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Protein-coding small open reading frames (smORFs) are emerging as an important 

class of genes, however, the coding capacity of smORFs in the human genome is 

unclear. By integrating de novo transcriptome assembly and Ribo-Seq, we 

confidently annotate thousands of novel translated smORFs in three human cell 

lines. We find that smORF translation prediction is noisier than for annotated 

coding sequences, underscoring the importance of analyzing multiple experiments 

and footprinting conditions. These smORFs are located within non-coding and 

antisense transcripts, the UTRs of mRNAs, and unannotated transcripts. Analysis 

of RNA levels and translation efficiency during cellular stress identifies 

regulated smORFs, providing an approach to select smORFs for further 

investigation. Sequence conservation and signatures of positive selection indicate 

that encoded microproteins are likely functional. Additionally, proteomics data 

from enriched human leukocyte antigen complexes validates the translation of 

hundreds of smORFs and positions them as a source of novel antigens. Thus, 

smORFs represent a significant number of important, yet unexplored human 

genes. 
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The early annotation of open reading frames (ORFs) from nucleic acid sequencing 

was carried out by locating in-frame start (AUG) and stop codons1-4. This approach 

resulted in unreasonably large numbers of ORFs < 100 codons called small open reading 

frames (smORFs)1,3,4. A length cutoff was then introduced to remove smORFs5,6, which 

were largely presumed to be meaningless random occurrences1,3. With the advent of 

more sensitive detection methods, functional proteins encoded by smORFs, dubbed 

microproteins, have been characterized with more regularity7-9. Early on, gene deletion 

experiments in yeast identified a number of smORFs that control growth under different 

environmental conditions10. In fruit flies, a gene called tal/pri was identified, which 

contains four smORFs encoding three 11- and one 32-amino acid microproteins that 

control proper physiological development11,12. These examples highlighted the 

importance of investigating smORFs and paved the way for work in higher organisms. 

Recently, several mammalian microproteins have been characterized with fundamental 

roles in cell biology ranging from DNA repair13, mitochondrial function14,15, and RNA 

regulation16. In addition, microproteins that regulate physiological processes including 

muscle development17, muscle function18,19, and metabolism20 have been discovered. 

Together these studies demonstrated that genomes contain many functional smORFs 

and renewed interest in annotating all protein-coding smORFs. 

Advances in proteomics and next-generation sequencing (NGS) technologies 

have provided the experimental tools necessary to identify protein-coding smORFs. The 

integration of RNA-Seq and proteomics approaches identified hundreds of novel 

microproteins in human cell lines21,22. Combining smORF prediction with proteomics has 
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also uncovered more than a thousand human microproteins23. While proteomics provides 

evidence that a smORF produces a relatively stable microprotein of sufficient abundance 

for detection, it is limited in detecting microproteins that are not abundant or do not 

generate detectable peptides. With the development of ribosome profiling (Ribo-Seq), 

NGS can be utilized to identify ORFs that are undergoing active translation with high 

sensitivity and accuracy24,25. Ribo-Seq combines ribosome footprinting with deep 

sequencing to reveal the position of elongating ribosomes throughout the transcriptome24. 

Ribo-Seq has been applied successfully to smORF discovery in fruit flies26 and zebra 

fish27, identifying hundreds of novel translated smORFs, which is significantly more than 

were detectable by mass spectrometry in these organisms. 

Major questions about human smORFs remain. In particular, we are interested in 

the following questions: (1) How many protein-coding smORFs are in the human 

genome? (2) Can we find evidence that smORF expression is regulated? (3) Are some 

smORFs ubiquitously expressed and others specific to a cell line or tissue? To answer 

these questions, we developed a top-down workflow that combines genome-wide 

transcription and translation data from RNA-Seq and Ribo-Seq, respectively, to maximize 

smORF discovery. Preliminary experiments revealed that smORF translation prediction 

by Ribo-Seq is noisier than for annotated ORFs, which led to the inclusion of 

reproducibility to assess the confidence of smORF annotations. We used this workflow to 

discover functional smORFs in HEK293T, HeLa-S3, and K562 cells, detecting over 2,500 

confidently annotated protein-coding smORFs and over 7,500 in total. We also 

demonstrated that while smORF-encoded microproteins have distinguishing properties 

from annotated proteins, their expression is similarly regulated during cell stress and they 
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are also presented as cell surface antigens. These results provide a rigorous annotation 

of human smORFs, dramatically increasing the coding potential of the genome, and 

suggest that many biologically functional microproteins are yet to be characterized. 

 

Results 

A Ribo-Seq and RNA-Seq based top-down smORF annotation workflow. 

 Ribo-Seq maps the position of elongating ribosomes throughout the transcriptome 

through the use of cycloheximide to stall elongating ribosomes, followed by footprinting 

with RNase I28 (Fig. 1). The resulting 28-29 nt ribosome protected mRNA fragments 

(RPFs) are then sequenced and mapped to the transcriptome. Analyzing the global 

distribution and frequency of ribosomes throughout the transcriptome allows one to 

estimate translation levels for known ORFs and is also a highly sensitive method for 

identifying novel ORFs that are undergoing translation28. High-resolution Ribo-Seq 

datasets will display >70% of RPFs aligned in-frame with known coding sequences 

(CDS)29,30, captured by metagene analysis, which affords accurate identification of 

unannotated protein-coding smORFs. 

Typically, Ribo-Seq reads are mapped onto reference transcriptome databases, 

such as RefSeq31 or Ensembl32, which are not representative of every cell type. Our top-

down workflow maps the Ribo-Seq reads onto transcripts obtained by de novo assembly 

of RNA-Seq data obtained from the same sample. This approach identified entirely novel 

transcripts as well as isoforms of annotated transcripts. For example, we observed many 

5'- and 3'-extensions of annotated transcripts in the de novo assembled transcriptome, 

which is important to capture given the prevalence of translated smORFs found within 5'-
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untranslated regions (5'-UTRs)33-37. We then defined ORFs across all three reading 

frames of the de novo assembled transcriptome to generate an ORF database, which 

includes smORFs. Incorporating de novo transcriptome assembly allows for more 

comprehensive smORF discovery in a particular sample. 

After obtaining Ribo-Seq data, we scored all ORFs in the database for translation 

using RibORF (Fig. 1), a support vector machine-based classifier of translation38. RibORF 

uses the fraction of RPF reads aligned in-frame with the candidate ORF to calculate the 

overall probability of translation. This metric is dependent upon the resolution of the 

dataset, as higher resolution data have a greater percentage of RPF reads aligned to 

coding regions. RibORF also factors the uniformity and distribution of RPF reads over the 

entire ORF into its score. This helps filter out ORFs with high Ribo-Seq coverage in only 

a small region, which would likely represent an artifact38.  

Following RibORF scoring, the list of predicted translated ORFs was filtered by 

size to remove all ORFs smaller than 6 codons, which are not amenable to detection by 

tandem mass spectrometry, and greater than 150 codons, because protein-coding 

smORFs larger than the usual cutoff of 100 codons have been reported21,39-41. Next, 

translated smORFs found to overlap with annotated CDS regions in the UCSC database 

were removed. This step filtered out several thousand smORFs comprising both 

annotated genes as well as putative smORFs that overlap out-of-frame with an annotated 

gene, which can be difficult to accurately score. Finally, this set of smORF-encoded 

microproteins was analyzed for similarity to human RefSeq proteins by BLASTp. Only low 

scoring hits were retained, which removed pseudogenes and any missed annotated 
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genes. The remaining hits constitute the set of novel microprotein-encoding smORFs 

(Fig. 1). 

 

Annotating protein-coding smORFs in HEK293T cells. 

 We tested the top-down smORF annotation workflow in HEK293T cells because 

we previously identified dozens of microproteins in these cells by proteomics21. Ribosome 

footprints from HEK293T cells were prepared using a protocol that afforded sub-codon 

resolution with HEK293 cells30. Initially, only ~50% of reads aligned in-frame by metagene 

analysis, and RPF lengths peaked at 31 nt (Fig. 2a). While this resolution is comparable 

to several published datasets (Supplementary Fig. 1), we endeavored to collect higher 

resolution datasets as well to ensure identification of translated smORFs that require 

higher accuracy read alignment. The 31 nt peak footprint length indicated that the 

nuclease digestion step, which serves to trim away all unprotected RNA, was incomplete. 

