified hundreds of novel

microproteins in human cell lines?'?2. Combining smORF prediction with proteomics has
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also uncovered more than a thousand human microproteins?3. While proteomics provides
evidence that a smORF produces a relatively stable microprotein of sufficient abundance
for detection, it is limited in detecting microproteins that are not abundant or do not
generate detectable peptides. With the development of ribosome profiling (Ribo-Seq),
NGS can be utilized to identify ORFs that are undergoing active translation with high
sensitivity and accuracy®*?%. Ribo-Seq combines ribosome footprinting with deep
sequencing to reveal the position of elongating ribosomes throughout the transcriptome?*.
Ribo-Seq has been applied successfully to smORF discovery in fruit flies?® and zebra
fish?’, identifying hundreds of novel translated smORFs, which is significantly more than
were detectable by mass spectrometry in these organisms.

Major questions about human smORFs remain. In particular, we are interested in
the following questions: (1) How many protein-coding smORFs are in the human
genome? (2) Can we find evidence that sSmORF expression is regulated? (3) Are some
smORFs ubiquitously expressed and others specific to a cell line or tissue? To answer
these questions, we developed a top-down workflow that combines genome-wide
transcription and translation data from RNA-Seq and Ribo-Seq, respectively, to maximize
smORF discovery. Preliminary experiments revealed that smORF translation prediction
by Ribo-Seq is noisier than for annotated ORFs, which led to the inclusion of
reproducibility to assess the confidence of smORF annotations. We used this workflow to
discover functional smORFs in HEK293T, HelLa-S3, and K562 cells, detecting over 2,500
confidently annotated protein-coding smORFs and over 7,500 in total. We also
demonstrated that while smORF-encoded microproteins have distinguishing properties

from annotated proteins, their expression is similarly regulated during cell stress and they
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are also presented as cell surface antigens. These results provide a rigorous annotation
of human smORFs, dramatically increasing the coding potential of the genome, and

suggest that many biologically functional microproteins are yet to be characterized.

Results
A Ribo-Seq and RNA-Seq based top-down smORF annotation workflow.

Ribo-Seq maps the position of elongating ribosomes throughout the transcriptome
through the use of cycloheximide to stall elongating ribosomes, followed by footprinting
with RNase 128 (Fig. 1). The resulting 28-29 nt ribosome protected mRNA fragments
(RPFs) are then sequenced and mapped to the transcriptome. Analyzing the global
distribution and frequency of ribosomes throughout the transcriptome allows one to
estimate translation levels for known ORFs and is also a highly sensitive method for
identifying novel ORFs that are undergoing translation?®. High-resolution Ribo-Seq
datasets will display >70% of RPFs aligned in-frame with known coding sequences
(CDS)?%%, captured by metagene analysis, which affords accurate identification of
unannotated protein-coding smORFs.

Typically, Ribo-Seq reads are mapped onto reference transcriptome databases,
such as RefSeq®' or Ensembl®2, which are not representative of every cell type. Our top-
down workflow maps the Ribo-Seq reads onto transcripts obtained by de novo assembly
of RNA-Seq data obtained from the same sample. This approach identified entirely novel
transcripts as well as isoforms of annotated transcripts. For example, we observed many
5'- and 3'-extensions of annotated transcripts in the de novo assembled transcriptome,

which is important to capture given the prevalence of translated smORFs found within 5'-
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untranslated regions (5-UTRs)*3%7. We then defined ORFs across all three reading
frames of the de novo assembled transcriptome to generate an ORF database, which
includes smORFs. Incorporating de novo transcriptome assembly allows for more
comprehensive smORF discovery in a particular sample.

After obtaining Ribo-Seq data, we scored all ORFs in the database for translation
using RibORF (Fig. 1), a support vector machine-based classifier of translation3¢. RibORF
uses the fraction of RPF reads aligned in-frame with the candidate ORF to calculate the
overall probability of translation. This metric is dependent upon the resolution of the
dataset, as higher resolution data have a greater percentage of RPF reads aligned to
coding regions. RibORF also factors the uniformity and distribution of RPF reads over the
entire ORF into its score. This helps filter out ORFs with high Ribo-Seq coverage in only
a small region, which would likely represent an artifact3.

Following RibORF scoring, the list of predicted translated ORFs was filtered by
size to remove all ORFs smaller than 6 codons, which are not amenable to detection by
tandem mass spectrometry, and greater than 150 codons, because protein-coding
smORFs larger than the usual cutoff of 100 codons have been reported?'3%41 Next,
translated smORFs found to overlap with annotated CDS regions in the UCSC database
were removed. This step filtered out several thousand smORFs comprising both
annotated genes as well as putative smORFs that overlap out-of-frame with an annotated
gene, which can be difficult to accurately score. Finally, this set of smORF-encoded
microproteins was analyzed for similarity to human RefSeq proteins by BLASTp. Only low

scoring hits were retained, which removed pseudogenes and any missed annotated
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genes. The remaining hits constitute the set of novel microprotein-encoding smORFs

(Fig. 1).

Annotating protein-coding smORFs in HEK293T cells.

We tested the top-down smORF annotation workflow in HEK293T cells because
we previously identified dozens of microproteins in these cells by proteomics?'. Ribosome
footprints from HEK293T cells were prepared using a protocol that afforded sub-codon
resolution with HEK293 cells®. Initially, only ~50% of reads aligned in-frame by metagene
analysis, and RPF lengths peaked at 31 nt (Fig. 2a). While this resolution is comparable
to several published datasets (Supplementary Fig. 1), we endeavored to collect higher
resolution datasets as well to ensure identification of translated smORFs that require
higher accuracy read alignment. The 31 nt peak footprint length indicated that the
nuclease digestion step, which serves to trim away all unprotected RNA, was incomplete.
To gain finer control over nuclease digestion, we followed a reported strategy that
normalizes the amount of nuclease added to the RNA concentration?®, as opposed to
adding nuclease based on a cell confluency or the lysate’s A260 value. We were able to
generate two additional HEK293T Ribo-Seq datasets with ~60% and >70% of reads in-
frame by metagene analysis and RPF lengths that peaked at 30 and 28 nt, respectively
(Fig. 2a). Given that published datasets show a wide range of resolutions (Supplementary
Fig. 1), we carried all three datasets, low-, medium-, and high-resolution, forward for
protein-coding smORF prediction.

Several previous studies have combined multiple Ribo-Seq experiments, even

across different cell lines, to maximize the available reads and increase the likelihood of


https://doi.org/10.1101/523860
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/523860; this version posted January 17, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

passing translation scoring?®33842 However, this strategy also allows for more false
positives when the same thresholds are applied due to reads accumulating on a
candidate ORF either because of non-productive ribosomal binding or noise inherent to
the Ribo-Seq protocol*. In addition, combining experiments does not allow one to assess
the reproducibility of translation predictions. Indeed, Ribo-Seq replicates can show high
correlation gene counts but still have low local positional correlation*3, which affects
translation scoring of novel ORFs. Furthermore, validating results using replicates has
been shown to be critical in other NGS-based assays*t. If multiple experiments are
analyzed separately, novel smORFs predicted as translated in every experiment
regardless of noise and sequencing depth are more confidently protein-coding than those
found in a single experiment. This allows one to also observe how differences in RPF
preparation affect translation scoring. Therefore, we analyzed each Ribo-Seq experiment
for smORF translation separately.

