

1 **A molecular phylogeny of Schizothoracinae**
2 **(Teleostei: Cypriniformes: Cyprinidae) based on**
3 **12 protein-coding mitochondrial genes and**
4 **RAG1 gene analysis**

5 Yurong Du^{1*}, Ting Wang^{1*}, Delin Qi^{3*}, Desheng Qi¹, Weilin Li¹, Jiangbin Zhong¹, Juan Chen⁴,
6 Songchang Guo^{2**}, Jianbin Ma^{1**}

7 ¹ *Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibetan Plateau in*
8 *Qinghai Province, Qinghai Normal University, Xining, 810008, China*

9 ² *College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128,*
10 *China*

11 ³ *Animal Science Department of Agriculture and Animal Husbandry College, Qinghai University,*
12 *Xining, 810016, China*

13 ⁴ *Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810007, China*

14 *These authors contributed equally to this work

15 **Co-corresponding author, guo@nwipb.cas.cn; mjb_117@163.com

16

17

18

19 **A molecular phylogeny of Schizothoracinae fishes based**
20 **on 12 protein-coding mtDNA genes and RAG1 gene**

21

22 **Author details**

23

24 Yurong Du,
25 dyr.117@163.com
26 38# Wusixi Lu, Xining, Qinghai, China 810008

27

28 Ting Wang,
29 1992WangtingWt@163.com

30

31 Delin Qi,
32 delinqi@126.com
33 Animal Science Department of Agriculture and Animal Husbandry College, Qinghai University,
34 Xining, China 810016

35

36 Desheng Qi,
37 804170477 @qq.com

38

39 Weilin Li,
40 756101754@qq.com

41

42 Jiangbin Zhong,
43 1113497741@qq.com

44

45 Juan Chen,
46 1057823155@qq.com

47

48 Songchang Guo,
49 guo_ast@126.com; guo@nwipb.cas.cn
50 School of Animal Science and Technology, Hunan Agricultural University, Changsha, China

51

52 Jianbin Ma,
53 mjb_117@163.com
54 38# Wusixi Lu, Xining, Qinghai, China 810008

55 **Abstract** The ever-increasing interest in the investigation of origin and speciation of
56 schizothoracine fishes can be dated to 20th century. However, molecular phylogeny of
57 Schizothoracinae and their phylogenetic relationships, as well as the divergence times
58 still remain controversial. In this study, two DNA sets consisting of 12 protein-coding
59 mitochondrial genes from 254 individuals and RAG1 gene from 106 individuals were
60 used to reconstruct the phylogenetic relationships and calculate the divergence times
61 among the subfamily schizothoracinae. Our results indicated that both of the data sets
62 supported a non-monophyletic relationship due to involving of species of *Barbinae*.
63 However, the phylogenetic relationships based on mtDNA genes were more reliable
64 than that inferred from RAG1 gene. The highly specialized grade formed a
65 monophyletic group, together with *Ptychobarbus* as a sister group of *Diptychus* and
66 *Gymnodiptychus*, which was belonging to specialized grade, indicating that
67 *Ptychobarbus* may be transition species to involve to highly specialized
68 schizothoracinae. In addition, the primitive grade clustered with *Percocypris pingi*, a
69 species of *Barbinae*. Based on mtDNA gene, the speciation time of Schizothoracinae
70 was 66 Ma, and the divergence time of the primitive grade and *Percocypris pingi* was
71 64 Ma. The speciation times of the three grades Schizothoracinae were 57 Ma, 51 Ma
72 and 43 Ma, respectively; and the divergence time of specialized and highly
73 specialized grade was 46 Ma. The divergence times of three grades were not
74 consistent with the three stages of uplift of Qinghai-Tibet Plateau, which is older than
75 the times.

76 **Keywords** Schizothoracinae, protein-coding mtDNA, RAG1, phylogeny, divergence

77 Qinghai-Tibet Plateau, with an average altitude of 4000 meters, is the largest,
78 youngest and highest Plateau in the word (Zhang Ti-Cao et al., 2013), which is called
79 the roof of the world (Cao et al., 1981). The environment and climate of
80 Qinghai-Tibet Plateau had changed drastically due to the intensive uplift of the
81 Plateau since Quaternary. Its extreme environment (hypothermia and hypoxia) has
82 been pregnant with rich and colorful life, making it to be one of the world's
83 biodiversity hotspots. The uplift of Qinghai-Tibet Plateau had experienced three
84 stages in the Eocene, the Oligocene-Miocene, and the Pliocene-Quaternary,
85 respectively (Paul et al., 2001). The first stage of uplift, making Tibet Plateau reached
86 3000m elevation, happened in late Eocene when India began to wedge into Eurasia
87 (Dewey et al., 1989). From 30Ma to 10Ma, the second phase of uplift occurred.
88 However, at this stage, the Qinghai-Tibet Plateau proceeded with pediplanation cycle
89 (an equilibrium of gradual uplifting, faulting and erosion) as a plain (Dewey et al.,
90 1989). In the late Miocene, pediplanation cycle was ended with faulting and uplifting
91 of the Tibetan Plateau excessive erosion, and at the beginning of Pliocene, the Plateau
92 resumed uplift until Quaternary. At present, there is no accurate time or process of the
93 Qinghai-Tibet Plateau uplift because of the complexity of the process.

94 Schizothoracine fishes, commonly known as “mountain carps” and characterized
95 by low growth rate, low fecundity and late sexual maturity (Chen Z.M. & Chen, 2001),
96 belong to Cyprinidae, Cypriniformes, Teleostei and are endemic, typical to the
97 Qinghai-Tibet Plateau and its circumjacent areas (Cao et al., 1981). The name of
98 Schizothoracinae came from their characters of the two rows of large and ordered anal

99 scales, locating on both sides of the anus and anal fin that made the blank between the
100 two rows of anal scales like a crack (Wu Y.F. & Wu, 1992). This subfamily includes
101 15 genera and more than 100 species all over the world (Mirza, 1991), and most of
102 Schizothoracine fishes, 11genera and at least 76 species and subspecies distribute in
103 the whole of China (Chen Y.F. & Cao, 2000; Wu Yun-Fei & Tan, 1991). As their
104 major habitat, nine genera and more than half of species and subspecies distribute in
105 the main drainages of Qinghai-Tibet Plateau of China such as Yellow River, Yangtze
106 River, Yarlung Zangbo River, Irrawaddy River and Qinghai Lake (Cao et al., 1981).

107 As the extreme environment of Qinghai-Tibet Plateau, the mitochondrial genome
108 is well suited for analysis the phylogenetic relationships for that energy metabolism,
109 depending on the mitochondria, is the most apparent response to the adaption to
110 hypothermia and hypoxia. And then, length of the sequence is necessary for maximum
111 likelihood analysis to clarify interrelationships amongst long-diverged groups on
112 account of that ML trees converge to the true tree as the number of sites approaches
113 infinity (Rogers, 2001), and the general length of mitochondrial genomes is 1.6kb,
114 which is sufficient for the phylogenetic tree. The problem of limitation in the number
115 of sequence sites can be settled by the entire mitochondrial genomes (Inoue J.G. et al.,
116 2003; Inoue Jun G. et al., 2004; Ioue et al., 2001; Ishiguro et al., 2003; Kawahara et
117 al., 2008; Lavoue et al., 2008; Lavoue et al., 2005; Masaki et al., 2004; Minegishi et
118 al., 2005; Miya Masaki & Nishida, 1999; Miya M. & Nishida, 2000; Miya Masaki et
119 al., 2003; Saitoh et al., 2003; Saitoh et al., 2000; Saitoh et al., 2006). However, using
120 mtDNA alone as the molecular marker can only reveal a single linkage group with

121 one history while the utilization of multiple nuclear sequences often shows a conflict
122 among gene trees due to hybridization, lineage sorting, paralogy or selection (Graham
123 et al., 2017). Hence, both the mitochondrial genome and the nuclear gene were used
124 in this study to avoid the possible differences.

125 Their special living environment makes them form the characters which are
126 highly adapted to hypothermia, hypoxia and high radiation. As for those characters,
127 Schizothoracine fishes have become a good model of Qinghai-Tibet Plateau to study
128 the mechanism adapting to the extreme environment. Based on the morphological
129 characters, Cao (Cao et al., 1981) divided the schizothoracinae into three grades
130 named morphological primitive schizothoracine fishes, morphological specialized
131 schizothoracine fishes, and morphological highly specialized schizothoracine fishes.

132 The primitive fishes, including *Racina*, *Schizothorax* and *Aspiorhynchus*, are covered
133 by fine scales and these fishes have three rows of pharyngeal teeth and two pairs of
134 barbell. Most of the specialized fishes' scales tend to degenerate and have two rows of
135 pharyngeal teeth and one pair of barbell, and *Ptychobarbus*, *Diptychus*, and
136 *Gymnodiptychus* are included in specialized grade. The highly specialized fishes'
137 scales completely disappear and have only one row of pharyngeal teeth and have no
138 barbell; highly specialized group consists of six genera named *Gymnocypris*,
139 *Oxygymnocypris*, *Schizopygopsis*, *Platypharodon*, *Chuanchia*, and *Herzenstein*. The
140 statistical studies showed a relationship between species richness and elevation that
141 the primitive groups peaked in the low elevation areas of 1250m to 2500m; the
142 specialized fishes mainly distributed in the elevation of 2750m to 3750m and highly

143 specialized grade fishes primary occupied the elevation zone of 3750m to 4750m
144 (Cao et al., 1981). Some researches revealed that the speciation of three grades
145 schizothoracine fishes resulted from the three stages of uplift of Qinghai-Tibet Plateau,
146 which caused the branch of river basins.

147 By now, there are still many controversies on the phylogeny of Schizothoracinae
148 and their close species. A large body of researches showing that Schizothoracinae
149 originate from the primitive genera of Barbinae, such as *Barbodes*, *Varicorhinus*,
150 *Barbus*, based on molecule or morphology (Cao et al., 1981; Chen Y.F. & Cao, 2000;
151 Wu Xianwen et al., 1981), is widely accepted. Gaubert et al. (Gaubert et al., 2009)
152 repute that Schizothoracinae's closest relatives to be the Barbinae fishes, which is
153 consistent with He (He et al., 2004) and Qi (Qi et al., 2013; Qi et al., 2012), and the
154 subfamily Schizothoracinae is not a monophyly with supertree from the Cyprinidae
155 family level (Gaubert et al., 2009), which is the same to Li (Li Y.L. et al., 2013), but
156 contradict the results of He (He et al., 2004) and Qi (Qi et al., 2012). In the study of
157 Ruber in 2007 indicate that Barbinae sensu stricto is closely related to
158 Schizothoracinae, but it's an unresolved trifurcation between Barbinae sensu stricto
159 and two lineages of Schizothoracinae (Ruber et al., 2007). In the research of Li,
160 however, *Barbus barbus* is embedded in Schizothoracinae that between the specialized
161 group and the primitive group as the sister clade of specialized fishes with the method
162 of mitochondrial genomes of three species of Schizothoracinae and single cytb gene
163 (Li Y.L. et al., 2013). It's clear that *Percocypris pingi*, which belongs to *Percocypris*
164 genus and Barbinae subfamily, cluster with the primitive clade in Wang's study (Wang

165 et al., 2013). Many reasons could explain the inconsistency between morphological
166 phylogeny and molecular phylogeny. For example, He considers the morphological
167 characters may don't follow the evolutionary trace of the groups but are shaped by
168 adapting to their survival environmental condition (He & Chen, 2007), such as
169 convergent evolution (Qi et al., 2012). In addition, the low level of sequence
170 divergence and ancestral polymorphism will make it difficult to discriminate species
171 (He & Chen, 2007). The number of samples and the length or quantity of genes also
172 play an important role in the reconstruction of phylogeny. For above reasons, using
173 the molecular method, sufficient samples and appropriate gene to analysis the
174 phylogenetic relationships of Schizothoracinae is becoming more and more urgent.