To gain finer control over nuclease digestion, we followed a reported strategy that 

normalizes the amount of nuclease added to the RNA concentration29, as opposed to 

adding nuclease based on a cell confluency or the lysate’s A260 value. We were able to 

generate two additional HEK293T Ribo-Seq datasets with ~60% and >70% of reads in-

frame by metagene analysis and RPF lengths that peaked at 30 and 28 nt, respectively 

(Fig. 2a). Given that published datasets show a wide range of resolutions (Supplementary 

Fig. 1), we carried all three datasets, low-, medium-, and high-resolution, forward for 

protein-coding smORF prediction. 

Several previous studies have combined multiple Ribo-Seq experiments, even 

across different cell lines, to maximize the available reads and increase the likelihood of 
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passing translation scoring29,30,38,42. However, this strategy also allows for more false 

positives when the same thresholds are applied due to reads accumulating on a 

candidate ORF either because of non-productive ribosomal binding or noise inherent to 

the Ribo-Seq protocol43. In addition, combining experiments does not allow one to assess 

the reproducibility of translation predictions. Indeed, Ribo-Seq replicates can show high 

correlation gene counts but still have low local positional correlation43, which affects 

translation scoring of novel ORFs. Furthermore, validating results using replicates has 

been shown to be critical in other NGS-based assays44. If multiple experiments are 

analyzed separately, novel smORFs predicted as translated in every experiment 

regardless of noise and sequencing depth are more confidently protein-coding than those 

found in a single experiment. This allows one to also observe how differences in RPF 

preparation affect translation scoring. Therefore, we analyzed each Ribo-Seq experiment 

for smORF translation separately. 

We first used RibORF to score translation of canonical RefSeq genes to confirm 

the quality of our Ribo-Seq datasets and determine the noise level for bona fide genes. 

Despite differences in sequencing depth and resolution, we observed high overlap among 

the 9,644 canonical genes called translated, with 74% found in all three experiments (Fig. 

2b). These results demonstrated the quality of our datasets and suggested that their 

resolution is sufficient to predict translation. For smORFs, however, we found that 

resolution has a strong influence on the total number of translated smORFs and that 

translation prediction is much noisier (Fig. 2c). Utilizing our smORF annotation workflow, 

we were able to identify 1,913 (low-resolution), 2,401 (medium-resolution), and 572 (high-

resolution) novel translated smORFs (Fig. 2c), totaling 3,874 unique hits in all. Of these, 
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117 smORFs were scored as translated in all three experiments and 895 smORFs in at 

least two experiments (Fig. 2c). Despite the low overlap, taking only the set of smORFs 

found in multiple experiments dramatically increases the number of protein-coding 

smORFs detected in previous proteomics-based efforts21,22,39,45. We were also able to 

validate translation of several smORFs identified previously by proteomics in HEK293T 

cells21. Interestingly, 606 smORFs were found in both lower resolution datasets but not 

the high-resolution dataset, suggesting that there is a benefit to collecting datasets of 

varying resolution. These results support the idea that our combined Ribo-Seq and RNA-

Seq workflow is an effective and sensitive means for identifying novel translated smORFs. 

Practically, these data also indicate that we must run several Ribo-Seq experiments for 

each sample to more confidently annotate smORFs. 

 

Regulation of smORF transcription and translation during endoplasmic reticulum 

stress. 

 Having identified thousands of novel protein-coding smORFs in HEK293T cells, 

we next searched for evidence of regulation as a means to uncover possible biological 

roles, and chose to look at changes in transcription and translation induced by 

endoplasmic reticulum (ER) stress. ER stress leads to the accumulation of unfolded or 

mis-folded proteins and triggers a well-characterized signaling cascade dubbed the 

Unfolded Protein Response (UPR)46. The UPR attempts to restore ER homeostasis if 

possible and promote survival, or induces apoptosis if the stress is unresolvable. 

Thapsigargin (TG) and tunicamycin (TM) are small molecules that can trigger ER stress. 

TG inhibits the ER calcium pump SERCA, causing reduced calcium levels in the ER and 
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inhibition of calcium-dependent chaperones, while TM inhibits the ER glycoprotein 

transferase, which prevents sugar conjugation to proteins and causes protein mis-folding. 

 HEK293T cells were treated with TG or TM for 4 h and compared to vehicle-treated 

cells. RNA-Seq and high resolution Ribo-Seq data were collected for each sample to 

monitor changes in mRNA expression and translation (Supplementary Fig. 3a and 4), and 

to identify any additional novel protein-coding smORFs. Applying our smORF annotation 

workflow, we identified an additional 666 smORFs, increasing the total count of unique 

translated smORFs to 4,540 across all HEK293T datasets collected (Supplementary Data 

2). Confirming activation of the UPR by TG and TM treatment, HSPA5, HYOU1, DDIT3, 

and other known UPR genes were upregulated47 (Fig. 3a and Supplementary Data 1). 

Gene Ontology (GO) analysis of TG- and TM-regulated genes also confirmed activation 

of the UPR (Supplementary Data 1). 

Next, we analyzed the novel smORFs for transcriptional regulation under ER 

stress, focusing on the 1,409 smORFs identified in at least two Ribo-Seq experiments 

(Supplementary Data 2). TG and TM induced significant changes in the mRNA 

expression of 43 and 7 smORFs, respectively (Fig. 3b). This suggests that the encoded 

microproteins might function as part of the UPR. In addition, many of these smORFs were 

found within the 5'-UTR of a known protein-coding gene, termed upstream ORFs (uORFs) 

(Supplementary Data 2), which are frequently found on critical UPR genes, such as ATF4, 

DDIT3, IBTK, and GADD3448,49. Interestingly, transcriptionally regulated smORFs were 

also found on annotated non-coding RNAs (ncRNAs), including multiple small nucleolar 

RNA host gene (SNHG) family members. Thus, these ncRNAs may have dual roles in 

the UPR as functional RNAs and by encoding microproteins. 
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Monitoring transcriptional changes is helpful in identifying functionally relevant 

genes, however, if a gene is translationally regulated then changes in mRNA levels will 

not correlate with changes in protein level. Indeed, several UPR pathway genes are 

translationally regulated during ER stress40,41,48,49. To account for this possibility, we also 

analyzed genes for differential translation using Xtail50. Xtail uses Ribo-Seq data to 

measure changes in translation while accounting for changes in transcript abundance 

using RNA-Seq data to quantify the magnitude and statistical significance of differential 

translation efficiency (TE) genome-wide. Both TG and TM induced higher TE for ATF4, 

IFRD1, and SEC61G, which have been shown to be regulated during ER stress51-53, as 

well as several other genes (Fig. 3c). In total, 129 annotated genes had significantly 

regulated TEs in response to TG treatment, while 25 genes were regulated in response 

to TM treatment (Supplementary Fig. 2 and Supplementary Data 1). GO analysis of the 

129 TG-regulated genes showed enrichment for RNA processing and splicing 

(Supplementary Data 1). 

Analysis of HEK293T smORFs revealed a robust increase in the translation 

efficiency of a smORF within SNHG8, which we named thapsigargin-regulated smORF 

(TGR-smORF) (Fig. 3d). This change is clearly visualized by comparing the Ribo-Seq 

read coverage plots for SNHG8 (Fig. 3e). While there was no significant change in 

SNHG8 transcript levels between vehicle- and TG-treated cells (Fig. 3e, left), the Ribo-

Seq read plot reveals a dramatic increase in the ribosome occupancy within TGR-smORF 

(Fig. 3e, right). In addition, the TE of the annotated but uncharacterized smORF 

c14orf119 significantly decreased in response to TG (Fig. 3d). Thus, TGR-smORF and 

c14orf119 are candidates for further functional studies to determine what role they serve 
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in UPR. Together, these ER stress-regulated smORFs demonstrate the value in using 

genomics to identify smORFs associated with a particular biology. 

 

Annotation of protein-coding smORFs in additional human cell lines. 

 Our smORF annotation workflow uncovered more than 4,000 novel protein-coding 

smORFs across nine Ribo-Seq datasets in HEK293T cells. Next, we wanted to determine 

whether this number is specific to HEK293T or if other cell lines would provide similar 

results. Furthermore, analysis of additional cell lines would enable us to determine if there 

are smORFs with cell line-specific or more ubiquitous expression. Because they differ in 

their tissue of origin from HEK293T, we selected the cell lines K562, chronic myeloid 

leukemia derived, and HeLa-S3, cervical cancer derived. As ENCODE cell lines, these 

also provide a wealth of high quality genomic, transcriptomic, and functional data 

available for follow-up analyses54. 