We first used RibORF to score translation of canonical RefSeq genes to confirm
the quality of our Ribo-Seq datasets and determine the noise level for bona fide genes.
Despite differences in sequencing depth and resolution, we observed high overlap among
the 9,644 canonical genes called translated, with 74% found in all three experiments (Fig.
2b). These results demonstrated the quality of our datasets and suggested that their
resolution is sufficient to predict translation. For smORFs, however, we found that
resolution has a strong influence on the total number of translated smORFs and that
translation prediction is much noisier (Fig. 2c). Utilizing our smORF annotation workflow,
we were able to identify 1,913 (low-resolution), 2,401 (medium-resolution), and 572 (high-

resolution) novel translated smORFs (Fig. 2c), totaling 3,874 unique hits in all. Of these,
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117 smORFs were scored as translated in all three experiments and 895 smORFs in at
least two experiments (Fig. 2c). Despite the low overlap, taking only the set of smORFs
found in multiple experiments dramatically increases the number of protein-coding
smORFs detected in previous proteomics-based efforts?'22:39.45 \We were also able to
validate translation of several smORFs identified previously by proteomics in HEK293T
cells?'. Interestingly, 606 smORFs were found in both lower resolution datasets but not
the high-resolution dataset, suggesting that there is a benefit to collecting datasets of
varying resolution. These results support the idea that our combined Ribo-Seq and RNA-
Seq workflow is an effective and sensitive means for identifying novel translated smORFs.
Practically, these data also indicate that we must run several Ribo-Seq experiments for

each sample to more confidently annotate smORFs.

Regulation of smORF transcription and translation during endoplasmic reticulum
stress.

Having identified thousands of novel protein-coding smORFs in HEK293T cells,
we next searched for evidence of regulation as a means to uncover possible biological
roles, and chose to look at changes in transcription and translation induced by
endoplasmic reticulum (ER) stress. ER stress leads to the accumulation of unfolded or
mis-folded proteins and triggers a well-characterized signaling cascade dubbed the
Unfolded Protein Response (UPR)*. The UPR attempts to restore ER homeostasis if
possible and promote survival, or induces apoptosis if the stress is unresolvable.
Thapsigargin (TG) and tunicamycin (TM) are small molecules that can trigger ER stress.

TG inhibits the ER calcium pump SERCA, causing reduced calcium levels in the ER and
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inhibition of calcium-dependent chaperones, while TM inhibits the ER glycoprotein
transferase, which prevents sugar conjugation to proteins and causes protein mis-folding.

HEK293T cells were treated with TG or TM for 4 h and compared to vehicle-treated
cells. RNA-Seq and high resolution Ribo-Seq data were collected for each sample to
monitor changes in MRNA expression and translation (Supplementary Fig. 3a and 4), and
to identify any additional novel protein-coding smORFs. Applying our smORF annotation
workflow, we identified an additional 666 smORFs, increasing the total count of unique
translated smORFs to 4,540 across all HEK293T datasets collected (Supplementary Data
2). Confirming activation of the UPR by TG and TM treatment, HSPAS5, HYOU1, DDITS3,
and other known UPR genes were upregulated*’ (Fig. 3a and Supplementary Data 1).
Gene Ontology (GO) analysis of TG- and TM-regulated genes also confirmed activation
of the UPR (Supplementary Data 1).

Next, we analyzed the novel smORFs for transcriptional regulation under ER
stress, focusing on the 1,409 smORFs identified in at least two Ribo-Seq experiments
(Supplementary Data 2). TG and TM induced significant changes in the mRNA
expression of 43 and 7 smORFs, respectively (Fig. 3b). This suggests that the encoded
microproteins might function as part of the UPR. In addition, many of these smORFs were
found within the 5'-UTR of a known protein-coding gene, termed upstream ORFs (UORFSs)
(Supplementary Data 2), which are frequently found on critical UPR genes, such as ATF4,
DDIT3, IBTK, and GADD344%49, Interestingly, transcriptionally regulated smORFs were
also found on annotated non-coding RNAs (ncRNAs), including multiple small nucleolar
RNA host gene (SNHG) family members. Thus, these ncRNAs may have dual roles in

the UPR as functional RNAs and by encoding microproteins.
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Monitoring transcriptional changes is helpful in identifying functionally relevant
genes, however, if a gene is translationally regulated then changes in mRNA levels will
not correlate with changes in protein level. Indeed, several UPR pathway genes are
translationally regulated during ER stress*?414849 To account for this possibility, we also
analyzed genes for differential translation using Xtail’®. Xtail uses Ribo-Seq data to
measure changes in translation while accounting for changes in transcript abundance
using RNA-Seq data to quantify the magnitude and statistical significance of differential
translation efficiency (TE) genome-wide. Both TG and TM induced higher TE for ATF4,
IFRD1, and SEC61G, which have been shown to be regulated during ER stress®'-%3, as
well as several other genes (Fig. 3c). In total, 129 annotated genes had significantly
regulated TEs in response to TG treatment, while 25 genes were regulated in response
to TM treatment (Supplementary Fig. 2 and Supplementary Data 1). GO analysis of the
129 TG-regulated genes showed enrichment for RNA processing and splicing
(Supplementary Data 1).

Analysis of HEK293T smORFs revealed a robust increase in the translation
efficiency of a smORF within SNHG8, which we named thapsigargin-regulated smORF
(TGR-smORF) (Fig. 3d). This change is clearly visualized by comparing the Ribo-Seq
read coverage plots for SNHG8 (Fig. 3e). While there was no significant change in
SNHGS transcript levels between vehicle- and TG-treated cells (Fig. 3e, left), the Ribo-
Seq read plot reveals a dramatic increase in the ribosome occupancy within TGR-smORF
(Fig. 3e, right). In addition, the TE of the annotated but uncharacterized smORF
c140rf119 significantly decreased in response to TG (Fig. 3d). Thus, TGR-smORF and

c140rf119 are candidates for further functional studies to determine what role they serve
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in UPR. Together, these ER stress-regulated smORFs demonstrate the value in using

genomics to identify smORFs associated with a particular biology.

Annotation of protein-coding smORFs in additional human cell lines.

Our smORF annotation workflow uncovered more than 4,000 novel protein-coding
smORFs across nine Ribo-Seq datasets in HEK293T cells. Next, we wanted to determine
whether this number is specific to HEK293T or if other cell lines would provide similar
results. Furthermore, analysis of additional cell lines would enable us to determine if there
are smORFs with cell line-specific or more ubiquitous expression. Because they differ in
their tissue of origin from HEK293T, we selected the cell lines K562, chronic myeloid
leukemia derived, and HelLa-S3, cervical cancer derived. As ENCODE cell lines, these
also provide a wealth of high quality genomic, transcriptomic, and functional data
available for follow-up analyses®*.

As with HEK293T, HelLa-S3 cell lysates were digested using different conditions
to maximize the number and accuracy of sSmORFs identified. Metagene analysis showed
a range of resolutions across the four datasets collected, from ~50-70% reads in-frame
(Supplementary Fig. 3b and 5). Altogether, 2,614 novel smORFs were scored as
translated, with 777 smORFs found in at least two experiments (Supplementary Data 2).
The overall resolution and RPF length distributions for the HeLa-S3 datasets were similar
to the HEK293T datasets collected using similar digestion conditions (Fig. 2a,
Supplementary Fig. 5). Next, we collected three Ribo-Seq datasets from K562 using a
range of digestion conditions. Because K562 cells were grown in suspension, they were

subjected to longer periods of CHX treatment during washing. This caused enrichment in
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start site reads (Supplementary Fig. 6), as was observed in previous studies®®°¢. Despite
the longer CHX treatment, 2,464 novel protein-coding smORFs were identified in K562
cells, with 542 smORFs found in at least two experiments (Supplementary Data 2). All
conditions tested resulted in >75% reads in-frame by metagene analysis and RPF length
distribution peaking at 28-nt (Supplementary Fig. 3c). However, K562 HiRes3 displayed
a broader footprint length distribution (Supplementary Fig. 6).

