

To what extent gene connectivity within co-expression network matters for phenotype prediction?

Aurélien Chateigner¹, Marie-Claude Lesage-Descauses¹, Odile Rogier¹, Véronique Jorge¹, Jean-Charles Leplé², Véronique Brunaud^{3,4}, Christine Paysant-Le Roux^{3,4}, Ludivine Soubigou-Taconnat^{3,4}, Marie-Laure Martin-Magniette^{3,4,5}, Leopoldo Sanchez^{*,1}, and Vincent Segura^{*,†,1,6}

¹BioForA, INRA, ONF, Orléans, France

²BIOGECO, INRA, Univ. Bordeaux, Cestas, France

³Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Saclay, Gif sur Yvette, France

⁴Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA Université Paris-Diderot, Sorbonne Paris-Cité, Gif sur Yvette, France

⁵MIA-Paris, AgroParisTech, INRA, Paris, France

⁶AGAP, Université Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France

Abstract

Recent literature on the differential role of genes within networks distinguishes core from peripheral genes. If previous works have shown contrasting features between them, whether such categorization matters for phenotype prediction remains to be studied. We sequenced RNA in a *Populus nigra* collection and built co-expression networks to define core and peripheral genes. We found that cores were more differentiated between populations than peripherals while being less variable, suggesting that they have been constrained through potentially divergent selection. We also showed that while cores were overrepresented in a subset of genes deemed important for trait prediction, they did not systematically predict better than peripherals or even random genes. Our work is the first attempt to assess the importance of co-expression network connectivity in phenotype prediction. While highly connected core genes appear to be important, they do not bear enough information to systematically predict better quantitative traits than other gene sets.

*Equal contribution

†Corresponding author: vincent.segura@inra.fr

1 Introduction

2 Gene-to-gene interaction is a pervasive although elusive phenomenon underlying phenotype expression.
3 Genes operate within networks with more or less mediated actions on the phenotype. Systems biology approaches are required to grasp the functional topology of these networks and ultimately gain insights
4 into how gene interactions interplay at different biological levels to produce global phenotypes (Mackay et al., 2009). New sources of information and their subsequent use in the inference of gene networks are
5 populating the wide gap existing between phenotypes and DNA sequences and, therefore, opening the door
6 to systems biology approaches for the development of context-dependent phenotypic predictions. RNA sequencing (RNAseq) is one of such new sources of information that can be used to infer gene networks
7 (Han et al., 2015).

8 Among the many works on gene network inference based on transcriptomic data, two recent studies aimed at characterizing the different gene roles
9 within co-expression networks (Josephs et al., 2017; Mähler et al., 2017). Josephs et al. (2017) studied the link between gene expression, gene connectivity (Langfelder and Horvath, 2008), divergence (Williamson et al., 2005) and traces of natural selection (Josephs et al., 2015; Sicard et al., 2015) in a natural population of the plant *Capsella grandiflora*. They showed that both connectivity and local regulatory variation on the genome are important factors, while not being able to disentangle which of them is directly responsible for patterns of selection among genes. Mähler et al. (2017) recalled the importance of studying the general features of biological networks in natural populations. With a genome-wide association study (GWAS) on expression data from RNAseq, they suggested that purifying selection is the main mechanism maintaining functional connectivity of core genes in a network and that this connectivity is inversely related to eQTLs effect size. These two studies start to outline the first elements of a gene network theory based on connectivity, stating that core genes, which are highly connected, are each of high importance, and thus highly constrained by selection. In contrast to these central genes, there are peripheral, less connected genes, never far from a core hub. These peripheral genes are less constrained than core genes and consequently, they harbor larger amounts of variation at population levels.

10 Furthermore, classic studies of molecular evolution in biological pathways can help us understand the link between gene connectivity and traits. Several articles showed that selection pressure is corre-

11 lated to the gene position within the pathway, either positively (Han et al., 2013; Lu, 2003; Rausher et al., 2008, 1999; Riley et al., 2003; Yu et al., 2011) or negatively (Han et al., 2013; Jovelin and Phillips, 2011; Song et al., 2012; Wu et al., 2010), depending on the pathway. Jovelin and Phillips (2011) showed that selective constraints are positively correlated to expression level, confirming previous studies (Drummond et al., 2005; Duret and Mouchiroud, 2000; Pál et al., 2001). Montanucci et al. (2011) showed a positive correlation between selective constraints and connectivity, although such a possibility remained contentious in previous works (Bloom and Adami, 2004; Fraser and Hirsh, 2004).

12 While Josephs' (Josephs et al., 2017) and Mähler's (Mähler et al., 2017) studies framed a general view of genes organization based on topological features described in molecular evolution studies of biological pathways, a point remains quite unclear so far: to what extent core and peripheral genes based on connectivity within a co-expression network are involved in the definition of a phenotype? One way to clarify this would be to study the respective roles of core and peripheral genes, as defined on the basis of their connectivity within a co-expression network, in the prediction of a phenotype. Even if predictions are still one step before validation by *in vivo* experiments, they already represent a landmark that may not only be correlative but also closer to causation, depending on the modeling strategy.

13 Present study aims at exploring gene ability to predict traits, with datasets representing core genes and peripheral genes. By making use of two methods to predict these phenotypes, a classic additive linear model, and a more complex and interactive neural network model, we further aimed at studying the mode of action of each type of genes, in order to gain insight into the genetic architecture of complex traits. On the one hand, genes that are better predictors with an additive model are supposed to have an overall more additive, direct mode of action representing a gene that would be downstream in a biological pathway. We expect core genes to display such additive behavior, with a high but selectively constrained expression level (Jovelin and Phillips, 2011; Montanucci et al., 2011). On the other hand, genes being better predictors with an interactive model are supposed to be upstream in pathways. We expect peripheral genes to behave interactively, with a lower but relatively more variable expression level. With a lower variation, we also expect core genes to be worse predictors for traits than peripheral genes unless the former also bear larger effects.

107 To answer the questions concerning the respective
 108 roles of core and peripheral genes on phenotypic variation,
 109 we have sequenced the RNA of 459 samples of
 110 black poplar (*Populus nigra*), corresponding to 241
 111 genotypes, from 11 populations representing the natural
 112 distribution of the species across Western Europe.
 113 We also have for each of these trees phenotypic
 114 records for 17 traits, covering the growth, phenology,
 115 physical and chemical properties of wood. They
 116 cover two different environments where the trees were
 117 grown in common gardens, in central France and
 118 northern Italy. With the transcriptomic data, we
 119 built a co-expression network in order to define con-
 120 trasting gene sets according to their connectivity
 121 within the network. We then asked whether these
 122 contrasting sets differed in terms of both population
 123 and quantitative genetics parameters and quantita-
 124 tive trait prediction.

125 Results

126 Wood samples, phenotypes, and tran- 127 scriptomes

128 Wood collection and phenotypic data (**Table S1**)
 129 have been previously described (Gebreselassie et al.,
 130 2017). Further details are provided in the materi-
 131 als and methods section. The complete pipeline is
 132 sketched in **Figure 1**. Briefly, we are focusing on
 133 241 genotypes coming from different natural pop-
 134 ulations in western Europe and planted in 2 com-
 135 mon gardens (to avoid the confounding between ge-
 136 netic and large environmental effects) at two differ-
 137 ent locations in 6 replicated and randomized com-
 138 plete blocks, in Orléans (central France) and Sav-
 139 igliano (northern Italy). A total of 17 phenotypic
 140 traits (**Table S1**) have been collected on these geno-
 141 types (10 traits in Orléans and 7 in Savigliano). In
 142 Orléans only, we used 2 clonal trees per genotype
 143 (from 2 blocks) to sample xylem and cambium dur-
 144 ing the 2015 growing season for RNA sequencing. No
 145 tree from Savigliano was used for RNAseq. Because
 146 of sampling and experimental mistakes that were fur-
 147 ther revealed by the polymorphisms in the RNA se-
 148 quences, we ended up with 459 samples for which
 149 we confirmed the genotype identity (comparison to
 150 previously available genotyping data from an SNP
 151 chip). These samples correspond to 218 genotypes
 152 with two biological replicates and 23 genotypes with
 153 a single biological replicate. We mapped the sequenc-
 154 ing reads on the *Populus trichocarpa* transcriptome
 155 (v3.0) to obtain gene expression data.

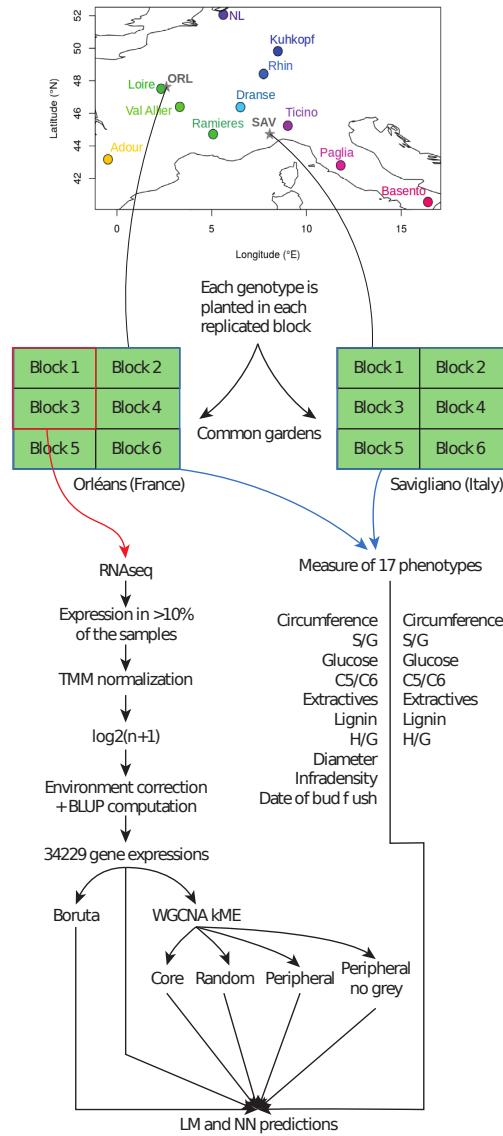


Figure 1: General sketch of the experiment. From the top to the bottom: Map of the location of the different populations sampled for this experiment. From these populations, genotypes were collected and planted in 2 locations (Orléans, in central France, and Savigliano, in northern Italy). At each site, we planted 6 clones of each genotype, 1 in each of the 6 blocks, and their position in each block was randomized. For all the blocks, we collected phenotypes: 10 in Orléans (circumference, S/G, glucose, C5/C6, extractives, lignin, H/G, diameter, infradensity and date of bud flush) and 7 in Savigliano (circumference, S/G, glucose, C5/C6, extractives, lignin, H/G). Only on the clones of 2 blocks in Orléans, we performed the RNA sequencing and treatment of data. The treated RNAseq data were used with different algorithms and in different sets to predict the phenotypes measured on the same trees (in Orléans) or on the same genotype but on different trees (in Savigliano).

156 We did PCA analyses on the cofactors that
157 were presumably involved in the experience, to look
158 whether any confounding effect could be identified
159 (**Figure S1**). No clear segregation was found for
160 any of those, except for the ones associated with
161 block, date and hour of sampling. We used a lin-
162 ear mixed-model framework to correct the effects of
163 these cofactors on each transcript (see the materi-
164 als and methods section for a formal description of
165 the model used), with the *breedR* R package (Muñoz
166 and Sanchez, 2017), and further computed from the
167 models the complete BLUP for each genotype. Here-
168 after, we refer to this set of BLUPs for the 34,229
169 transcripts as the full gene set (83% of annotated
170 transcripts).

171 Clustering and network construction

172 The classical approach to build a signed scale-free
173 gene expression network is to use the weighted
174 correlation network analysis (implemented in the
175 *WGCNA* R package (Langfelder and Horvath,
176 2008)), using a power function on correlations be-
177 tween gene expressions. We chose to use Spearman's
178 rank correlation to avoid any assumption on the lin-
179 earity of relationships. The scale-free topology fitting
180 index (R^2) did not reach the soft-threshold of 0.85, so
181 we chose the classical power value of 12, correspond-
182 ing to the first decrease in the slope growth of the
183 index, resulting in an average connectivity of 195.2
184 (**Figure 2A**). We detected 16 gene expression mod-
185 ules (**Table S2**) with automatic detection (merging
186 threshold: 0.25, minimum module size: 30, **Fig-**
187 **ure 2B**). Spearman correlations between phenotypic
188 and expression data, presented in the lower panel of
189 **Figure 2B** below the module membership of each
190 gene, display a structure when the order follows the
191 gene expression tree. The traits themselves are line
192 ordered according to clustering on their scaled values
193 to represent their relationships (**Figure S2**). Inter-
194 estingly, some patterns in the correlation between
195 expression and traits do not follow what we would
196 expect from the similarity between traits (5 traits
197 out of 7 with data in both geographical sites). For
198 instance, in the group composed of S/G ratios and
199 glucose composition, the patterns were more similar
200 between sites across traits than between traits across
201 sites (**Figure 2B**, **Figure S3**). Complex shared
202 regulations mediated by the environment seem to
203 be in control of these phenotypes, suggesting site-
204 specific genetic control. Otherwise, glucose compo-
205 sition in Savigliano, wood basic density, and extrac-
206 tives in Orléans presented similar patterns, contrarily

207 to what would be expected from the correlations be-
208 between these traits. These results from the compa-
209 rative analysis of correlations pinpoint some underlying
210 links between traits that are not obvious from factual
211 phenotypic and genetic correlations between traits.

212 To get further insight into the relationships be-
213 tween module composition and traits, we looked
214 at the strongest correlations between the best the-
215 oretical representative of a gene expression mod-
216 ule (eigengene) and each trait, in order to identify
217 genes in relevant modules with an influence on the
218 trait (**Figure 2C**). Following a Bonferroni correc-
219 tion of the p-values provided by *WGCNA*, only 80
220 correlations remained significant ($p \leq 0.05$) out of
221 the initial 272 traits by module combinations. Six
222 traits displayed no significant correlations with any
223 module (Glucose.Sav, both C5.C6, Extractives.Sav,
224 Lignin.Sav and H.G.Sav) and 1 module was not sig-
225 nificantly correlated with any of the traits studied
226 (purple, **Figure S3**). In significantly correlated
227 modules, gene expression correlation with trait was
228 also significantly correlated with centrality in the
229 module (represented by the kME, the correlation
230 with the module eigengene), while no correlation was
231 found in poorly correlated modules (**Figure 2D**,
232 **Figure S4**). In other words, there is a three-way cor-
233 relation. The genes with the highest kME in a given
234 module are the most correlated to the eigengene and,
235 consequently, are also the most correlated to those
236 traits with the largest correlation with the module
237 eigengene. Although this is somehow expected, it
238 underlines the usefulness of kME as a centrality score
239 to further characterize the genes within each module.
240 We thus used this centrality score to define further
241 the topological position of our gene expressions in the
242 network and to serve as a basis for role comparisons
243 between genes. For each gene, we used its highest
244 absolute score, which corresponds to its score within
245 the module to which it was assigned. We selected the
246 10% of genes with the highest global absolute scores
247 to define the core genes group, and 10% with the
248 lowest global absolute scores to define the peripheral
249 genes group. Finally, we selected 100 samples of 3422
250 (10%) random genes as control groups (**Figure S5**,
251 bottom panel).

