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To what extent gene connectivity within co-expression network
matters for phenotype prediction?
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Abstract

Recent literature on the differential role of genes within networks distinguishes core from peripheral genes.
If previous works have shown contrasting features between them, whether such categorization matters for
phenotype prediction remains to be studied. We sequenced RNA in a Populus nigra collection and built
co-expression networks to define core and peripheral genes. We found that cores were more differentiated
between populations than peripherals while being less variable, suggesting that they have been constrained
through potentially divergent selection. We also showed that while cores were overrepresented in a subset
of genes deemed important for trait prediction, they did not systematically predict better than peripherals
or even random genes. Our work is the first attempt to assess the importance of co-expression network
connectivity in phenotype prediction. While highly connected core genes appear to be important, they do
not bear enough information to systematically predict better quantitative traits than other gene sets.
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Introduction

Gene-to-gene interaction is a pervasive although elu-
sive phenomenon underlying phenotype expression.
Genes operate within networks with more or less me-
diated actions on the phenome. Systems biology ap-
proaches are required to grasp the functional topol-
ogy of these networks and ultimately gain insights
into how gene interactions interplay at different bio-
logical levels to produce global phenotypes (Mackay,
. New sources of information and their
subsequent use in the inference of gene networks are
populating the wide gap existing between phenotypes
and DNA sequences and, therefore, opening the door
to systems biology approaches for the development
of context-dependent phenotypic predictions. RNA
sequencing (RNAseq) is one of such new sources of
information that can be used to infer gene networks

(Fan ot al}, 015).

Among the many works on gene network infer-
ence based on transcriptomic data, two recent stud-
ies aimed at characterizing the different gene roles
within co-expression networks (Josephs et al) [2017;
Mahler et all [2017)). |Josephs et al. (2017) stud-
ied the link between gene expression, gene connec-
tivity (Langfelder and Horvathl [2008]), divergence
(Williamson et al., 2005) and traces of natural se-
lection (Josephs et al., [2015; Sicard et al. 2015) in a
natural population of the plant Capsella grandifiora.
They showed that both connectivity and local reg-
ulatory variation on the genome are important fac-
tors, while not being able to disentangle which of
them is directly responsible for patterns of selection
among genes. Mahler et al| (2017) recalled the im-
portance of studying the general features of biological
networks in natural populations. With a genome-
wide association study (GWAS) on expression data
from RNAseq, they suggested that purifying selec-
tion is the main mechanism maintaining functional
connectivity of core genes in a network and that this
connectivity is inversely related to eQTLs effect size.
These two studies start to outline the first elements
of a gene network theory based on connectivity, stat-
ing that core genes, which are highly connected, are
each of high importance, and thus highly constrained
by selection. In contrast to these central genes, there
are peripheral, less connected genes, never far from a
core hub. These peripheral genes are less constrained
than core genes and consequently, they harbor larger
amounts of variation at population levels.

Furthermore, classic studies of molecular evolu-
tion in biological pathways can help us understand
the link between gene connectivity and traits. Sev-
eral articles showed that selection pressure is corre-
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lated to the gene position within the pathway, ei-
ther positively (Han et al., 2013; |Lu, 2003; Rausher|
et al., [2008] [1999; Riley et al., 2003} [Yu et al. [2011)
or negatively (Han et al.,|2013; [Jovelin and Phillips|
[2011} [Song et al., 2012} Wu et all, 2010), depending
on the pathway. [Jovelin and Phillips| (2011]) showed
that selective constraints are positively correlated to
gxpression level, confirming previous studies (Drum-

ond et al, [2005} [Duret and Mouchiroud, 2000; [Pl
et all [2001). Montanucci et al| (2011]) showed a
positive correlation between selective constraints and
connectivity, although such a possibility remained
contentious in previous works (Bloom and Adami
[2004; [Fraser and Hirshl, [2004]).