Between the three cell lines profiled, we identified 7,554 novel protein-coding
smORFs across three diverse tissue types (Supplementary Data 2). Most smORFs are
only identified in a single experiment, but there are many smORFs that overlap between
cell lines or are found in multiple experiments from a single cell line. In total, 483 smORFs
were detected in all three cell lines, 1,581 in at least two cell lines, and 2,689 in at least
two experiments (Fig. 4a). We also observed that smORFs detectable in two or more cell
lines are more likely to utilize AUG as an initiation codon than smORFs found in only one
cell line. These results reveal that smORFs, like annotated genes, can be ubiquitous and

cell type specific.

Analyzing microprotein properties and sequence conservation across species.
Next, we analyzed microprotein properties for comparison to annotated proteins.
The median length of the encoded microproteins is 32 amino acids (Fig. 4b, red line),
whereas the median human protein length in the Pfam database is 416 amino acids®’.
The frequency distribution of microprotein lengths can be fit by the decay formula Noe™*
where No = 224 and A = 0.024 (Fig. 4, blue line), which has a slower decay than the

expected frequency distribution of microprotein length based on the random occurrence
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of a stop codon after an initiation codon® (Fig. 4b, green line). Thus, protein-coding
smORFs occur at a higher frequency than expected by chance.

Each cell line was then analyzed independently to assess the overall amino acid
composition of smORF encoded microproteins. The data revealed a clear difference in
several amino acid frequencies that distinguish microproteins from annotated RefSeq
proteins (Fig. 4c). The amino acids with markedly higher frequencies include alanine,
glycine, proline, and arginine, while cysteine and tryptophan were slightly increased.
Several amino acids including aspartic acid, glutamic acid, isoleucine, lysine, asparagine,
glutamine, and tyrosine occur less frequently. Interestingly, the amino acid composition
of microproteins are similar across all three cell lines.

We also searched for structural features, including transmembrane helices and
conserved protein domains, to understand how microproteins compare to annotated
proteins. Given the inherently small size of microproteins (Fig. 4b), we did not anticipate
many to contain canonical structural motifs. Using TMHMM2.0%8, we only identified 48
microproteins found in at least two Ribo-Seq experiments (1.8%) with predicted
transmembrane helix domains (Supplementary Data 3). In addition, only 17 microproteins
(0.06%) contain known protein domains based on the Conserved Domain Database®.
These results are consistent with most microproteins employing different structures from
annotated proteins.

Despite these differences, we hypothesized that many microproteins would show
sequence conservation across other mammalian species, similar to annotated proteins.
We first employed PhyloCSF, which uses a multi-species nucleotide alignment to

examine sequences for signatures of conserved coding regions®. At least one exon with

13


https://doi.org/10.1101/523860
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/523860; this version posted January 17, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

a positive average PhyloCSF score was found in 423 smORFs (Supplementary Data 2),
such as the novel smORF within the 5-UTR of FJX7 (Fig. 4d). We also searched for
sequence similarities across other species using tBLASTn and BLASTp as evidence for
possible protein conservation. Using tBLASTn, 4,687 microproteins were found to have
high similarity to translated RNA sequences from at least one other species, including
273 to mouse sequences (Supplementary Data 2). Additionally, 476 microproteins with
high similarity to known and predicted proteins were found in other species using BLASTp
(Supplementary Data 2). In many instances, clear sequence similarity was observed
across several species using tBLASTn and BLASTp despite having negative PhyloCSF
scores (Fig. 4e,f). These data demonstrate that a large portion of our novel microproteins

are likely conserved.

Identifying smORF Translation Initiation Sites.

Approximately 40% of the predicted protein-coding smORFs lack an in-frame
canonical AUG start codon (Fig. 5a), making their translation initiation sites difficult to
identify. Fortunately, one of the most powerful features of Ribo-Seq is the ability to
empirically identify translation start sites through treatment with initiation-specific
inhibitors, such as harringtonine (Harr) and lactimidomycin (LTM)?%6'62, For example,
Harr treatment induced RPF accumulation centered on the first AUG start codon in a
novel METTL3 uORF (Fig. 5a). Start site inhibitors also proved capable of identifying
alternative initiation codons. LTM treatment enriched RPF coverage over the near
cognate start codon UUG in a TMEM33 uORF (Fig. 5b), supporting its translation despite

the lack of an in-frame AUG start codon.
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These inhibitors were also helpful in identifying the predominant codons for
translation initiation when multiple canonical or near cognate start codons were present.
For example, there are three in-frame AUG codons within a novel uUORF on GTF2H1.
Surprisingly, Harr treatment induced the highest RPF accumulation over the third AUG
codon, with only a small peak present over the first AUG (Fig. 5c), suggesting that both a
long and predominant short form of the microprotein are made. Similarly, we saw mixed
start site usage for the uUORF on FBXO9 (Fig. 5d). We observed translation initiation
peaks over a CUG codon and a downstream AUG codon, suggesting that both are also
utilized to produce a long and short form of the microprotein. Of note, no initiation peak
was observed over the most upstream in-frame AUG codon. The ability to empirically
detect initiation sites by Ribo-Seq provides invaluable information for accurately

annotating smORFs and is a significant advantage over other methods.

Novel protein-coding smORFs are found on annotated and unannotated
transcripts.

Having found thousands of novel protein-coding smORFs, we subsequently
determined their position relative to the annotated RefSeq transcriptome. In doing so, we
hoped to see how many annotated transcripts harbor translated smORFs and where
within transcripts they occur most frequently. Over half of all predicted translated smORFs
overlapped with RefSeq transcripts. The majority were found within the 5'-UTR of known
genes (Supplementary Fig. 6), while only a small portion of SmORFs were found within
the 3'-UTR and on the strand opposite annotated genes. Interestingly, 623 novel smORFs

were discovered on RefSeq ncRNAs, and several more on UCSC ncRNAs. Many of these
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smORFs are high confidence identifications found in several experiments. For instance,
we found translated smORFs on the ncRNAs, BC013229 and LOC100287015 (Fig. 6a,b),
which were identified in every HelLa-S3 experiment. We also discovered ncRNAs
containing multiple protein-coding smORFs, such as LINC00534, which contains two
novel smORFs in different reading frames (Fig. 6¢). In addition, we found two confident
smORFs on CCAT1, and several more that were called translated in only a single
experiment (Fig. 6d and Supplementary Data 2). These data suggest that some ncRNAs
are actually an overlooked source of coding potential in the genome.

A large portion of novel protein-coding smORFs were also located on unannotated
transcripts, or those that are present in the de novo transcriptome assembly but not
RefSeq. These unannotated transcripts comprise isoforms of annotated transcripts,
containing either extensions of exons or novel exons, as well as entirely new transcripts.
One de novo assembled transcript includes a 5'-extension of c6orf62 which contains a
translated smORF (Fig. 7a). Other examples include novel exons, such as the smORF-
containing EYA4 isoform found specifically in HeLa-S3 samples (Fig. 7b) and the GGPS1
isoform with an alternative 5'-UTR containing a novel smORF (Fig. 7c). Furthermore, we
were able to identify several protein-coding smORFs on transcripts that do not overlap
with any annotated gene, and many of these uannotated transcripts are cell type specific
(Fig. 8a-c). These unannotated smORFs emphasize the importance of utilizing de novo

transcriptome assembly with Ribo-Seq to identify novel protein-coding smORFs.