175 The overwhelming majority of experts agree with that the speciation of three
176 grades Schizothoracinae fishes results from the uplift of Qinghai-Tibet Plateau that
177 causing the branch of those watersheds. At the middle Tertiary-Dingqing group(late
178 Miocene or early Pliocene) , with the movement of the Himalayas, Barbinae, being
179 adapted to the warm climate, gradually tend to adapted to cold weather, which lead to
180 speciate the Plesioschizothorax macrocephalus, which is the only fossil of
181 Schizothoracinae in the world (Wu Y.F. & Wu, 1992). Based on geology and
182 paleontology, Wu deduced that in the first phase of the Himalaya movement, as the
183 early stage of Schizohtoracinae, Plesioschizothorax macrocephalus occurred. In the
184 second phase of the Himalaya movement, the environment was so suitable for
185 freshwater that Plesioschizothorax macrocephalus became the main fishes of those
186 lakes, making this phase to be boom period. However, in the third phase of Himalaya

187 movement, in which the crust began to lift and lakes began to shrink and separate,
188 radical changes of environment resulted in the *Plesioschizothorax macrocephalus*'
189 differentiation, migration and extinction. Except Li used the partial mitochondrial
190 genome of *Cytb* gene to declare that the primitive clade divided in the late Eocene and
191 the Rapid speciation events of each clade from the Late Miocene to the Pliocene,
192 corresponding to the time of the geologic acceleration of the Qinghai-Tibetan Plateau
193 (Li Y.L. et al., 2013), there is no researches about the divergence time of
194 Schizothoracine fishes from the subfamily level. Hence it's essential to deduce the
195 divergence time of three grades of Schizothoracinae on the subfamily level to make
196 up the blank of this area.

197 In order to better resolve the problems of phylogenetic relationships of
198 Schizothoracinae and calculate the divergence times of these genera, we used 12
199 protein-coding mitochondrial genes from 254 individuals, which were belonging to
200 115 species, 11 genera, and RAG1 genes from 106 individuals, which were belonging
201 to 42 species, 8 genera, to reconstruct the phylogenetic tree of the subfamily
202 Schizothoracinae, and inferred the divergence times among Schizothoracine fishes,
203 and analyzed the relationships between the differentiation of Schizothoracinae and the
204 uplift of Qinghai-Tibet Plateau.

205 Materials and methods

206 **Taxon sampling and DNA extraction**

207 We employed 254 mtDNA sequences (table 1) belonging to 11genera of subfamily

208 Cyprinidae, 32 sequences among which were previous work of our team (GenBank
209 accession number: KT833082-KT833113). 4 sequences of Ictiobus were selected as
210 outgroups. The other mitochondrial genomes were downloaded in NCBI
211 (<http://www.ncbi.nlm.nih.gov/>) and the Genbank accession numbers were shown in
212 Supplementary Material S1.

213 For the RAG1 gene, 38 individuals were collected by ourselves from the rivers
214 of Qinghai Province and their tributary. We took the muscles or fins and then
215 immediately preserved in 95% ethanol stored at -20 °C for DNA extraction. Total
216 genomic DNA was isolated by using phenol-chloroform extraction (Sambrook et al.,
217 1989) and adjusted to 100ng/mL after testing its concentration on a NanoDrop 2000
218 supermicro spectrophotometer (Thermo Fisher Scientific Inc., USA). Meanwhile, 68
219 sequences of RAG1 gene were obtained from GenBank (Accession numbers and
220 species name were showed in Supplementary Material S2).

221 ***PCR Amplification and Sequencing***

222 The RAG1 gene was amplified using the pair of primers RF (5'-CTG AGC TGC AGT
223 CAG TAC CAT AAG ATG T-3') and RR (5'-TGA GCC TCC ATG AAC TTC TGA
224 AGR TAY TT-3') (Saitoh & Chen, 2008). The PCR (polymerase chain reaction)
225 reacted at 50uL total volume as follows: 15uL H₂O, 25uL 2 × PCR Master Mix buffer
226 (Novoprotein Science and Technology Ltd., Shanghai, China), 2.5uL each primer
227 (10mM), and 5uL genomic DNA. And the PCR reaction performed at initial
228 denaturation step at 94 °C for 4 min followed by 35 cycles at 94 °C for 40s, 59°C for
229 40s, and 72 °C for 90s; with a final extension at 72 °C for 10min. 2 μl of amplified

230 DNA was fractionated by electrophoresis through 1% agarose gels. And those PCR
231 products with clear single band were sent to sequence in both directions in Beijing
232 Biomed Company (Beijing, China).

233 ***Sequence editing and analysis***

234 The RAG1 gene sequences were assembled using Contigexpression v9.1.0 software
235 and aligned by online MAFFT version 7 (<http://mafft.cbrc.jp/alignment/server/>), and
236 then carefully checked by eye and edited manually in MAGE 6.0.

237 We used 12 protein-coding regions of mtDNA for sequence analysis, which the
238 genes were encoded on the heavy-strand. Then the indices of substitution saturation
239 for these sequences were estimated using DAMBE 5 software with the GTR model
240 (<http://dambe.bio.uottawa.ca/software.asp>).

241 ***Phylogenetic analysis***

242 There were 254 sequences of mitochondrial genomes using in phylogenetic analysis
243 and 4 common sucker mitochondrial genomes were designed as outgroups (Saitoh et
244 al., 2011b) (Supplementary Material S1). Meanwhile, a total of 106 sequences of
245 RAG1 gene was used and 1 common sucker RAG1 sequence was designed as the
246 outgroup (Supplementary Material S2).

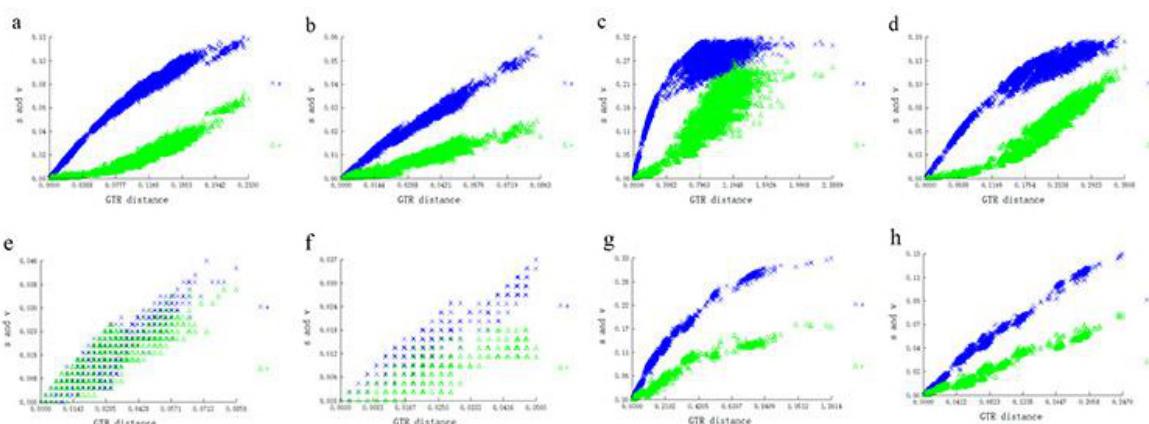
247 We used 12 protein coding regions to phylogenetic analysis, which the genes
248 were encoded on the heavy-strand. The ND6 wasn't included in the analysis because
249 this gene was encoded on the light-strand that was different from the 12 genes. All of
250 these sequences were aligned by online MAFFT version 7, and corrected by eyes. A
251 few parts were ambiguous that were excluded. We also removed start codons, stop

252 codons and the overlapping regions between the coding genes ATP6-ATP8,
253 ATP6-COXIII, ND4L-ND4, and ND5-ND6 (Li Y.L. et al., 2013).

254 The model selection was implemented in Modeltest v3.7. GTR+I+G, as the best
255 model of mtDNA sequences, was used to construct the phylogenetic trees, while
256 SYM+I+G was selected as the best model of RAG1 sequences. GTR+I+G was used
257 as the best model of RAG1 for subsequent analysis because there was no SYM+I+G
258 model in the analysis software. We reconstructed the phylogenetic trees with
259 maximum likelihood (ML) method and Bayesian inference (BI) method. The ML
260 analysis was accomplished by RAxML v7.2.8 (Stamatakis et al., 2008), with
261 GTRGAMMA and GTRCAT models. The BI method was used MrBayes v3.2.4
262 (Huelsenbeck & Ronquist, 2005; Ronquist & Huelsenbeck, 2003). We used the GTR
263 model to run 2,000,000 generations of 4 simultaneous Monte Carlo Markov chains
264 (MCMC). The sampling frequency and print frequency were set 100, the diagnostic
265 frequency was set 1000, and the genes were divided into 12 partitions and the
266 likelihood scores lower than those at saturation (burn-in = 500) trees were discarded
267 from the analysis. The posterior probabilities (BBP) of nodes were estimated based on
268 the 50% majority rule consensus of the trees.

269 ***Divergence time estimation***

270 Based on mtDNA genes, we used Beast v2.3.0 (Bouckaert et al., 2014) to calculate
271 the divergence times of three grades of Schizothoracinae with the lognormal incorrect
272 relaxed clock and GTR+G+I model. We used “Speciation: Yule Process” to run
273 500,000,000 chains. The calibrated nodes and constraint were as followed: basal to


274 *Cyprinus* (33.9Ma) (Saitoh et al., 2011a), and *Labeo bata* / *Labeo senegalensis* (49.1
275 Ma – 75.1 Ma) (Li Y.L. et al., 2013). And then convergence diagnostics were
276 examined with Tracer v1.6 (<http://tree.bio.ed.ac.uk/software/tracer/>).

277 **Results**

278 ***Mitochondrial genomes features***

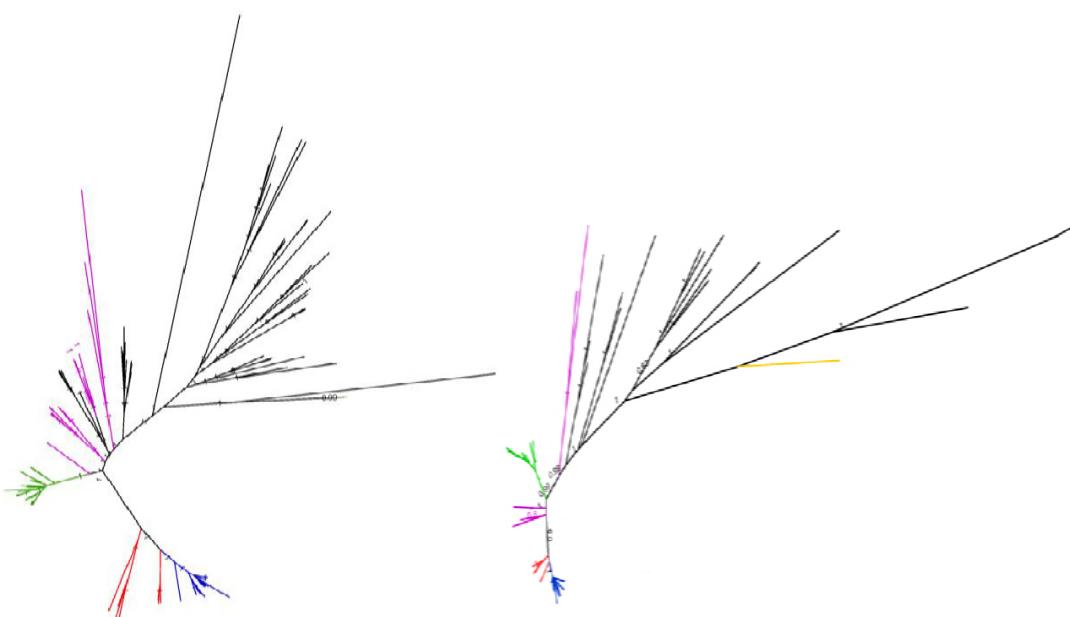
279 A total of 254 mtDNA and 106 RAG1 sequences were obtained after manually editing,
280 which were 10791bp and 1314bp in length, respectively. The average base
281 composition of 12 protein-coding genes was A=28.0%, T=27.8%, G=16.4% and
282 C=27.8%. The base composition of schizothoracinae showed the same characters with
283 teleost fishes that A+T content is significantly higher than the G+C content with an
284 obvious anti-G bias (Jiang et al., 2009; Jondeung et al., 2007; Tzeng et al., 1992).
285 Additionally, the average base composition of RAG1 gene was A=25.3%, T=24.3%,
286 G=26.5% and C=23.9%. There was no obvious base bias among RAG1 gene
287 sequences.