While Josephs’ (Josephs et all [2017) and
Mabhler’s (Méhler et al., 2017) studies framed a gen-
eral view of genes organization based on topological
features described in molecular evolution studies of
biological pathways, a point remains quite unclear so
far: to what extent core and peripheral genes based
on connectivity within a co-expression network are
involved in the definition of a phenotype? One way
to clarify this would be to study the respective roles
of core and peripheral genes, as defined on the basis
of their connectivity within a co-expression network,
in the prediction of a phenotype. Even if predictions
are still one step before validation by in vivo experi-
ments, they already represent a landmark that may
not only be correlative but also closer to causation,
depending on the modeling strategy.

Present study aims at exploring gene ability to
predict traits, with datasets representing core genes
and peripheral genes. By making use of two meth-
ods to predict these phenotypes, a classic additive
linear model, and a more complex and interactive
neural network model, we further aimed at studying
the mode of action of each type of genes, in order to
gain insight into the genetic architecture of complex
traits. On the one hand, genes that are better pre-
dictors with an additive model are supposed to have
an overall more additive, direct mode of action repre-
senting a gene that would be downstream in a biolog-
ical pathway. We expect core genes to display such
additive behavior, with a high but selectively con-
strained expression level (Jovelin and Phillips, 2011}
[Montanucci et al) 2011)). On the other hand, genes
being better predictors with an interactive model are
supposed to be upstream in pathways. We expect pe-
ripheral genes to behave interactively, with a lower
but relatively more variable expression level. With a
lower variation, we also expect core genes to be worse
predictors for traits than peripheral genes unless the
former also bear larger effects.
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To answer the questions concerning the respective
roles of core and peripheral genes on phenotypic vari-
ation, we have sequenced the RNA of 459 samples of
black poplar (Populus nigra), corresponding to 241
genotypes, from 11 populations representing the nat-
ural distribution of the species across Western Eu-
rope. We also have for each of these trees phenotypic
records for 17 traits, covering the growth, phenol-
ogy, physical and chemical properties of wood. They
cover two different environments where the trees were
grown in common gardens, in central France and
northern Italy. With the transcriptomic data, we
built a co-expression network in order to define con-
trasting gene sets according to their connectivity
within the network. We then asked whether these
contrasting sets differed in terms of both population
and quantitative genetics parameters and quantita-
tive trait prediction.

Results

Wood samples, phenotypes, and tran-
scriptomes

Wood collection and phenotypic data (Table
have been previously described (Gebreselassie et al.,
2017). Further details are provided in the materi-
als and methods section. The complete pipeline is
sketched in Figure Briefly, we are focusing on
241 genotypes coming from different natural pop-
ulations in western Europe and planted in 2 com-
mon gardens (to avoid the confounding between ge-
netic and large environmental effects) at two differ-
ent locations in 6 replicated and randomized com-
plete blocks, in Orléans (central France) and Sav-
igliano (northern Italy). A total of 17 phenotypic
traits (Table have been collected on these geno-
types (10 traits in Orléans and 7 in Savigliano). In
Orléans only, we used 2 clonal trees per genotype
(from 2 blocks) to sample xylem and cambium dur-
ing the 2015 growing season for RNA sequencing. No
tree from Savigliano was used for RNAseq. Because
of sampling and experimental mistakes that were fur-
ther revealed by the polymorphisms in the RNA se-
quences, we ended up with 459 samples for which
we confirmed the genotype identity (comparison to
previously available genotyping data from an SNP
chip). These samples correspond to 218 genotypes
with two biological replicates and 23 genotypes with
a single biological replicate. We mapped the sequenc-
ing reads on the Populus trichocarpa transcriptome
(v3.0) to obtain gene expression data.
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Figure 1: General sketch of the experiment. From
the top to the bottom: Map of the location of the dif-
ferent populations sampled for this experiment. From
these populations, genotypes were collected and planted
in 2 locations (Orléans, in central France, and Savigliano,
in northern Italy). At each site, we planted 6 clones of
each genotype, 1 in each of the 6 blocks, and their po-
sition in each block was randomized. For all the blocks,
we collected phenotypes: 10 in Orléans (circumference,
S/G, glucose, C5/C6, extractives, lignin, H/G, diameter,
infradensity and date of bud flush) and 7 in Savigliano
(circumference, S/G, glucose, C5/C6, extractives, lignin,
H/G). Only on the clones of 2 blocks in Orléans, we per-
formed the RNA sequencing and treatment of data. The
treated RN Aseq data were used with different algorithms
and in different sets to predict the phenotypes measured
on the same trees (in Orléans) or on the same genotype
but on different trees (in Savigliano).
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We did PCA analyses on the cofactors that
were presumably involved in the experience, to look
whether any confounding effect could be identified
(Figure [S1)). No clear segregation was found for
any of those, except for the ones associated with
block, date and hour of sampling. We used a lin-
ear mixed-model framework to correct the effects of
these cofactors on each transcript (see the materi-
als and methods section for a formal description of
the model used), with the breedR R package (Munoz
and Sanchez, [2017)), and further computed from the
models the complete BLUP for each genotype. Here-
after, we refer to this set of BLUPs for the 34,229
transcripts as the full gene set (83% of annotated
transcripts).