 As with HEK293T, HeLa-S3 cell lysates were digested using different conditions 

to maximize the number and accuracy of smORFs identified. Metagene analysis showed 

a range of resolutions across the four datasets collected, from ~50-70% reads in-frame 

(Supplementary Fig. 3b and 5). Altogether, 2,614 novel smORFs were scored as 

translated, with 777 smORFs found in at least two experiments (Supplementary Data 2). 

The overall resolution and RPF length distributions for the HeLa-S3 datasets were similar 

to the HEK293T datasets collected using similar digestion conditions (Fig. 2a, 

Supplementary Fig. 5). Next, we collected three Ribo-Seq datasets from K562 using a 

range of digestion conditions. Because K562 cells were grown in suspension, they were 

subjected to longer periods of CHX treatment during washing. This caused enrichment in 
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start site reads (Supplementary Fig. 6), as was observed in previous studies55,56. Despite 

the longer CHX treatment, 2,464 novel protein-coding smORFs were identified in K562 

cells, with 542 smORFs found in at least two experiments (Supplementary Data 2). All 

conditions tested resulted in >75% reads in-frame by metagene analysis and RPF length 

distribution peaking at 28-nt (Supplementary Fig. 3c). However, K562 HiRes3 displayed 

a broader footprint length distribution (Supplementary Fig. 6). 

 Between the three cell lines profiled, we identified 7,554 novel protein-coding 

smORFs across three diverse tissue types (Supplementary Data 2). Most smORFs are 

only identified in a single experiment, but there are many smORFs that overlap between 

cell lines or are found in multiple experiments from a single cell line. In total, 483 smORFs 

were detected in all three cell lines, 1,581 in at least two cell lines, and 2,689 in at least 

two experiments (Fig. 4a). We also observed that smORFs detectable in two or more cell 

lines are more likely to utilize AUG as an initiation codon than smORFs found in only one 

cell line. These results reveal that smORFs, like annotated genes, can be ubiquitous and 

cell type specific. 

 

Analyzing microprotein properties and sequence conservation across species. 

 Next, we analyzed microprotein properties for comparison to annotated proteins. 

The median length of the encoded microproteins is 32 amino acids (Fig. 4b, red line), 

whereas the median human protein length in the Pfam database is 416 amino acids57. 

The frequency distribution of microprotein lengths can be fit by the decay formula N0e-lx 

where N0 = 224 and l = 0.024 (Fig. 4, blue line), which has a slower decay than the 

expected frequency distribution of microprotein length based on the random occurrence 
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of a stop codon after an initiation codon8 (Fig. 4b, green line). Thus, protein-coding 

smORFs occur at a higher frequency than expected by chance. 

 Each cell line was then analyzed independently to assess the overall amino acid 

composition of smORF encoded microproteins. The data revealed a clear difference in 

several amino acid frequencies that distinguish microproteins from annotated RefSeq 

proteins (Fig. 4c). The amino acids with markedly higher frequencies include alanine, 

glycine, proline, and arginine, while cysteine and tryptophan were slightly increased. 

Several amino acids including aspartic acid, glutamic acid, isoleucine, lysine, asparagine, 

glutamine, and tyrosine occur less frequently. Interestingly, the amino acid composition 

of microproteins are similar across all three cell lines.  

 We also searched for structural features, including transmembrane helices and 

conserved protein domains, to understand how microproteins compare to annotated 

proteins. Given the inherently small size of microproteins (Fig. 4b), we did not anticipate 

many to contain canonical structural motifs. Using TMHMM2.058, we only identified 48 

microproteins found in at least two Ribo-Seq experiments (1.8%) with predicted 

transmembrane helix domains (Supplementary Data 3). In addition, only 17 microproteins 

(0.06%) contain known protein domains based on the Conserved Domain Database59. 

These results are consistent with most microproteins employing different structures from 

annotated proteins. 

Despite these differences, we hypothesized that many microproteins would show 

sequence conservation across other mammalian species, similar to annotated proteins. 

We first employed PhyloCSF, which uses a multi-species nucleotide alignment to 

examine sequences for signatures of conserved coding regions60. At least one exon with 
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a positive average PhyloCSF score was found in 423 smORFs (Supplementary Data 2), 

such as the novel smORF within the 5'-UTR of FJX1 (Fig. 4d). We also searched for 

sequence similarities across other species using tBLASTn and BLASTp as evidence for 

possible protein conservation. Using tBLASTn, 4,687 microproteins were found to have 

high similarity to translated RNA sequences from at least one other species, including 

273 to mouse sequences (Supplementary Data 2). Additionally, 476 microproteins with 

high similarity to known and predicted proteins were found in other species using BLASTp 

(Supplementary Data 2). In many instances, clear sequence similarity was observed 

across several species using tBLASTn and BLASTp despite having negative PhyloCSF 

scores (Fig. 4e,f). These data demonstrate that a large portion of our novel microproteins 

are likely conserved. 

 

Identifying smORF Translation Initiation Sites. 

Approximately 40% of the predicted protein-coding smORFs lack an in-frame 

canonical AUG start codon (Fig. 5a), making their translation initiation sites difficult to 

identify. Fortunately, one of the most powerful features of Ribo-Seq is the ability to 

empirically identify translation start sites through treatment with initiation-specific 

inhibitors, such as harringtonine (Harr) and lactimidomycin (LTM)25,61,62. For example, 

Harr treatment induced RPF accumulation centered on the first AUG start codon in a 

novel METTL3 uORF (Fig. 5a). Start site inhibitors also proved capable of identifying 

alternative initiation codons. LTM treatment enriched RPF coverage over the near 

cognate start codon UUG in a TMEM33 uORF (Fig. 5b), supporting its translation despite 

the lack of an in-frame AUG start codon. 
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These inhibitors were also helpful in identifying the predominant codons for 

translation initiation when multiple canonical or near cognate start codons were present. 

For example, there are three in-frame AUG codons within a novel uORF on GTF2H1. 

Surprisingly, Harr treatment induced the highest RPF accumulation over the third AUG 

codon, with only a small peak present over the first AUG (Fig. 5c), suggesting that both a 

long and predominant short form of the microprotein are made. Similarly, we saw mixed 

start site usage for the uORF on FBXO9 (Fig. 5d). We observed translation initiation 

peaks over a CUG codon and a downstream AUG codon, suggesting that both are also 

utilized to produce a long and short form of the microprotein. Of note, no initiation peak 

was observed over the most upstream in-frame AUG codon. The ability to empirically 

detect initiation sites by Ribo-Seq provides invaluable information for accurately 

annotating smORFs and is a significant advantage over other methods. 

 

Novel protein-coding smORFs are found on annotated and unannotated 

transcripts. 

Having found thousands of novel protein-coding smORFs, we subsequently 

determined their position relative to the annotated RefSeq transcriptome. In doing so, we 

hoped to see how many annotated transcripts harbor translated smORFs and where 

within transcripts they occur most frequently. Over half of all predicted translated smORFs 

overlapped with RefSeq transcripts. The majority were found within the 5'-UTR of known 

genes (Supplementary Fig. 6), while only a small portion of smORFs were found within 

the 3'-UTR and on the strand opposite annotated genes. Interestingly, 623 novel smORFs 

were discovered on RefSeq ncRNAs, and several more on UCSC ncRNAs. Many of these 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 17, 2019. ; https://doi.org/10.1101/523860doi: bioRxiv preprint 

https://doi.org/10.1101/523860
http://creativecommons.org/licenses/by/4.0/


 16 

smORFs are high confidence identifications found in several experiments. For instance, 

we found translated smORFs on the ncRNAs, BC013229 and LOC100287015 (Fig. 6a,b), 

which were identified in every HeLa-S3 experiment. We also discovered ncRNAs 

containing multiple protein-coding smORFs, such as LINC00534, which contains two 

novel smORFs in different reading frames (Fig. 6c). In addition, we found two confident 

smORFs on CCAT1, and several more that were called translated in only a single 

experiment (Fig. 6d and Supplementary Data 2). These data suggest that some ncRNAs 

are actually an overlooked source of coding potential in the genome. 

A large portion of novel protein-coding smORFs were also located on unannotated 

transcripts, or those that are present in the de novo transcriptome assembly but not 

RefSeq. These unannotated transcripts comprise isoforms of annotated transcripts, 

containing either extensions of exons or novel exons, as well as entirely new transcripts. 