288 Saturation analyses showed that neither of the mtDNA sequences nor RAG1
289 sequences was saturated and variable sites of RAG1 sequences were obviously
290 distributed at codon 3 (Figure 1.). Thus, all sequences could be used in reconstructing
291 phylogenetic trees for schizothoracine fishes.

292

293 **Figure 1** The saturation analysis of both the mitochondrial protein-coding genes (excluding ND6 and
294 12SrRNA) sequences and RAG1 gene sequences based on the GTR model. Figure a, b, c, and d
295 represent saturation of codon1, codon2 codon3 and complete codon of 12 protein-coding genes,
296 respectively; Figure e, f, g, and h represent saturation of the same part of RAG1 gene.

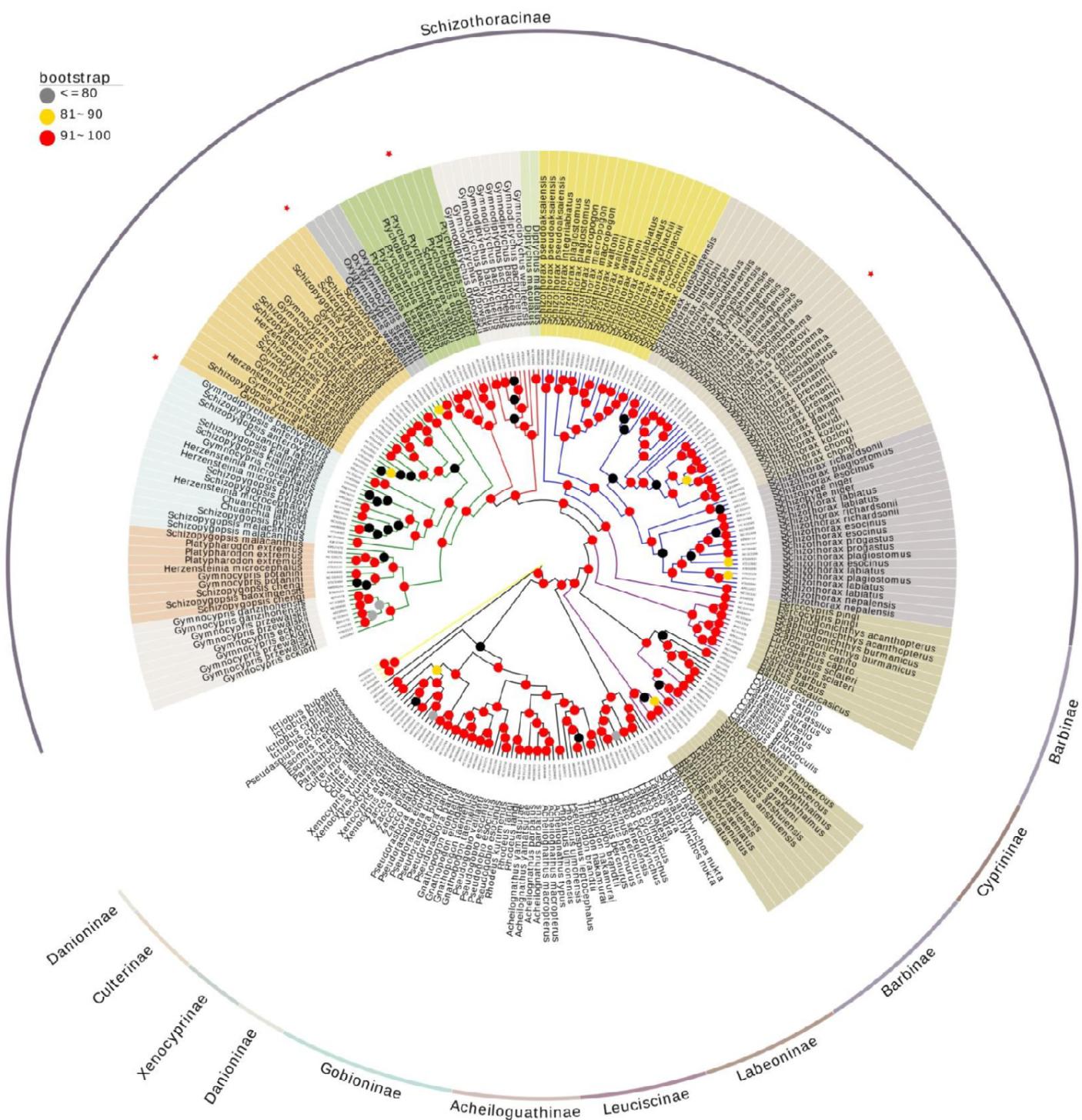
297 **Phylogenetic analysis**


298 The maximum likelihood trees inferred from mitochondrial genomes of Cyprinidae
299 were almost the same, only ML tree based on GTRCAT model was shown in Fig 2
300 (C), which was consistent with the Bayes tree Fig 2 (A). Similarly, the ML trees of
301 RAG1 gene were almost the same, ML tree based on GTRCAT model showed in
302 Fig 2 (D) was also consistent with BI tree(Fig 2 B). The trees based on RAG1 gene
303 indicated that the Schizothoracinae was not a monophyletic groups, which the
304 primitive grade clustered into a big branch with node support ratio of 98 and clade
305 that include *Barbus barbus* and *Scaphiodonichthys acanthopterus* clustered with
306 specialized and highly specialized clade with node support ratio of 37, indicating that
307 the specialized and highly specialized schizothoracinae, as well as the species of
308 Barbinae, as well as the species of *Barbinae* had most recent common ancestor, which

309 was clearly shown in Fig 3 F, that consistent with Wang (Wang et al., 2013) and Li (Li
310 Y.L. et al., 2013). However, slightly different results were obtained from trees based
311 on 12 protein-coding mtDNA genes. The fact that the subfamily schizothoracinae was
312 not a monophyletic group only resulted from that the *Percocypris pingi* as the sister
313 clade of the primitive grade (100). The clade of specialized grade schizothoracine
314 fishes were separated from the clade that included primitive grade schizothoracine
315 fishes and *Percocypris pingi* with strong support (96), and then the highly specialized
316 schizothoracine fishes were differentiated from the specialized grade with stronger
317 support (100).

318

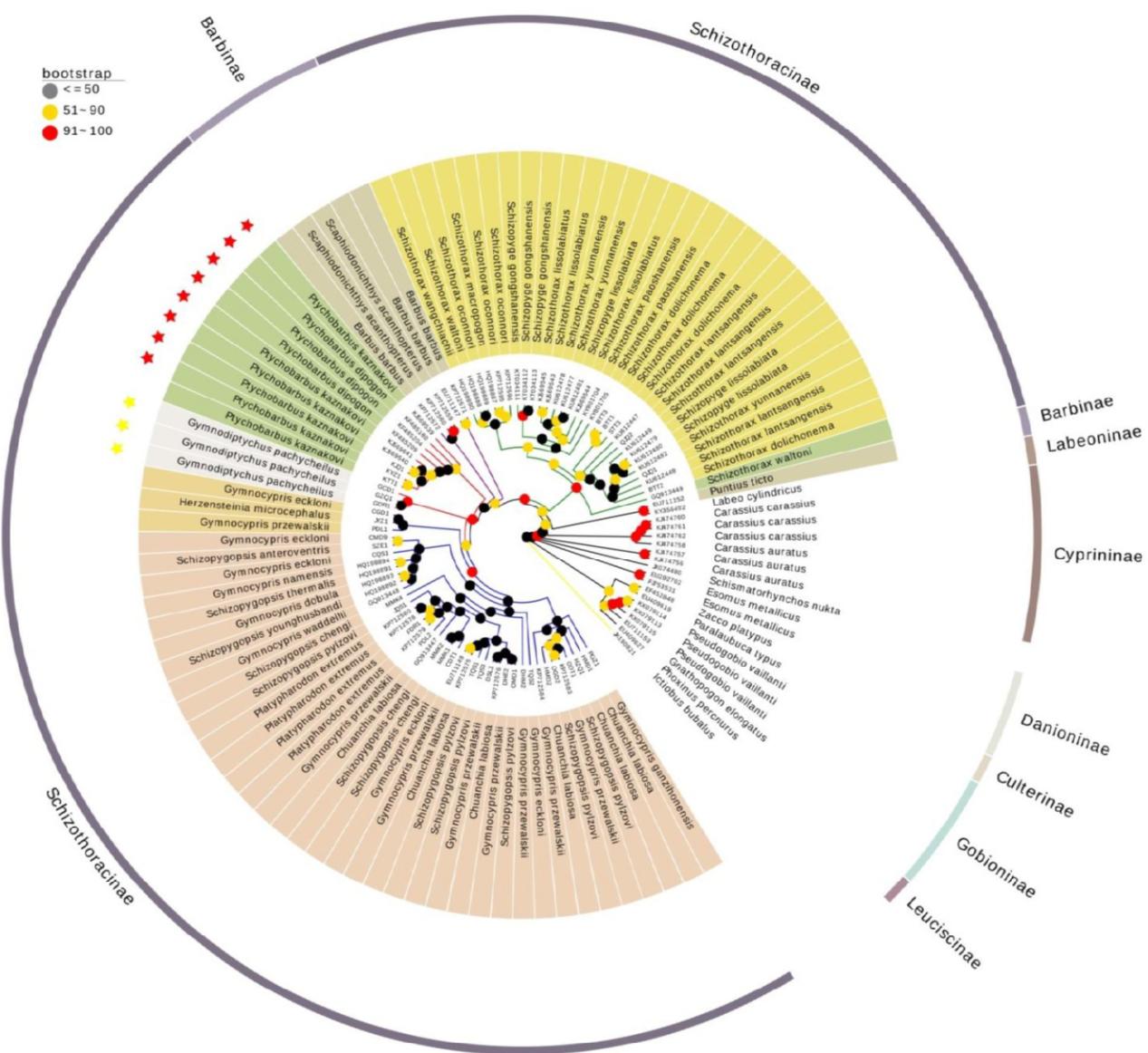
319 A


B

321

322

323 C



325

326

327

328 D

330 **Figure 2** The phylogenetic tree of Cypriniformes as inferred from the mitochondrial protein-coding genes

331 (excluding ND6 and 12SrRNA). Yellow branch represents the outgroup species, green branches

332 represent the primitive grade of schizothoracinae, red branches represent the specialized grade of

333 schizothoracinae and blue branches represent the highly specialized grade of schizothoracinae.

334 A The Bayes Inferred Tree of 12 protein-coding genes based on the GTR+I+G model, *Ictiobus cyprinellus*

335 was used as the outgroup. The nodal numbers indicated Bayesian posterior probability with the mcmc

336 ngen = 2000000.