Clustering and network construction

The classical approach to build a signed scale-free
gene expression network is to use the weighted
correlation network analysis (implemented in the
WGCNA R package (Langfelder and Horvath,
2008)), using a power function on correlations be-
tween gene expressions. We chose to use Spearman’s
rank correlation to avoid any assumption on the lin-
earity of relationships. The scale-free topology fitting
index (R?) did not reach the soft-threshold of 0.85, so
we chose the classical power value of 12, correspond-
ing to the first decrease in the slope growth of the
index, resulting in an average connectivity of 195.2
(Figure ) We detected 16 gene expression mod-
ules (Table with automatic detection (merging
threshold: 0.25, minimum module size: 30, Fig-
ure [2B). Spearman correlations between phenotypic
and expression data, presented in the lower panel of
Figure below the module membership of each
gene, display a structure when the order follows the
gene expression tree. The traits themselves are line
ordered according to clustering on their scaled values
to represent their relationships (Figure . Inter-
estingly, some patterns in the correlation between
expression and traits do not follow what we would
expect from the similarity between traits (5 traits
out of 7 with data in both geographical sites). For
instance, in the group composed of S/G ratios and
glucose composition, the patterns were more similar
between sites across traits than between traits across
sites (Figure @B, Figure . Complex shared
regulations mediated by the environment seem to
be in control of these phenotypes, suggesting site-
specific genetic control. Otherwise, glucose compo-
sition in Savigliano, wood basic density, and extrac-
tives in Orléans presented similar patterns, contrarily
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to what would be expected from the correlations be-
tween these traits. These results from the compara-
tive analysis of correlations pinpoint some underlying
links between traits that are not obvious from factual
phenotypic and genetic correlations between traits.

To get further insight into the relationships be-
tween module composition and traits, we looked
at the strongest correlations between the best the-
oretical representative of a gene expression mod-
ule (eigengene) and each trait, in order to identify
genes in relevant modules with an influence on the
trait (Figure [2IC). Following a Bonferroni correc-
tion of the p-values provided by WGCNA, only 80
correlations remained significant (p < 0.05) out of
the initial 272 traits by module combinations. Six
traits displayed no significant correlations with any
module (Glucose.Sav, both C5.C6, Extractives.Sav,
Lignin.Sav and H.G.Sav) and 1 module was not sig-
nificantly correlated with any of the traits studied
(purple, Figure . In significantly correlated
modules, gene expression correlation with trait was
also significantly correlated with centrality in the
module (represented by the kKME, the correlation
with the module eigengene), while no correlation was
found in poorly correlated modules (Figure ,
Figure . In other words, there is a three-way cor-
relation. The genes with the highest kME in a given
module are the most correlated to the eigengene and,
consequently, are also the most correlated to those
traits with the largest correlation with the module
eigengene. Although this is somehow expected, it
underlines the usefulness of kME as a centrality score
to further characterize the genes within each module.
We thus used this centrality score to define further
the topological position of our gene expressions in the
network and to serve as a basis for role comparisons
between genes. For each gene, we used its highest
absolute score, which corresponds to its score within
the module to which it was assigned. We selected the
10% of genes with the highest global absolute scores
to define the core genes group, and 10% with the
lowest global absolute scores to define the peripheral
genes group. Finally, we selected 100 samples of 3422
(10%) random genes as control groups (Figure
bottom panel).