One de novo assembled transcript includes a 5'-extension of c6orf62 which contains a 

translated smORF (Fig. 7a). Other examples include novel exons, such as the smORF-

containing EYA4 isoform found specifically in HeLa-S3 samples (Fig. 7b) and the GGPS1 

isoform with an alternative 5'-UTR containing a novel smORF (Fig. 7c). Furthermore, we 

were able to identify several protein-coding smORFs on transcripts that do not overlap 

with any annotated gene, and many of these uannotated transcripts are cell type specific 

(Fig. 8a-c). These unannotated smORFs emphasize the importance of utilizing de novo 

transcriptome assembly with Ribo-Seq to identify novel protein-coding smORFs. 

 

Detection of novel microproteins in Human Leukocyte Antigen class I (HLA-I) 

peptidomics datasets. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 17, 2019. ; https://doi.org/10.1101/523860doi: bioRxiv preprint 

https://doi.org/10.1101/523860
http://creativecommons.org/licenses/by/4.0/


 17 

 Translation of thousands of smORFs were detected by Ribo-Seq. However, Ribo-

Seq cannot determine whether the encoded microprotein is sufficiently long-lived to be 

functional. Mass spectrometry can detect proteins that accumulate to a steady state 

concentration above the limit of detection, offering important complementary data. 

Proteins are often identified from mass spectrometry data using a search strategy that 

matches ms2 spectra with tryptic peptides from a protein database. However, these novel 

microproteins are not included in human proteome databases, and therefore would not 

be identified in published proteomics studies. Another challenge with most proteomics 

datasets is that they do not enrich for smaller peptides or small proteins prior to analysis, 

which we have found to be critical for microprotein detection21,39.  Therefore, we searched 

published datasets that had an enrichment step built in to see if microproteins are 

detected when their sequences are appended to a human proteome database. 

Proteomic analysis of HLA-I complexes has been used to identify antigenic 

peptides from known genes, and these experiments rely on immunoprecipitation of HLA 

complexes with bound peptides63. We reasoned that HLA-I immunoprecipitation serves 

as an ideal enrichment step to enhance microprotein peptide detection and 

simultaneously allow for identification of microprotein-derived antigens (Fig. 9a). 

Searching a published HLA-I proteomics dataset64 using the human Swiss-Prot database 

appended with the 7,554 novel smORF-encoded microproteins, we identified peptides 

from 320 microproteins (Fig. 9b). Of these, 192 were from smORFs identified in at least 

two Ribo-Seq experiments (Supplementary Data 3), and 41 lacked an in-frame AUG start 

codon. A previous study was also able to detect over 100 microprotein peptides in the 

same proteomics dataset, which is consistent with and expanded by these data65. 
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Representative spectra of peptides from smORF-encoded microproteins demonstrate 

good fragment ion coverage, regardless of the number of times detected and cell lines 

found in by Ribo-Seq (Fig. 9c). We then validated the binding of three peptides to the 

HLA-I complex using a fluorescence-based competition assay and observed clear 

displacement of the HLA-I reference peptide by all three (Fig. 9d and Supplementary Fig. 

8). Thus, we validated the translation of hundreds of smORFs at the protein level and 

obtained evidence that they are capable of being presented on HLA-I complexes like 

annotated proteins. 

 

Discussion 

 Utilizing our top-down smORF annotation workflow, we were able to rigorously 

annotate thousands of novel protein-coding smORFs across 16 Ribo-Seq experiments in 

three human cell lines. By analyzing individual experiments, we showed that predicting 

smORF translation from Ribo-Seq data is noisier than for annotated genes (Fig. 2b,c and 

Supplementary Data 2). Differences in Ribo-Seq resolution, sequencing depth, and 

variability in sequencing library construction as well as biological variations such as 

passage number and cell density play significant roles in smORF translation analysis. 

However, given that annotated genes were also subjected to these effects and yet had 

much greater overlap, it is most likely that overall lower translation levels explain why 

smORFs are more difficult to detect reproducibly. We also show that it is beneficial to use 

a range of RNase I digestion conditions to annotate smORFs, as there are several 

hundred reproducibly detected smORFs that were only identified in lower resolution or 

higher resolution datasets (Supplementary Data 2). Importantly, we demonstrate that de 
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novo transcriptome assembly is necessary for comprehensive smORF annotation (Fig. 7 

and 8). 

While our data represent a significant step in comprehensive protein-coding 

smORF annotation, we expect future studies to find additional novel smORFs. First, these 

numbers are an underestimation because we chose to exclude smORFs that overlap with 

longer ORFs in our analyses, though such smORFs are known22. By definition, 

overlapping smORFs have RPF reads aligned out-of-frame relative to another ORF which 

limits the scoring of both, especially for smORFs with a high percentage of overlap or a 

low abundance relative to the other ORF. Our highest resolution datasets may be suitable 

for identifying abundant overlappers, however, we expect to find a significant number of 

artifacts using our lower resolution datasets due to the higher percentage of noisy out-of-

frame reads. Second, we utilized ENCODE cell lines, which are valuable but are likely 

different from primary cells or tissues. Future studies would benefit from including more 

physiologically relevant samples to determine if the smORFs we detect rely on the cellular 

context. Finally, improvements to sample preparation methods, such as long read 

sequencing for transcript assembly and small RNA library construction, and to 

computational methods for short read alignment and analysis of RPFs for translation will 

be critical for complete annotation of functional smORFs. 

For many smORFs, these data provide the first evidence of translation. Therefore, 

we propose using reproducibility as one filter for follow-up functional studies. Over 2,500 

smORFs were called translated in multiple experiments across all cell lines and thus are 

higher confidence annotations. More confident still are those smORFs found in multiple 

cell lines, because in order to do so both the transcript and Ribo-Seq evidence must be 
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reproducible. Being found in multiple cell lines also suggests that these smORFs have a 

general cellular function, which might explain their increased canonical AUG start codon 

usage (Fig. 4a). Nevertheless, smORFs identified in a single experiment are worth 

including in large scale studies, as many of these just failed the stringent RibORF scoring 

filter in other experiments and might pass with higher sequencing depth or in a differently 

prepared sample. Supporting this hypothesis, we were able to detect peptides from singly 

identified smORFs in HLA-I proteomics datasets (Fig. 9c and Supplementary Data 3). 

Furthermore, there were hundreds of annotated genes that were only detected in a single 

experiment (Fig. 2b). 

 Beyond reproducibility, useful methods for uncovering biologically functional 

smORFs include identifying those that are regulated, bound to protein complexes, or 

evolutionarily conserved. For example, we found dozens of novel smORFs that were 

regulated at the transcription level and one regulated at the translation level during ER 

stress (Fig. 3b,d). We also detected hundreds of microprotein peptides bound to HLA-I 

complexes in a variety of human cell lines (Fig. 9). Expression regulation and detection 

by mass spectrometry further validate these smORFs and position them well for functional 

characterization studies. For the microprotein-derived antigens, the next important step 

will be to test if any of these are immunogenic. Functional inferences can also be drawn 

from microprotein sequence conservation (Fig. 4d-f), as several characterized smORFs 

have excellent conservation by PhyloCSF and BLAST13-17. Having identified thousands 

of smORFs, additional biological data can easily be mined to elucidate their roles. 

 This study serves two key purposes, the development of a refined workflow for 

smORF annotation and the curation of a human smORF database for functional 
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characterization. Given the sheer number of protein-coding smORFs annotated, their 

diversity in amino acid composition, and cell type specificity, we anticipate smORFs being 

involved in all facets of biology. In addition, new insights into translational regulation can 

be gained by studying polycistronic RNAs (Fig. 6c,d and Supplementary Fig. 7) and how 

multiple start sites are employed for the same reading frame (Fig. 5). These results also 

add to the growing evidence that some ncRNAs might operate as both a functional 

molecule and a coding template. In summary, smORFs offer a rich opportunity for 

uncovering new biology, and in the future perhaps a new avenue for therapeutic 

discovery. 

 

Methods & Materials 

Cell Culture 

HeLa-S3 cells were purchased from ATCC (CCL-2.2). HEK293T cells were purchased 

from GE Life Sciences (HCL4517). K562 cells were purchased from Sigma-Aldrich 

(89121407). HEK293T, and HeLaS3 cells were maintained in DMEM (Corning, 10-013-

CV) supplemented with 10% Fetal Bovine Serum (FBS; Corning, 35-010-CV). K562 cells 

were maintained in RPMI 1640 (Corning, 10-040-CV) supplemented with 10% FBS. All 

cells were maintained at 37 ºC with 5% CO2.          