337 B The Bayes Inferred Tree of RAG1 gene based on the GTR+I+G model, only the *Ictiobus cyprinellus*

338 was used as the outgroup. The nodal numbers indicated Bayesian posterior probability with the mcmc

339 ngen = 2000000.

340 C The overview of Maximum Likelihood Tree based on 12 protein-coding genes with the GTRCAT model,

341 Ictiobus were used as outgroups. The branch label numbers indicated the bootstrap probabilities (rapid

342 bootstrap set as 1000 replications).

343 D The overview of Maximum Likelihood Tree based on RAG1 gene with the GTRCAT model, Ictiobus

344 were used as outgroups. The branch label numbers indicated the bootstrap probabilities (rapid bootstrap

345 set as 1000 replications).

346 Both two molecular datasets were inconsistent with the conclusion of morphology,

347 which indicated that the specialized grade originated from the primitive

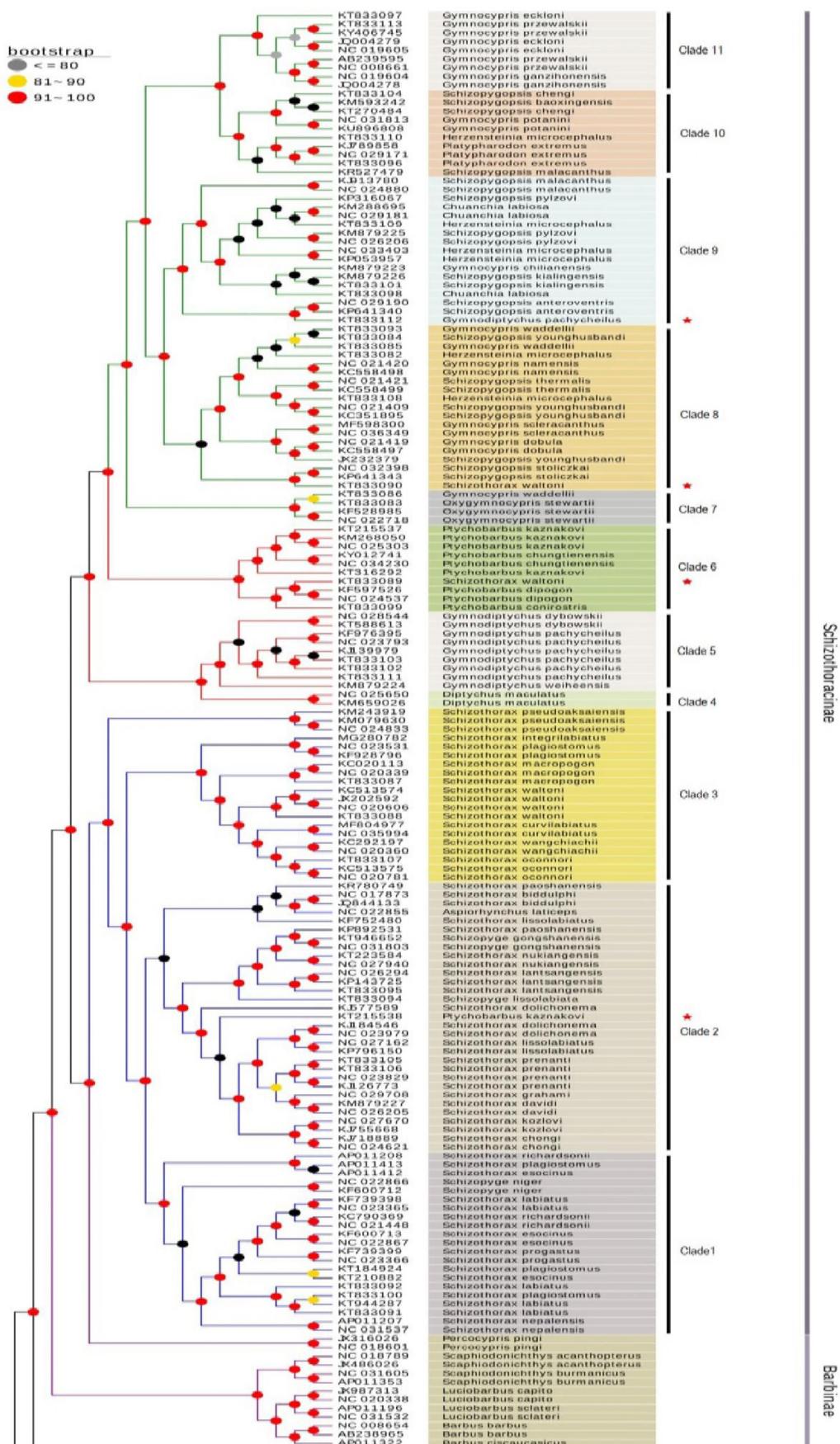
348 schizothoracinae, and the highly specialized schizothoracinae originated from the

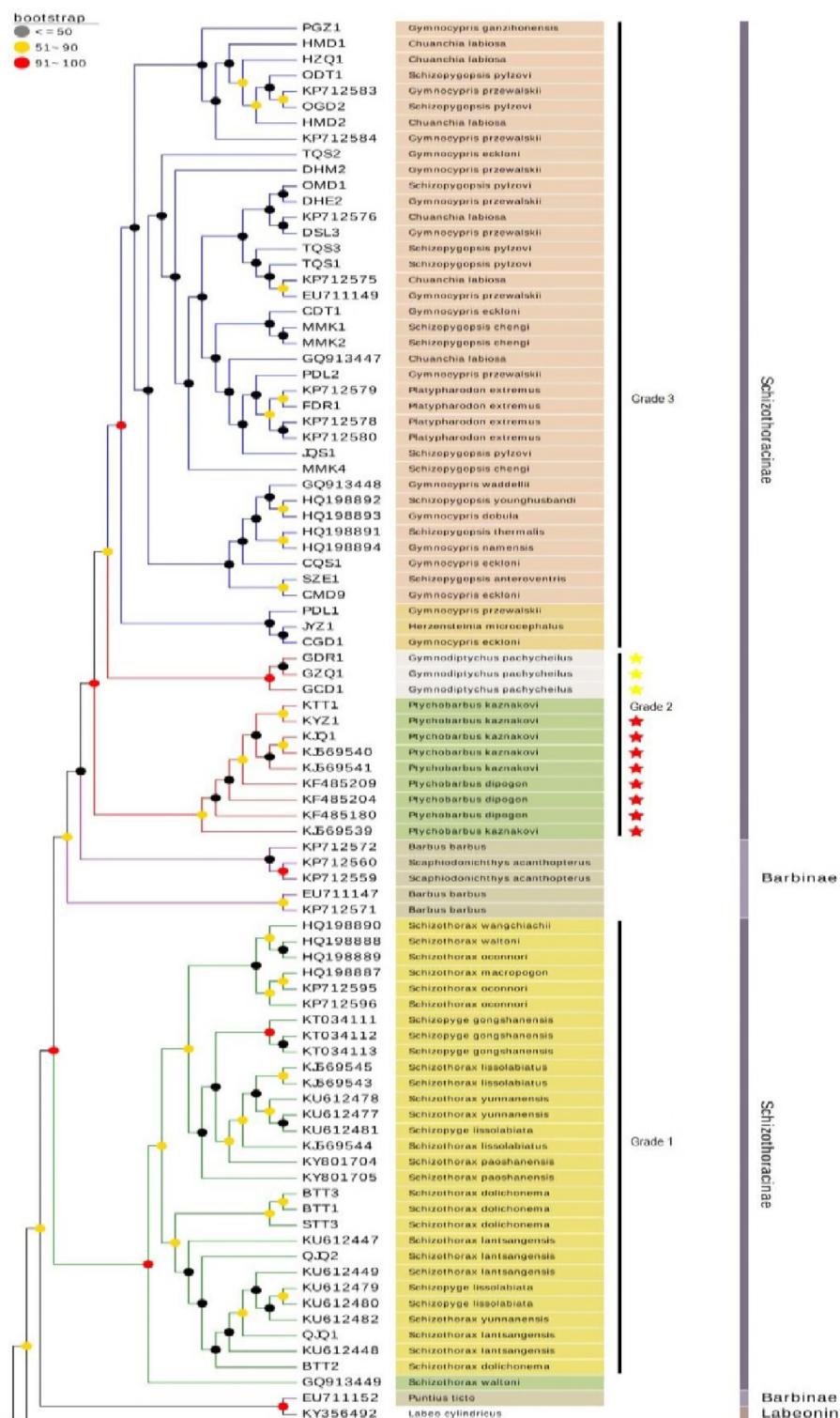
349 specialized schizothoracinae. Meanwhile, in phylogenetic trees based on both genes,

350 the Schizothoracinae was divided into two major clades, indicating the subfamily

351 schizothoracinae might have two different origins. Specialized and highly specialized

352 Schizothoracine fishes form one clade while primitive Schizothoracine fishes made up


353 the other major clade that indicated primitive clade was single origin and specialized


354 and highly specialized originated from another ancestor. The primitive clade located

355 at the bottom of the tree and the highly specialized grade lay at the top of the tree,

356 which was in accordance with the result of He (He et al., 2004).

357 E

360

361 **Figure 3** The partial enlargement of Maximum Likelihood Tree only included the subfamily
362 schizothoracinae based on 12 protein-coding genes (E) and RAG1 gene (F). Green branches represent
363 the primitive grade of schizothoracinae, red branches represent the specialized grade of
364 schizothoracinae, blue branches represents the highly specialized grade of schizothoracinae, and purple

365 branches represent the species of Barbinae. Shadows with the different color indicated different clades.

366 Red stars in figure E represented individuals that might be incorrectly classified, while in figure F red

367 stars and yellow stars represented genera *Ptychobarbus* and *Gymnodipterus*.

368 The Schizothoracinae was comprised of 11 clades based on 12 protein-coding

369 genes, showing in Fig 3 E, each with strong support. Clade 1 to 3 was included in

370 primitive schizothoracinae and clade 4, 6 was the part of specialized schizothoracinae,

371 clade 7 to 11 was involved in highly specialized schizothoracinae. It was noteworthy

372 that the clade 6 (*Ptychobarbus*) which belonged to specialized schizothoracinae

373 clustered with highly specialized schizothoracinae with strong support (100) that

374 might lead us to speculate that *Ptychobarbus* was the transitional taxa that the

375 specialized schizothoracinae evolved to highly specialized schizothoracinae and

376 making the result be inconsistent with the monophyly of specialized schizothoracinae

377 (Chen Z.M. & Chen, 2001), and *Diptychus* was the basal clade as monophyly.

378 *Gymnodipterus* clustered together as monophyly that originated from *Diptychus*.

379 Primitive schizothoracinae was monophyletic group whereas these species of three

380 genera tangled up with each other that strongly supposed that genus *Racoma* and

381 genus *Schizopyge* should be merged into genus *Schizothorax*. Highly specialized

382 schizothoracinae, Clade 7 to 11, was monophyly clustered with *Ptychobarbus* as the

383 sister group, and *Oxygymnocypris* was the primordial genus, and phylogenetic

384 relationships among the other genera including *Schizopygopsis*, *Platypharodon*,

385 *Gymnocypris*, *Chuanchia*, and *Herzensteinia* were ambiguous. *Gymnocypris* possibly

386 originated from *Oxygymnocypris*. *Platypharodon* clustered together as the sister group

387 of *Gymnocypris przewalskii*. The other species of *Gymnocypris* and species of
388 *Chuanchia* and *Herzensteinia* were embedded in genus *Schizopygopsis*. The results
389 above were highly in line with the conclusion that members of the specialized
390 schizothoracine group and the genera *Schizothorax*, *Schizopygopsis*, and *Gymnocypris*
391 were paraphyletic based on complete mitochondrial genomes (Zhang J. et al., 2016).
392 On the other hand, based on RAG1 gene (Fig 3 F), genera in highly specialized grade
393 schizothoracinae were clustered together as a monophyletic clade that strongly supported
394 (96), while genera in primitive grade and specialized grade schizothoracinae could
395 distinguish each other clearly with unreasonable topology, which was obviously
396 different from the results based on mtDNA genes.