252 One particular module from the *WGCNA* cluster-
253 ing is the grey module. This module typically gathers
254 genes with poor membership to any other module. In
255 our case, it is the 2nd largest module, with 7674 genes
256 (23% of the full set). It gathers the vast majority of
257 genes with very low kME (**Figure S5**, bottom panel)
258 and 99% of the peripheral genes set (**Table S4**).

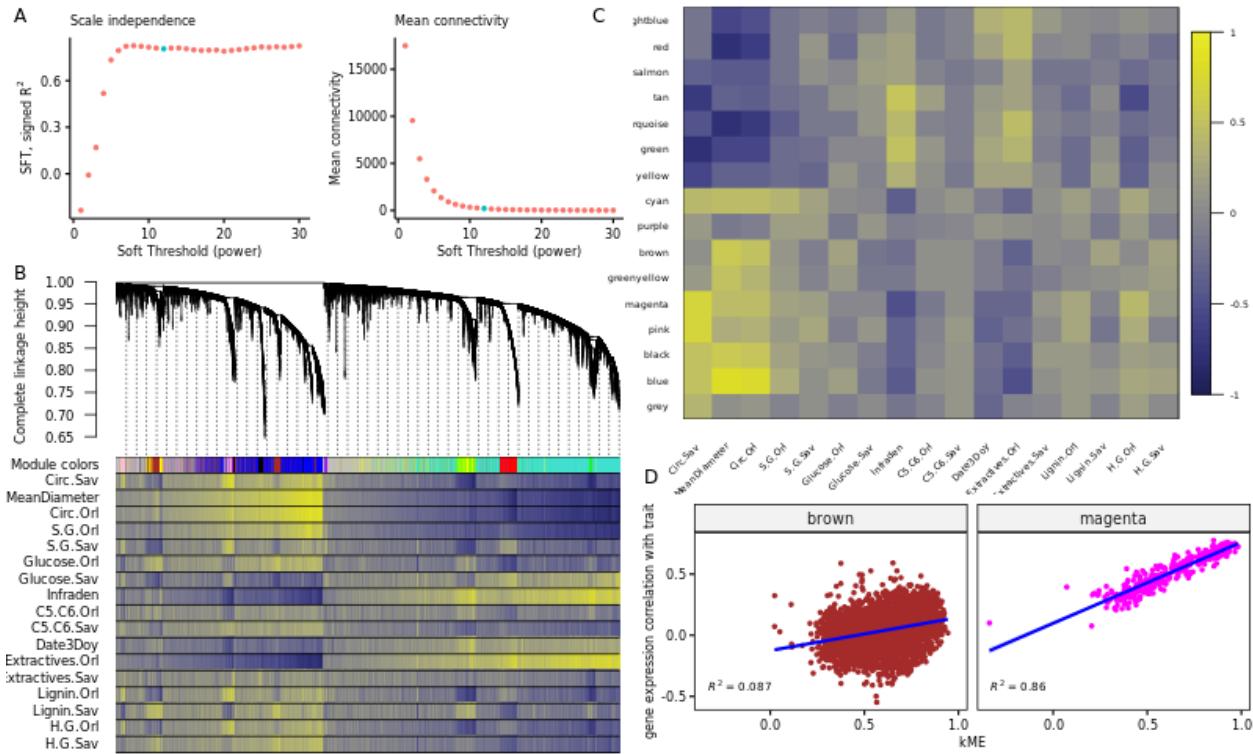


Figure 2: GCNA analysis of gene expression data. (A) Selection of the soft threshold (green dot) based on the correlation maximization with scale-free topology (left panel) producing low mean connectivity (right panel). (B) Gene expression hierarchical clustering dendrogram, based on the Spearman correlations (top panel), resulting in clusters identified by colors (first line of the bottom panel). Spearman correlations between gene expressions and traits values are represented as color bands on the other lines of the bottom panel, from highly negative correlations (dark blue) to highly positive correlations (light yellow), according to the scale displayed in panel C. (C) Spearman correlation between eigengenes (the best theoretical representative of a gene expression module) of modules identified in the previous panel and traits, again on a dark blue (highly negative) to light yellow (highly positive) scale. (D) Focus on two modules from the previous graph, representing the correlations between gene expression correlation with the circumference in Savigliano and centrality in the module. These two panels represent the strongest (right panel, magenta module, $R^2 = 0.86$) and the weakest (left panel, brown module, $R^2 = 0.09$) correlations with the corresponding trait.

259 While it is typically discarded in classic clustering studies, we chose to maintain it and rather understand its composition and role, by adding to the 260 comparative study two peripheral sets, one with and 261 one without grey module genes (subsequently called 262 "peripheral NG", NG for "no grey").

263 To assess the robustness of WGCNA analysis results, we compared it to a k-means clustering (R 264 package *coseq*, (Rau and Maugis-Rabusseau, 2017)) 265 of the gene expressions (Figure S6A). The distribution 266 of WGCNA and k-means' clusters showed a correlation 267 of -0.49 (Figure S6B). k-means clustering tends to 268 form groups of comparable size (Biernacki et al., 269 2006), which does not seem biologically credible. 270 Furthermore, the correlations between the k-mean 271 modules eigengenes and traits were lower than 272 with WGCNA's, with a poor repartition of the 273 different modules on the first 2 principal component 274 analy-

275 sis space (Figure S6C). We thus preferred WGCNA 276 clustering to k-means clustering for this analysis.

277 278 279 280 Heritability and population differentiation of modules

281 To get further insights into the biological role of core 282 and peripheral genes at population levels, we looked 283 at the distribution of various characteristics between 284 gene sets (Figure 3): gene expression level, several 285 classical population statistics, including heritability 286 (h^2), coefficient of quantitative genetic differentiation 287 (Q_{ST}), coefficient of genetic variation (CV_g), 288 gene diversity (H_t), and a contemporaneous equivalent 289 to F_{ST} for genome scans ($PCadapt$ score). Gene 290 expression level, h^2 , Q_{ST} , and CV_g were computed 291 from gene expression data, while H_t and $PCadapt$ 292 score (Luu et al., 2017) were computed from poly-

293 morphism data (SNP) and averaged per gene model.
 294 For more details see the materials and methods section.
 295

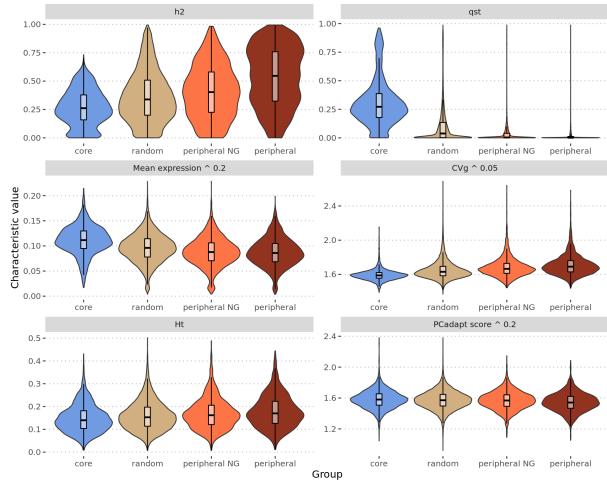


Figure 3: Heritability h^2 , differentiation Q_{ST} , gene mean expression (in counts per million, power 0.2), genetic variation coefficient CV_g (power 0.05), overall gene diversity Ht and $PCadapt$ score (power 0.2) violin and box plots with median (black line) and interquartile range (black box) for each of the core (in blue), random (in grey), peripheral NG (in orange) and peripheral (in brown) gene sets.

296 Globally, there is a clear trend from core to ran-
 297 dom, to peripheral NG and to peripheral among
 298 these characteristics: with an increase for h^2 , CV_g
 299 and Ht , and a decrease for Q_{ST} , expression and
 300 $PCadapt$ score. The only differences that are not
 301 significant after Bonferroni correction are those be-
 302 tween peripheral NG and peripheral sets in gene ex-
 303 pression (p-value = 0.14) and between random and
 304 peripheral NG sets in the $PCadapt$ score (p-value =
 305 0.39). All the other comparisons have p-values below
 306 0.001.

307 Altogether, these statistics showed clear differ-
 308 ences between core and peripheral genes: core genes
 309 are highly expressed, highly differentiated between
 310 populations in their expression and by their allele
 311 frequencies at linked markers, and with generally
 312 low levels of genetic variation. Contrastingly, periph-
 313 eral genes are poorly expressed, poorly differentiated
 314 between populations, with generally higher genetic
 315 variation.

316 **Boruta gene expression selection**

317 In addition to previous gene sets building (full, core,
 318 random, peripheral NG and peripheral), we wanted

319 to have a set of genes being relevant for their pre-
 320 dictability of the phenotype. Our hypothesis here
 321 was that this set would be the one that enables the
 322 best prediction of a given trait but with a limited
 323 gene number. For that purpose, we performed a
 324 Boruta (Boruta R package, (Kursa and Rudnicki,
 325 2010)) analysis on 60% of the full genes set (train-
 326 ing set). This algorithm performs several random
 327 forests to analyze which gene expression profile is
 328 important to predict a phenotype. We tested 4 dif-
 329 ferent p-values for this algorithm, as we originally
 330 wanted to relax the selection and get eventually sets
 331 of different sizes. However, the number of genes se-
 332 lected decreased while relaxing the p-value (613, 593,
 333 578 and 578 respectively for 0.01, 0.05, 0.1 and 0.2).
 334 Among the 4 p-values tested, 190 genes were sys-
 335 tematically selected (114 are core, 2 are peripheral NG
 336 and 2 are peripheral genes), and 153 were selected
 337 on 3 of the 4 p-value sets (73 are core, 4 are pe-
 338 ripheral NG and 4 are peripheral genes). There is a
 339 6.61 mean over-representation of core genes for the
 340 4 p-values and 0.30 and 0.31 under-representation
 341 of respectively peripheral NG and peripheral genes
 342 (**Figure S7**). In the end, with a p-value of 0.01,
 343 a pool of 613 unique gene expressions was found to
 344 be important to predict our phenotypes. Traits with
 345 the highest number of important genes are related to
 346 growth. For the other traits, we always have more
 347 genes selected when the trait is measured in Orléans
 348 compared to Savigliano (respective medians of 23 and
 349 10), which fits well with the fact that RNA collection
 350 was performed on trees in Orléans. On average, genes
 351 that were specific to single traits represented 94% of
 352 selected genes, 1 gene was shared across sites for a
 353 given trait, genes shared by trait category (growth,
 354 phenology, physical, chemical) were 4%, and genes
 355 shared among all traits were 2%.

356 **Phenotype prediction with gene ex- 357 pression**

358 For our 6 genes sets (full, core, random, peripheral
 359 NG, peripheral and Boruta), we trained two contrast-
 360 ing classes of models to predict the phenotypes: an
 361 additive linear model (ridge regression) and an in-
 362 teractive neural networks model. For the former, we
 363 used ridge regression to deal with the fact that for all
 364 gene sets the number of predictors was larger than
 365 the number of observations. For the latter, we chose
 366 neural networks as a contemporary machine-learning
 367 method, which is not subjected to dimensionality
 368 problems (González-Recio et al., 2014) and is able
 369 to capture interactions without a priori explicit dec-
 370 laration between the entries, here gene expressions.

371 These contrasting models let us capture more effi-
 372 ciently either additivity or interactivity and are thus
 373 likely to inform us about the preferential mode of
 374 action of each gene set depending on their relative
 375 performances in predictability. **Figure 4** and **Figure S8**
 376 show that for linear modeling with ridge re-
 377 gression, the best genes set to predict phenotypes was
 378 the full set, as expected because it contains more in-
 379 formation, followed, more surprisingly, by the periph-
 380 eral and peripheral NG genes set, then the random,
 381 core and Boruta sets (respective mean prediction R^2
 382 across all traits of 0.22, 0.21, 0.20, 0.19, 0.18 and

383 0.17). On the contrary, for neural network modeling,
 384 random genes constituted the worst set by far, fol-
 385 lowed by core, peripheral, peripheral NG and Boruta
 386 sets (respective mean prediction R^2 across all traits
 387 of 0.14, 0.16, 0.17, 0.18 and 0.22). We have not been
 388 able to compute neural network models with the full
 389 set as the number of predictors remains too large
 390 to be fitted within a reasonable time on computing
 391 clusters. Across phenotypes, predictions were gener-
 392 ally slightly less variable under neural networks than
 393 under the ridge regression counterpart (interquartile
 394 range mean division by 1.12).