Detection of novel microproteins in Human Leukocyte Antigen class | (HLA-I)

peptidomics datasets.
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Translation of thousands of smORFs were detected by Ribo-Seq. However, Ribo-
Seq cannot determine whether the encoded microprotein is sufficiently long-lived to be
functional. Mass spectrometry can detect proteins that accumulate to a steady state
concentration above the limit of detection, offering important complementary data.
Proteins are often identified from mass spectrometry data using a search strategy that
matches ms2 spectra with tryptic peptides from a protein database. However, these novel
microproteins are not included in human proteome databases, and therefore would not
be identified in published proteomics studies. Another challenge with most proteomics
datasets is that they do not enrich for smaller peptides or small proteins prior to analysis,
which we have found to be critical for microprotein detection®'3%, Therefore, we searched
published datasets that had an enrichment step built in to see if microproteins are
detected when their sequences are appended to a human proteome database.

Proteomic analysis of HLA-I complexes has been used to identify antigenic
peptides from known genes, and these experiments rely on immunoprecipitation of HLA
complexes with bound peptides®3. We reasoned that HLA-I immunoprecipitation serves
as an ideal enrichment step to enhance microprotein peptide detection and
simultaneously allow for identification of microprotein-derived antigens (Fig. 9a).
Searching a published HLA-I proteomics dataset® using the human Swiss-Prot database
appended with the 7,554 novel smORF-encoded microproteins, we identified peptides
from 320 microproteins (Fig. 9b). Of these, 192 were from smORFs identified in at least
two Ribo-Seq experiments (Supplementary Data 3), and 41 lacked an in-frame AUG start
codon. A previous study was also able to detect over 100 microprotein peptides in the

same proteomics dataset, which is consistent with and expanded by these data®®.
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Representative spectra of peptides from smORF-encoded microproteins demonstrate
good fragment ion coverage, regardless of the number of times detected and cell lines
found in by Ribo-Seq (Fig. 9c). We then validated the binding of three peptides to the
HLA-I complex using a fluorescence-based competition assay and observed clear
displacement of the HLA-I reference peptide by all three (Fig. 9d and Supplementary Fig.
8). Thus, we validated the translation of hundreds of smORFs at the protein level and
obtained evidence that they are capable of being presented on HLA-I complexes like

annotated proteins.

Discussion

Utilizing our top-down smORF annotation workflow, we were able to rigorously
annotate thousands of novel protein-coding smORFs across 16 Ribo-Seq experiments in
three human cell lines. By analyzing individual experiments, we showed that predicting
smOREF translation from Ribo-Seq data is noisier than for annotated genes (Fig. 2b,c and
Supplementary Data 2). Differences in Ribo-Seq resolution, sequencing depth, and
variability in sequencing library construction as well as biological variations such as
passage number and cell density play significant roles in smORF translation analysis.
However, given that annotated genes were also subjected to these effects and yet had
much greater overlap, it is most likely that overall lower translation levels explain why
smORFs are more difficult to detect reproducibly. We also show that it is beneficial to use
a range of RNase | digestion conditions to annotate smORFs, as there are several
hundred reproducibly detected smORFs that were only identified in lower resolution or

higher resolution datasets (Supplementary Data 2). Importantly, we demonstrate that de
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novo transcriptome assembly is necessary for comprehensive smORF annotation (Fig. 7
and 8).

While our data represent a significant step in comprehensive protein-coding
smORF annotation, we expect future studies to find additional novel sSmORFs. First, these
numbers are an underestimation because we chose to exclude smORFs that overlap with
longer ORFs in our analyses, though such smORFs are known??. By definition,
overlapping smORFs have RPF reads aligned out-of-frame relative to another ORF which
limits the scoring of both, especially for smORFs with a high percentage of overlap or a
low abundance relative to the other ORF. Our highest resolution datasets may be suitable
for identifying abundant overlappers, however, we expect to find a significant number of
artifacts using our lower resolution datasets due to the higher percentage of noisy out-of-
frame reads. Second, we utilized ENCODE cell lines, which are valuable but are likely
different from primary cells or tissues. Future studies would benefit from including more
physiologically relevant samples to determine if the smORFs we detect rely on the cellular
context. Finally, improvements to sample preparation methods, such as long read
sequencing for transcript assembly and small RNA library construction, and to
computational methods for short read alignment and analysis of RPFs for translation will
be critical for complete annotation of functional smORFs.

For many smORFs, these data provide the first evidence of translation. Therefore,
we propose using reproducibility as one filter for follow-up functional studies. Over 2,500
smORFs were called translated in multiple experiments across all cell lines and thus are
higher confidence annotations. More confident still are those smORFs found in multiple

cell lines, because in order to do so both the transcript and Ribo-Seq evidence must be
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reproducible. Being found in multiple cell lines also suggests that these smORFs have a
general cellular function, which might explain their increased canonical AUG start codon
usage (Fig. 4a). Nevertheless, smORFs identified in a single experiment are worth
including in large scale studies, as many of these just failed the stringent RibORF scoring
filter in other experiments and might pass with higher sequencing depth or in a differently
prepared sample. Supporting this hypothesis, we were able to detect peptides from singly
identified smORFs in HLA-I proteomics datasets (Fig. 9c and Supplementary Data 3).
Furthermore, there were hundreds of annotated genes that were only detected in a single
experiment (Fig. 2b).

Beyond reproducibility, useful methods for uncovering biologically functional
smORFs include identifying those that are regulated, bound to protein complexes, or
evolutionarily conserved. For example, we found dozens of novel smORFs that were
regulated at the transcription level and one regulated at the translation level during ER
stress (Fig. 3b,d). We also detected hundreds of microprotein peptides bound to HLA-I
complexes in a variety of human cell lines (Fig. 9). Expression regulation and detection
by mass spectrometry further validate these smORFs and position them well for functional
characterization studies. For the microprotein-derived antigens, the next important step
will be to test if any of these are immunogenic. Functional inferences can also be drawn
from microprotein sequence conservation (Fig. 4d-f), as several characterized smORFs
have excellent conservation by PhyloCSF and BLAST'®>'". Having identified thousands
of smORFs, additional biological data can easily be mined to elucidate their roles.

This study serves two key purposes, the development of a refined workflow for

smORF annotation and the curation of a human smORF database for functional
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characterization. Given the sheer number of protein-coding smORFs annotated, their
diversity in amino acid composition, and cell type specificity, we anticipate smORFs being
involved in all facets of biology. In addition, new insights into translational regulation can
be gained by studying polycistronic RNAs (Fig. 6¢,d and Supplementary Fig. 7) and how
multiple start sites are employed for the same reading frame (Fig. 5). These results also
add to the growing evidence that some ncRNAs might operate as both a functional
molecule and a coding template. In summary, smORFs offer a rich opportunity for
uncovering new biology, and in the future perhaps a new avenue for therapeutic

discovery.

Methods & Materials

Cell Culture

HelLa-S3 cells were purchased from ATCC (CCL-2.2). HEK293T cells were purchased
from GE Life Sciences (HCL4517). K562 cells were purchased from Sigma-Aldrich
(89121407). HEK293T, and HelLaS3 cells were maintained in DMEM (Corning, 10-013-
CV) supplemented with 10% Fetal Bovine Serum (FBS; Corning, 35-010-CV). K562 cells
were maintained in RPMI 1640 (Corning, 10-040-CV) supplemented with 10% FBS. All

cells were maintained at 37 °C with 5% CO..

Paired-End RNA-Seq and de novo Transcriptome Assembly
The HEK293T Cufflinks assembled transcriptome was generated previously®®, and used
to create the ORF database for scoring translation with RibORF. For HeLaS3 and K562,

total RNA was harvested and purified from two biological replicates using an RNeasy Kit
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(Qiagen) with gDNA eliminator columns. For each cell line, two separate cDNA libraries
were prepared for each replicate: one using the TruSeq Stranded mRNA Kit (lllumina)
and the other using the TruSeq Total RNA Kit (lllumina). This allowed for representation
from poly-A tailed mRNA and non-poly-A RNAs in the transcriptome assembly. Paired-
end 125 or 150 base reads were collected for all 4 libraries on a single lane of an lllumina
HiSeq 2500 or NextSeq 500, respectively. At least 250M reads were generated for each
cell line. Aligned reads were assembled into transcripts by Cufflinks using default
parameters, fragment bias correction, multi-read correction, fr-firststrand library

construction, and the hg19 human genome sequence as a guide.