One particular module from the WGCNA cluster-
ing is the grey module. This module typically gathers
genes with poor membership to any other module. In
our case, it is the 2nd largest module, with 7674 genes
(23% of the full set). It gathers the vast majority of
genes with very low kME (Figure bottom panel)
and 99% of the peripheral genes set (Table .
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Figure 2: GOCNA analysis of gene expression data. (A) Selection of the soft threshold (green dot) based on the
correlation maximization with scale-free topology (left panel) producing low mean connectivity (right panel). (B) Gene
expression hierarchical clustering dendrogram, based on the Spearman correlations (top panel), resulting in clusters
identified by colors (first line of the bottom panel). Spearman correlations between gene expressions and traits values
are represented as color bands on the other lines of the bottom panel, from highly negative correlations (dark blue) to
highly positive correlations (light yellow), according to the scale displayed in panel C. (C) Spearman correlation between
eigengenes (the best theoretical representative of a gene expression module) of modules identified in the previous panel
and traits, again on a dark blue (highly negative) to light yellow (highly positive) scale. (D) Focus on two modules from
the previous graph, representing the correlations between gene expression correlation with the circumference in Savigliano
and centrality in the module. These two panels represent the strongest (right panel, magenta module, R* = 0.86) and
the weakest (left panel, brown module, R? = 0.09) correlations with the corresponding trait.

While it is typically discarded in classic cluster- 27 sis space (Figure ) We thus preferred WGCNA
ing studies, we chose to maintain it and rather un- s clustering to k-means clustering for this analysis.
derstand its composition and role, by adding to the
comparative study two peripheral sets, one with and
one without grey module genes (subsequently called — 2m9 Heritability and population differenti-
"peripheral NG”, NG for ”no grey”). x ation of modules

To assess the robustness of WGCNA analysis re- 2.1 To get further insights into the biological role of core
sults, we compared it to a k-means clustering (R 2 and peripheral genes at population levels, we looked
package coseq, (Rau and Maugis-Rabusseaul 2017)) 23 at the distribution of various characteristics between
of the gene expressions (Figure A). The distribu- 2 gene sets (Figure [3]): gene expression level, several
tion of WGCNA and k-means’ clusters showed a cor- 25 classical population statistics, including heritability
relation of -0.49 (Figure [S6B). k-means clustering s (h?), coefficient of quantitative genetic differentia-
tends to form groups of comparable size 27 tion (Qgr), coefficient of genetic variation (CVj),
, which does not seem biologically cred- s gene diversity (Ht), and a contemporaneous equiva-
ible. Furthermore, the correlations between the k- 20 lent to Fgr for genome scans (PCadapt score). Gene
mean modules eigengenes and traits were lower than 20 expression level, h?, Qgsr, and CV, were computed
with WGCNA'’s, with a poor repartition of the differ- 201 from gene expression data, while Ht and PCadapt
ent modules on the first 2 principal component analy- 22 score (Luu et all [2017) were computed from poly-
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morphism data (SNP) and averaged per gene model.
For more details see the materials and methods sec-
tion.
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Figure 3: Heritability h?, differentiation Qsr, gene
mean expression (in counts per million, power 0.2), ge-
netic variation coefficient C'V; (power 0.05), overall gene
diversity Ht and PCadapt score (power 0.2) violin and
box plots with median (black line) and interquartile
range (black box) for each of the core (in blue), random
(in grey), peripheral NG (in orange) and peripheral (in
brown) gene sets.

Globally, there is a clear trend from core to ran-
dom, to peripheral NG and to peripheral among
these characteristics: with an increase for h2, CV,
and Ht, and a decrease for QQgr, expression and
PCadapt score. The only differences that are not
significant after Bonferroni correction are those be-
tween peripheral NG and peripheral sets in gene ex-
pression (p-value = 0.14) and between random and
peripheral NG sets in the PCadapt score (p-value =
0.39). All the other comparisons have p-values below
0.001.

Altogether, these statistics showed clear differ-
ences between core and peripheral genes: core genes
are highly expressed, highly differentiated between
populations in their expression and by their allele
frequencies at linked markers, and with generally
low levels of genetic variation. Contrastingly, periph-
eral genes are poorly expressed, poorly differentiated
between populations, with generally higher genetic
variation.