 

Paired-End RNA-Seq and de novo Transcriptome Assembly 

The HEK293T Cufflinks assembled transcriptome was generated previously66, and used 

to create the ORF database for scoring translation with RibORF. For HeLaS3 and K562, 

total RNA was harvested and purified from two biological replicates using an RNeasy Kit 
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(Qiagen) with gDNA eliminator columns. For each cell line, two separate cDNA libraries 

were prepared for each replicate: one using the TruSeq Stranded mRNA Kit (Illumina) 

and the other using the TruSeq Total RNA Kit (Illumina). This allowed for representation 

from poly-A tailed mRNA and non-poly-A RNAs in the transcriptome assembly. Paired-

end 125 or 150 base reads were collected for all 4 libraries on a single lane of an Illumina 

HiSeq 2500 or NextSeq 500, respectively. At least 250M reads were generated for each 

cell line. Aligned reads were assembled into transcripts by Cufflinks using default 

parameters, fragment bias correction, multi-read correction, fr-firststrand library 

construction, and the hg19 human genome sequence as a guide. 

 

Ribosome Footprinting 

Preparation of ribosome footprints for Ribo-Seq experiments was performed as 

described30 with some modifications. For all ribosome footprinting experiments, adherent 

cells were grown to about 80% confluency in 10 cm or 15 cm diameter tissue culture 

dishes and suspension cells were grown to a density of approximately 500,000 cells/mL. 

Cells were washed with 5 mL ice-cold Phosphate Buffered Saline (PBS) with 100 µg/mL 

cycloheximide (CHX) added. Immediately after removing PBS, 400 µL of ice-cold lysis 

buffer (20 mM Tris-HCl, pH 7.4, 150 mM NaCl, 5 mM MgCl2, 1% Triton X-100, with 1 mM 

DTT, 25 U/mL Turbo DNase (Thermo Fisher, AM2238), and 100 µg/mL CHX added fresh) 

was dripped onto the plate or added to the cell pellet. Cells were incubated on ice in lysis 

buffer for 10 min with periodic vortexing and pipetting to disperse the cells. The lysate 

was then clarified by centrifugation at 15,000 g for 10 min. Cell lysates were flash frozen 

and liquid nitrogen and stored at -80ºC for up to 5 d prior to ribosome footprinting. For 
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experiments profiling translation initiation, the same procedure was followed except for 

the addition of either 2 µg/mL harringtonine (abcam) for 2 min or 20 µg/mL lactimidomycin 

(Calbiochem) for 30 min to media prior to PBS wash and lysis. A variety of digestion 

conditions were tested in this study and are summarized in the Supplemental Methods. 

Briefly, RNA digestions using 250 U RNase I (Thermo Fisher, AM2294) per 100 µL lysate 

were used in the low resolution 293T and HeLaS3 experiments. For high-resolution 

experiments, 15 to 30 U TruSeq Nuclease (Illumina) was used to digest 30 to 60 µg RNA 

in up to 300 µL lysate. Digestion reactions were run for 45 to 60 min at RT and quenched 

with 100 to 200 U Superase-In RNase I inhibitor (Thermo Fisher) on ice. Following 

digestion, ribosome protected fragments (RPF) were purified from small RNA fragments 

using MicroSpin S-400 HR columns (GE Life Sciences) according to the TruSeq Ribo 

Profile Kit (Illumina). Low resolution experiments were cleaned up with Zymo RNA Clean 

& Concentrator-25 kit, while high resolution experiments were purified by acid 

phenol:chloroform extraction followed by isopropanol precipitation. Ribosomal RNAs 

were depleted from RPF fragments by Ribo-Zero Mammalian Kit (Illumina) following the 

manufacturer’s protocol. cDNA sequencing libraries were then prepared using the TruSeq 

Ribo Profile Kit (Illumina) following the manufacturer’s protocol. Single-end 50 base reads 

were collected for each library on an Illumina HiSeq2500 with no more than 4 samples 

sequenced on a single lane. Each Ribo-Seq experiment was prepared from a different 

biological replicate except for K562 HiRes1 & 2 which were prepared from the same lysate 

using different digestion conditions. For K562 HiRes3, CHX was added to the media prior 

to pelleting cells and washing with PBS. 
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Ribo-Seq and Short Read RNA-Seq Read Processing 

Ribo-Seq and accompanying short fragment total RNA-Seq reads were first trimmed of 

excess 3' adaptor sequences as in Calviello et al.30 using the FASTX-toolkit. Trimmed 

Ribo-Seq reads aligning to tRNA and rRNA sequences were then removed using STAR 

v2.5.2b67 as in Wang et al.68. Next, the remaining Ribo-Seq reads were aligned to the 

UCSC hg19 human genome assembly containing chromosomes 1-22, X, and Y with the 

hg19 refGene transcript annotation using STAR. Up to two mismatches were allowed 

during alignment, keeping only uniquely mapped reads. Ribo-Seq and RNA-Seq 

alignments were checked for overall quality using the CollectRnaSeqMetrics script from 

the Picard Tools software suite. 

 

RibORF Scoring 

Following Ribo-Seq read processing and quality control, the RibORF software package38 

was used to score individual ORFs for translation. First, metagene analysis was 

conducted using coding genes from the hg19 refGene annotation included with RibORF. 

Metagene analysis is run for individual processed read lengths ranging from 25-34 nt. 

Using the metagene plots, the offset shift needed to align the 5'-most position with the A-

site, or +3 position, for each read length is assessed. Next, the entire Ribo-Seq alignment 

is corrected by the offset shift for each length. For high-resolution data, reads ranging 

from 25 to 30 nt in length were included depending on the sample’s footprint length 

distribution. For lower resolution data, reads ranging from 28 to 35 nt were included. The 

offset-corrected read alignments were used for scoring individual ORFs as translated. 

Following the suggestions of the RibORF developers, only ORFs with RibORF scores 
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≥0.7 and at least 10 reads mapped to the ORF were considered translated in each 

individual Ribo-Seq dataset. Each Ribo-Seq dataset was analyzed individually for 

translated smORF predictions. RNA coverage and Ribo-Seq A-site plots for individual 

smORFs were plotted using R scripts. 

 

Defining ORFs 

RibORF does not define boundaries of putative ORFs based on Ribo-Seq coverage and 

thus requires a user-generated list of candidate ORFs. Generation of ORF databases 

from the de novo assembled transcriptome of each cell line was done using a custom 

java script, GTFtoFASTA (Supplementary Data 4). For each cell line’s de novo assembled 

transcriptome, ORFs were defined by identifying the most distal in-frame upstream AUG 

start codon for every stop codon across all three reading frames. Because Ribo-Seq 

evidence is expected to occur solely within a putative ORF, it is important to limit ORFs 

to AUG start codons, which are mostly likely to be initiation sites based on the scanning 

model of translation, when available instead of beginning at upstream stops. However, if 

no AUG start codon is found, the ORF was defined from stop codon to stop codon to 

allow for the identification of non-AUG initiated smORFs. The resulting millions of ORFs 

were then assembled into a database containing the exon coordinates for each ORF in 

refFlat format. In Ribo-Seq datasets, translation termination peaks are often 

overrepresented and have a higher fraction of reads aligned to the second position (out 

of frame) compared to non-stop codons, as observed by metagene analysis (Fig. 2a). 

Therefore, for RibORF scoring, only the first position of the stop codon was included in 

the ORF as opposed to the full stop codon. By only including the first position of the stop 
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codon in the ORF definition, we limited the scoring penalty that frequently occurs due to 

the higher frequency of out of frame reads. A previous study dealt with the extreme nature 

of translation termination peaks by excluding the stop codon altogether from scoring27, 

while others include the entire stop codon and do not handle it differently38. While the 

majority of smORFs called translated do not change whether the stop codon is included 

or not, our strategy results in the highest number of predicted protein-coding smORFs 

and offers the best overlap with each alternative option across all different levels of overall 

Ribo-Seq resolution tested (Supplementary Fig. 8). 