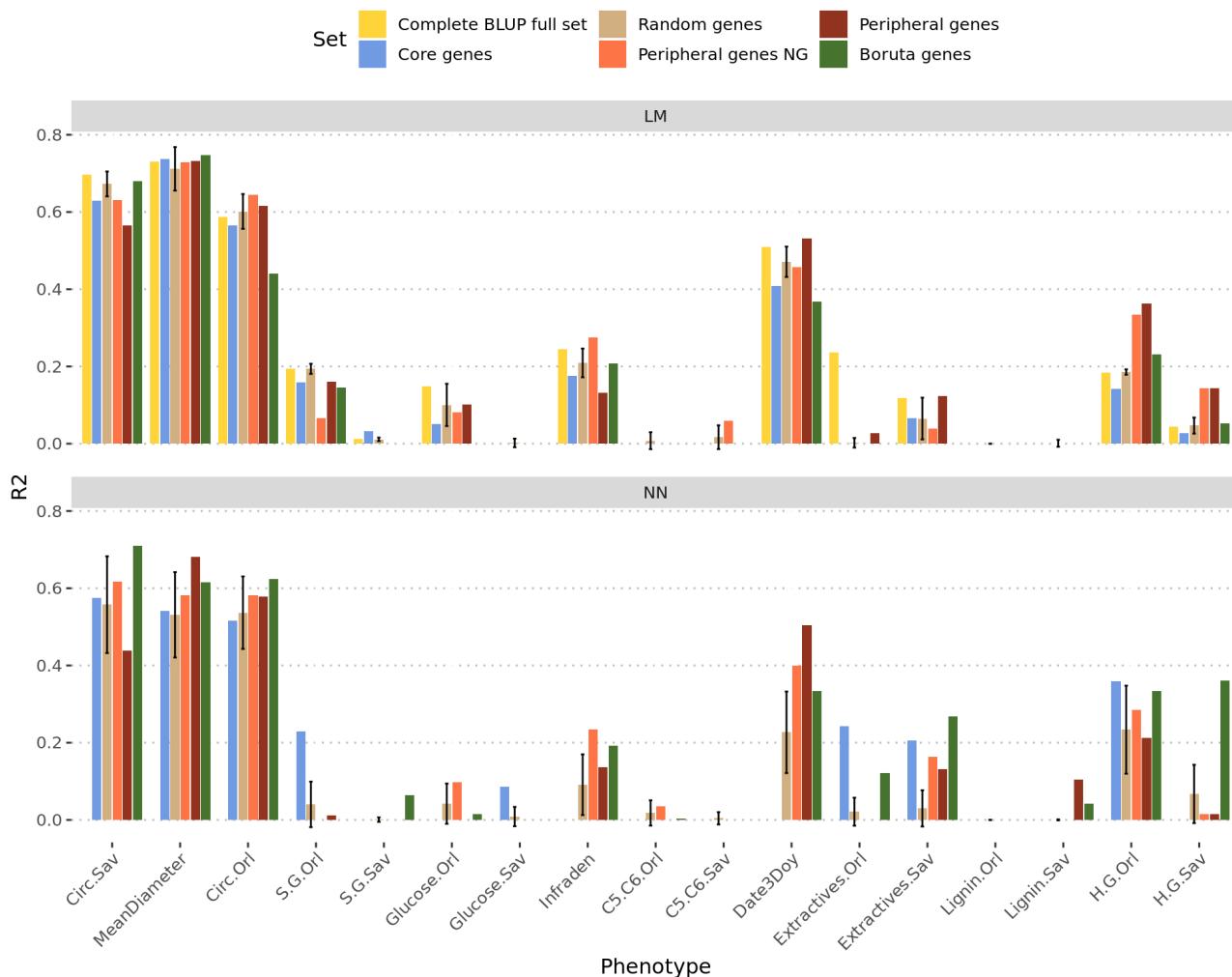


Figure 4: Predictions scores on test sets (R^2 on the y axis) for the 2 algorithms (LM Ridge, top panel; neural network, bottom panel) for each phenotypic trait (on the x axis). The color of each bar represents the gene set that has been used for the prediction. Intervals for the random set represent the first and third quartiles of the distribution of the 100 different realizations, while the height of the bar corresponds to the median.

To further investigate the behavior of genes with different positions in the network with respect to the prediction model used, we computed 2 types of differences: between LM and NN prediction scores for each gene set (**Figure S9A**), and between core and peripheral genes sets for LM and for NN models (**Figure S9B**). As a null reference for inference in the between sets difference (**Figure S9B**), we computed the differences between all the 100 random sets, for a total of 4950 differences corresponding to all pairwise differences, excluding reciprocals and self-comparisons. In the top panel, a positive difference indicates that LM predicted better than NN and *vice versa*, while in the bottom panel, a positive difference indicates an advantage of core genes sets over peripherals and, conversely, a negative difference indicates an advantage of peripheral genes. In any of the two panels, we did not detect any systematic difference, which would have led us to conclude on more interactivity or more additivity for any gene set. Moreover, the few cases where a difference could have been noted are due to very poor prediction scores. The only difference that can be noted is the difference between core and both peripheral genes in NN for the date of bud burst (Date3Doy), in favor of the peripheral genes.

Finally, we investigated to what extent trait Q_{ST} would influence the prediction scores of each combination of set and algorithm. We thus separated traits according to whether their Q_{ST} is above or below the 99th percentile of the F_{ST} . The rationale under this split is that because core genes are more differentiated between populations than random or peripheral genes, we should expect them to predict better those traits with a similar structuration behavior and *vice versa*. We found that traits above the 99th percentile of the F_{ST} are systematically better predicted than less differentiated traits. However, we did not find significant differences between gene groups once the difference between traits was taken into account.

Discussion

Characterizing the way genes contribute to phenotypic variation could prove highly valuable to better understand the genetic architecture of complex traits. With the advent of omics data, a huge amount of information is nowadays becoming available to fill the gap between variations at the DNA and phenotype levels. It is by the use of gene expression data that the present study aimed at gaining insights into the genetic architecture behind complex traits.

One key premise in the study was the availability of a common garden experiment comprising relevant

samples of natural variation, in our case black poplar from Western Europe. Such an experimental setting makes it possible to accurately evaluate phenotypes to calibrate and serve as a target for predictions. Indeed, evaluating all the genotypes in a given location with experimental design and replicates enabled to unravel the confounding between genotype and macro-environment (or micro-environment) that typically occur when considering genotypes in the wild (de Villemereuil et al., 2016). Likewise, RNAseq data were collected on up to two biological replicates in the common garden and also corrected for environmental and design covariables, to obtain the genotypic BLUP, which is the genetic value of the genotype. Such adjustments at both phenotypic and genomic ends provided proper grounds with reasonable confidence in the absence of confounding effects for the study of associations between the two sources of data.

Two recent works used RNAseq in natural populations of plants to build co-expression networks and study the relationship between network topology and patterns of natural selection (Josephs et al., 2017; Mähler et al., 2017). While they found differences in natural selection among genes given their connectivity within networks, they did not investigate how these differences affect phenotypic variation. We thus embraced the classic WGCNA approach (Langfelder and Horvath, 2008) to build the co-expression network within our dataset in order to study the relationship between gene connectivity and phenotypic prediction. This clustering of genes gave us different groups that we found to be differently correlated to traits values and according to sites. However, this method was simply for us a way to obtain a centrality score for each gene, with the subsequent possibility to classify them into core and peripherals. The biological interpretation of correlations between gene groups and traits would clearly deserve further work which is beyond the scope of the present study. We based our definition of core and peripheral on Mähler et al. (2017), as respectively the 10% most central and most peripheral genes. The only specificity of our work here is that we did not discard, as it is classically done (called pruning in the WGCNA manual), the genes from the grey group, i.e. those showing a poor membership to any other module. We considered instead two alternative peripheral sets by keeping or excluding genes from the grey group. The pertinence of kME as a classification criterion became evident in our study when looking at the differences between core and peripherals in terms of classic quantitative and population genetic parameters. Core genes (high kME) showed high lev-

els of population differentiation, mostly in quantitative genetic terms (Q_{ST}), while being simultaneously less variable than the rest of the genes. Such results would suggest that core genes are genes potentially subjected to divergent selection, with subsequently reduced levels of extant variation, and involved in local adaptations. Contrarily, peripherals (low kME) showed larger levels of variation with respect to their expression level and little structure across populations, suggesting less selection pressure or weaker connection to selected traits, with mostly stabilizing selection patterns across populations. Therefore, despite the fact that a subdivision in core and peripherals is somehow an oversimplification, an extreme contrast of an otherwise continuous phenomenon, it helped to reveal the different natures of genes characterized by extreme values of kME.

To further test whether this gene categorization matters for trait prediction, we decided to go one step further by trying to predict traits from the different gene sets. We also wanted to have a gene set designed to be composed of good predictors of the traits. We thus used the Boruta algorithm (Kursa and Rudnicki, 2010) to select genes, by performing random forest predictions and selecting the genes with the highest prediction importances. We have to keep in mind that random forest algorithm allows for implicit interactions between predictors (here gene expressions, (McKinney et al., 2006; Chen et al., 2007; Jiang et al., 2009)). Results pinpointed again one feature differentiating the behavior of core and peripheral genes. Cores were largely overrepresented in the different Boruta selections (by at least 38% of Boruta genes), involving systematically the same 114 genes across all threshold p-values (153 over 3 values). Peripherals were systematically underrepresented to a very large extent (less than 7%). Although the remaining genes, neither cores nor peripherals according to our previous definition, were the majority (53%) among the selected by Boruta, they were sampled from a vaster pool of more than 27,000 genes. Another important result from the Boruta selections is the fact that relaxing the p-value threshold (from 0.01 to 0.2) did not increase the size of the resulting selection set, while the set itself could change partially in composition across different thresholds. One can assume that relaxing the threshold would lead to increasing the number of features if these acted independently and contributed with novel information. The fact that numbers did not change substantially, while the composition was indeed impacted, leads to thinking that features are deeply interconnected and do not add up independently. This would suggest that different arrangements of genes

could contain comparable levels of information or, in other words, that genes bear some redundancy through networks of interactivity.

With these 6 genes sets, we predicted 17 phenotypic traits with 2 alternative algorithms, one expected to capture mostly additivity between predictors (LM), the other one interactivity (NN). As expected, the full set resulted in best predictions with the LM model (NN not available), as it comprised all available genetic information. Core genes, however, were far from being the best set to predict the different traits under either of the two algorithms. Such results would be a priori surprising considering previous statements on the composition of Boruta selection where cores had an important contribution. The key difference, however, is that cores were not the only contributors to the Boruta sets. It seems that cores are able to summarize key information for quality predictions but require a complementary contribution from other interacting genes to round up the optimal set. This is better reflected by the performance of the Boruta set, which obtained the best performance predicting traits under the NN algorithm. To some extent, the NN algorithm exploits the interactivity between features (genes) already present in the Boruta set, itself obtained through the random forest heuristics that are particularly sensitive to interactions. To some extent, the high connectivity of high kME value core genes is well captured by interaction sensitive algorithms to improve prediction.

In a contrasting way, Boruta and core sets performed poorly under LM modeling, where the two classes of peripherals obtained the best predictabilities. Such a performance from peripherals is somehow surprising, in the sense that this class of genes, notably the grey module, is usually pruned from transcriptomic studies, while they seem nonetheless to harbor important biological information that is relevant to the trait variation. Judging from the nature of the LM modeling, peripherals would have more a type of additive gene action, which could be in turn a penalizing feature when a reduction in the number of genes operates to focus only on the most relevant ones. Thus, peripherals appear to be relevant when allowed to contribute cumulatively to prediction, although they can be otherwise easily summarized by more integrative genes when variable selection procedures operate to obtain optimal sets. It is important to note, however, that adding peripherals (following an increasing kME) beyond the numbers present in their original sets did not improve predictability (**Figure S10**), suggesting the existence of a plateau in their capacity to explain trait variation. The low connectivity of peripheral genes, re-

609 reflecting independent features, is best exploited by
610 linear model approaches capturing mostly additive
611 genetic actions.

612 Finally, random sets offered a convenient frame-
613 work for inferences when comparing gene sets. Their
614 performance in terms of predicting quality was never
615 the best under either of the alternative modeling ap-
616 proaches (LM or NN) but was good enough to sug-
617 gest that relevant information can be nevertheless
618 obtained from many different gene sets, pointing at
619 some degree of pervasive redundancy in the genetic
620 architecture of traits. In practical terms, when a
621 trait prediction is required but there is no biolog-
622 ical *a priori* on the choice of genes, a random set
623 modeled through LM appears like a satisfying solu-
624 tion. This is not far from the SNP based counter-
625 part in genome-wide evaluation (Meuwissen et al.,
626 2001), where markers are often a choice that is not
627 driven by biological context. However, if some pre-
628 vious selection of genes is required, the combination
629 of Boruta selection and subsequent NN modeling has
630 been shown here to be a good option for predictabil-
631 ity on a reduced genic panel. Indeed, Boruta is an
632 advantageous alternative in genomic evaluation for
633 breeding to more classic methods, often based on
634 the imposition of *a priori* constraints for shrinkage
635 or variable selection (de los Campos et al., 2013).

636 One of the particularities of core genes, that of
637 showing highly structured genetic variation among
638 populations, led us to think that they might be pref-
639 erentially involved in traits also showing high levels
640 of *QST*. Such a hypothesis was not confirmed by
641 our results, where highly structured traits were gen-
642 erally better predicted than traits with no apparent
643 structure, but with no clear differences in such an
644 advantage between gene sets. Therefore, the highly
645 structured core genes did not contribute to improv-
646 ing the prediction of highly structured traits, sug-
647 gesting that trait covariation between populations is
648 affected by other genic sources not conveniently un-
649 raveled here. It is important to note that prediction
650 quality is highly variable between traits, somehow
651 masking the differences that might be found between
652 gene sets. We have already pinpointed the relevance
653 of kME in establishing a gradient of genes whose ex-
654 tremes show different behaviors in quantitative and
655 population genetics statistics. These extremes also
656 contribute differently to the explanation of pheno-
657 typic variability, through the light of different predic-
658 tion models. One aspect that remained unanswered,
659 however, is to what extent kME is also relevant to
660 prediction without circumscribing our scope to the
661 extremes. When computing the correlations between
662 connectivity (kME) and prediction coefficients (im-

663 portance in terms of effect) from LM across all the
664 full set of genes, results showed that there are some
665 strong positive correlations for three of the traits
666 (Circ.Orl, S.G.Orl and Extractives.Orl). However,
667 there is not a systematic trend across all the traits,
668 suggesting that other differences in their genetic vari-
669 ability and genomic architectures might be also of
670 importance here.

671 In the end, differential connectivity as reflected
672 by our kME gradient from gene expressions pinpoints
673 at the importance of mechanisms of gene interactions
674 in the genetic architecture of traits. On top of the
675 DNA sequence, the superposing layer of transcrip-
676 toomics adds up the intermediate pattern of gene in-
677 teractions and physiological epistasis, before the final
678 level of phenotypic expression (Schrag et al., 2018).
679 It is important to note, however, that such gene in-
680 teraction at the transcriptomic level is not directly or
681 necessarily related to epistasis in the context of sta-
682 tistical genetics literature, i.e. the interaction effect
683 between alleles from different loci on a given pheno-
684 type (Cordell, 2002). The extent to which connec-
685 tivity or transcriptomic interactivity relates to that
686 level of epistasis is beyond the scope of current work
687 but clearly deserves further investigation.