Ribosome Footprinting

Preparation of ribosome footprints for Ribo-Seq experiments was performed as
described?® with some modifications. For all ribosome footprinting experiments, adherent
cells were grown to about 80% confluency in 10 cm or 15 cm diameter tissue culture
dishes and suspension cells were grown to a density of approximately 500,000 cells/mL.
Cells were washed with 5 mL ice-cold Phosphate Buffered Saline (PBS) with 100 pyg/mL
cycloheximide (CHX) added. Immediately after removing PBS, 400 uL of ice-cold lysis
buffer (20 mM Tris-HCI, pH 7.4, 150 mM NaCl, 5 mM MgClz, 1% Triton X-100, with 1 mM
DTT, 25 U/mL Turbo DNase (Thermo Fisher, AM2238), and 100 ug/mL CHX added fresh)
was dripped onto the plate or added to the cell pellet. Cells were incubated on ice in lysis
buffer for 10 min with periodic vortexing and pipetting to disperse the cells. The lysate
was then clarified by centrifugation at 15,000 g for 10 min. Cell lysates were flash frozen

and liquid nitrogen and stored at -80°C for up to 5 d prior to ribosome footprinting. For
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experiments profiling translation initiation, the same procedure was followed except for
the addition of either 2 pg/mL harringtonine (abcam) for 2 min or 20 pg/mL lactimidomycin
(Calbiochem) for 30 min to media prior to PBS wash and lysis. A variety of digestion
conditions were tested in this study and are summarized in the Supplemental Methods.
Briefly, RNA digestions using 250 U RNase | (Thermo Fisher, AM2294) per 100 pL lysate
were used in the low resolution 293T and HelLaS3 experiments. For high-resolution
experiments, 15 to 30 U TruSeq Nuclease (lllumina) was used to digest 30 to 60 ug RNA
in up to 300 yL lysate. Digestion reactions were run for 45 to 60 min at RT and quenched
with 100 to 200 U Superase-In RNase | inhibitor (Thermo Fisher) on ice. Following
digestion, ribosome protected fragments (RPF) were purified from small RNA fragments
using MicroSpin S-400 HR columns (GE Life Sciences) according to the TruSeq Ribo
Profile Kit (lllumina). Low resolution experiments were cleaned up with Zymo RNA Clean
& Concentrator-25 kit, while high resolution experiments were purified by acid
phenol:chloroform extraction followed by isopropanol precipitation. Ribosomal RNAs
were depleted from RPF fragments by Ribo-Zero Mammalian Kit (lllumina) following the
manufacturer’s protocol. cDNA sequencing libraries were then prepared using the TruSeq
Ribo Profile Kit (Illumina) following the manufacturer’s protocol. Single-end 50 base reads
were collected for each library on an Illlumina HiSeq2500 with no more than 4 samples
sequenced on a single lane. Each Ribo-Seq experiment was prepared from a different
biological replicate except for K562 HiRes1 & 2 which were prepared from the same lysate
using different digestion conditions. For K562 HiRes3, CHX was added to the media prior

to pelleting cells and washing with PBS.
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Ribo-Seq and Short Read RNA-Seq Read Processing

Ribo-Seq and accompanying short fragment total RNA-Seq reads were first trimmed of
excess 3' adaptor sequences as in Calviello et al.®® using the FASTX-toolkit. Trimmed
Ribo-Seq reads aligning to tRNA and rRNA sequences were then removed using STAR
v2.5.2b% as in Wang et al.®8. Next, the remaining Ribo-Seq reads were aligned to the
UCSC hg19 human genome assembly containing chromosomes 1-22, X, and Y with the
hg19 refGene transcript annotation using STAR. Up to two mismatches were allowed
during alignment, keeping only uniquely mapped reads. Ribo-Seq and RNA-Seq
alignments were checked for overall quality using the CollectRnaSeqMetrics script from

the Picard Tools software suite.

RibORF Scoring

Following Ribo-Seq read processing and quality control, the RibORF software package3®
was used to score individual ORFs for translation. First, metagene analysis was
conducted using coding genes from the hg19 refGene annotation included with RibORF.
Metagene analysis is run for individual processed read lengths ranging from 25-34 nt.
Using the metagene plots, the offset shift needed to align the 5'-most position with the A-
site, or +3 position, for each read length is assessed. Next, the entire Ribo-Seq alignment
is corrected by the offset shift for each length. For high-resolution data, reads ranging
from 25 to 30 nt in length were included depending on the sample’s footprint length
distribution. For lower resolution data, reads ranging from 28 to 35 nt were included. The
offset-corrected read alignments were used for scoring individual ORFs as translated.

Following the suggestions of the RibORF developers, only ORFs with RibORF scores
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=20.7 and at least 10 reads mapped to the ORF were considered translated in each
individual Ribo-Seq dataset. Each Ribo-Seq dataset was analyzed individually for
translated smORF predictions. RNA coverage and Ribo-Seq A-site plots for individual

smORFs were plotted using R scripts.

Defining ORFs

RibORF does not define boundaries of putative ORFs based on Ribo-Seq coverage and
thus requires a user-generated list of candidate ORFs. Generation of ORF databases
from the de novo assembled transcriptome of each cell line was done using a custom
java script, GTFtoFASTA (Supplementary Data 4). For each cell line’s de novo assembled
transcriptome, ORFs were defined by identifying the most distal in-frame upstream AUG
start codon for every stop codon across all three reading frames. Because Ribo-Seq
evidence is expected to occur solely within a putative ORF, it is important to limit ORFs
to AUG start codons, which are mostly likely to be initiation sites based on the scanning
model of translation, when available instead of beginning at upstream stops. However, if
no AUG start codon is found, the ORF was defined from stop codon to stop codon to
allow for the identification of non-AUG initiated smORFs. The resulting millions of ORFs
were then assembled into a database containing the exon coordinates for each ORF in
refFlat format. In Ribo-Seq datasets, translation termination peaks are often
overrepresented and have a higher fraction of reads aligned to the second position (out
of frame) compared to non-stop codons, as observed by metagene analysis (Fig. 2a).
Therefore, for RibORF scoring, only the first position of the stop codon was included in

the ORF as opposed to the full stop codon. By only including the first position of the stop
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codon in the ORF definition, we limited the scoring penalty that frequently occurs due to
the higher frequency of out of frame reads. A previous study dealt with the extreme nature
of translation termination peaks by excluding the stop codon altogether from scoring?’,
while others include the entire stop codon and do not handle it differently3®. While the
majority of SmORFs called translated do not change whether the stop codon is included
or not, our strategy results in the highest number of predicted protein-coding smORFs
and offers the best overlap with each alternative option across all different levels of overall

Ribo-Seq resolution tested (Supplementary Fig. 8).

Differential Translation Analysis

Differential translation analysis was conducted using the R package Xtail v1.1.5%. First,
HTSeq-count® in intersection-strict mode was used to calculate total RNA read counts
for hg19 refGene annotations. For smORFs, HTSeq-count was run in union mode and
allowed for non-unique reads to be counted. RPF read counts for the same annotations
were calculated using the custom python script in Xiao et al.®°, which retains only uniquely
mapped reads occurring within the middle of the CDS region. For hg19 RefGene
annotated genes, reads aligning after the first 15 codons and before the last 5 codons
were counted. For novel protein-coding smORFs, reads aligning after the first and before
the last codon were counted. Xtail was used to calculate the log2 fold-changes in
translation efficiency (TE) between DMSO- and tunicamycin- or thapsigargin-treated cells
from the read count tables. Genes not considered ‘stable’ by xtail and with a log2 fold-
change 2 1 or < -1 were assigned as either ‘homodirectional,” ‘transcription-only,” or

‘translation-only’ category of differential translation. DESeq2’® was also run in parallel
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with Xtail to calculate differential mMRNA expression for hg19 refGene annotations and

smORFs. Plots summarizing the results from both analyses were generated using R.