 

Differential Translation Analysis 

Differential translation analysis was conducted using the R package Xtail v1.1.550. First, 

HTSeq-count69 in intersection-strict mode was used to calculate total RNA read counts 

for hg19 refGene annotations. For smORFs, HTSeq-count was run in union mode and 

allowed for non-unique reads to be counted. RPF read counts for the same annotations 

were calculated using the custom python script in Xiao et al.50, which retains only uniquely 

mapped reads occurring within the middle of the CDS region. For hg19 RefGene 

annotated genes, reads aligning after the first 15 codons and before the last 5 codons 

were counted. For novel protein-coding smORFs, reads aligning after the first and before 

the last codon were counted. Xtail was used to calculate the log2 fold-changes in 

translation efficiency (TE) between DMSO- and tunicamycin- or thapsigargin-treated cells 

from the read count tables. Genes not considered ‘stable’ by xtail and with a log2 fold-

change ≥ 1 or ≤ -1 were assigned as either ‘homodirectional,’ ‘transcription-only,’ or 

‘translation-only’ category of differential translation. DESeq270 was also run in parallel 
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with Xtail to calculate differential mRNA expression for hg19 refGene annotations and 

smORFs. Plots summarizing the results from both analyses were generated using R. 

 

PhyloCSF and BLAST Analyses of protein-coding smORFs 

Smoothed PhyloCSF scores for the 29-mammals alignment were extracted for all 

smORFs from the UCSC genome browser’s PhyloCSF Track Hub using the bedtools map 

function. The scores represent the log-odds that codons in the smORF are in the coding 

state. The average smoothed PhyloCSF scores are shown for each protein-coding 

smORF by exon (Supplementary Data 2). 

 

All smORFs were queried for similarity against the non-redundant database using 

tBLASTn and BLASTP under default parameters. BLAST alignments were considered 

significant if the BLAST score ≥ 80 or if ≥80% of the microprotein sequence matched 

≥80% of the aligned subject sequence. This second condition allowed for the identification 

of short but high similarity sequence alignments, which otherwise have a low BLAST 

score under default parameters. 

 

Mass Spectrometry Data Analysis 

Mass spectrometry data from PXD00039464 were downloaded from the PRIDE archive. 

Tandem mass spectra were extracted from RAW files using RawConverter 1.0.0.0. Next, 

the spectra were searched against a database containing human Swiss-Prot proteins, 

novel microproteins, and common contaminants using ProLuCID71. The enzyme 

specificity was set to none and no variable modifications were included. The false 
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discovery rate was set to 1% for peptides. Identified spectra were then filtered and 

grouped into proteins using DTASelect72. Mass spectrometry analyses were separated 

by different cell lines from the study. We also utilized the pFind 3 Open-pFind73 search 

engine to identify microprotein-derived peptides by an open search strategy, which allows 

for many variable modifications, using the same database and false discovery rate. 

 

HLA-I peptide binding assay 

The affinities of novel microprotein-derived peptides for HLA-I were measured as 

previously described74. Briefly, SupB15 cells (HLA-I: A3, A11, B51, B52 serotype) were 

harvested and the cell surface HLA complex was disassembled by treating with citric acid 

elution buffer (pH 2.9) for 90 seconds. Then, cells were incubated with a high-affinity 

fluorescein-labeled reference peptide KVFPC(FITC)ALINK (1 μM) and increasing 

concentrations of a non-labeled microprotein-derived peptide for 20 hours at 4oC. A 

negative control peptide from the recently characterized microprotein NoBody16 

(TPNGGSTTL, B7 serotype binder) was also tested for comparison. Fluorescence 

intensities were measured by flow cytometry. Binding of novel microprotein-derived 

peptides at each concentration was calculated as percentage inhibition of reference 

peptide binding relative to background (without reference peptide, MFbg) and the maximal 

response (reference peptide only, MFref) using the following equation: 

Inhibition (%) = (1 – (MF – MFbg)/(MFref – MFbg))*100 

The data were then plotted and fit for IC50 calculation using Prism 5. 

 

Peptide synthesis 
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Peptides were purchased from Peptide 2.0. Fluorescein-labeled reference peptide 

KVFPC(FITC)ALINK was synthesized by covalently coupling of fluorescein to the 

cysteine residue with 5-(iodoacetamido)fluorescein (Marker Gene Technologies, M0638) 

for use in the HLA-binding assay. All peptides were purified by high-performance liquid 

chromatography and confirmed by mass spectrometry. 

 

Data Availability 

All sequencing datasets generated in this study are available through GEO (GSE125218). 
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Figure 1. Outline of top-down smORF annotation work combining de novo 
transcriptome assembly and Ribo-Seq. 
RNA-Seq and Ribo-Seq datasets were collected for HEK293T, HeLa-S3, and K562 cell 
lines and utilized for the prediction of novel translated smORFs. For RNA-Seq, mRNA 
was prepared using poly-A selection and rRNA depletion to increase transcript detection. 
Next, a minimum of 250 million paired-end 125 base reads were collected across all cDNA 
libraries generated for each cell line to achieve high transcriptome coverage. RNA-Seq 
reads were then de novo assembled into a transcriptome using Cufflinks75. Finally, the 
assembled transcriptome for each cell line was in silico 3-frame translated to create a 
database of all possible ORFs. In parallel, multiple biological replicates of Ribo-Seq data 
were also collected for each cell line and utilized to assess translation of all smORFs in 
the accompanying 3-frame database. For each replicate, RibORF was used to define the 
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A-site position of each ribosome protected fragment (RPF) and then score each smORF 
for translation. Those smORFs which passed RibORF scoring, did not overlap with 
annotated ORFs, and lacked significant similarity to RefSeq annotated proteins were 
retained. An example of a smORF passing RibORF scoring with coverage over the entire 
smORF and a high percentage of in-frame A-site reads (red) and an example of a smORF 
failing RibORF scoring due to poor overall smORF coverage are shown at the bottom. 
Predicted novel protein-coding smORFs were considered high confidence if they were 
found in multiple replicates. 
 

 
 
Figure 2. Number of novel protein-coding smORFs predicted varies with overall 
Ribo-Seq resolution. 
a Three replicates of HEK293T samples were subjected to increasing RNase I nuclease 
digestion resulting in a range of overall Ribo-Seq resolutions: low (LoRes), medium 
(MedRes), and high (HiRes). a, top RPF read length distribution plot showing the 
differences in read size frequencies across replicates. The expected ribosome footprint 
size is 28 nt. a, bottom Metagene plots showing RPF read alignment around the start 
site and stop site for each 293T replicate created using RibORF. The 5'-position of each 
RPF read was shifted to the ribosomal A-site and then mapped to all hg19 RefSeq coding 
transcripts, which were used to construct the metagene. The metagene coding region is 
aligned to frame 1 (red), while frame 2 (blue) and frame 3 (green) are out of frame. The 
percentage of reads aligned to the coding region is noted in the top corner. Higher 
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percentages equate to higher resolution datasets. 28-34 nt reads were used for the LoRes 
metagene plot, 29-33 nt for MedRes, and 25-29 nt for HiRes. b Venn diagram showing 
overlap of annotated RefSeq genes passing RibORF scoring between all three HEK293T 
Ribo-Seq replicates. c Venn diagram showing overlap of novel protein-coding smORFs 
passing RibORF scoring and our smORF filters between the three replicates. 
 

 
 