688 Conclusion

689 This work shows that all genes seem important to
690 some extent to predict phenotypes. If the Boruta se-
691 lection leads us to think that core genes may be very
692 important, prediction results across a range of phe-
693 notypes underlined that they are not the only ones.
694 The information that they contain has to be com-
695 pleted by other genes. The mean connectivity score
696 (kME) of the Boruta sets is around 0.7. However, as
697 genes seem to be very interactive, predicting a phe-
698 notype with a subset of genes summarizing the infor-
699 mation is possible and efficient. Our work is globally
700 in accordance with the recent work on the omnigenic
701 model (Boyle et al., 2017; Liu et al., 2019), describ-
702 ing that all genes expressed in an organ participate
703 in the traits of that organ. We are also able to pre-
704 dict phenotypes of an organ or at the organism level,
705 with gene expression from another organ. However
706 predicting and explaining are 2 different things, and
707 the information contained by genes may be too re-
708 dundant to lead us to good mechanistic models from
709 statistical ones. Statistical models may, nevertheless,
710 provide information on the ranking of importance of
711 the genes involved in a phenotype.

712 Materials and Methods

713 Samples collection

714 As described in previous works (Gebreselassie et al.,
715 2017; Guet et al., 2015), we established in 2008
716 a partially replicated experiment with 1160 cloned
717 genotypes, in two contrasting sites in central France
718 (Orléans, ORL) and northern Italy (Savigliano,
719 SAV). At ORL, the total number of genotypes was
720 1,098 while at SAV there were 815 genotypes. In
721 both sites, the genotypes were replicated 6 times in
722 a randomized complete block design. At SAV, the
723 trees were pruned at the base after one year of growth
724 (winter 2008-2009) to remove a potential cutting ef-
725 fect and were subsequently evaluated for their growth
726 and wood properties during winter 2010-2011. At
727 ORL, the trees had the same pruning treatment after
728 two years of growth (winter 2009-2010) and were also
729 subsequently evaluated for growth and wood proper-
730 ties after two years (winter 2011-2012). After eval-
731 uation, we pruned again for a new growth cycle. In
732 their fourth year of growth of this third cycle (2015),
733 241 genotypes present in two blocks of the French site
734 were selected to perform sampling for RNA sequenc-
735 ing. In the end, we obtained transcriptomic data
736 from 459 samples, 218 genotypes duplicated in the
737 two blocks and 23 genotypes available from only one
738 block. These 241 genotypes were representative of
739 the natural west European range of *P. nigra* through
740 11 river catchments in 4 countries (**Table S3**).

741 We described 14 of the 17 phenotypic traits in
742 previous work (Gebreselassie et al., 2017). Briefly,
743 these traits can be divided into two categories,
744 growth traits and biochemical traits which were all
745 evaluated on up to 6 clonal replicates by genotype at
746 each site after two years of growth in the second cy-
747 cle. The first set is composed of the circumference of
748 the tree at a 1-meter height measured in Savigliano
749 at the end of 2009 (CIRC2009.Sav) and in Orléans
750 at the end of 2011 (CIRC2011.Orl). The second set
751 is composed, each time at both sites, of measures
752 of ratios between the different components of the
753 lignin, p-hydroxyphenyl (H), guaiacyl (G) and sy-
754 ringyl (S) (H.G.Orl, H.G.Sav, S.G.Orl and S.G.Sav),
755 measures of the total lignin content (Lignin.Orl :
756 measure of the lignin in Orléans, Lignin.Sav: mea-
757 sure of the lignin in Savigliano), measure of the to-
758 tal glucose (Glucose.Orl and Glucose.Sav), measure
759 of ratio between 5 and 6 carbon sugars (C5.C6.Orl
760 and C5.C6.Sav) and measure of the extractives (Ex-
761 tractives.Orl and Extractives.Sav). For each of these
762 traits, we computed mean values per genotype previ-
763 ously adjusted for microenvironmental effects (block
764 or spatial position in the field).

765 The 3 remaining traits were measured in 2015
766 on the trees harvested for the RNA sequencing ex-
767 periment (2 replicates per genotype). They include
768 the mean diameter of the stem section harvested for
769 RNA sequencing (MeanDiameter), the date of bud
770 flush of the tree in 2015 (Date3Doy) and the basic
771 density of the wood (Infradens). Date of bud flush
772 consisted of a prediction of the day of the year at
773 which the apical bud of the tree was in stage 3 ac-
774 cording to the scale defined in Dillen et al. (2009).
775 Predictions were done with a lowess regression from
776 discrete scores recorded at consecutive dates in the
777 spring of 2015. Wood's basic density was measured
778 on a piece of wood from the stem section harvested
779 for RNA sequencing following the Technical Associa-
780 tion of Pulp and Paper Industry (TAPPI) standard
781 test method T 258 "Basic density and moisture con-
782 tent of pulpwood".

783 Transcriptome data generation

784 We sampled stem sections of approximately 80 cm
785 long starting at 20 cm above the ground and up to
786 1 meter in June 2015. The bark was detached from
787 the trunk in order to scratch young differentiating
788 xylem and cambium tissues using a scalpel. The tis-
789 sues were immediately immersed in liquid nitrogen
790 and crudely ground before storage at -80°C pending
791 milling and RNA extraction. Prior to RNA extrac-
792 tion, the samples were finely milled with a swing mill
793 (Retsch, Germany) and tungsten beads under cryo-
794 genic conditions with liquid nitrogen during 25 sec-
795 onds (frequency 25 cps/sec). About 100 mg of milled
796 tissue was used to isolate separately total RNA from
797 xylem and cambium of each tree with RNeasy Plant
798 kit (Qiagen, France), according to manufacturer's
799 recommendations. Treatment with DNase I (Qiag-
800 en, France) to ensure the elimination of genomic
801 DNA was made during this purification step. RNA
802 was eluted in RNase-DNase free water and quanti-
803 fied with a Nanodrop spectrophotometer. RNA from
804 xylem and cambium of the same tree were pooled in
805 an equimolar extract (250 ng/µL) before sending it
806 to the sequencing platform.

807 RNAseq experiment was carried out at
808 the platform POPS (transcriptOmic Plat-
809 form of Institute of Plant Sciences - Paris-
810 Saclay) thanks to IG-CNS Illumina Hiseq2000.
811 RNAseq libraries were constructed using
812 TruSeq_Stranded_mRNA_SamplePrep_Guide_150310
813 47_D protocol (Illumina®, California, U.S.A.). The
814 RNAseq samples have been sequenced in single-end
815 reads (SR) with an insert library size of 260 bp and
816 a read length of 100 bases. Images from the in-

817 instruments were processed using the manufacturer's
818 pipeline software to generate FASTQ sequence files.
819 Ten samples by lane of Hiseq2000 using individually
820 barcoded adapters gave approximately 20 millions of
821 SR per sample. We mapped the reads on the *Popu-*
822 *lus trichocarpa* v3.0 transcriptome with bowtie2
823 (Langmead and Salzberg, 2012), and obtained the
824 read counts for each of the 41,335 transcripts by
825 homemade scripts (a median of 17 millions of reads
826 were mapped per sample, with a minimum of 6 and
827 a maximum of 42 million). Initially, we considered
828 using the genotype means to reduce our data vol-
829 ume. However, differences between replicates were
830 not normally distributed, because of variation in
831 gene expression due to plasticity. We thus could not
832 summarize our data with their mean, as it would
833 have removed this information and finally we chose
834 to keep replicates as separate data samples.

835 Filtering the non-expressed genes, nor- 836 malization and variance stabilization

837 We started cleaning our raw count data by remov-
838 ing the transcripts without at least 1 count in 10%
839 of the individuals. From the original 41,335 genes,
840 7,106 were thus removed, leaving 34,229 genes. Af-
841 ter this first filtration, we normalized the raw count
842 data by Trimmed Mean of M-values (TMM, edgeR
843 (Robinson and Oshlack, 2010)). As most features are
844 not differentially expressed, this method takes into
845 account the fact that the total number of reads can
846 be strongly influenced by a low number of features.
847 Then, we calculated the counts per millions (CPM
848 (Law et al., 2014)).

849 To stabilize the variance of the CPM data, we
850 computed a $\log_2(n + 1)$ instead of a $\log_2(n + 0.5)$
851 typically used in a voom analysis (Law et al., 2014),
852 to avoid negative values, which are problematic for
853 the rest of the analysis.

854 Computing the BLUP, heritability, and 855 Q_{ST} while correcting the co-variables

856 As the sampling ran along 2 weeks, we expected
857 environmental variables to blur the signal. To un-
858 derstand how our data were impacted, we ran a
859 PCA analysis to identify the impact of each cofac-
860 tor (**Figure S1**). We identified the block and the
861 sampling date and time as cofactors with a substan-
862 tial impact.

863 A 12k bead chip (Faivre-Rampant et al., 2016)
864 provided 7,896 SNPs in our population. A ge-
865 nomic relationship matrix between genotypes was
866 computed with these SNPs with LDAK (Speed et al.,

867 2012), and further split into between (mean popu-
868 lation kinship, \mathbf{K}_b) and within-population relationship
869 matrices (kinship kept only for the members of the
870 same population, all the others are equal to 0, \mathbf{K}_w).
871 These matrices were used in a mixed linear model to
872 compute the additive genetic variances between and
873 within populations for the expression of each gene:

$$\mathbf{y} = \beta_0 + \mathbf{Z}_b \mathbf{b} + \mathbf{Z}_w \mathbf{w} + \epsilon \quad (1)$$

874 Where, \mathbf{y} is a gene expression vector across in-
875 dividual trees, β_0 is a vector of fixed effects (overall
876 mean or intercept); \mathbf{b} and \mathbf{w} are respectively random
877 effects of populations and individuals within popu-
878 lations, which follow normal distributions, centered
879 around 0, of variance $\sigma_b^2 \mathbf{K}_b$ and $\sigma_w^2 \mathbf{K}_w$. σ_b and σ_w
880 are the between and within-population variance com-
881 ponents and \mathbf{K}_b and \mathbf{K}_w are the between and within-
882 population kinship matrices. \mathbf{Z}_b and \mathbf{Z}_w are known
883 incidence matrices between and within populations,
884 relating observations to random effects \mathbf{b} and \mathbf{w} . ϵ is
885 the residual component of gene expression, following
886 a normal distribution centered around 0, of variance
887 $\sigma_\epsilon^2 \mathbf{I}$, where σ_ϵ is the residual variance and \mathbf{I} is an
888 identity matrix.

889 We used the function "remlf90" from the R pack-
890 age breedR (Muñoz and Sanchez, 2017) to fit the
891 model, with the Expectation-Maximization method
892 followed by one round with Average-Information al-
893 gorithm to compute the standard deviations. From
894 the resulting between and within-population vari-
895 ance components, we computed the best linear un-
896 biased predictors of between and within population
897 random genetic effects ($\hat{\mathbf{b}}$ and $\hat{\mathbf{w}}$, respectively) and
898 summed them up to obtain the total genetic value for
899 each gene expression (BLUP). We also computed
900 heritability (h^2) and population differentiation esti-
901 mates (Q_{ST}) for each gene expression as follows:

$$h^2 = \frac{\sigma_b^2 + \sigma_w^2}{\sigma_b^2 + \sigma_w^2 + \sigma_\epsilon^2} \quad (2)$$

$$Q_{ST} = \frac{\sigma_b^2}{\sigma_b^2 + 2\sigma_w^2} \quad (3)$$

902 Finally, we computed for each gene expression
903 the coefficient of genetic variation (CV_g) by dividing
904 its total genetic variance ($\sigma_b^2 + \sigma_w^2$) by its expression
905 mean.

906 Other population statistics

907 We further used a previously developed bioinformat-
908 ics pipeline to call SNPs within our RNA sequences
909 (Rogier et al., 2018). Briefly, this pipeline involves
910 classical cleaning and quality control steps, mapping

on the *P. trichocarpa* v3.0 reference genome, and SNP calling using the combination of four different callers. We ended up with a set of 874,923 SNPs having less than 50% of missing values per genotype. The missing values were further imputed with the software FImpute (Sargolzaei et al., 2014). We validated our genotyping by RNA sequencing approach by comparing the genotype calls with genotyping previously obtained with an SNP chip on the same individuals (Faivre-Rampant et al., 2016). Genotyping accuracy based on 3,841 common positions was very high, with a mean value of 0.96 and a median value of 0.99. The imputed set of SNP was then annotated using Annovar (Wang et al., 2010) in order to group the SNPs per gene model of *P. trichocarpa* reference genome. For each SNP, we computed the overall genetic diversity statistics with the hierfstat R package (Goudet and Jombart, 2015) and this statistic was then averaged by gene model in order to get information on the extent of diversity. We further computed *PCadapt score* with the pcadapt R package (Luu et al., 2017) with 8 retained principal components. Here again, *PCadapt scores* were then summarized (averaged) by gene-model in order to get information about their potential involvement in adaptation. Based on the principal component analysis, pcadapt is more powerful to perform genome scans for selection in next-generation sequencing data than approaches based on F_{ST} outliers detection (Luu et al., 2017). We found a positive correlation between F_{ST} and *PCadapt score* (data not shown), but *PCadapt score* highlighted differences between Core, random and peripheral gene sets (Figure 3) while F_{ST} did not.

945 Hierarchical and k-means clustering

We performed a weighted correlation network analysis with the R package WGCNA (Langfelder and Horvath, 2008) on our full RNAseq gene set. We followed the classic approach, except that we first ranked our expression data, to work subsequently with Spearman's non-parametric correlations and avoid problems due to linear modeling assumptions. We first chose the soft threshold with a power of 12, which is the classical value for signed networks (and default value in WGCNA) ($R^2 = 0.81$, connectivity: mean = 195.17, median = 9.23, max = 1403.96, **Figure 2A**). Then, we used the automatic module detection (function "blockwiseModules") via dynamic tree cutting with a merging threshold of 0.25, a minimum module size of 30 and bidweight midcorrelations (**Figure 2B**). All other options were left to default. This also computes module eigengenes.

To sort the traits, we clustered their scaled values with the pvclust R packages (Suzuki and Shimodaira, 2015), the Ward agglomerative method ("Ward.D2") on correlations (**Figure 2B, 2C, Figure S2**). The clustering on euclidean distance results in the exact same hierarchical tree. Correlations between traits and gene expression or module eigengenes were computed as Spearman's rank correlations (**Figure 2B, 2C**). We also performed a k-means clustering with the R package coseq (Rau and Maugis-Rabusseau, 2017) considering 10 initial runs, 1000 iterations, without any other data transformation, and for a number of clusters (K) between 2 and 20. At first, it identified a K without strong agreement between the two evaluation algorithms included in coseq. We thus further computed additional rounds of k-means clustering, around the previously identified K (plus or minus 5 clusters), with 100 initial runs and 10000 iterations, until both evaluation algorithms agreed.