PhyloCSF and BLAST Analyses of protein-coding smORFs

Smoothed PhyloCSF scores for the 29-mammals alignment were extracted for all
smORFs from the UCSC genome browser’s PhyloCSF Track Hub using the bedtools map
function. The scores represent the log-odds that codons in the smORF are in the coding
state. The average smoothed PhyloCSF scores are shown for each protein-coding

smORF by exon (Supplementary Data 2).

All smORFs were queried for similarity against the non-redundant database using
tBLASTn and BLASTP under default parameters. BLAST alignments were considered
significant if the BLAST score = 80 or if 280% of the microprotein sequence matched
=280% of the aligned subject sequence. This second condition allowed for the identification
of short but high similarity sequence alignments, which otherwise have a low BLAST

score under default parameters.

Mass Spectrometry Data Analysis

Mass spectrometry data from PXD000394% were downloaded from the PRIDE archive.
Tandem mass spectra were extracted from RAW files using RawConverter 1.0.0.0. Next,
the spectra were searched against a database containing human Swiss-Prot proteins,
novel microproteins, and common contaminants using ProLuCID”'. The enzyme

specificity was set to none and no variable modifications were included. The false
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discovery rate was set to 1% for peptides. ldentified spectra were then filtered and
grouped into proteins using DTASelect’?. Mass spectrometry analyses were separated
by different cell lines from the study. We also utilized the pFind 3 Open-pFind”® search
engine to identify microprotein-derived peptides by an open search strategy, which allows

for many variable modifications, using the same database and false discovery rate.

HLA-I peptide binding assay

The affinities of novel microprotein-derived peptides for HLA-I were measured as
previously described. Briefly, SupB15 cells (HLA-I: A3, A11, B51, B52 serotype) were
harvested and the cell surface HLA complex was disassembled by treating with citric acid
elution buffer (pH 2.9) for 90 seconds. Then, cells were incubated with a high-affinity
fluorescein-labeled reference peptide KVFPC(FITC)ALINK (1 uM) and increasing
concentrations of a non-labeled microprotein-derived peptide for 20 hours at 4°C. A
negative control peptide from the recently characterized microprotein NoBody'®
(TPNGGSTTL, B7 serotype binder) was also tested for comparison. Fluorescence
intensities were measured by flow cytometry. Binding of novel microprotein-derived
peptides at each concentration was calculated as percentage inhibition of reference
peptide binding relative to background (without reference peptide, MFyg) and the maximal
response (reference peptide only, MFef) using the following equation:

Inhibition (%) = (1 — (MF — MFug)/(MFef — MFpg))*100

The data were then plotted and fit for IC50 calculation using Prism 5.

Peptide synthesis
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Peptides were purchased from Peptide 2.0. Fluorescein-labeled reference peptide

KVFPC(FITC)ALINK was synthesized by covalently coupling of fluorescein to the

cysteine residue with 5-(iodoacetamido)fluorescein (Marker Gene Technologies, M0638)

for use in the HLA-binding assay. All peptides were purified by high-performance liquid

chromatography and confirmed by mass spectrometry.

Data Availability

All sequencing datasets generated in this study are available through GEO (GSE125218).
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Figure 1. Outline of top-down smORF annotation work combining de novo
transcriptome assembly and Ribo-Seq.

RNA-Seq and Ribo-Seq datasets were collected for HEK293T, HelLa-S3, and K562 cell
lines and utilized for the prediction of novel translated smORFs. For RNA-Seq, mRNA
was prepared using poly-A selection and rRNA depletion to increase transcript detection.
Next, a minimum of 250 million paired-end 125 base reads were collected across all cDNA
libraries generated for each cell line to achieve high transcriptome coverage. RNA-Seq
reads were then de novo assembled into a transcriptome using Cufflinks”. Finally, the
assembled transcriptome for each cell line was in silico 3-frame translated to create a
database of all possible ORFs. In parallel, multiple biological replicates of Ribo-Seq data
were also collected for each cell line and utilized to assess translation of all SmORFs in
the accompanying 3-frame database. For each replicate, RibORF was used to define the
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A-site position of each ribosome protected fragment (RPF) and then score each smORF
for translation. Those smORFs which passed RibORF scoring, did not overlap with
annotated ORFs, and lacked significant similarity to RefSeq annotated proteins were
retained. An example of a smORF passing RibORF scoring with coverage over the entire
smORF and a high percentage of in-frame A-site reads (red) and an example of a smORF
failing RibORF scoring due to poor overall smORF coverage are shown at the bottom.
Predicted novel protein-coding smORFs were considered high confidence if they were
found in multiple replicates.
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Figure 2. Number of novel protein-coding smORFs predicted varies with overall
Ribo-Seq resolution.

a Three replicates of HEK293T samples were subjected to increasing RNase | nuclease
digestion resulting in a range of overall Ribo-Seq resolutions: low (LoRes), medium
(MedRes), and high (HiRes). a, top RPF read length distribution plot showing the
differences in read size frequencies across replicates. The expected ribosome footprint
size is 28 nt. a, bottom Metagene plots showing RPF read alignment around the start
site and stop site for each 293T replicate created using RibORF. The 5'-position of each
RPF read was shifted to the ribosomal A-site and then mapped to all hg19 RefSeq coding
transcripts, which were used to construct the metagene. The metagene coding region is
aligned to frame 1 (red), while frame 2 (blue) and frame 3 (green) are out of frame. The
percentage of reads aligned to the coding region is noted in the top corner. Higher
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percentages equate to higher resolution datasets. 28-34 nt reads were used for the LoRes
metagene plot, 29-33 nt for MedRes, and 25-29 nt for HiRes. b Venn diagram showing
overlap of annotated RefSeq genes passing RibORF scoring between all three HEK293T
Ribo-Seq replicates. ¢ Venn diagram showing overlap of novel protein-coding smORFs
passing RibORF scoring and our smOREF filters between the three replicates.
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Figure 3. smORF expression is regulated during endoplasmic reticulum (ER)

stress.

a Bar graph showing log2 normalized fold-change in expression of canonical ER stress
response genes after 4 h treatment of HEK293T cells with 1 pM thapsigargin (TG) or 5
pgg/mL tunicamycin (TM) relative to DMSO as measured by RNA-Seq (error bars
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represent the log fold change SE, pagj < 0.05). Two biological replicates for each condition
were analyzed. b Strip chart showing the change in expression of novel smORFs induced
by TG and TM (pagj < 0.05). Only smORFs identified in at least two Ribo-Seq experiments
across all HEK293T replicates were considered. ¢ Bar graph showing log2 normalized
fold-change in translation efficiency (TE) of canonical ER stress response genes after
treatment with TG or TM as calculated by Xtail*®® (pag < 0.1). d, left Bar graph showing
the change in TE induced by TG of a novel smORF on the non-coding RNA SNHGS8 and
an annotated smORF, c140rf119. d, right Schematic showing the SNHG8 transcript and
the novel smORF that is translationally regulated in response to TG, TGR-smORF. Four
novel smORFs were identified at least twice on SNHGS8: two in frame 1 (red) and two in
frame 2 (blue). e Representative RNA-Seq read coverage and ribosomal A-site plots
(Ribo-Seq) for SNHG8 showing the change in ribosome occupancy induced by TG. TGR-
smORF is highlighted by the yellow box and is found frame 2 (blue). TGR-smORF
coordinates are shown in the top corner. The y-axis shows the intensity of read peaks in
reads per million (RPM).
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Figure 4. Characteristics of novel protein-coding smORFs identified across three
different human cell lines and conservation in other mammalian species.