397 *Divergence times*

398 Our estimated divergence times of schizothoracinae based on the mitochondrial genes
399 were much older than the estimates of He (He et al., 2004) and Ruber (Ruber et al.,
400 2007), but was consistent with Yang (Li Y.L. et al., 2013). The divergence times of
401 three grades Schizothoracinae were not completely consistent with three stages of the
402 uplift of Qinghai-Tibet Plateau. The speciation time of Schizothoracinae is 66 Ma,
403 which is consistent with the first stage of the uplift of Qinghai-Tibet Plateau. The
404 divergence time of the primitive grade and *Percocypris pingi* was 64 Ma, while the
405 speciation time of the primitive grade was 57 Ma. And the divergence time of
406 specialized and highly specialized Schizothoracinae is 46 Ma, which is much older
407 than the second stage of uplift of Qinghai-Tibet Plateau. The speciation times of

408 specialized and highly specialized Schizothoracinae are 51 Ma and 43 Ma,
409 respectively.

410 **Discussion**

411 *Phylogeny analysis*

412 The phylogeny of schizothoracinae is controversial all the time. Our phylogeny
413 relationships of schizothoracinae, based on RAG1 gene, showed that the primitive
414 grade schizothoracinae fishes clustered into a single branch that strongly supported
415 and the specialized and highly specialized schizothoracinae clustered with some
416 species of *Barbinae*, while phylogenetic of schizothoracinae based on 12
417 protein-coding mtDNA genes indicated that the specialized and highly specialized
418 schizothoracinae as a sister clade directly clustered with clade that included the
419 primitive grade schizothoracinae and *Percocypris* rather than clustered with *Barbinae*.

420 Subfamily schizothoracinae split into two clades into both molecular data, indicating
421 that Schizothoracine fishes have two different origins, as the same as other molecular
422 data (He et al., 2004; Li Y.L. et al., 2013; Qi et al., 2015), were inconsistent with
423 morphological phylogenies that the schizothoracinae was monophyly and the
424 specialized and highly specialized schizothoracinae was originated from primitive
425 Schizothoracine fishes. In morphological phylogenies of schizothoracinae, the
426 trophic morphologies mainly were selected as criterions of taxonomy, such as the
427 rows of pharyngeal teeth, lower jaws horn, pharyngeal bone, and the skull. To some
428 extent, those morphological characters were determined by their habits and foraging
429 ways. Convergent evolution, the same environment prompt to form the similar

430 morphologies, enforces the different species to cluster together, making the traditional
431 taxonomy of the schizothoracinae was different with the molecular results (Qi et al.,
432 2012). The convergent evolution is a common phenomenon such as the lower lip of
433 *Labeoninae* (Li Jun-bing et al., 2005), eye and pigment degeneration and well
434 developed projection of frontal bones of the cave species (Xiao et al., 2005), the
435 morphological similarities of ground tits and ground jays result from convergent
436 evolution (Qu et al., 2013). Those characters of morphologies are non-homologous
437 but are similar that are meaningless to phylogenies. And then the low level of
438 sequence divergence make the molecular mutations don't have enough time to
439 stabilize and accumulate that result in the rapid differentiation of morphology don't
440 synchronously reflect on the molecular variations. And ancestral polymorphism, rapid
441 evolution, expansion and diversification process, mitochondrial introgressive
442 hybridization may also are the main factors to the inconsistence between molecular
443 phylogenies and morphological phylogenies (He & Chen, 2007). RAG1 gene, related
444 to immune system, has the common disadvantages of nuclear genes as molecular
445 markers, such as heterozygous ambiguity and paralogy, few available variable sites
446 resulting from sequences conservation (Chen W.J. et al., 2008; Li Chenghong et al.,
447 2007; Saitoh & Chen, 2008). Therefore, the phylogenetic trees reconstructed based on
448 the two molecular data were different, and we speculated that the phylogenetic
449 relationships of subfamily schizothoracinae based on 12 protein-coding genes were
450 more reliable.

451 Our analysis of phylogeny of schizothoracinae was also different from other

452 some molecular phylogeny. The most prominent was that the closest relative species
453 of schizothoracinae is *Percocypris pingi*, which was consistent with Yang (Yang et al.,
454 2015). The genera of specialized grade are different from the other phylogeny. The
455 *Diptychus* as the basal clade of specialized grade schizothoracinae that
456 *Gymnodiptychus* was evolved from genus *Diptychus*, but *Ptychobarbus* was advanced
457 genus which was clustered together with highly specialized grade schizothoracinae
458 that were inconsistent with the result that *Gymnodiptychus* was advanced genus that
459 evolved from *Ptychobarbus* based on Cyt b (Chen Z.M. & Chen, 2001). Maybe they
460 sampled only minority species and individuals or only used Cyt b mitochondrial gene
461 resulting in different conclusions. In the resolution of interrelationships amongst
462 long-diverged groups, the length of the sequence was particularly important (Rogers,
463 2001). Therefore, just using the Cyt b gene may be inappropriate to speculate the
464 phylogeny of schizothoracinae. Sampling as well plays a speculate role in reconstruct
465 phylogenetic relationships that we need to choose sufficient species and individuals.

466 *Divergence times of schizothoracinae*

467 The divergence times of three grades of Schizothoracinae were not completely
468 consistent with the three stages of uplift of Qinghai-Tibet Plateau, which was
469 contradicted with the morphology results. In our data, the speciation of
470 Schizothoracinae was 66 Ma, which was the time of the first stage of uplift of
471 Qinghai-Tibet Plateau, but the speciation times of primitive Schizothoracinae and the
472 specialized Schizothoracinae and highly specialized Schizothoracinae was much older
473 than the second and third stage of uplift of Qinghai-Tibet Plateau. The speciation time

474 of primitive clade and the specialized - highly specialized clade was very close. So the
475 result of the divergence times was consistent with the phylogeny result, supporting
476 that Schizothoracinae has two independent origins. The primitive clade was originated
477 from the original genus of *Barbinae*, while the specialized and highly specialized
478 clade, as a sister group with the clade consist of the primitive clade and *Percocypris*
479 *pingi*, originated from the other genus of genus of *Barbinae*.

480 **Acknowledgements**

481 This work was supported by the Natural Science Foundation of Qinghai Province (No.
482 2016-ZJ-956) and performed at Key Laboratory of Medicinal Plant and Animal
483 Resources of Qinghai-Tibetan Plateau in Qinghai Province (2017-ZJ-Y13), Key
484 Laboratory of Evolution and Adaptation of Plateau Biota, and Key Laboratory of
485 Animal Genomics in Qinghai Province (Northwest Institute of Plateau Biology,
486 Chinese Academy of Sciences, 2017-ZJ-Y23).

487 Author contributions: All authors collected samples together. Yurong Du, Jianbin Ma
488 and Songchang Guo planned the experiments and helped with analyzing the paper;
489 Delin Qi helped with species classification. Ting Wang analyzed the data and wrote
490 the paper. Ting Wang and Juan Chen performed the experiments, Shihao Sun and
491 Zhonghao Liu assisted with the experiments. Songchang Guo edited the paper. The
492 authors alone are responsible for the content and writing of this paper. The authors
493 declare no conflicts of interest.

494

495 **Uncategorized References**

496 Bouckaert, R, Heled, J, Kuhnert, D, Vaughan, T, Wu, C-H, Xie, D, Suchard, MA, Rambaut, A.,

497 Drummond, AJ. 2014. BEAST 2: A Software Platform for Bayesian Evolutionary. PLoS

498 Comput Biol, 10(4): e1003537.

499 Cao, WX, Yu, YY, Wu, YF., Zhu, SQ. 1981. Origin and evolution of schizothoracine fishes in

500 relation to the upheaval of the Xizang Plateau. Studies on the period, amplitude and type

501 of the uplift of the Qinghai-Xizang Plateau. (In: By Tibetan Expedition Team of the

502 Chinese Academy of Science (Ed.); Science Press, Beijing).

503 Chen, WJ, Miya, M, Saitoh, K., Mayden, RL. 2008. Phylogenetic utility of two existing and

504 four novel nuclear gene loci in reconstructing Tree of Life of ray-finned fishes: the order

505 Cypriniformes (Ostariophysi) as a case study. Gene, 423: 125-134.

506 Chen, YF., Cao, WX. 2000. Schizothoracinae, ed. Yue P (Fauna Sinica, Osteichthyes,

507 Cypriniformes III (in Chinese). Beijing: Science Press.

508 Chen, ZM., Chen, YF. 2001. Phylogeny of the specialized schizothoracine fishes (Teleostei :

509 Cypriniformes : Cyprinidae). Zoological Studies, 40(2): 147-157.

510 Dewey, JF, Cande, S., Pitman, WC. 1989. Tectonic evolution of the India-Eurasia collision

511 zone. Eclogae Geologicae Helvetiae, 82: 717-734.

512 Gaubert, P, Denys, G., Oberdorff, T. 2009. Genus-level supertree of Cyprinidae

513 (Actinopterygii: Cypriniformes), partitioned qualitative clade support and test of

514 macro-evolutionary scenarios. Biol Rev Camb Philos Soc, 84(4): 653-689.

515 Graham, PW, Sophia, RC, Hannah, LK, Gemma, P, Tessa, RS., David, JW. 2017. Interspecific

516 hybridization causes long-term phylogenetic discordance between nuclear and

517 mitochondrial genomes in freshwater fishes. Molecular Ecology, 26: 3116-3127.

518 He, DK., Chen, YF. 2007. Molecular phylogeny and biogeography of the highly specialized
519 grade schizothoracine fishes (Teleostei: Cyprinidae) inferred from cytochrome *b*
520 sequences. Chinese Science Bulletin, 52(6): 777-788.

521 He, DK, Chen, YF, Chen, YY., Chen, ZM. 2004. Molecular phylogeny of the specialized
522 schizothoracine fishes (Teleostei : Cyprinidae), with their implications for the uplift of
523 the Qinghai-Tibetan Plateau. Chinese Science Bulletin, 49(1): 39-48.

524 Huelsenbeck, JP., Ronquist, F. 2005. Bayesian analysis of molecular evolution using MrBayes,
525 ed. M.Gail K .Dietz, K. Krickeberg, A. Tsiatis, J. Samet, 183-226 vols. . (Statistical
526 Methods in Molecular Evolution (USA)).

527 Inoue, JG, Miya, M, Tsukamoto, K., Nishida, M. 2003. Basal actinopterygian relationships: a
528 mitogenomic perspective on the phylogeny of the "ancient fish". Molecular
529 Phylogenetics and Evolution, 26: 110-120.

530 Inoue, JG, Miya, M, Tsukamoto, K., Nishida, M. 2004. Mitogenomic evidence for the
531 monophyly of elopomorph fishes (Teleostei) and the evolutionary origin of the
532 leptocephalus larva. Mol Phylogenetic Evol, 32: 274-286.

533 Ioue, JG, Miya, M, Tsukamoto, K., Nishida, M. 2001. A mitogenomic perspective on the basal
534 teleostean phylogeny: resolving higher-level relationships with longer DNA sequences.
535 Mol Phylogenetic Evol, 20(2): 275-285.

536 Ishiguro, NB, Miya, M., Nishida, M. 2003. Basal euteleostean relationships: a mitogenomic
537 perspective on the phylogenetic reality of the "Protacanthopterygii". Molecular
538 Phylogenetics and Evolution, 27: 476-488.