982 Machine learning

983 Boruta gene expression selection

In addition to the inconvenience of working with a large number of features (time and power consumption), most machine learning algorithms perform better when the number of predicting variables used is kept as low as the optimal set (Kohavi and John, 1997). We thus performed an all relevant variable selection (Nilsson et al., 2007) with the Boruta function (Kursa and Rudnicki, 2010) from the eponym R package, with 4 p-value thresholds (1, 5, 10 and 20%), on the training subpart of the full gene expression set, for each phenotype independently. Then, features that were not rejected by the algorithm were pooled together, so that all the important genes were in the selected gene pool, one pool for each p-value threshold. The enrichment in core or peripheral genes in each of these pools was evaluated by Fisher's exact test for count data ("fisher.test" function in the stats R package).

1002 Models

Both additive linear model (ridge regression) and interactive neural network models were computed by the R package h2o (LeDell et al., 2019). They both used the gene expression sets as predictors and one phenotypic trait at a time as a response. Gene sets were split by the function "h2o.splitFrame" into 3 sets, a training set, a validation set and a test set, with the respective proportions of 60%, 20%, 20%. We checked that the split preserves the distribution of samples within populations. The training set was

1013 used to train the models, the validation set was used
1014 to validate and improve the models, while the test
1015 set was used to compute and report prediction accu-
1016 racies as R^2 between observed and predicted values
1017 within this set and using the function "R2" of the
1018 R package compositions (van den Boogaart et al.,
1019 2018). This set has never been used to improve the
1020 model and therefore represents a proxy of new data,
1021 avoiding the report of results from overfitted models.
1022 All the reported predictions scores were computed on
1023 this test set. These results are thus representing real-
1024 life predictions and are not subject to over-fitting.

1025 For linear models, we used the function "h2o.glm
1026 with" default parameters, except 2-folds cross-
1027 validation and alpha set at zero to perform a ridge re-
1028 gression. The same splits and score reporting meth-
1029 ods were used.

1030 Neural networks have the reputation to be able
1031 to predict any problem, based on the Universal ap-
1032 proximation theorem (Cybenko, 1989; Hornik et al.,
1033 1989). However, this capacity comes at the cost of
1034 a very large number of neurons in one layer, or a
1035 reasonable number of neurons per layer in a high
1036 number of layers. Both settings lead to difficult in-
1037 terpretation when very many gene expressions are
1038 involved. In that sense, we chose to keep our mod-
1039 els simple, with two layers of a reasonable number of
1040 neurons. This obviously comes at the price of lower
1041 prediction power. However, we believe that these
1042 topologies give us the power to model 2 levels of in-
1043 teractions between genes (1 level per layer). Further-
1044 more, since both methods yielded comparable predic-
1045 tion R^2 (median ridge regression $R^2 = 0.19$, mean
1046 neural network $R^2 = 0.173$), this complexity seemed
1047 appropriate. To find the best models for neural net-
1048 works, we computed a random grid for each response.
1049 We tested the following four hyperparameters: (i)
1050 activation function ("Rectifier", "Tanh", "Rectifier-
1051 WithDropout" or "TanhWithDropout"); (ii) net-
1052 work structure; (iii) input layer dropout ratio (0 or
1053 0.2) (iv) L1 and L2 regularization (comprised be-
1054 tween 0 and 1×10^{-4} , with steps of 5×10^{-6}). Net-
1055 work structure corresponded to the number of neu-
1056 rons within each of the two hidden layers, which was
1057 based on the number of input genes (h). The first
1058 layer was composed of h , $\frac{2}{3}h$ or $\frac{1}{3}h$ neurons. The sec-
1059 ond layer had a number of nodes equal or lower to the
1060 first one and is also composed of h , $\frac{2}{3}h$ or $\frac{1}{3}h$ neurons.
1061 This represented a total of 6 different structures. We
1062 performed a random discrete strategy to find the best
1063 search criteria, computing a maximum of 100 mod-
1064 els, with a stopping tolerance of 10^{-3} and 10 stopping
1065 rounds. Finally, "h2o.grid" parameters were the fol-
1066 lowing: the algorithm was "deeplearning", with 10

1067 epochs, 2 fold cross-validation, maximum duty cycle
1068 fraction for scoring is 0.025 constraint for a squared
1069 sum of incoming weights per unit is 10. All other pa-
1070 rameters were set to default values. The best model
1071 was selected from the lowest RMSE score within the
1072 validation set.

1073 Declarations

1074 Availability of data and materials

1075 This RNAseq project has been submitted to the
1076 international repository Gene Expression Omnibus
1077 (GEO) from NCBI (accession number: GSE128482).
1078 All steps of the experiment, from growth condi-
1079 tions to bioinformatic analyses are detailed in CATdb
1080 (Gagnot et al., 2007) according to the MINSEQE
1081 "minimum information about a high-throughput se-
1082 quencing experiment". Raw sequences (FASTQ) are
1083 being deposited in the Sequence Read Archive (SRA)
1084 from NCBI. Information on the studied genotypes is
1085 available in the GnpIS Information System (Stein-
1086 bach et al., 2013).

1087 Competing interests

1088 The authors declare that they have no competing in-
1089 terests.

1090 Funding

1091 Establishment and management of the experimental
1092 sites were carried out with financial support from the
1093 NOVELTREE project (EU-FP7-211868). RNA col-
1094 lection, extraction, and sequencing were supported
1095 by the SYBIOPOP project (ANR-13-JSV6-0001)
1096 funded by the French National Research Agency
1097 (ANR). The platform POPS benefits from the sup-
1098 port of the LabEx Saclay Plant Sciences-SPS (ANR-
1099 10-LABX-0040-SPS).

1100 Authors' Contributions

1101 AC, LS, and VS designed the experiment, discussed
1102 the results and wrote this manuscript. AC ran the
1103 in silico experiment. MCL, VB, CPL, LT, MLMM,
1104 and VS contributed the RNAseq data production
1105 and analysis. VJ, OR and VS contributed to the
1106 SNP data production and analysis. MLMM and JCL
1107 contributed to the discussion on the methodology
1108 employed. All the authors read and approved this
1109 manuscript.

1110 Acknowledgements

1111 The authors gratefully acknowledge the staff of the
1112 INRA GBFOR experimental unit for the establish-
1113 ment and management of the poplar experimental
1114 design in Orléans, the collection of wood samples in
1115 each site, and their contribution to phenotypic mea-
1116 surements on poplars in Orléans; Alasia Franco Vi-
1117 vai staff for management of the poplar experimen-
1118 tal plantation in Savigliano, and M. Sabatti and F.
1119 Fabbrini for their contribution to phenotypic mea-
1120 surements on poplars in Savigliano. We acknowl-
1121 edge the staff of BioForA for their contribution to
1122 RNA collection in the field. We are grateful to
1123 the genotoul bioinformatics platform Toulouse Midi-
1124 Pyrénées for providing computing and storage re-
1125 sources. We would also like to thank M. Nordborg
1126 for useful discussions on this work and J. Salse for
1127 useful comments on the manuscript.

1128 References

1129 Biernacki, C., Celeux, G., Govaert, G., and Lan-
1130 grognet, F., 2006. Model-based cluster and
1131 discriminant analysis with the MIXMOD soft-
1132 ware. *Computational Statistics & Data Analysis*,
1133 **51**(2):587–600.

1134 Bloom, J. D. and Adami, C., 2004. Evolutionary rate
1135 depends on number of protein-protein interactions
1136 independently of gene expression level: response.
1137 *BMC evolutionary biology*, **4**(1):14.

1138 Boyle, E. A., Li, Y. I., and Pritchard, J. K., 2017.
1139 An Expanded View of Complex Traits: From Poly-
1140 genic to Omnipigenic. *Cell*, **169**(7):1177–1186.

1141 Chen, X., Liu, C. T., Zhang, M., and Zhang, H.,
1142 2007. A forest-based approach to identifying gene
1143 and gene-gene interactions. *Proceedings of the Na-
1144 tional Academy of Sciences of the United States of
1145 America*, **104**(49):19199–19203.

1146 Cordell, H. J., 2002. Epistasis: what it means, what
1147 it doesn't mean, and statistical methods to de-
1148 tect it in humans. *Human Molecular Genetics*,
1149 **11**(20):2463–2468.

1150 Cybenko, G., 1989. Approximation by superpositions
1151 of a sigmoidal function. *Mathematics of Control,
1152 Signals, and Systems*, **2**(4):303–314.

1153 de los Campos, G., Hickey, J. M., Pong-Wong, R.,
1154 Daetwyler, H. D., and Calus, M. P. L., 2013.
1155 Whole-Genome Regression and Prediction Meth-
1156 ods Applied to Plant and Animal Breeding. *Ge-
1157 netics*, **193**(2):327–345.

1158 de Villemereuil, P., Gaggiotti, O. E., Mouterde, M.,
1159 and Till-Bottraud, I., 2016. Common garden ex-
1160 periments in the genomic era: new perspectives
1161 and opportunities. *Heredity*, **116**(3):249–254.

1162 Dillen, S. Y., Marron, N., Sabatti, M., Ceulemans,
1163 R., and Bastien, C., 2009. Relationships among
1164 productivity determinants in two hybrid poplar
1165 families grown during three years at two contrast-
1166 ing sites. *Tree Physiology*, **29**(8):975–987.

1167 Drummond, D. A., Bloom, J. D., Adami, C., Wilke,
1168 C. O., and Arnold, F. H., 2005. Why highly
1169 expressed proteins evolve slowly. *Proceedings of
1170 the National Academy of Sciences*, **102**(40):14338–
1171 14343.

1172 Duret, L. and Mouchiroud, D., 2000. Determinants
1173 of Substitution Rates in Mammalian Genes: Ex-
1174 pression Pattern Affects Selection Intensity but
1175 Not Mutation Rate. *Molecular Biology and Evolu-
1176 tion*, **17**(1):68–070.

1177 Faivre-Rampant, P., Zaina, G., Jorge, V., Gia-
1178 comello, S., Segura, V., Scalabrin, S., Guérin, V.,
1179 De Paoli, E., Aluome, C., Viger, M., *et al.*, 2016.
1180 New resources for genetic studies in *Populus nigra*:
1181 genome-wide SNP discovery and development of a
1182 12k Infinium array. *Molecular ecology resources*,
1183 **16**(4):1023–1036.

1184 Fraser, H. B. and Hirsh, A. E., 2004. Evolutionary
1185 rate depends on number of protein-protein interac-
1186 tions independently of gene expression level. *BMC
1187 evolutionary biology*, **4**(1):13.

1188 Gagnot, S., Tamby, J.-P., Martin-Magniette, M.-
1189 L., Bitton, F., Taconnat, L., Balzergue, S.,
1190 Aubourg, S., Renou, J.-P., Lecharny, A., and
1191 Brunaud, V., *et al.*, 2007. CATdb: a public
1192 access to *Arabidopsis* transcriptome data from
1193 the URGV-CATMA platform. *Nucleic Acids Re-
1194 search*, **36**(Database):D986–D990.

1195 Gebreselassie, M. N., Ader, K., Boizot, N., Millier,
1196 F., Charpentier, J.-P. P., Alves, A., Simões, R.,
1197 Rodrigues, J. C., Bodineau, G., Fabbrini, F., *et al.*,
1198 2017. Near-infrared spectroscopy enables the ge-
1199 netic analysis of chemical properties in a large set
1200 of wood samples from *Populus nigra* (L.) natu-
1201 ral populations. *Industrial Crops and Products*,
1202 **107**(January):159–171.

1203 González-Recio, O., Rosa, G. J., and Gianola, D.,
1204 2014. Machine learning methods and predictive
1205 ability metrics for genome-wide prediction of com-
1206 plex traits. *Livestock Science*, **166**:217–231.

1207 Goudet, J. and Jombart, T., 2015. *hierfstat: Estimation and Tests of Hierarchical F-Statistics*. R package version 0.04-22.

1210 Guet, J., Fabbrini, F., Fichot, R., Sabatti, M., Bastien, C., and Brignolas, F., 2015. Genetic variation for leaf morphology, leaf structure and leaf carbon isotope discrimination in European populations of black poplar (*Populus nigra* L.). *Tree Physiology*, **35**(8):850–863.

1213 Han, M., Qin, S., Song, X., Li, Y., Jin, P., Chen, L., and Ma, F., 2013. Evolutionary rate patterns of genes involved in the *Drosophila* Toll and Imd signaling pathway. *BMC Evolutionary Biology*, **13**(1):245.

1216 Han, Y., Gao, S., Muegge, K., Zhang, W., and Zhou, B., 2015. Advanced Applications of RNA Sequencing and Challenges. *Bioinformatics and Biology Insights*, **9s1**:BBI.S28991.

1219 Hornik, K., Stinchcombe, M., and White, H., 1989. Multilayer feedforward networks are universal approximators. *Neural Networks*, **2**(5):359–366.

1222 Jiang, R., Tang, W., Wu, X., and Fu, W., 2009. A random forest approach to the detection of epistatic interactions in case-control studies. In *BMC Bioinformatics*, volume 10, page S65.

1225 Josephs, E., Lee, Y. W., Stinchcombe, J. R., and Wright, S. I., 2015. Association mapping reveals the role of purifying selection in the maintenance of genomic variation in gene expression. *PNAS*, **112**(50):1–6.

1228 Josephs, E. B., Wright, S. I., Stinchcombe, J. R., and Schoen, D. J., 2017. The Relationship between Selection, Network Connectivity, and Regulatory Variation within a Population of *Capsella grandiflora*. *Genome Biology and Evolution*, **9**(4):1099–1109.

1231 Jovelin, R. and Phillips, P. C., 2011. Expression Level Drives the Pattern of Selective Constraints along the Insulin/Tor Signal Transduction Pathway in *Caenorhabditis*. *Genome Biology and Evolution*, **3**:715–722.

1234 Kohavi, R. and John, G. H., 1997. Wrappers for feature subset selection. *Artificial Intelligence*, **97**(1-2):273–324.

1237 Kursa, M. B. and Rudnicki, W. R., 2010. Feature Selection with the Boruta Package. *Journal of Statistical Software*, **36**(11):1–13.