Boruta gene expression selection

In addition to previous gene sets building (full, core,
random, peripheral NG and peripheral), we wanted
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to have a set of genes being relevant for their pre-
dictability of the phenotype. Our hypothesis here
was that this set would be the one that enables the
best prediction of a given trait but with a limited
gene number. For that purpose, we performed a
Boruta (Boruta R package, (Kursa and Rudnickil
2010)) analysis on 60% of the full genes set (train-
ing set). This algorithm performs several random
forests to analyze which gene expression profile is
important to predict a phenotype. We tested 4 dif-
ferent p-values for this algorithm, as we originally
wanted to relax the selection and get eventually sets
of different sizes. However, the number of genes se-
lected decreased while relaxing the p-value (613, 593,
578 and 578 respectively for 0.01, 0.05, 0.1 and 0.2).
Among the 4 p-values tested, 190 genes were system-
atically selected (114 are core, 2 are peripheral NG
and 2 are peripheral genes), and 153 were selected
on 3 of the 4 p-value sets (73 are core, 4 are pe-
ripheral NG and 4 are peripheral genes). There is a
6.61 mean over-representation of core genes for the
4 p-values and 0.30 and 0.31 under-representation
of respectively peripheral NG and peripheral genes
(Figure . In the end, with a p-value of 0.01,
a pool of 613 unique gene expressions was found to
be important to predict our phenotypes. Traits with
the highest number of important genes are related to
growth. For the other traits, we always have more
genes selected when the trait is measured in Orléans
compared to Savigliano (respective medians of 23 and
10), which fits well with the fact that RNA collection
was performed on trees in Orléans. On average, genes
that were specific to single traits represented 94% of
selected genes, 1 gene was shared across sites for a
given trait, genes shared by trait category (growth,
phenology, physical, chemical) were 4%, and genes
shared among all traits were 2%.

Phenotype prediction with gene ex-
pression

For our 6 genes sets (full, core, random, peripheral
NG, peripheral and Boruta), we trained two contrast-
ing classes of models to predict the phenotypes: an
additive linear model (ridge regression) and an in-
teractive neural networks model. For the former, we
used ridge regression to deal with the fact that for all
gene sets the number of predictors was larger than
the number of observations. For the latter, we chose
neural networks as a contemporary machine-learning
method, which is not subjected to dimensionality
problems (Gonzalez-Recio et all [2014) and is able
to capture interactions without a priori explicit dec-
laration between the entries, here gene expressions.



https://doi.org/10.1101/523365
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/523365; this version posted November 21, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

371

372

373

374

375

376

377

378

379

380

381

382

These contrasting models let us capture more effi-
ciently either additivity or interactivity and are thus
likely to inform us about the preferential mode of
action of each gene set depending on their relative
performances in predictability. Figure (] and Fig-
ure show that for linear modeling with ridge re-
gression, the best genes set to predict phenotypes was
the full set, as expected because it contains more in-
formation, followed, more surprisingly, by the periph-
eral and peripheral NG genes set, then the random,
core and Boruta sets (respective mean prediction R?
across all traits of 0.22, 0.21, 0.20, 0.19, 0.18 and
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0.17). On the contrary, for neural network modeling,
random genes constituted the worst set by far, fol-
lowed by core, peripheral, peripheral NG and Boruta
sets (respective mean prediction R? across all traits
of 0.14, 0.16, 0.17, 0.18 and 0.22). We have not been
able to compute neural network models with the full
set as the number of predictors remains too large
to be fitted within a reasonable time on computing
clusters. Across phenotypes, predictions were gener-
ally slightly less variable under neural networks than
under the ridge regression counterpart (interquartile
range mean division by 1.12).