539 Jiang, ST, Hong, GY, Yu, M, Li, N, Yang, Y, Liu, YQ., Wei, ZJ. 2009. Characterization of the

540 complete mitochondrial genome of the silkworm moth, *Eriogyna pyretorum*
541 (Lepidoptera: Saturniidae). International Journal of Biological Science, 5(4): 351-365.

542 Jondeung, A, Sangthong, P., Zardoya, R. 2007. The complete mitochondrial DNA sequence of
543 the Mekong giant catfish (*Pangasianodon gigas*), and the phylogenetic relationships
544 among Siluriformes. Gene, 387(1-2): 49-57.

545 Kawahara, R, Miya, M, Mabuchi, K, Lavoue, S, Inoue, JG, Satoh, TP, Kawaguchi, A.,
546 Nishida, M. 2008. Interrelationships of the 11 gasterosteiform families (sticklebacks,
547 pipefishes, and their relatives): a new perspective based on whole mitogenome
548 sequences from 75 higher teleosts. Mol Phylogenetic Evol, 46: 224-236.

549 Lavoue, S, Miya, M, Poulsen, JY, Moller, PR., Nishida, M. 2008. Monophyly, phylogenetic
550 position and inter-familial relationships of the Alepocephaliformes (Teleostei) based on
551 whole mitogenome sequences. Mol Phylogenetic Evol, 47: 1111-1121.

552 Lavoue, S, Miya, M, Inoue, JG, Saitoh, K, Ishiguro, NB., Mishida, M. 2005. Molecular
553 systematics of the gonorynchiform fishes (Teleostei) based on whole mitogenome
554 sequences: implications for higher-level relationships within the Otocephala. Mol
555 Phylogenetic Evol, 37: 165-177.

556 Li, C, Orti, G, Zhang, G., Lu, G. 2007. A practical approach to phylogenomics: the phylogeny
557 of ray-finned fish (Actinopterygii) as a case study. BMC Evol Biol, 7: 44.

558 Li, J-b, Wang, X, He, S., Chen, Y. 2005. Phylogenetic studies of Chinese labeonine fishes
559 (Teleostei: Cyprinidae) based on the mitochondrial 16S rRNA gene. Progress in Natural
560 Science, 15(3): 213-219.

561 Li, YL, Shedlock, AM, Wu, JQ, Sang, L, Tersing, T, Hasegawa, M, Yonezawa, T., Zhong, Y.

562 2013. High altitude adaptation of the schizothoracine fishes (Cyprinidae) revealed by the
563 mitochondrial genome analyses. *Gene*, 517(2): 169-178.

564 Masaki, M, Takashi, PS., Mutsumi, N. 2004. The phylogenetic position of toadfishes (order
565 Batrachoidiformes) in the higher ray-finned fish as inferred from partitioned Bayesian
566 analysis of 102 whole mitochondrial genome sequences. *Biological Journal of the
567 Linnean Society*, 85: 289-306.

568 Minegishi, Y, Aoyama, J, Inoue, JG, Miya, M, Nishida, M., Tsukamoto, K. 2005. Molecular
569 phylogeny and evolution of the freshwater eels genus *Anguilla* based on the whole
570 mitochondrial genome sequences. *Mol Phylogenet Evol*, 34: 134-146.

571 Mirza, MR. 1991. Contribution to the systematics of the Schizothoracine fishes
572 (Pisces: Cyprinidae) with the description of three new tribes. *Pakistan Journal of Zoology*,
573 23(339-341).

574 Miya, M., Nishida, M. 1999. Organization of the Mitochondrial Genome of a Deep-Sea Fish,
575 *Gonostoma gracile* (Teleostei: Stomiiformes): First Example of Transfer RNA Gene
576 Rearrangements in Bony Fishes. *Marine Biotechnology*, 1: 416-426.

577 Miya, M., Nishida, M. 2000. Use of mitogenomic information in teleostean molecular
578 phylogenetics: a tree-based exploration under the maximum-parsimony optimality
579 criterion. *Mol Phylogenet Evol*, 17(3): 437-455.

580 Miya, M, et al. 2003. Major patterns of higher teleostean phylogenies: a new perspective
581 based on 100 complete mitochondrial DNA sequences. *Molecular Phylogenetics and
582 Evolution*, 26: 121-138.

583 Paul, T, Xu, Z, Francoise, R, Bertrand, M, Nicolas, A, Gerard, W., Yang, J. 2001. Oblique

584 stepwise rise and growth of the Tibet Plateau. *Science*, 294(5547): 1671-1677.

585 Qi, D, Chao, Y, Zhao, L, Shen, Z., Wang, G. 2013. Complete mitochondrial genomes of two

586 relatively closed species from *Gymnocypris* (Cypriniformes: Cyprinidae): genome

587 characterization and phylogenetic considerations. *Mitochondrial DNA*, 24(3): 260-262.

588 Qi, D, Chao, Y, Guo, S, Zhao, L, Li, T, Wei, F., Zhao, X. 2012. Convergent, parallel and

589 correlated evolution of trophic morphologies in the subfamily schizothoracinae from the

590 Qinghai-Tibetan plateau. *PLoS One*, 7(3): e34070.

591 Qi, D, Guo, S, Chao, Y, Kong, Q, Li, C, Xia, M, Xie, B., Zhao, K. 2015. The biogeography

592 and phylogeny of schizothoracine fishes (*Schizopygopsis*) in the Qinghai-Tibetan Plateau.

593 *Zoologica Scripta*, 44: 523-533.

594 Qu, Y, et al. 2013. Ground tit genome reveals avian adaptation to living at high altitudes in the

595 Tibetan plateau. *Nature Communications*, 4: 2071.

596 Rogers, JS. 2001. Maximum likelihood estimation of phylogenetic trees is consistent when

597 substitution rates vary according to the invariable sites plus gamma distribution.

598 *Systematic Biology*, 50(5): 713-722.

599 Ronquist, F., Huelsenbeck, JP. 2003. MrBayes 3: Bayesian phylogenetic inference under

600 mixed models. *Bioinformatics*, 19(12): 1572-1574.

601 Ruber, L, Kottelat, M, Tan, HH, Ng, PK., Britz, B. 2007. Evolution of miniaturization and the

602 phylogenetic position of *Paedocypris*, comprising the world's smallest vertebrate. *BMC*

603 *Evolutionary Biology*, 7: 38.

604 Saitoh, K., Chen, W-J. 2008. Reducing cloning artifacts for recovery of allelic sequences by

605 T7 endonuclease I cleavage and single re-extension of PCR products – A benchmark.

606 Gene, 423: 92-95.

607 Saitoh, K, Miya, M, Inoue, JG, Ishiguro, NB., Nishida, M. 2003. Mitochondrial genomics of
608 ostariophysan fishes: perspectives on phylogeny and biogeography. J Mol Evol, 56:
609 464-472.

610 Saitoh, K, Hayashizaki, K, Yokoyama, Y, Asahida, T, Toyohara, H., Yamashita, Y. 2000.
611 Complete nucleotide sequence of Japanese Flounder (*Paralichthys olivaceus*)
612 mitochondrial genome: Structural properties and cue for Resolving Teleostean
613 relationships. Journal of Heredity, 91(271-278).

614 Saitoh, K, Sado, T, Doosey, MH, Jr, HLB, Inoue, JG., al, e. 2011a. Evidence from
615 mitochondrial genomics supports the lower Mesozoic of South Asia as the time and
616 place of basal divergence of cypriniform fishes (Actinopterygii: Ostariophysi).
617 Zoological Journal of the Linnean Society, 161: 633-662.

618 Saitoh, K, Sado, T, Mayden, RL, Hanzawa, N, Nakamura, K, Nishida, M., Miya, M. 2006.
619 Mitogenomic evolution and interrelationships of the Cypriniformes (Actinopterygii:
620 Ostariophysi): the first evidence toward resolution of higher-level relationships of the
621 world's largest freshwater fish clade based on 59 whole mitogenome sequences. J Mol
622 Evol, 63(6): 826-841.

623 Saitoh, K, Sado, T, Doosey, MH, Jr, HLB, Inue, JG, Nishida, M, Mayden, RL., Miya, M.
624 2011b. Evidence from mitochondrial genomics supports the lower Mesozoic of South
625 Asia as the time and place of basal divergence of cypriniform fishes (Actinopterygii:
626 Ostariophysi). Zoological Journal of the Linnean Society, 161(3): 633-662.

627 Sambrook, J, Fritsch, EF., Maniatis, T. 1989. Molecular cloning: a laboratory manual, 2nd ed.

628 Cold Spring Harbor Laboratory, New York, Cold Spring Harbor Laboratory Press: 1659.

629 Stamatakis, A, Hoover, P., Rougemont, J. 2008. A rapid bootstrap algorithm for the RAxML
630 Web servers. *Systematic Biology*, 57(5): 758-771.

631 Tzeng, C-S, Hui, C-F, Shen, S-C., Huang, PC. 1992. The complete nucleotide sequence of the
632 *Crossostoma lacustre* mitochondrial genome: conservation and variations among
633 vertebrates. *Nucleic Acids Research*, 20(18): 4853-4858.

634 Wang, M, Yang, J-X., Chen, X-Y. 2013. Molecular Phylogeny and Biogeography of
635 *Percocypris* (Cyprinidae, Teleostei). *PLoS One*, 8(6): e61827.

636 Wu, X, Chen, Y, Chen, X., Chen, J. 1981. A taxonomical sytem and phylogenetic relationship
637 of the families of the suborder cyprinoidei (Pisces). *Scientia Sinica*, XXIV(4): 565-572.

638 Wu, Y-F., Tan, Q-J. 1991. Characteristics of the fish- fauna of the characteristics of
639 Qinghai-Xizang Plateau and its geological disreibution and formation. *Acta Zoologica
640 Sinica*, 37(2): 135-151.

641 Wu, YF., Wu, CZ. 1992. The Fishes of the Qinghai-Xizang Plateau. Chengdu, China ,Sichuan
642 Science and Technology Press.

643 Xiao, H, Chen, S-Y, Liu, Z-M, Zhang, R-D, Li, W-X, Zan, R-G., Zhang, Y-P. 2005. Molecular
644 phylogeny of *Sinocyclocheilus* (Cypriniformes: Cyprinidae) inferred from mitochondrial
645 DNA sequences. *Molecular Phylogenetics and Evolution*, 36: 67-77.

646 Yang, L, et al. 2015. Phylogeny and polyploidy: resolving the classification of cyprinine
647 fishes (Teleostei: Cypriniformes). *Molecular Phylogenetics and Evolution*, 85: 97-116.

648 Zhang, J, Chen, Z, Zhou, CJ., Kong, XH. 2016. Molecular phylogeny of the subfamily
649 Schizothoracinae (Teleostei: Cypriniforms: Cyprinidae) inferred from complete

650 mitochondrial genomes. Biochemical Systematics and Ecology, 64: 6-13.