a Venn diagram showing the overlap of the 7,554 novel smORFs identified in HEK293T,
HelLa-S3, and K562 cell lines (black text). The percent of smORFs containing an AUG
start codon for each sector is also shown (red text). b Scatter plot showing the frequency
distribution of smORF-encoded microprotein (MP) lengths in amino acids (aa). The
median microprotein size is 32 aa (red). The MP length distribution can be fit with a decay
curve of the formula Noe™*, where No = 224 and A = 0.024 (blue). This is a slower decay
than the expected frequency distribution of randomly occurring MPs based on the
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probability of encountering a stop codon, where A = 0.05 (green)®. ¢ Frequency of aa
occurrence per 150 aa for annotated RefSeq proteins and novel microproteins identified
in each cell line. d Sequence alignment for a novel microprotein encoded by a smORF
within the 5'-UTR of four jointed box 1 (FJX1). FJX1 smORF has an average PhyloCSF
score of 3.49 using the 29-mammal alignment, indicating a higher probability of being
protein-coding. e Sequence alignment for a novel microprotein encoded by a smORF
within the 5'-UTR of nuclear casein kinase and cyclin dependent kinase substrate 1
(NUCKS1). This smORF has a negative PhyloCSF score, but the microprotein sequence
shows high similarity to translated regions in mammalian species by tBLASTn. f
Sequence alignment for a novel microprotein encoded by a smORF within the 5'-UTR of
B-cell CLL/lymphoma 9 (BCL9). This smORF has a negative PhyloCSF score, but the
microprotein sequence shows high similarity to proteins in other mammalian species by
BLASTp and tBLASTn.
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Figure 5. Translation inhibitors lactimidomycin (LTM) and harringtonine (Harr) aid
in identifying smORF start sites.

a Read coverage peak in Harr-treated cells confirmed translation initiation at the
upstream-most AUG start codon (encoding methionine, denoted by the green M) in the
novel protein-coding smORF occurring within the 5'-UTR of methyltransferase like 3
(METTLS3). Elongating ribosomal A-site reads are depicted as bars and are color coded
by reading frame. The smORF coding region is aligned with frame 1 (red). RPF read
coverage in Harr-treated cells is shown in grey. b RPF read coverage in LTM-treated cells
identified the start site as occurring at the near-cognate start codon UUG (encoding
leucine, denoted by green L) in the non-AUG smORF occurring within the 5'-UTR of
transmembrane protein 33 (TMEMS33). ¢ RPF read coverage in Harr-treated cells
identified a downstream AUG start codon (denoted by third green M) as the predominant
translation initiation site in the smORF occurring within the 5'-UTR of general transcription
factor IIH subunit 1 (GTF2H1). A-site coverage upstream of the third AUG codon and a
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small Harr peak suggested that the first AUG may also function as the start site to a lesser
extent. d RPF Read coverage in Harr-treated cells showed mixed start site usage
between a downstream near-cognate start codon CUG (encoding leucine, denoted by
green L) and a downstream AUG start codon (encoding methionine, denoted by second
green M) in the smORF occurring within an alternative 5'-UTR of F-box protein 9
(FBXQO9). A-site coverage supports translation from both start sites.

Q
(o2

—IIs L

Q ©
s g_ chr3:183013980-183014309 S o chr8:6263497-6263652
o | o
[ [ia
% 84 2 3
§° g
€ o €
2 o o 34
2 | | | %
< <

84 o_| \

S T T T T ° T T T T

-500 0 500 1000 1500 -500 0 500 1000 1500 2000
BC013229 (uc003fIn.1) Transcript LOC100287015 (NR_040040) Transcript
C —m == d — ==
©o-

= N chr8:91233793-91233858 s chr8:128231219-128231272
& - chr8:91233972-91258488 & 10 chr8:128221638-128221847
o o = <
el ©
§ o- 5 o
o o
o < o N
5 l 7
<< <<

o 1l M al L .||‘|1 { o i .Llll. M 1 d | I

T T T T T T T T T T T
0 200 400 600 800 -500 0 500 1000 1500 2000
LINC00534 (NR_051989) Transcript CCAT1 (NR_108049) Transcript

Figure 6. Ribo-Seq identified hundreds of novel protein-coding smORFs on
annotated non-coding RNAs (ncRNAs).

Ribo-Seq identified hundreds of smORFs on RefSeq and UCSC annotated non-coding
RNAs across all three cell lines. a-b The UCSC ncRNA BC013229 and the RefSeq
ncRNA LOC100287015 each contain a novel protein-coding smORF in frame 1 (red) that
was identified in all HeLa-S3 Ribo-Seq experiments. The smORF coordinates are shown
in the top corner. Both ncRNAs are currently uncharacterized. ¢ The uncharacterized
RefSeq ncRNA LINC00534 is polycistronic, containing two confident novel protein-coding
smORFs, one in frame 3 (green) and one in frame 2 (blue). Both smORFs were identified
in all K562 Ribo-Seq experiments. d The ncRNA colon cancer associated transcript 1
(CCAT1) is polycistronic with at least two confident novel smORFs, both in frame 2 (blue).
The upstream smORF was identified in two out of four HeLa-S3 Ribo-Seq experiments,
and the larger downstream smORF passed in all HeLa-S3 experiments.
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Figure 7. Ribo-Seq identified smORFs on unannotated de novo assembled
transcript isoforms.

a A novel protein-coding smORF was identified within a 5'-extension of c6orf62. The top
plot shows RNA-Seq read coverage at the genomic level. The RefSeq annotated
transcript is highlighted by the blue box and the novel smOREF is highlighted by the yellow
box and black triangle (v) above. The exon positions are depicted by the transcript model
above the plot. Black boxes represent the annotated exons, the white box represents the
5'-extension, introns are depicted by the connecting lines, and the strand orientation is
noted by the arrowhead. The middle A-site plot shows Ribo-Seq coverage at the genomic
level. The bottom A-site plot shows Ribo-Seq coverage at the transcript level with reads
colored by frame. The novel smORF occurs in frame 3 (green). Position 0 marks the start
of the annotated coding region. The smORF coordinates are shown in the top corner. b
A novel protein-coding smORF was identified within an unannotated exon in the middle
of the annotated EYA transcriptional coactivator and phosphatase 4 (EYA4) coding
region, and is specific to HeLa-S3. The RNA coverage plot shows the novel exon
occurring upstream of the third exon in the annotated transcript, denoted by the asterisk
(*) and grey bar. The gene level A-site plot shows high coverage over this novel exon,
and the transcript level A-site plot shows the smORF in frame 3 (green). The novel exon
was assembled as the first exon in an isoform of EYA4. ¢ A novel protein-coding smORF
was identified within an unannotated exon upstream of the geranylgeranyl pyrophosphate
synthase 1 (GGPS1) coding region. The gene level RNA and A-site Ribo-Seq plots show
significant read coverage over the novel exon. The transcript level A-site plot shows the
smOREF in frame 1 (red). The novel exon was assembled as the first exon in an isoform
of GGPS1, altering the 5'-UTR.
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Figure 8. Ribo-Seq identified smORFs on novel unannotated transcripts that are
also cell type specific.