. Peripheral genes

. Peripheral genes NG . Boruta genes

LM

‘||‘ .- |I|I )

) I “l .1|||

o
o NN
0.8-
0.6- l
0.4-
- | |I |“| | ‘ ‘“I‘ ‘
0.0- - | ]I- Il II ll_ I l I III . . Il -
R N S S S S N
~<‘f?® @Q/& (’,\‘Q (909 0('76 &9 c,e'/o x«'ob (;Q’Q (?’(?q} é”oo 4@9(') e;?@ {\\(\Q '\“('Ob Q\OO 0'%7)
(o) $0 ’ 9 & o & 2% > & S & O & NS
e’o(\o ¥ (7\00 ¢ ¢ < ‘é@c ‘é'oé‘\ v N
2 <" <«
Phenotype

Figure 4: Predictions scores on test sets (R2 on the y axis) for the 2 algorithms (LM Ridge, top panel; neural network,
bottom panel) for each phenotypic trait (on the x axis). The color of each bar represents the gene set that has been
used for the prediction. Intervals for the random set represent the first and third quartiles of the distribution of the 100
different realizations, while the height of the bar corresponds to the median.
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To further investigate the behavior of genes with
different positions in the network with respect to
the prediction model used, we computed 2 types of
differences: between LM and NN prediction scores
for each gene set (Figure [S9JA), and between core
and peripheral genes sets for LM and for NN mod-
els (Figure [S9B). As a null reference for inference
in the between sets difference (Figure [S9B), we
computed the differences between all the 100 ran-
dom sets, for a total of 4950 differences correspond-
ing to all pairwise differences, excluding reciprocals
and self-comparisons. In the top panel, a positive
difference indicates that LM predicted better than
NN and vice versa, while in the bottom panel, a pos-
itive difference indicates an advantage of core genes
sets over peripherals and, conversely, a negative dif-
ference indicates an advantage of peripheral genes.
In any of the two panels, we did not detect any sys-
tematic difference, which would have led us to con-
clude on more interactivity or more additivity for any
gene set. Moreover, the few cases where a difference
could have been noted are due to very poor predic-
tion scores. The only difference that can be noted
is the difference between core and both peripheral
genes in NN for the date of bud burst (Date3Doy),
in favor of the peripheral genes.

Finally, we investigated to what extent trait Qg
would influence the prediction scores of each combi-
nation of set and algorithm. We thus separated traits
according to whether their Qg7 is above or below the
99" percentile of the Fgp. The rationale under this
split is that because core genes are more differenti-
ated between populations than random or peripheral
genes, we should expect them to predict better those
traits with a similar structuration behavior and wvice
versa. We found that traits above the 99" percentile
of the Fgr are systematically better predicted than
less differentiated traits. However, we did not find
significant differences between gene groups once the
difference between traits was taken into account.

Discussion

Characterizing the way genes contribute to pheno-
typic variation could prove highly valuable to bet-
ter understand the genetic architecture of complex
traits. With the advent of omics data, a huge amount
of information is nowadays becoming available to fill
the gap between variations at the DNA and pheno-
type levels. It is by the use of gene expression data
that the present study aimed at gaining insights into
the genetic architecture behind complex traits.

One key premise in the study was the availability
of a common garden experiment comprising relevant
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samples of natural variation, in our case black poplar
from Western Europe. Such an experimental setting
makes it possible to accurately evaluate phenotypes
to calibrate and serve as a target for predictions. In-
deed, evaluating all the genotypes in a given loca-
tion with experimental design and replicates enabled
to unravel the confounding between genotype and
macro-environment (or micro-environment) that typ-
ically occur when considering genotypes in the wild
(de Villemereuil et al.,|[2016)). Likewise, RNAseq data
were collected on up to two biological replicates in
the common garden and also corrected for environ-
mental and design covariables, to obtain the geno-
typic BLUP, which is the genetic value of the geno-
type. Such adjustments at both phenotypic and ge-
nomic ends provided proper grounds with reasonable
confidence in the absence of confounding effects for
the study of associations between the two sources of
data.