1240 Langfelder, P. and Horvath, S., 2008. WGCNA: an R package for weighted correlation network analysis. *BMC Bioinformatics*, **9**(1):559.

1243 Langmead, B. and Salzberg, S. L., 2012. Fast gapped-read alignment with Bowtie 2. *Nature Methods*, **9**(4):357–359.

1246 Law, C. W., Chen, Y., Shi, W., and Smyth, G. K., 2014. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. *Genome Biology*, **15**(2):R29.

1249 LeDell, E., Gill, N., Aiello, S., Fu, A., Candel, A., Click, C., Kraljevic, T., Nykodym, T., Aboyoun, P., Kurka, M., et al., 2019. *h2o: R Interface for 'H2O'*. R package version 3.22.1.1.

1252 Liu, X., Li, Y. I., and Pritchard, J. K., 2019. Trans Effects on Gene Expression Can Drive Omnipotent Inheritance. *Cell*, **177**(4):1022–1034.e6.

1255 Lu, Y., 2003. Evolutionary Rate Variation in Anthocyanin Pathway Genes. *Molecular Biology and Evolution*, **20**(11):1844–1853.

1258 Luu, K., Bazin, E., and Blum, M. G., 2017. pcadapt: an R package to perform genome scans for selection based on principal component analysis. *Molecular Ecology Resources*, **17**(1):67–77.

1261 Mackay, T. F. C., Stone, E. a., and Ayroles, J. F., 2009. The genetics of quantitative traits: challenges and prospects. *Nature Reviews Genetics*, **10**(8):565–577.

1264 Mähler, N., Wang, J., Terebieniec, B. K., Ingvarsson, P. K., Street, N. R., and Hvidsten, T. R., 2017. Gene co-expression network connectivity is an important determinant of selective constraint. *PLOS Genetics*, **13**(4):e1006402.

1267 McKinney, B. A., Reif, D. M., Ritchie, M. D., and Moore, J. H., 2006. Machine learning for detecting gene-gene interactions: a review. *Applied bioinformatics*, **5**(2):77–88.

1270 Meuwissen, T. H. E., Hayes, B. J., and Goddard, M. E., 2001. Prediction of total genetic value using genome-wide dense marker maps. *Genetics*, **157**(4):1819–1829.

1273 Montanucci, L., Laayouni, H., Dall’Olio, G. M., and Bertranpetti, J., 2011. Molecular Evolution and Network-Level Analysis of the N-Glycosylation Metabolic Pathway Across Primates. *Molecular Biology and Evolution*, **28**(1):813–823.

1300 Muñoz, F. and Sanchez, L., 2017. *breedR: Statistical*
1301 *Methods for Forest Genetic Resources Analysts*. R
1302 package version 0.12-2.

1303 Nilsson, R., PeñaPe, J. M., Jmp, P., Björkegren JO-
1304 HANBJORKEGREN, J., and Tegnér JESPERT,
1305 J., 2007. Consistent Feature Selection for Pattern
1306 Recognition in Polynomial Time. Technical report.

1307 Pál, C., Papp, B., and Hurst, L. D., 2001. Highly
1308 expressed genes in yeast evolve slowly. *Genetics*,
1309 **158**(2):927–31.

1310 Rau, A. and Maugis-Rabusseau, C., 2017. Trans-
1311 formation and model choice for RNA-seq co-
1312 expression analysis. *Briefings in Bioinformatics*,
1313 **19**(3):bbw128.

1314 Rausher, M. D., Lu, Y., and Meyer, K., 2008. Vari-
1315 ation in Constraint Versus Positive Selection as
1316 an Explanation for Evolutionary Rate Variation
1317 Among Anthocyanin Genes. *Journal of Molecular*
1318 *Evolution*, **67**(2):137–144.

1319 Rausher, M. D., Miller, R. E., and Tiffin, P., 1999.
1320 Patterns of evolutionary rate variation among
1321 genes of the anthocyanin biosynthetic pathway.
1322 *Molecular Biology and Evolution*, **16**(2):266–274.

1323 Riley, R. M., Jin, W., and Gibson, G., 2003.
1324 Contrasting selection pressures on components of
1325 the Ras-mediated signal transduction pathway in
1326 *Drosophila*. *Molecular Ecology*, **12**(5):1315–1323.

1327 Robinson, M. D. and Oshlack, A., 2010. A scal-
1328 ing normalization method for differential expres-
1329 sion analysis of RNA-seq data. *Genome Biology*,
1330 **11**(3):R25.

1331 Rogier, O., Chateigner, A., Amanzougarène, S.,
1332 Lesage-Descauses, M.-C., Balzergue, S., Brunaud,
1333 V., Caius, J., Soubigou-Taconnat, L., Jorge, V.,
1334 and Segura, V., *et al.*, 2018. Accuracy of RNAseq
1335 based SNP discovery and genotyping in *Populus-*
1336 *nigra*. *BMC Genomics*, **19**(1):909.

1337 Sargolzaei, M., Chesnais, J. P., and Schenkel, F. S.,
1338 2014. A new approach for efficient genotype im-
1339 putation using information from relatives. *BMC*
1340 *Genomics*, **15**(1).

1341 Schrag, T. A., Westhues, M., Schipprack, W., Seifert,
1342 F., Thiemann, A., Scholten, S., and Melchinger,
1343 A. E., 2018. Beyond Genomic Prediction: Com-
1344 bining Different Types of omics Data Can Improve
1345 Prediction of Hybrid Performance in Maize. *Ge-*
1346 *netics*, **208**(4):1373–1385.

1347 Sicard, A., Kappel, C., Josephs, E. B., Lee, Y. W.,
1348 Marona, C., Stinchcombe, J. R., Wright, S. I., and
1349 Lenhard, M., 2015. Divergent sorting of a bal-
1350 anced ancestral polymorphism underlies the estab-
1351 lishment of gene-flow barriers in *Capsella*. *Nature*
1352 *Communications*, **6**(1):7960.

1353 Song, X., Jin, P., Qin, S., Chen, L., and Ma, F., 2012.
1354 The Evolution and Origin of Animal Toll-Like Re-
1355 ceptor Signaling Pathway Revealed by Network-
1356 Level Molecular Evolutionary Analyses. *PLoS*
1357 *ONE*, **7**(12):e51657.

1358 Speed, D., Hemani, G., Johnson, M. R., and Balding,
1359 D. J., 2012. Improved heritability estimation from
1360 genome-wide SNPs. *American Journal of Human*
1361 *Genetics*, **91**(6):1011–1021.

1362 Steinbach, D., Alaux, M., Amselem, J., Choisne, N.,
1363 Durand, S., Flores, R., Kellet, A.-O., Kimmel,
1364 E., Lapalu, N., Luyten, I., *et al.*, 2013. GnpIS:
1365 an information system to integrate genetic and
1366 genomic data from plants and fungi. *Database*,
1367 **2013**(0):bat058–bat058.

1368 Suzuki, R. and Shimodaira, H., 2015. *pvclust: Hi-*
1369 *erarchical Clustering with P-Values via Multiscale*
1370 *Bootstrap Resampling*. R package version 2.0-0.

1371 van den Boogaart, K. G., Tolosana-Delgado, R., and
1372 Bren, M., 2018. *compositions: Compositional Data*
1373 *Analysis*. R package version 1.40-2.

1374 Wang, K., Li, M., and Hakonarson, H., 2010. AN-
1375 NOVAR: Functional annotation of genetic variants
1376 from high-throughput sequencing data. *Nucleic*
1377 *Acids Research*, **38**(16).

1378 Williamson, S. H., Hernandez, R., Fledel-Alon, A.,
1379 Zhu, L., Nielsen, R., and Bustamante, C. D., 2005.
1380 Simultaneous inference of selection and population
1381 growth from patterns of variation in the human
1382 genome. *Proceedings of the National Academy of*
1383 *Sciences*, **102**(22):7882–7887.

1384 Wu, X., Chi, X., Wang, P., Zheng, D., Ding, R.,
1385 and Li, Y., 2010. The evolutionary rate variation
1386 among genes of HOG-signaling pathway in yeast
1387 genomes. *Biology Direct*, **5**(1):46.

1388 Yu, H.-S., Shen, Y.-H., Yuan, G.-X., Hu, Y.-G., Xu,
1389 H.-E., Xiang, Z.-H., and Zhang, Z., 2011. Evi-
1390 dence of Selection at Melanin Synthesis Pathway
1391 Loci during Silkworm Domestication. *Molecular*
1392 *Biology and Evolution*, **28**(6):1785–1799.

Supplemental Material

Supplemental tables

Table S1: Correspondence between traits, their abbreviations, and families.

Trait	Abbreviation	Family
Mean diameter of the stem section harvested for RNA sequencing	MeanDiameter	Growth
Circumference in Orléans	CIRC.Orl	Growth
Circumference in Savigliano	CIRC.Sav	Growth
Ratio between syringyl and guaiacyl lignin subunits in Orléans	S.G.Orl	Chemical
Ratio between syringyl and guaiacyl lignin subunits in Savigliano	S.G.Sav	Chemical
Total glucose in Orléans	Glucose.Orl	Chemical
Total glucose in Savigliano	Glucose.Sav	Chemical
Basic wood density of the stem section harvested for RNA sequencing	Infraden	Physical
Ratio between 5 carbon- and 6 carbon-sugars in Orléans	C5.C6.Orl	Chemical
Ratio between 5 carbon- and 6 carbon-sugars in Savigliano	C5.C6.Sav	Chemical
Ratio between p-hydroxyphenyl and guaiacyl lignin subunits in Orléans	H.G.Orl	Chemical
Ratio between p-hydroxyphenyl and guaiacyl lignin subunits in Savigliano	H.G.Sav	Chemical
Lignin content in Orléans	Lignin.Orl	Chemical
Lignin content in Savigliano	Lignin.Sav	Chemical
Extractives content in Orléans	Extractives.Orl	Chemical
Extractives content in Savigliano	Extractives.Sav	Chemical
Date of bud flush of the tree in Orléans in 2015	Date3Doy	Phenology

Table S2: Module membership of each gene (see **Supplemental file**).

Table S3: Number of genotypes sampled for each population.

Population name	Country	Number of genotypes
Adour	France	36
Basento	Italy	5
Dranse	France	16
Kuhkopf	Germany	19
Loire	France	34
NL	Netherlands	4
Paglia	Italy	13
Ramieres	France	26
Rhin	France	15
Ticino	Italy	54
ValAllier	France	19

Table S4: Distribution of core and peripheral genes across modules.

Module	core	peripheral	peripheral no grey
grey	0	2942	0
blue	519	300	1438
turquoise	498	85	933
yellow	368	1	99
brown	258	13	152
magenta	119	12	167
pink	135	14	107
red	120	8	111
lightcyan	170	1	21
cyan	74	4	68
salmon	75	8	63
grey60	136	1	1
darkturquoise	69	3	32
purple	45	4	52
black	70	5	21
greenyellow	56	3	20
darkgrey	37	1	21
saddlebrown	58	0	1
violet	53	0	0
white	27	0	23
darkmagenta	39	3	7
lightyellow	33	4	10
orange	45	0	0
darkorange	43	0	1
darkred	43	0	0
royalblue	37	0	5
green	25	0	14
lightgreen	37	0	0
paleturquoise	24	1	12
skyblue	32	1	4
tan	27	1	9
darkgreen	22	1	10
darkolivegreen	25	1	3
midnightblue	18	1	10
steelblue	25	1	3
yellowgreen	22	1	2
sienna3	19	2	2
skyblue3	19	0	0

Supplemental figures

Figure S1: PCA of the different cofactors (Xylem and cambium scraper, extractor and extraction method, population, sequencing column, line and plate, the growth rate at harvest, sampling date, time, temperature, solar radiation, humidity and wind speed). Each of these represents the distribution of the individuals on the 2 first axes of the PCA (representing 17,7% of the variation), colored by class. Cofactors related to weather are presented in the 6 lower plots.

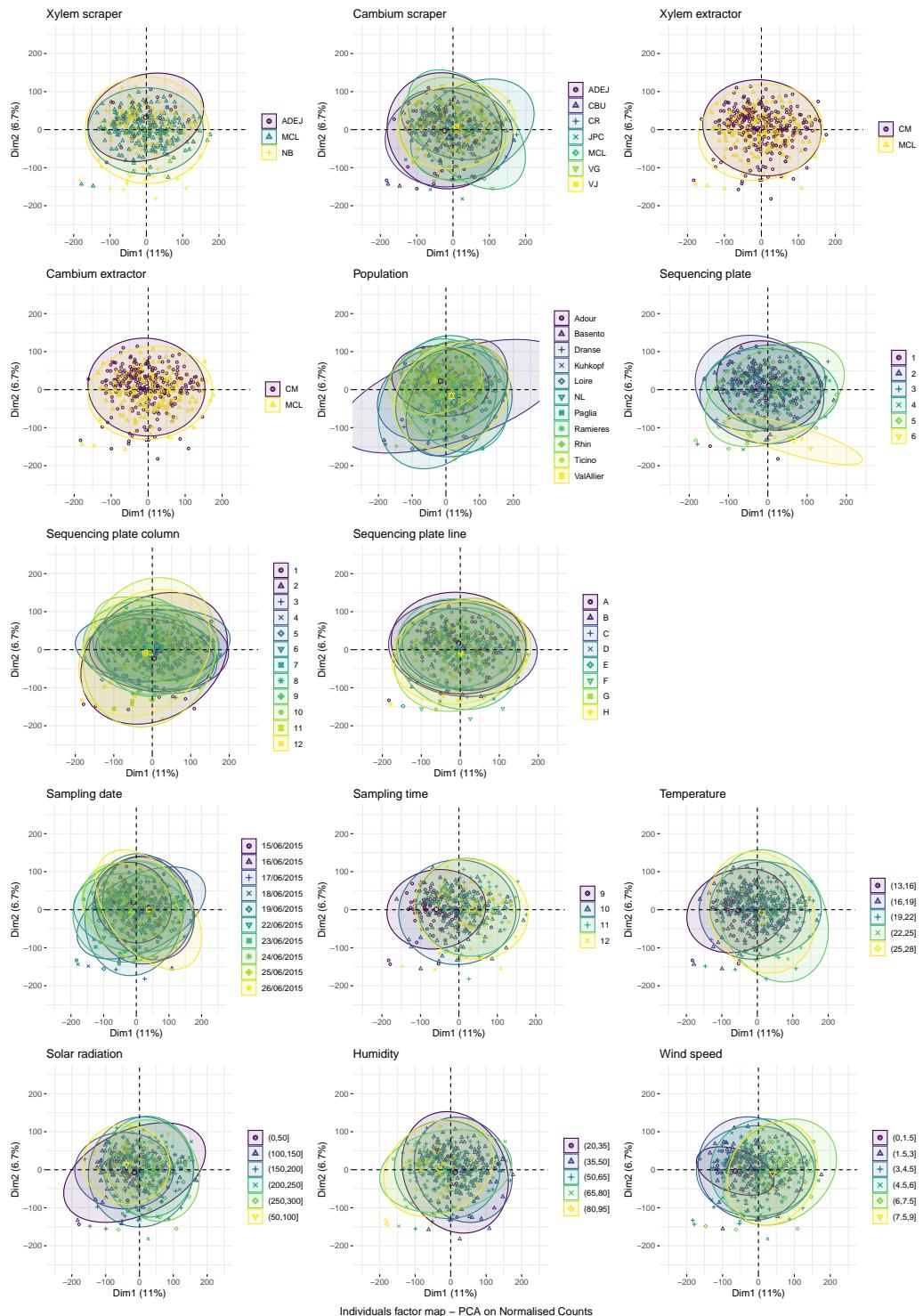


Figure S2: Scaled traits hierarchical clustering dendrogram computed from their correlations with Ward method ("Ward.D2") by the R package pvclust. Approximately Unbiased (au, in red) and Bootstrap Probability (bp, in green) p-values indicated the degree of belief associated with clusters. Highly supported modules are framed by a red square, grouping (a) the mean sample diameter with the two circumference traits, (b) the S/G ratios with glucose composition, (c) the two C5/C6 together, and (d) the H/G ratios.