651 Zhang, T-C, Qiao, Q., Zhong, Y. 2013. Current status and prospect of biological resources

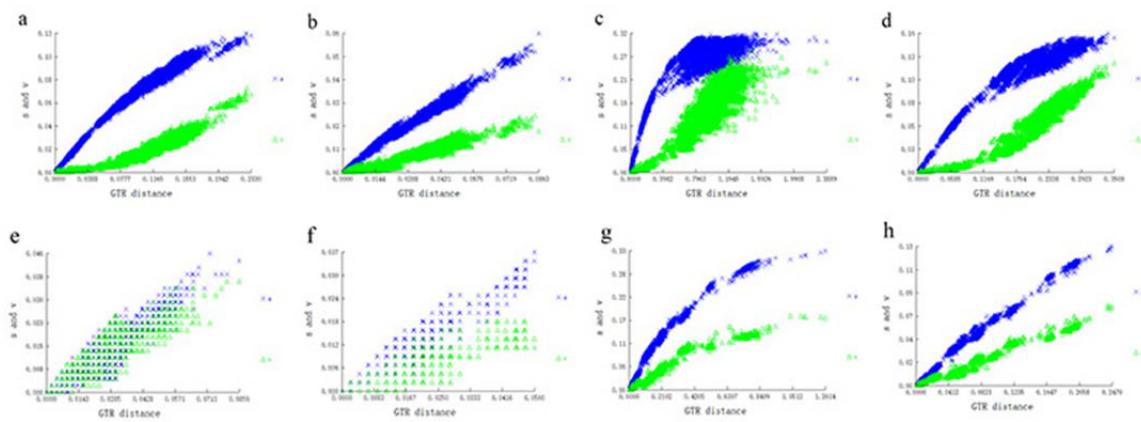
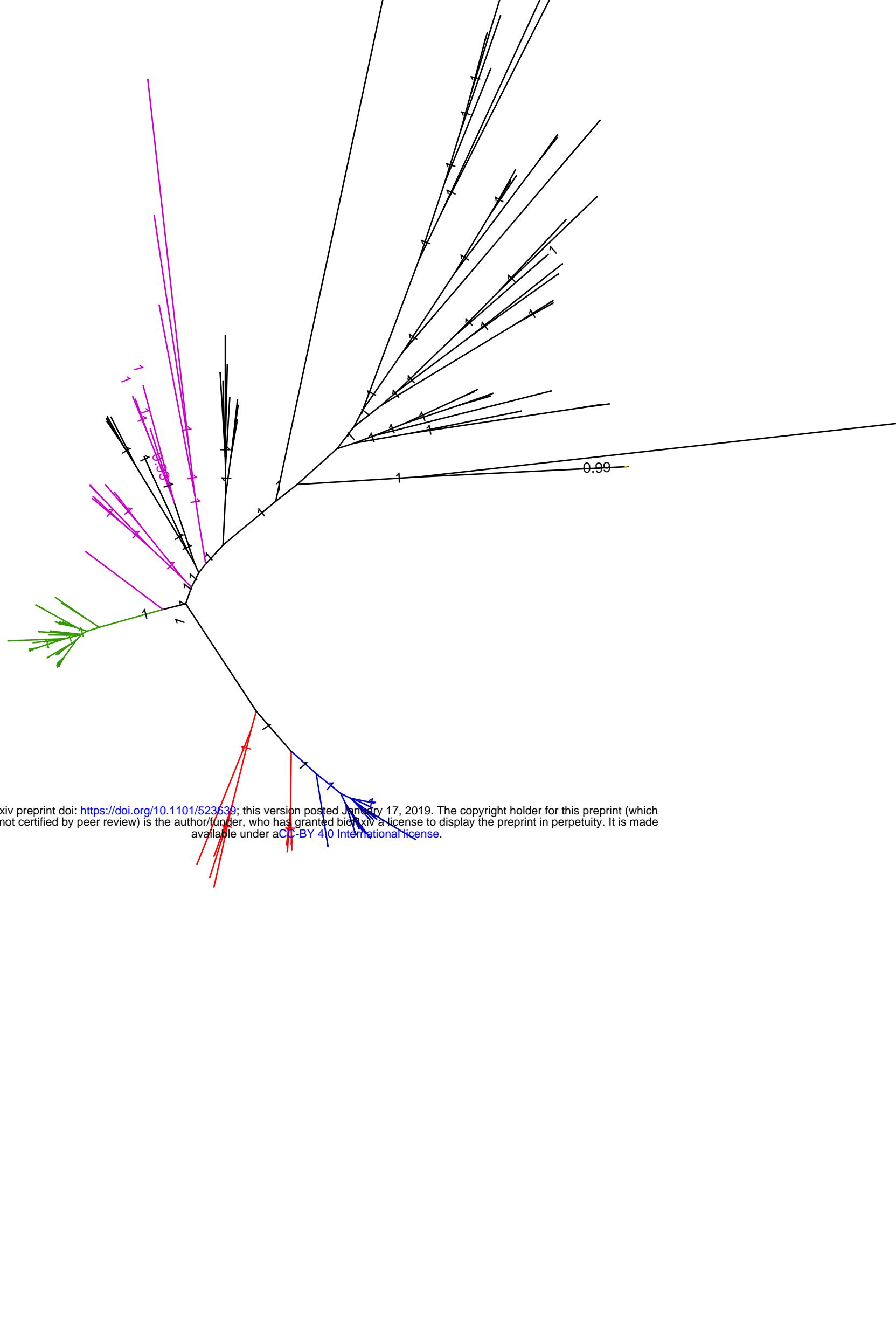
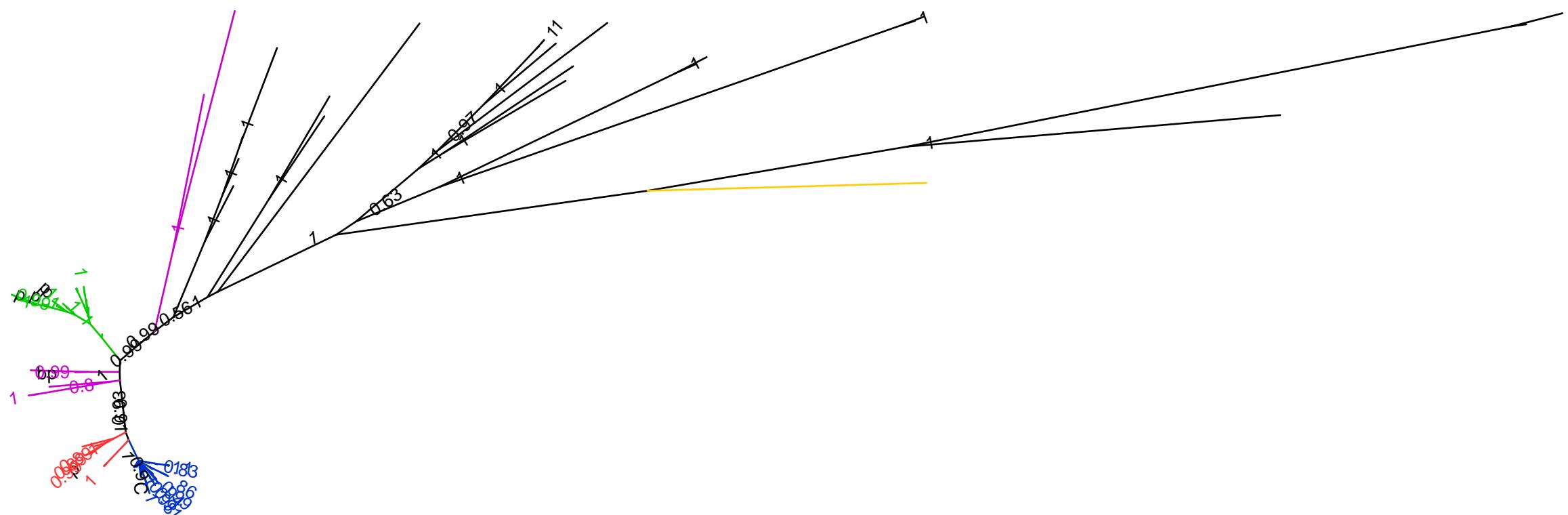
652 development in Qinghai-Tibet Plateau. Chinese Bulletin of Life Sciences, 25(5):

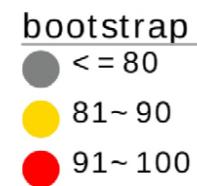
653 446-450.