Novel protein-coding smORFs were identified on unannotated de novo assembled
transcripts which had no overlap with annotated genes. Examples are shown which are
specific to a HEK293T, b HeLa-S3, and ¢ K562. The top plot shows RNA coverage at the
genomic level with the exon model of the Cufflinks assembled transcript shown above.
Black boxes represent the exons, connecting lines represent the introns, and the strand
orientation is noted by the arrowhead. The middle A-site plot shows the Ribo-Seq
coverage at the gene level with the smORF highlighted by the yellow box and black
triangle (v) above. The bottom A-site plot shows the Ribo-Seq coverage at the transcript
level with reads colored by frame. The smORF coordinates are shown in the top corner.
The smORFs in a and b are in frame 1 (red), while the smORF in c is in frame 2 (blue).
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Figure 9. Novel microproteins were detected in HLA-I complexes.

a Schematic of HLA-I bound peptide enrichment experiment carried out in Bassani-
Sternberg et al.?*. The pan-HLA-I antibody, W6/32, was used to pull-down and enrich
HLA-I complexes, and bound small peptides were further enriched by solid phase
extraction. High resolution tandem mass spectrometry data of enriched HLA-I peptide
samples (PXD000394) was then searched against a database containing human Uniprot
proteins and the 7,554 novel smORF-encoded microproteins. b 320 novel microproteins
were identified across all three cell lines, of which 130 (41%) were identified in at least
two Ribo-Seq experiments and therefore high confidence. ¢ ms2 spectra examples (top-
bottom) for smORFs found in: three cell lines, two cell lines, one cell line (multiple
experiments), and one cell line (single experiment). d Binding of a novel microprotein
peptide, RMKDFLCLK (chr1:39875291-39875422), was validated by a competition-
based fluorescence assay’®. The novel microprotein peptide was able to compete off the
control peptide, indicating binding, while the negative control peptide, TPNGGSTTL, from
the recently characterized microprotein NoBody'® was unable to.
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Supplementary Figures
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Supplementary Figure 1. Published Ribo-Seq datasets show a wide range of overall
resolutions.

a Ribo-Seq datasets from 8 published studies30:40:41.55.62.76-78 sing 6 different cell lines
were processed and mapped to hg19 using the same pipeline as used for our datasets.
100,000 random reads were sampled to determine the frequency distribution of footprint
lengths ranging from 20-40 nt. Ribosome footprint read length distributions from these
datasets vary widely. Three datasets have distributions which peak in the ideal 28-29 nt
footprint size, indicating complete digestion of unprotected RNA, while the other
distributions are broader and peak in 31-34 nt range. b Metagene analysis was performed
and the average percentage of reads aligned to the coding reading frame was calculated
as a measure of the overall 3-nt periodicity and resolution of the datasets. Datasets which
had ribosome footprint lengths peaking at the ideal 28-29 nt size had >70% of reads in-

frame with the coding region, which is high overall resolution, while the other datasets
had <50% reads in-frame.
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Supplementary Figure 2. Dozens of annotated genes are translationally regulated
in response to ER stress.

a Scatter plots showing the log2 fold changes in normalized RPF (Ribo-Seq, y-axis) and
MRNA (RNA-Seq, x-axis) read counts for RefSeq annotated genes in cells treated with
either 1 uyM thapsigargin (TG, left) or 5 ug/mL tunicamycin (TM, right) relative to DMSO-
treated cells. Only genes with significant changes (pagj < 0.1) in translation efficiency (TE)
are plotted. Genes with TE log2 fold changes = 1 or < 1 and RPF or mRNA log2 fold
changes = 1 or < 1 are colored. Large changes in TE are colored red if driven
predominantly by changes in translation and blue if driven by changes in transcription.
Genes colored grey either do not have large enough changes in TE or lack large changes
in both translation and transcription and are therefore considered relatively stable. b
Volcano plots showing the -log10(p value) and TE logZ2 fold change for RefSeq annotated
genes in cells treated with either TG (left) or TM (right) relative DMSO-treated cells. Only
genes with significant changes (pagj < 0.1) in translation efficiency (TE) are plotted.
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Supplementary Figure 3. Ribosome footprint distributions and 3-nt periodicity
measurements for HeLa-S3, K562, and drug-treated HEK293T samples.

a Ribosome footprint read length distributions for Hela-S3 datasets. Two different
digestion protocols were employed resulting in 2 datasets peaking at 28 nt with a narrow
distribution and 2 datasets peaking at 31-32 nt with a broader distribution. b Ribosome
footprint read length distributions for K562 datasets. Three different digestion protocols
were employed with all 3 datasets peaking at 28 nt. HiRes3 shows a broader distribution
than HisRes1 and HiRes2. ¢ Ribosome footprint read length distributions for drug-treated
HEK293T datasets. All samples were prepared using the same digestion protocol
resulting in narrow 28 nt peaks. d Metagene analysis was performed and the average
percentage of reads aligned to the coding reading frame was calculated. Datasets which
had ribosome footprint lengths peaking at the ideal 28-29 nt size had >70% of reads in-
frame with the coding region, which is high overall resolution, while the other datasets
had ~50% reads in-frame.
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Supplementary Figure 4. Metagene plots for drug-treated HEK293T Ribo-Seq
datasets. Metagene plots showing RPF read alignment around the start site and stop site

for each treated HEK293T replicate. 25-29 nt reads were used for all datasets.
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Supplementary Figure 5. Metagene plots for HeLa-S3 Ribo-Seq datasets. Metagene
plots showing RPF read alignment around the start site and stop site for each HelLa-S3
replicate created using RibORF. The 5'-position of each RPF read was shifted to the
ribosomal A-site and then mapped to all hg19 RefSeq coding transcripts, which were used
to construct the metagene. The metagene coding region is aligned to frame 1 (red), and
frame 2 (blue) and frame 3 (green) are out of frame. The percentage of reads aligned to
the coding region is noted in the top corner. 31-35 nt reads were used for LoRes1, 29-33
nt for LoRes2, and 25-29 nt for both HiRes1 and HiRes2.
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Supplementary Figure 6. Metagene plots for K562 Ribo-Seq datasets. Metagene
plots showing RPF read alignment around the start site and stop site for each K562
replicate. 25-29 nt reads were used for both HiRes1 and HiRes2, and 25-30 nt for HiRes3.
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Supplementary Figure 7. smORF locations in transcriptome. Pie chart showing the
locations of all novel smORFs relative to annotated RefSeq transcripts.
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Supplementary Figure 8. Validation of novel microprotein peptides binding to HLA
I. Binding of two additional novel microprotein peptides identified in a published HLA-I
proteomics dataset®, MTMSTILSKK (chr5:8460071-8460175, HLA-MP2) and
HMMDKRLGEK (chr21:46710407-46710529, HLA-MP3), was validated by a
competition-based fluorescence assay’*. Both novel microprotein peptides were able to
compete off the control peptide, indicating binding.
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Supplementary Figure 9. Effect of stop site inclusion on smORF prediction.

When analyzing Ribo-Seq reads shifted to the ribosomal A-site, the final codon with
ribosome coverage is the stop site. This codon is often unique in that it usually has
enriched read coverage compared to codons in the middle of the ORF. In addition, the
second position of the stop codon is often enriched relative to middle codons, which can
affect scoring methods utilizing the percentage of reads in-frame. The effect of including
the entire stop site (Full Stop), just the first position of the stop site (Pos1 Stop), or no
stop site at all (No Stop) on the number smORFs called translated using our pipeline was
tested across our HEK293T datasets of varying resolution and sequencing depth. In all
datasets tested, most smORFs are called translated regardless of whether all or none of
the stop codon is included. However, the overall number of smORFs called translated
was highest in every case when including only the first position of the stop site. Using
only the first position also offered the best balance for the MedRes and LoRes datasets
as more hits from “full stop” and “no stop” were captured than lost.

52


https://doi.org/10.1101/523860
http://creativecommons.org/licenses/by/4.0/