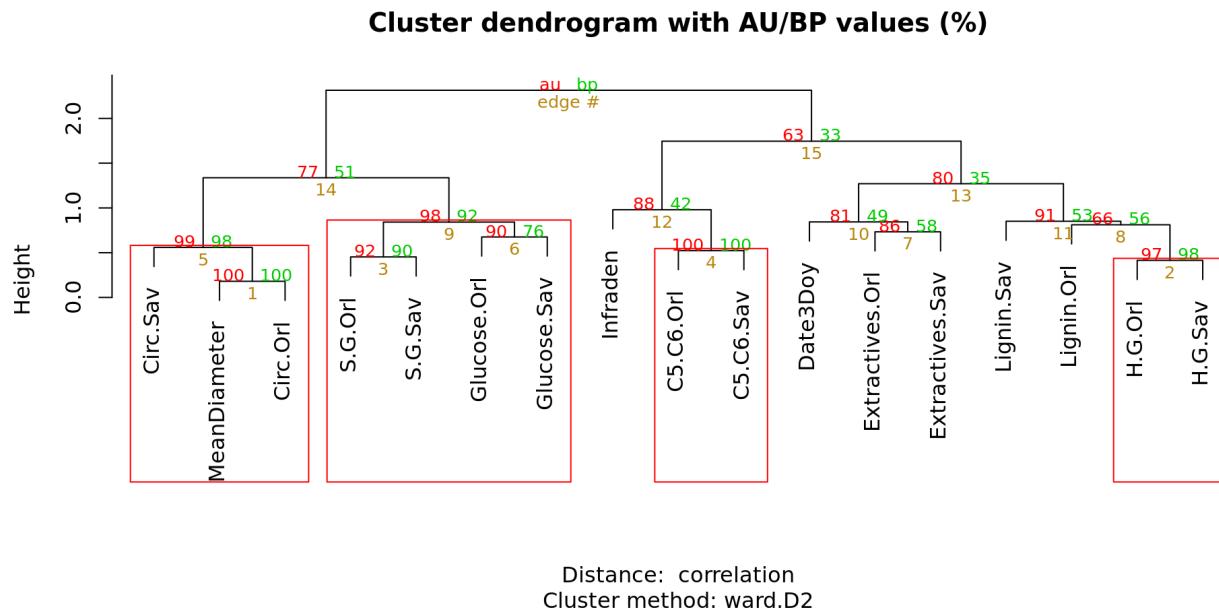


Figure S3: Heatmap of module-trait Spearman's correlations, on a dark blue (high negative correlation) to light yellow (high positive correlation) scale. We removed correlations with a p-value lower than 5% after Bonferroni correction. From the total of 425 correlations, 72 remained.

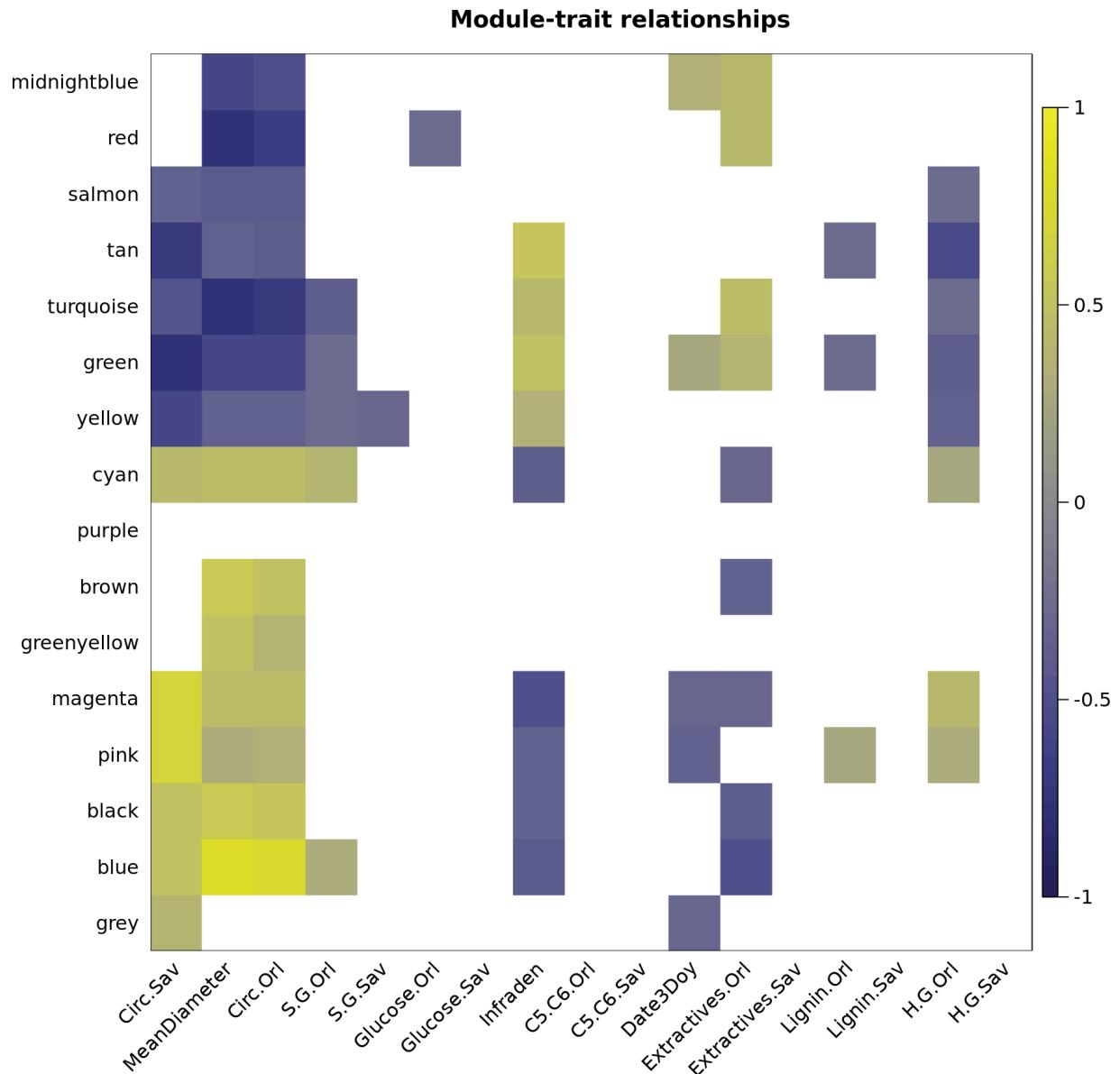


Figure S4: Relationship between Spearman's correlations between module-trait (y-axis) and gene significance-kME (x-axis).

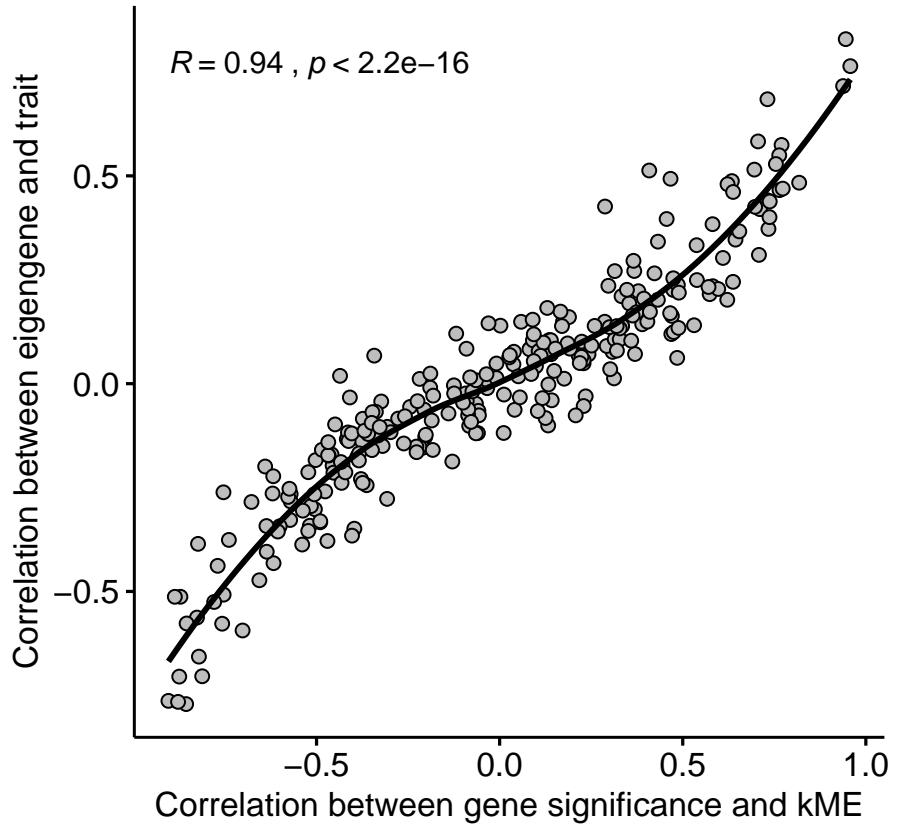


Figure S5: Histogram of the centrality scores without (top panel) or with (bottom panel) the grey group. Core, peripheral and peripheral without grey sets are represented respectively by the blue, dark orange and orange bars. Random sets are distributed across the histogram and do not appear on this figure. Distribution of genes clustered in the grey module is represented by the grey bars, white bars are for other genes.

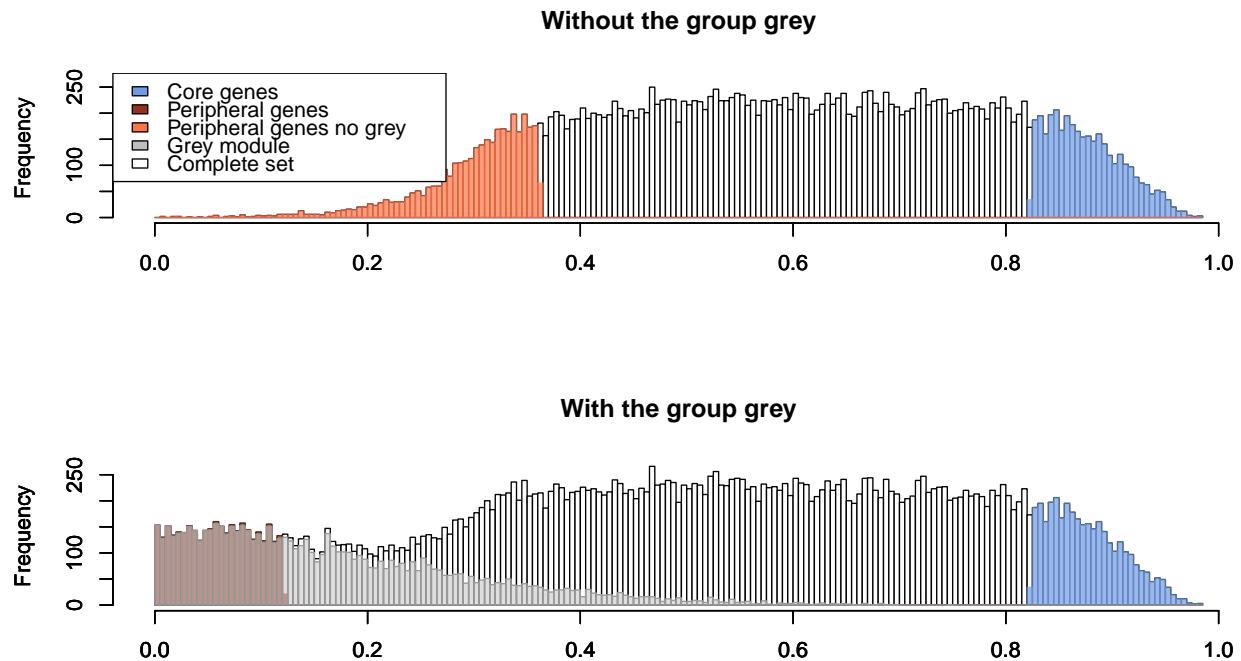


Figure S6: Gene expression k-means clustering (A) Correlation between eigengenes of modules identified by k-means clustering, on a light yellow (positive) to dark blue (negative) scale. P-values are indicated on the second line of each square. (B) Heatmap representing the concordance between WGCNA (abscissa) and k-means (ordinate) clusterings. (C) Principal component analysis graph of the k-means clustering.