Figure 3. smORF expression is regulated during endoplasmic reticulum (ER) 
stress. 
a Bar graph showing log2 normalized fold-change in expression of canonical ER stress 
response genes after 4 h treatment of HEK293T cells with 1 µM thapsigargin (TG) or 5 
µg/mL tunicamycin (TM) relative to DMSO as measured by RNA-Seq (error bars 
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represent the log fold change SE, padj < 0.05). Two biological replicates for each condition 
were analyzed. b Strip chart showing the change in expression of novel smORFs induced 
by TG and TM (padj < 0.05). Only smORFs identified in at least two Ribo-Seq experiments 
across all HEK293T replicates were considered. c Bar graph showing log2 normalized 
fold-change in translation efficiency (TE) of canonical ER stress response genes after 
treatment with TG or TM as calculated by Xtail50 (padj < 0.1). d, left Bar graph showing 
the change in TE induced by TG of a novel smORF on the non-coding RNA SNHG8 and 
an annotated smORF, c14orf119. d, right Schematic showing the SNHG8 transcript and 
the novel smORF that is translationally regulated in response to TG, TGR-smORF. Four 
novel smORFs were identified at least twice on SNHG8: two in frame 1 (red) and two in 
frame 2 (blue). e Representative RNA-Seq read coverage and ribosomal A-site plots 
(Ribo-Seq) for SNHG8 showing the change in ribosome occupancy induced by TG. TGR-
smORF is highlighted by the yellow box and is found frame 2 (blue). TGR-smORF 
coordinates are shown in the top corner. The y-axis shows the intensity of read peaks in 
reads per million (RPM). 
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Figure 4. Characteristics of novel protein-coding smORFs identified across three 
different human cell lines and conservation in other mammalian species. 
a Venn diagram showing the overlap of the 7,554 novel smORFs identified in HEK293T, 
HeLa-S3, and K562 cell lines (black text). The percent of smORFs containing an AUG 
start codon for each sector is also shown (red text). b Scatter plot showing the frequency 
distribution of smORF-encoded microprotein (MP) lengths in amino acids (aa). The 
median microprotein size is 32 aa (red). The MP length distribution can be fit with a decay 
curve of the formula N0e-lx, where N0 = 224 and l = 0.024 (blue). This is a slower decay 
than the expected frequency distribution of randomly occurring MPs based on the 
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probability of encountering a stop codon, where l = 0.05 (green)8. c Frequency of aa 
occurrence per 150 aa for annotated RefSeq proteins and novel microproteins identified 
in each cell line. d Sequence alignment for a novel microprotein encoded by a smORF 
within the 5'-UTR of four jointed box 1 (FJX1). FJX1 smORF has an average PhyloCSF 
score of 3.49 using the 29-mammal alignment, indicating a higher probability of being 
protein-coding. e Sequence alignment for a novel microprotein encoded by a smORF 
within the 5'-UTR of nuclear casein kinase and cyclin dependent kinase substrate 1 
(NUCKS1). This smORF has a negative PhyloCSF score, but the microprotein sequence 
shows high similarity to translated regions in mammalian species by tBLASTn. f 
Sequence alignment for a novel microprotein encoded by a smORF within the 5'-UTR of 
B-cell CLL/lymphoma 9 (BCL9). This smORF has a negative PhyloCSF score, but the 
microprotein sequence shows high similarity to proteins in other mammalian species by 
BLASTp and tBLASTn. 
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Figure 5. Translation inhibitors lactimidomycin (LTM) and harringtonine (Harr) aid 
in identifying smORF start sites. 
a Read coverage peak in Harr-treated cells confirmed translation initiation at the 
upstream-most AUG start codon (encoding methionine, denoted by the green M) in the 
novel protein-coding smORF occurring within the 5'-UTR of methyltransferase like 3 
(METTL3). Elongating ribosomal A-site reads are depicted as bars and are color coded 
by reading frame. The smORF coding region is aligned with frame 1 (red). RPF read 
coverage in Harr-treated cells is shown in grey. b RPF read coverage in LTM-treated cells 
identified the start site as occurring at the near-cognate start codon UUG (encoding 
leucine, denoted by green L) in the non-AUG smORF occurring within the 5'-UTR of 
transmembrane protein 33 (TMEM33). c RPF read coverage in Harr-treated cells 
identified a downstream AUG start codon (denoted by third green M) as the predominant 
translation initiation site in the smORF occurring within the 5'-UTR of general transcription 
factor IIH subunit 1 (GTF2H1). A-site coverage upstream of the third AUG codon and a 
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small Harr peak suggested that the first AUG may also function as the start site to a lesser 
extent. d RPF Read coverage in Harr-treated cells showed mixed start site usage 
between a downstream near-cognate start codon CUG (encoding leucine, denoted by 
green L) and a downstream AUG start codon (encoding methionine, denoted by second 
green M) in the smORF occurring within an alternative 5'-UTR of F-box protein 9 
(FBXO9). A-site coverage supports translation from both start sites. 
 

 
 

Figure 6. Ribo-Seq identified hundreds of novel protein-coding smORFs on 
annotated non-coding RNAs (ncRNAs). 
Ribo-Seq identified hundreds of smORFs on RefSeq and UCSC annotated non-coding 
RNAs across all three cell lines. a-b The UCSC ncRNA BC013229 and the RefSeq 
ncRNA LOC100287015 each contain a novel protein-coding smORF in frame 1 (red) that 
was identified in all HeLa-S3 Ribo-Seq experiments. The smORF coordinates are shown 
in the top corner. Both ncRNAs are currently uncharacterized. c The uncharacterized 
RefSeq ncRNA LINC00534 is polycistronic, containing two confident novel protein-coding 
smORFs, one in frame 3 (green) and one in frame 2 (blue). Both smORFs were identified 
in all K562 Ribo-Seq experiments. d The ncRNA colon cancer associated transcript 1 
(CCAT1) is polycistronic with at least two confident novel smORFs, both in frame 2 (blue). 
The upstream smORF was identified in two out of four HeLa-S3 Ribo-Seq experiments, 
and the larger downstream smORF passed in all HeLa-S3 experiments. 
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Figure 7. Ribo-Seq identified smORFs on unannotated de novo assembled 
transcript isoforms. 
a A novel protein-coding smORF was identified within a 5'-extension of c6orf62. The top 
plot shows RNA-Seq read coverage at the genomic level. The RefSeq annotated 
transcript is highlighted by the blue box and the novel smORF is highlighted by the yellow 
box and black triangle (q) above. The exon positions are depicted by the transcript model 
above the plot. Black boxes represent the annotated exons, the white box represents the 
5'-extension, introns are depicted by the connecting lines, and the strand orientation is 
noted by the arrowhead. The middle A-site plot shows Ribo-Seq coverage at the genomic 
level. The bottom A-site plot shows Ribo-Seq coverage at the transcript level with reads 
colored by frame. The novel smORF occurs in frame 3 (green). Position 0 marks the start 
of the annotated coding region. The smORF coordinates are shown in the top corner. b 
A novel protein-coding smORF was identified within an unannotated exon in the middle 
of the annotated EYA transcriptional coactivator and phosphatase 4 (EYA4) coding 
region, and is specific to HeLa-S3. The RNA coverage plot shows the novel exon 
occurring upstream of the third exon in the annotated transcript, denoted by the asterisk 
(*) and grey bar. The gene level A-site plot shows high coverage over this novel exon, 
and the transcript level A-site plot shows the smORF in frame 3 (green). The novel exon 
was assembled as the first exon in an isoform of EYA4. c A novel protein-coding smORF 
was identified within an unannotated exon upstream of the geranylgeranyl pyrophosphate 
synthase 1 (GGPS1) coding region. The gene level RNA and A-site Ribo-Seq plots show 
significant read coverage over the novel exon. The transcript level A-site plot shows the 
smORF in frame 1 (red). The novel exon was assembled as the first exon in an isoform 
of GGPS1, altering the 5'-UTR. 
 

235495000 235500000 235505000

0
1

2
3

4
5

235495000 235500000 235505000

0
1

2
3

4
5

HEK293T GGPS1 (NM_001037277) Gene

235495000 235500000 235505000

0
5

10
15

20
25

235495000 235500000 235505000

0
5

10
15

20
25

HEK293T GGPS1 (NM_001037277) Gene

0.
0

0.
5

1.
0

1.
5

2.
0

0.
0

0.
5

1.
0

1.
5

2.
0

HEK293T GGPS1 (NM_001037277) Transcript

*

*

*
133600000 133700000 133800000

0
10

20
30

133600000 133700000 133800000

0
10

20
30

HeLa-S3 EYA4 (NM_004100) Gene

*

hg19, chr6

133600000 133700000 133800000

0.
0

0.
5

1.
0

1.
5

133600000 133700000 133800000

0.
0

0.
5

1.
0

1.
5

HeLa-S3 EYA4 (NM_004100) Gene

*

hg19, chr6

hg19, chr1

hg19, chr1

0 1000 2000 3000 4000 5000

0.
0

0.
5

1.
0

1.
5

0 1000 2000 3000 4000 5000

0.
0

0.
5

1.
0

1.
5

HeLa-S3 EYA4 (NM_004100) Transcript

*
chr6:133691317-133691394 chr1:235492469-235492708

24705000 24710000 24715000 24720000

0
1

2
3

4
5

24705000 24710000 24715000 24720000

0
1

2
3

4
5

HEK293T c6orf62 (NM_030939) Gene

A-
sit

e 
Re

ad
s (

RP
M

)

hg19, chr6

24705000 24710000 24715000 24720000

0
20

40
60

80

24705000 24710000 24715000 24720000

0
20

40
60

80

HEK293T c6orf62 (NM_030939) Gene

To
ta

l R
NA

 (R
PM

)

hg19, chr6

5’-Extension

−2000 −1000 0 1000

0
1

2
3

4
5

−2000 −1000 0 1000

0
1

2
3

4
5

HEK293T c6orf62 (NM_030939) Transcript

A-
sit

e 
Re

ad
s (

RP
M

) chr6:24720560-24720667

a b c

−1000 0 1000 2000

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 17, 2019. ; https://doi.org/10.1101/523860doi: bioRxiv preprint 

https://doi.org/10.1101/523860
http://creativecommons.org/licenses/by/4.0/


 44 

 
 