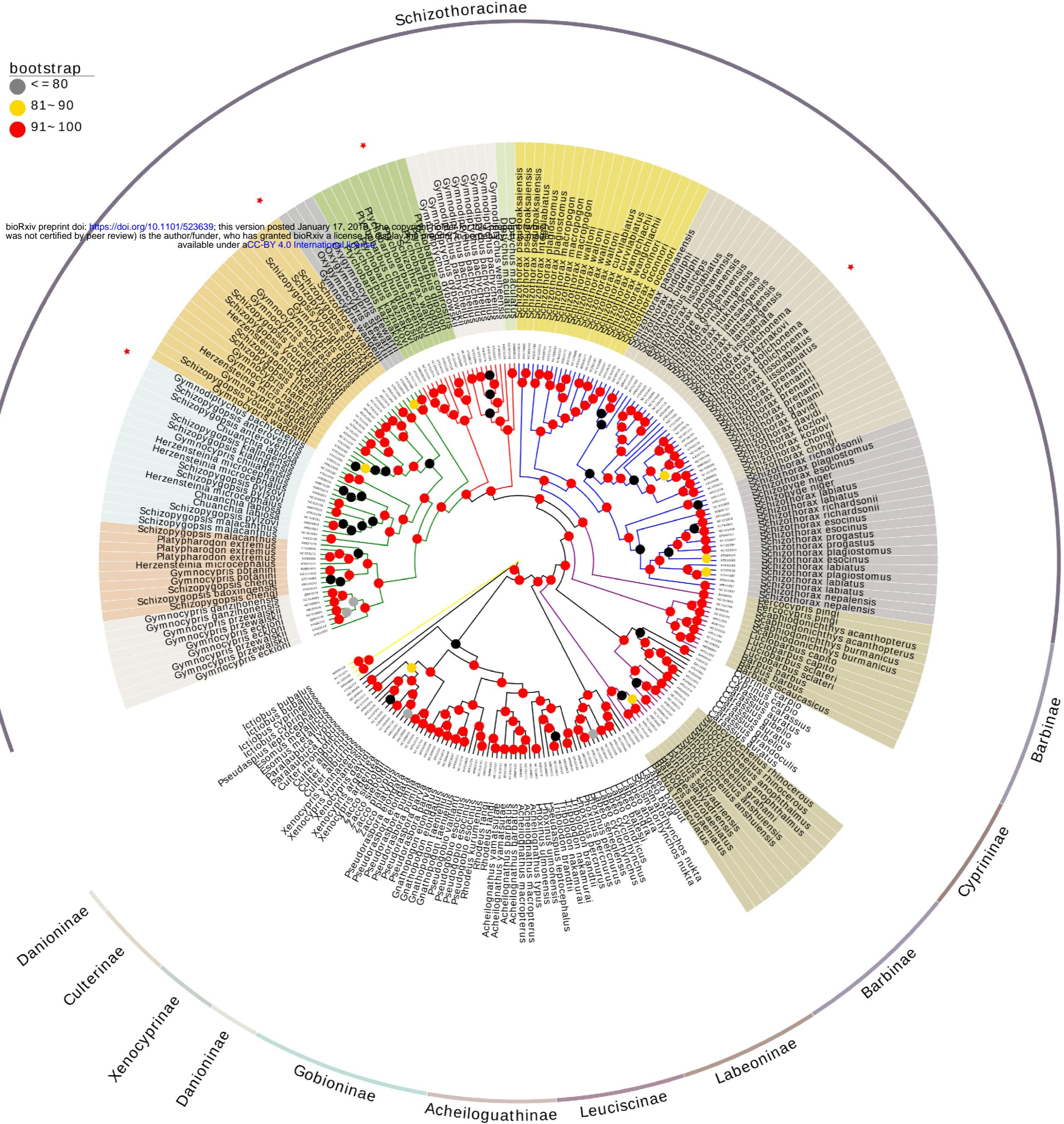
654

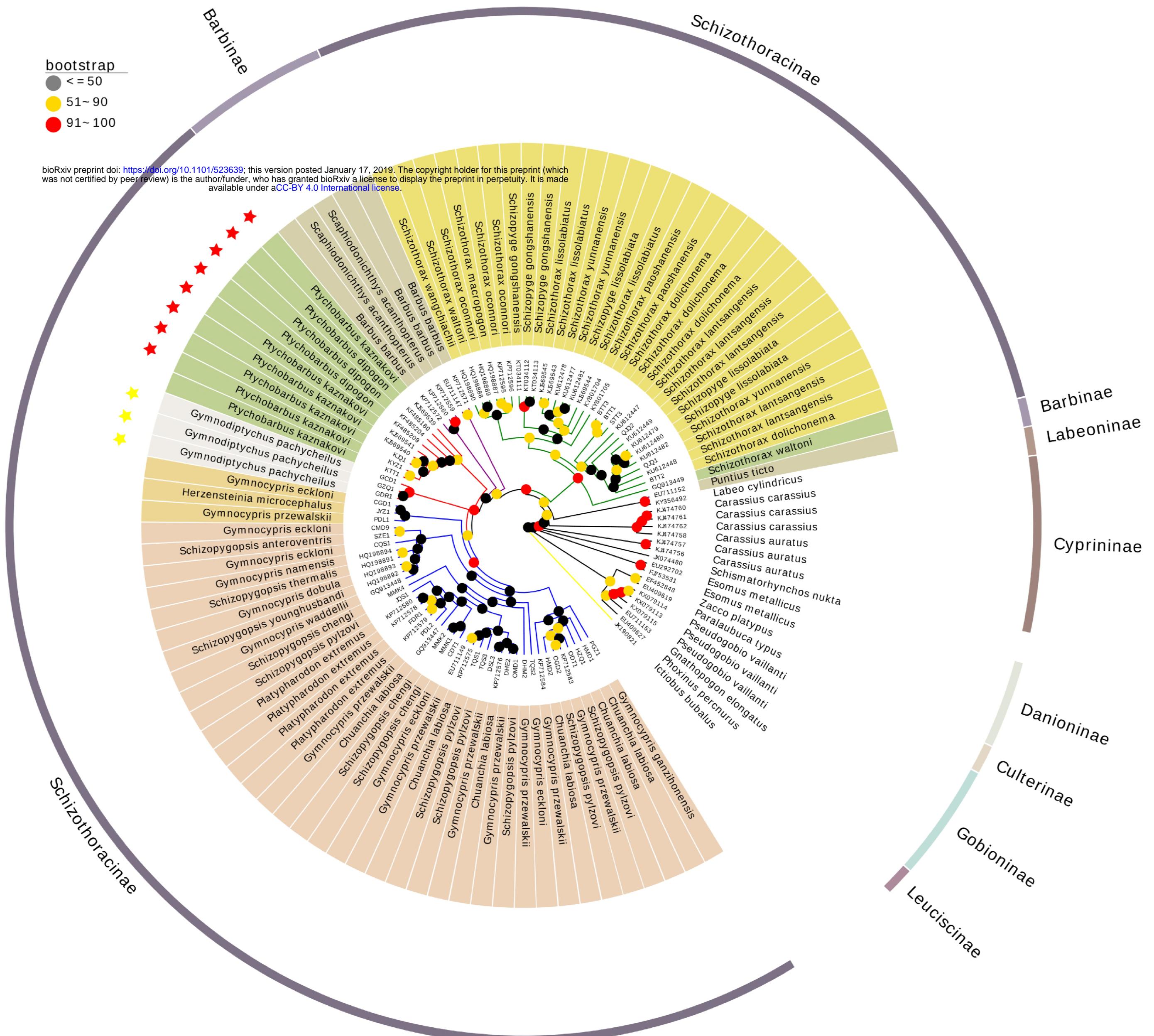
655

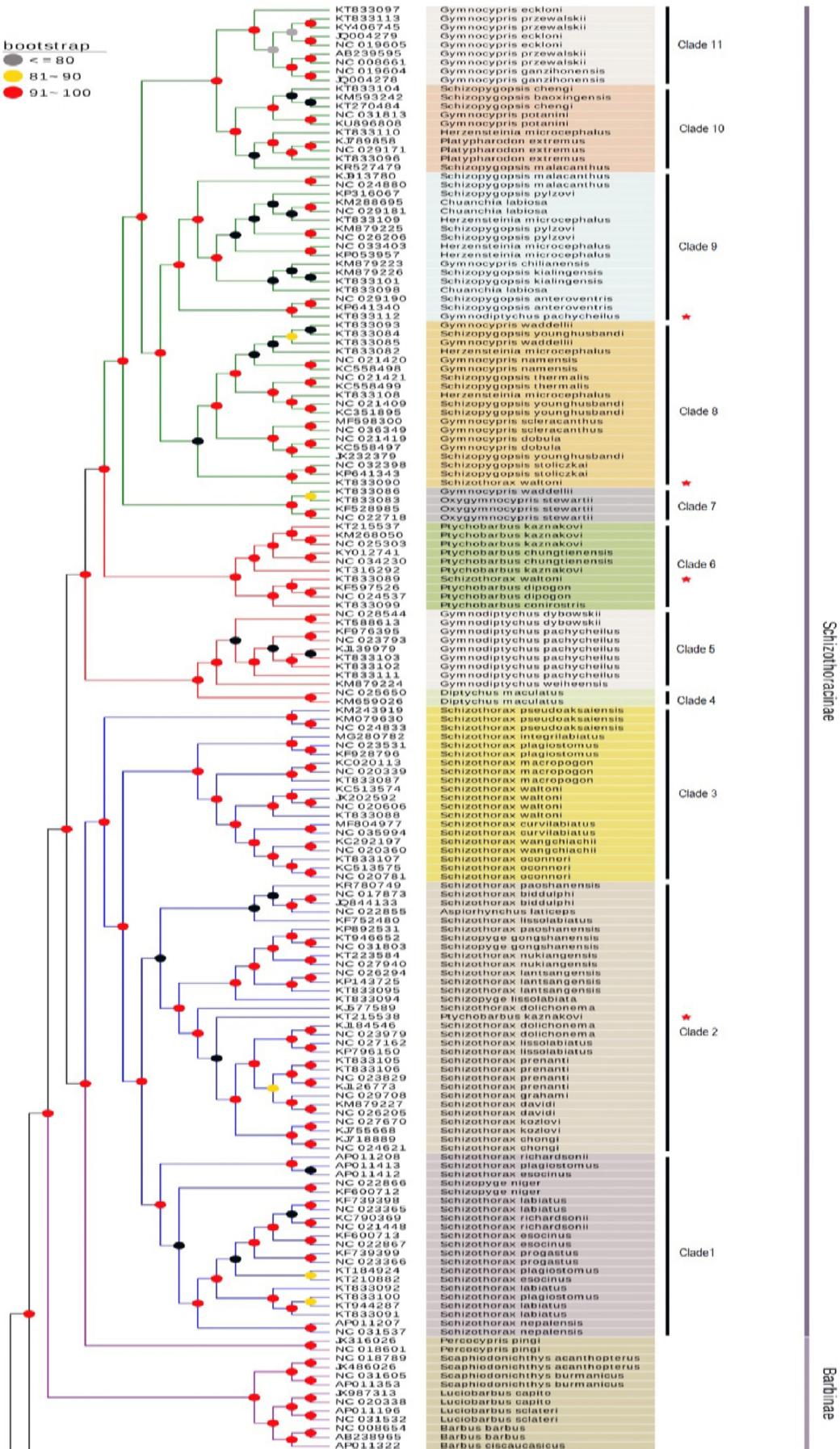
656

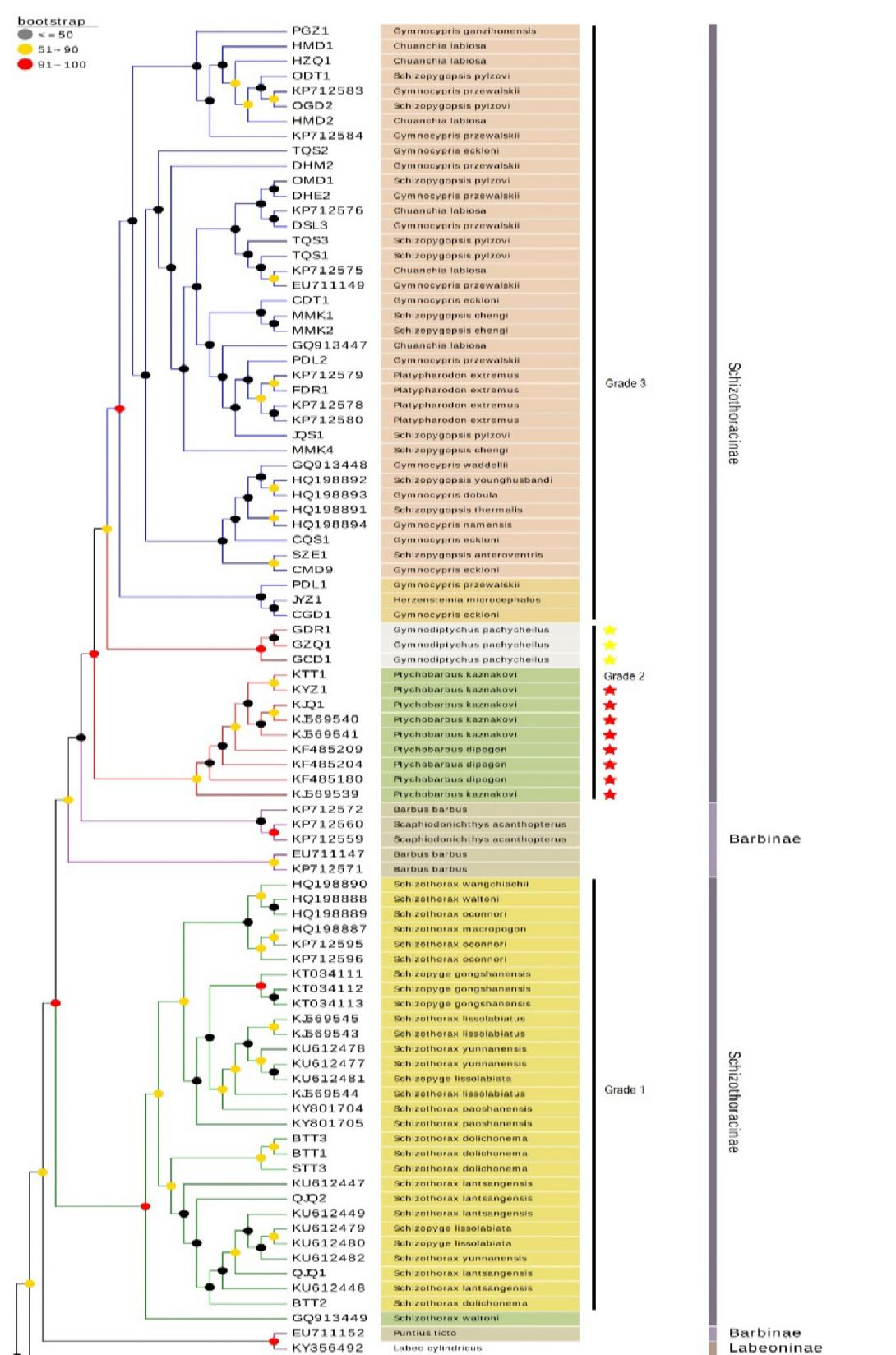





Fig 1 The saturation analysis of both the mitochondrial protein coding genes (excluding ND6 and 12SrRNA) sequences and RAG1 gene sequences based on GTR model. Blue part represent the , green part represent the . Fig a, b, c, and d represent saturation of codon1, codon2 codon3 and complete codon of 12 protein-coding genes, respectively; Fig e, f, g, and h represent saturation of the same part of RAG1 gene.




1





bioRxiv preprint doi: <https://doi.org/10.1101/523639>; this version posted January 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