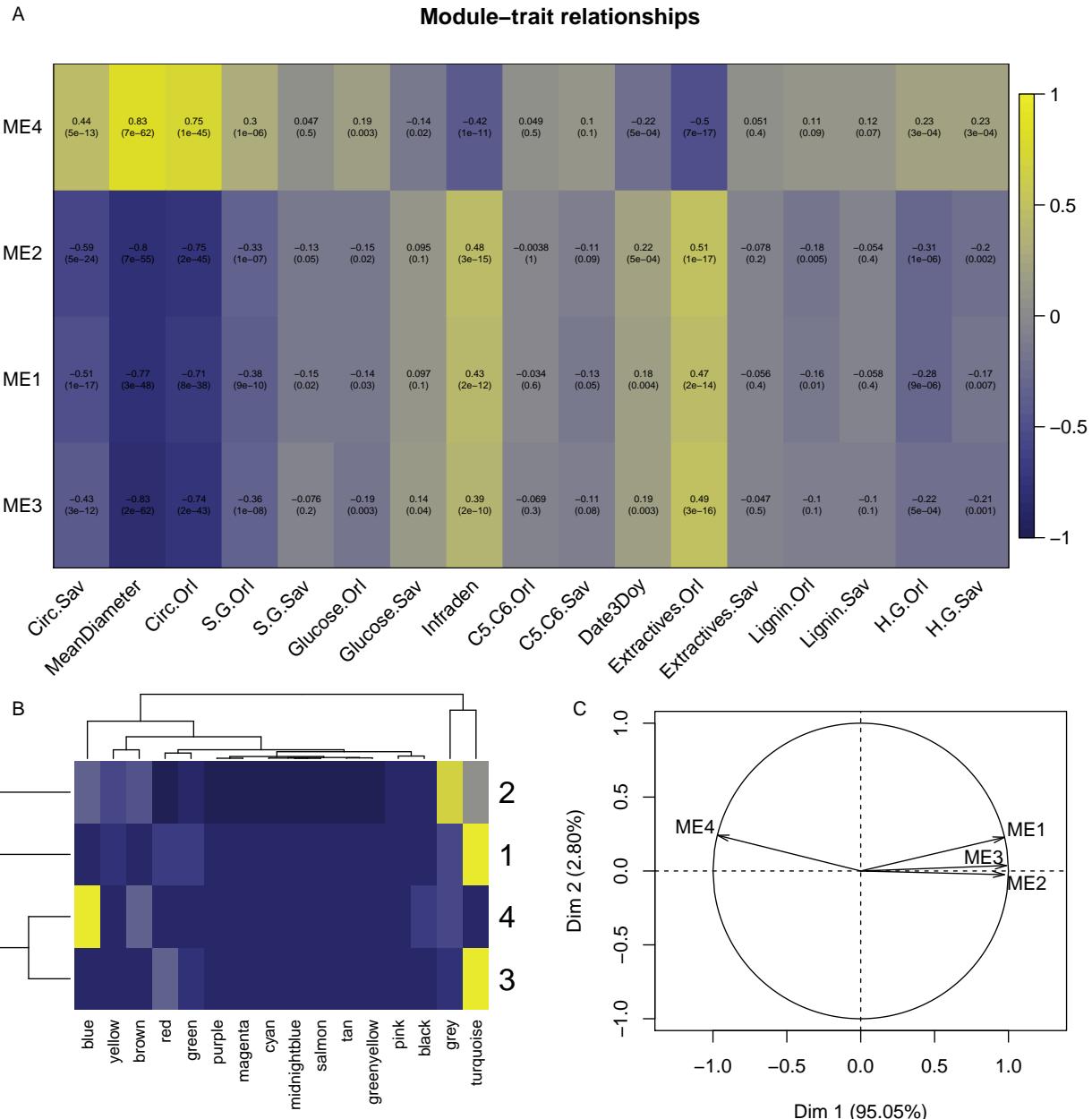


Figure S7: Distribution of the kME for the core (blue), peripheral NG (orange), peripheral (brown) and other (NA, in black) genes in the sets selected by Boruta for the different p-values (0.01, 0.05, 0.1 and 0.2).

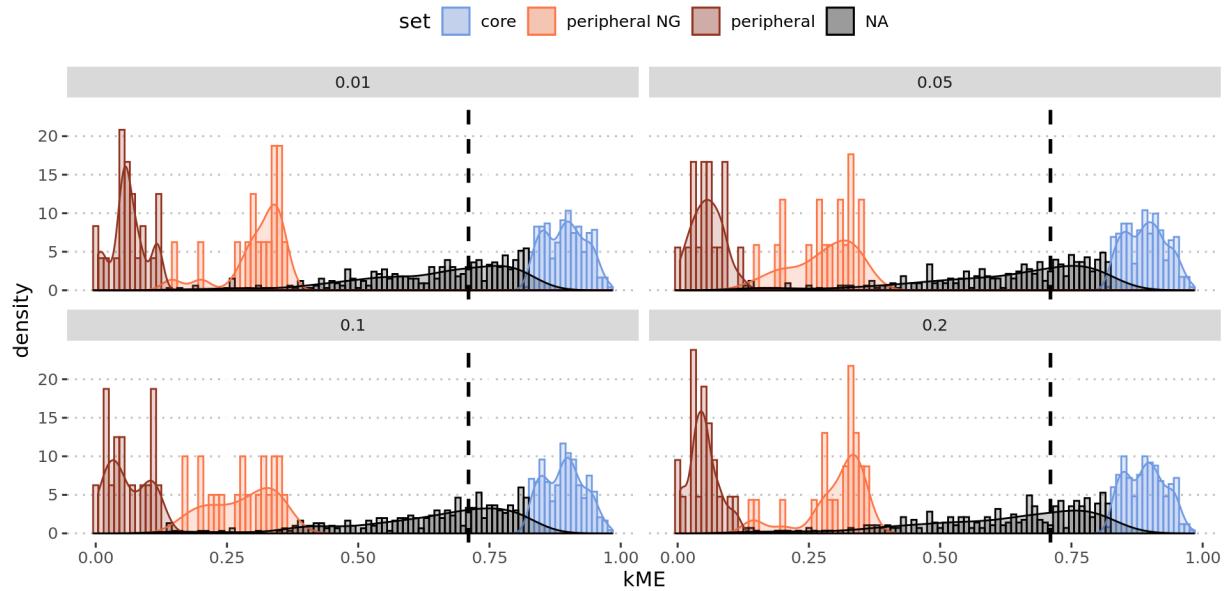


Figure S8: Violin and boxplots of prediction R^2 across all phenotypes, split by model and gene sets.

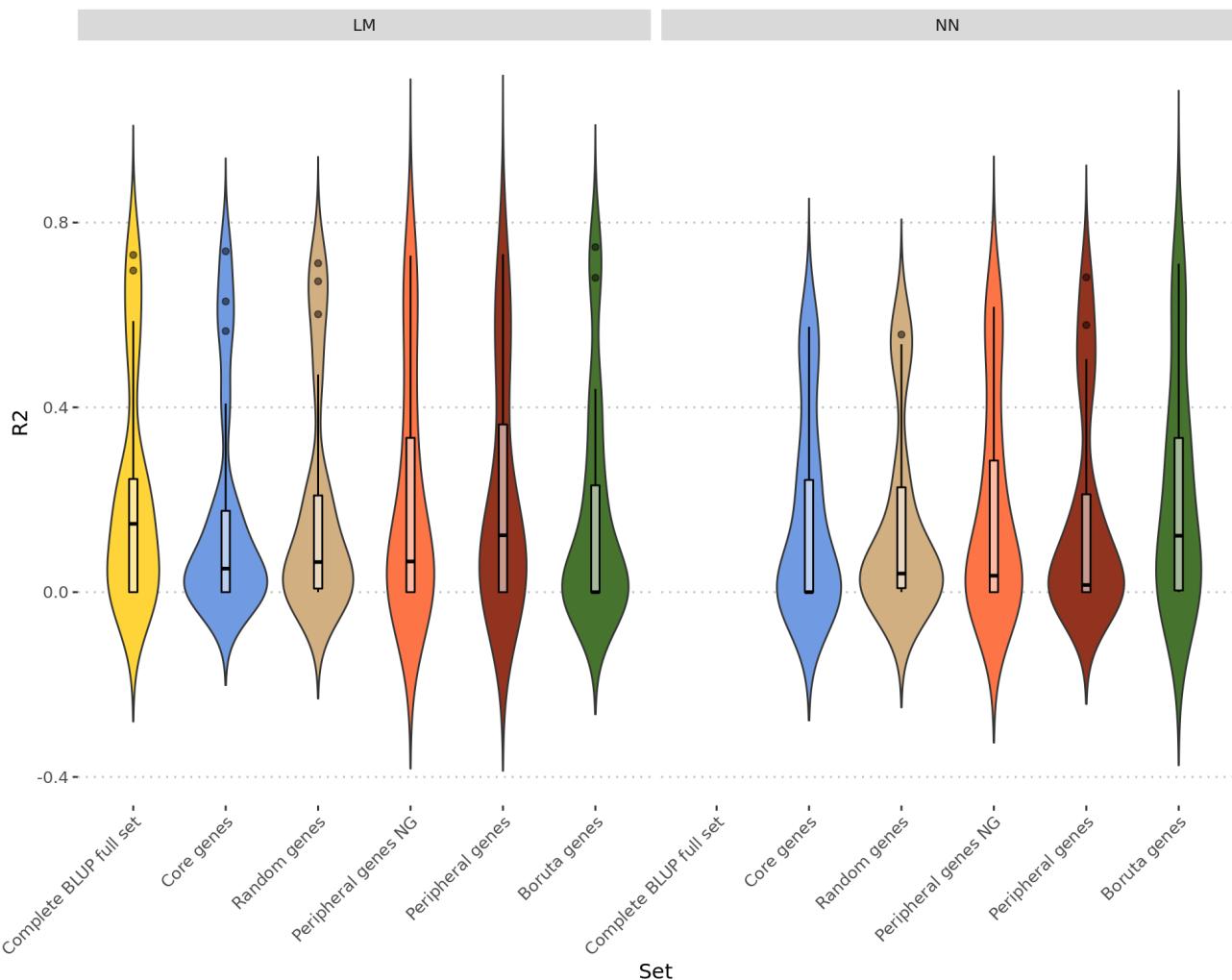


Figure S9: Difference of prediction scores (on the y-axis) between algorithms (A) and sets (B). (A) the difference between LM and NN prediction scores for the core (in blue), random (in grey), peripheral (in brown), peripheral (in orange) and Boruta gene sets (in green). (B) the LM differences are in red and the NN differences in turquoise and the color filling the bar represents the difference between core and peripheral genes in brown, core and peripheral NG in orange and between the random sets in grey. For the random pairs, error bars represent the first and third quartiles of the differences between pairs of randomized sets and the bar corresponds to the median.

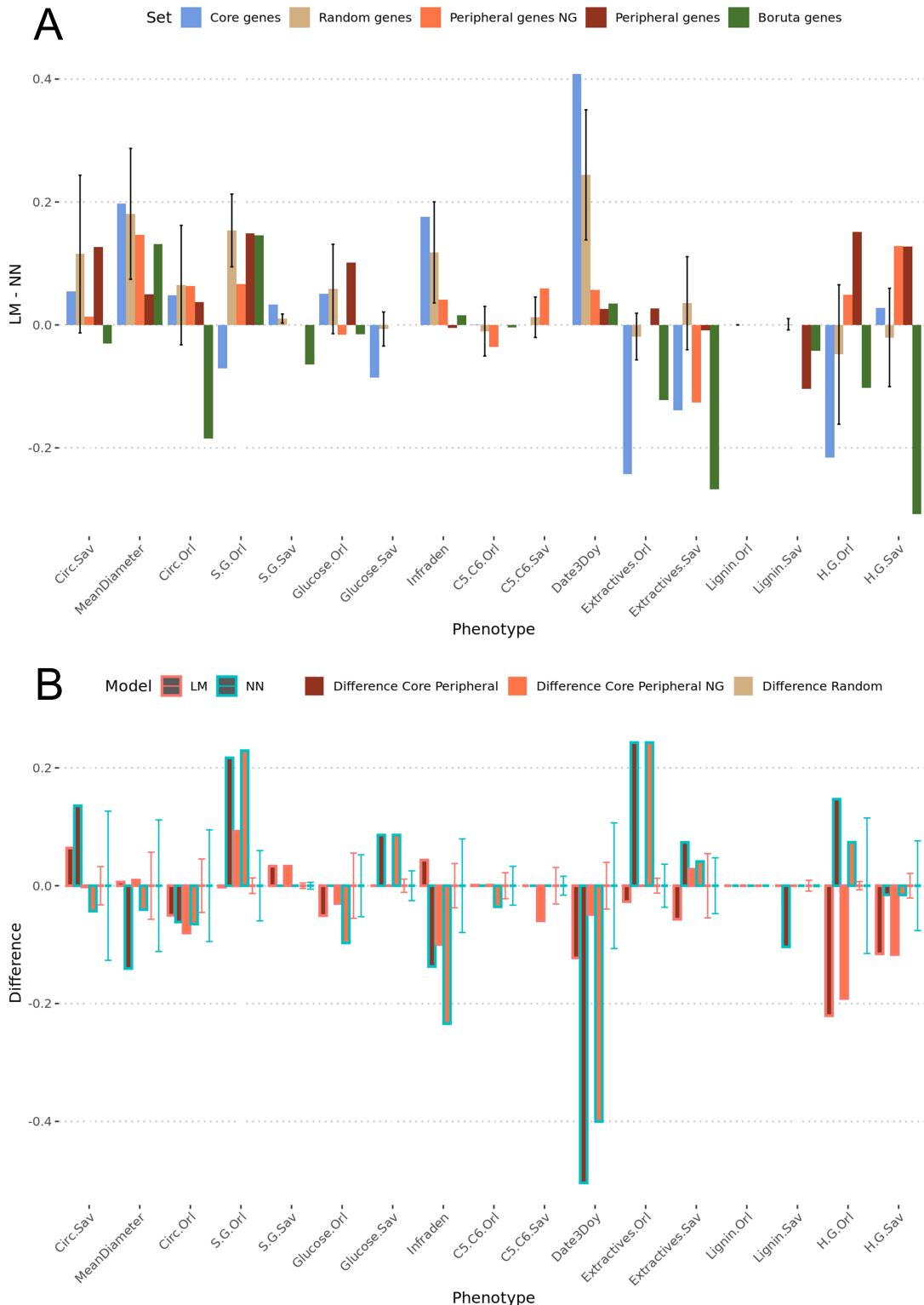


Figure S10: Violin plots of the predictions scores on test sets (R^2 on the y-axis) for the LM Ridge algorithm for increasing sizes of the peripheral genes set (in brown) and the peripheral NG genes set (in orange), used for the predictions (in percent of the full set).