Figure 8. Ribo-Seq identified smORFs on novel unannotated transcripts that are 
also cell type specific. 
Novel protein-coding smORFs were identified on unannotated de novo assembled 
transcripts which had no overlap with annotated genes. Examples are shown which are 
specific to a HEK293T, b HeLa-S3, and c K562. The top plot shows RNA coverage at the 
genomic level with the exon model of the Cufflinks assembled transcript shown above. 
Black boxes represent the exons, connecting lines represent the introns, and the strand 
orientation is noted by the arrowhead. The middle A-site plot shows the Ribo-Seq 
coverage at the gene level with the smORF highlighted by the yellow box and black 
triangle (q) above. The bottom A-site plot shows the Ribo-Seq coverage at the transcript 
level with reads colored by frame. The smORF coordinates are shown in the top corner. 
The smORFs in a and b are in frame 1 (red), while the smORF in c is in frame 2 (blue). 
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Figure 9. Novel microproteins were detected in HLA-I complexes. 
a Schematic of HLA-I bound peptide enrichment experiment carried out in Bassani-
Sternberg et al.64. The pan-HLA-I antibody, W6/32, was used to pull-down and enrich 
HLA-I complexes, and bound small peptides were further enriched by solid phase 
extraction. High resolution tandem mass spectrometry data of enriched HLA-I peptide 
samples (PXD000394) was then searched against a database containing human Uniprot 
proteins and the 7,554 novel smORF-encoded microproteins. b 320 novel microproteins 
were identified across all three cell lines, of which 130 (41%) were identified in at least 
two Ribo-Seq experiments and therefore high confidence. c ms2 spectra examples (top-
bottom) for smORFs found in: three cell lines, two cell lines, one cell line (multiple 
experiments), and one cell line (single experiment). d Binding of a novel microprotein 
peptide, RMKDFLCLK (chr1:39875291-39875422), was validated by a competition-
based fluorescence assay74. The novel microprotein peptide was able to compete off the 
control peptide, indicating binding, while the negative control peptide, TPNGGSTTL, from 
the recently characterized microprotein NoBody16 was unable to. 
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Supplementary Figures 

 
 

Supplementary Figure 1. Published Ribo-Seq datasets show a wide range of overall 
resolutions. 
a Ribo-Seq datasets from 8 published studies30,40,41,55,62,76-78 using 6 different cell lines 
were processed and mapped to hg19 using the same pipeline as used for our datasets. 
100,000 random reads were sampled to determine the frequency distribution of footprint 
lengths ranging from 20-40 nt. Ribosome footprint read length distributions from these 
datasets vary widely. Three datasets have distributions which peak in the ideal 28-29 nt 
footprint size, indicating complete digestion of unprotected RNA, while the other 
distributions are broader and peak in 31-34 nt range. b Metagene analysis was performed 
and the average percentage of reads aligned to the coding reading frame was calculated 
as a measure of the overall 3-nt periodicity and resolution of the datasets. Datasets which 
had ribosome footprint lengths peaking at the ideal 28-29 nt size had >70% of reads in-
frame with the coding region, which is high overall resolution, while the other datasets 
had <50% reads in-frame. 
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Supplementary Figure 2. Dozens of annotated genes are translationally regulated 
in response to ER stress. 
a Scatter plots showing the log2 fold changes in normalized RPF (Ribo-Seq, y-axis) and 
mRNA (RNA-Seq, x-axis) read counts for RefSeq annotated genes in cells treated with 
either 1 µM thapsigargin (TG, left) or 5 µg/mL tunicamycin (TM, right) relative to DMSO-
treated cells. Only genes with significant changes (padj < 0.1) in translation efficiency (TE) 
are plotted. Genes with TE log2 fold changes ≥ 1 or ≤ 1 and RPF or mRNA log2 fold 
changes ≥ 1 or ≤ 1 are colored. Large changes in TE are colored red if driven 
predominantly by changes in translation and blue if driven by changes in transcription. 
Genes colored grey either do not have large enough changes in TE or lack large changes 
in both translation and transcription and are therefore considered relatively stable. b 
Volcano plots showing the -log10(p value) and TE log2 fold change for RefSeq annotated 
genes in cells treated with either TG (left) or TM (right) relative DMSO-treated cells. Only 
genes with significant changes (padj < 0.1) in translation efficiency (TE) are plotted. 
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Supplementary Figure 3. Ribosome footprint distributions and 3-nt periodicity 
measurements for HeLa-S3, K562, and drug-treated HEK293T samples. 
a Ribosome footprint read length distributions for HeLa-S3 datasets. Two different 
digestion protocols were employed resulting in 2 datasets peaking at 28 nt with a narrow 
distribution and 2 datasets peaking at 31-32 nt with a broader distribution. b Ribosome 
footprint read length distributions for K562 datasets. Three different digestion protocols 
were employed with all 3 datasets peaking at 28 nt. HiRes3 shows a broader distribution 
than HisRes1 and HiRes2. c Ribosome footprint read length distributions for drug-treated 
HEK293T datasets. All samples were prepared using the same digestion protocol 
resulting in narrow 28 nt peaks. d Metagene analysis was performed and the average 
percentage of reads aligned to the coding reading frame was calculated. Datasets which 
had ribosome footprint lengths peaking at the ideal 28-29 nt size had >70% of reads in-
frame with the coding region, which is high overall resolution, while the other datasets 
had ~50% reads in-frame. 
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Supplementary Figure 4. Metagene plots for drug-treated HEK293T Ribo-Seq 
datasets. Metagene plots showing RPF read alignment around the start site and stop site 
for each treated HEK293T replicate. 25-29 nt reads were used for all datasets. 
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Supplementary Figure 5. Metagene plots for HeLa-S3 Ribo-Seq datasets. Metagene 
plots showing RPF read alignment around the start site and stop site for each HeLa-S3 
replicate created using RibORF. The 5'-position of each RPF read was shifted to the 
ribosomal A-site and then mapped to all hg19 RefSeq coding transcripts, which were used 
to construct the metagene. The metagene coding region is aligned to frame 1 (red), and 
frame 2 (blue) and frame 3 (green) are out of frame. The percentage of reads aligned to 
the coding region is noted in the top corner. 31-35 nt reads were used for LoRes1, 29-33 
nt for LoRes2, and 25-29 nt for both HiRes1 and HiRes2. 
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Supplementary Figure 6. Metagene plots for K562 Ribo-Seq datasets. Metagene 
plots showing RPF read alignment around the start site and stop site for each K562 
replicate. 25-29 nt reads were used for both HiRes1 and HiRes2, and 25-30 nt for HiRes3. 
 

 
 
Supplementary Figure 7. smORF locations in transcriptome. Pie chart showing the 
locations of all novel smORFs relative to annotated RefSeq transcripts. 
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Supplementary Figure 8. Validation of novel microprotein peptides binding to HLA 
I. Binding of two additional novel microprotein peptides identified in a published HLA-I 
proteomics dataset64, MTMSTILSKK (chr5:8460071-8460175, HLA-MP2) and 
HMMDKRLGEK (chr21:46710407-46710529, HLA-MP3), was validated by a 
competition-based fluorescence assay74. Both novel microprotein peptides were able to 
compete off the control peptide, indicating binding. 
 

 
 

Supplementary Figure 9. Effect of stop site inclusion on smORF prediction. 
When analyzing Ribo-Seq reads shifted to the ribosomal A-site, the final codon with 
ribosome coverage is the stop site. This codon is often unique in that it usually has 
enriched read coverage compared to codons in the middle of the ORF. In addition, the 
second position of the stop codon is often enriched relative to middle codons, which can 
affect scoring methods utilizing the percentage of reads in-frame. The effect of including 
the entire stop site (Full Stop), just the first position of the stop site (Pos1 Stop), or no 
stop site at all (No Stop) on the number smORFs called translated using our pipeline was 
tested across our HEK293T datasets of varying resolution and sequencing depth. In all 
datasets tested, most smORFs are called translated regardless of whether all or none of 
the stop codon is included. However, the overall number of smORFs called translated 
was highest in every case when including only the first position of the stop site. Using 
only the first position also offered the best balance for the MedRes and LoRes datasets 
as more hits from “full stop” and “no stop” were captured than lost. 
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