Two recent works used RNAseq in natural pop-
ulations of plants to build co-expression networks
and study the relationship between network topol-
ogy and patterns of natural selection (Josephs et al.,
2017 [Mahler et al.l |2017). While they found differ-
ences in natural selection among genes given their
connectivity within networks, they did not investi-
gate how these differences affect phenotypic varia-
tion. We thus embraced the classic WGCNA ap-
proach (Langfelder and Horvathl 2008) to build the
co-expression network within our dataset in order
to study the relationship between gene connectivity
and phenotypic prediction. This clustering of genes
gave us different groups that we found to be dif-
ferently correlated to traits values and according to
sites. However, this method was simply for us a way
to obtain a centrality score for each gene, with the
subsequent possibility to classify them into core and
peripherals. The biological interpretation of corre-
lations between gene groups and traits would clearly
deserve further work which is beyond the scope of the
present study. We based our definition of core and
peripheral on|Mahler et al.| (2017)), as respectively the
10% most central and most peripheral genes. The
only specificity of our work here is that we did not
discard, as it is classically done (called pruning in the
WGCNA manual), the genes from the grey group,
i.e. those showing a poor membership to any other
module. We considered instead two alternative pe-
ripheral sets by keeping or excluding genes from the
grey group. The pertinence of KME as a classification
criterion became evident in our study when looking
at the differences between core and peripherals in
terms of classic quantitative and population genetic
parameters. Core genes (high kME) showed high lev-
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els of population differentiation, mostly in quantita-
tive genetic terms (Q g7 ), while being simultaneously
less variable than the rest of the genes. Such results
would suggest that core genes are genes potentially
subjected to divergent selection, with subsequently
reduced levels of extant variation, and involved in lo-
cal adaptations. Contrarily, peripherals (low kME)
showed larger levels of variation with respect to their
expression level and little structure across popula-
tions, suggesting less selection pressure or weaker
connection to selected traits, with mostly stabilizing
selection patterns across populations. Therefore, de-
spite the fact that a subdivision in core and periph-
erals is somehow an oversimplification, an extreme
contrast of an otherwise continuous phenomenon, it
helped to reveal the different natures of genes char-
acterized by extreme values of KME.

To further test whether this gene categorization
matters for trait prediction, we decided to go one step
further by trying to predict traits from the different
gene sets. We also wanted to have a gene set designed
to be composed of good predictors of the traits. We
thus used the Boruta algorithm (Kursa and Rud-
nickil |2010) to select genes, by performing random
forest predictions and selecting the genes with the
highest prediction importances. We have to keep in
mind that random forest algorithm allows for im-
plicit interactions between predictors (here gene ex-
pressions, (McKinney et al., [2006; |(Chen et al., [2007;
Jiang et all [2009))). Results pinpointed again one
feature differentiating the behavior of core and pe-
ripheral genes. Cores were largely overrepresented
in the different Boruta selections (by at least 38%
of Boruta genes), involving systematically the same
114 genes across all threshold p-values (153 over 3
values). Peripherals were systematically underrep-
resented to a very large extent (less than 7%). Al-
though the remaining genes, neither cores nor periph-
erals according to our previous definition, were the
majority (53%) among the selected by Boruta, they
were sampled from a vaster pool of more than 27,000
genes. Another important result from the Boruta se-
lections is the fact that relaxing the p-value threshold
(from 0.01 to 0.2) did not increase the size of the re-
sulting selection set, while the set itself could change
partially in composition across different thresholds.
One can assume that relaxing the threshold would
lead to increasing the number of features if these
acted independently and contributed with novel in-
formation. The fact that numbers did not change
substantially, while the composition was indeed im-
pacted, leads to thinking that features are deeply in-
terconnected and do not add up independently. This
would suggest that different arrangements of genes
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could contain comparable levels of information or,
in other words, that genes bear some redundancy
through networks of interactivity.

With these 6 genes sets, we predicted 17 pheno-
typic traits with 2 alternative algorithms, one ex-
pected to capture mostly additivity between predic-
tors (LM), the other one interactivity (NN). As ex-
pected, the full set resulted in best predictions with
the LM model (NN not available), as it comprised
all available genetic information. Core genes, how-
ever, were far from being the best set to predict the
different traits under either of the two algorithms.
Such results would be a priori surprising considering
previous statements on the composition of Boruta se-
lection where cores had an important contribution.
The key difference, however, is that cores were not
the only contributors to the Boruta sets. It seems
that cores are able to summarize key information for
quality predictions but require a complementary con-
tribution from other interacting genes to round up
the optimal set. This is better reflected by the perfor-
mance of the Boruta set, which obtained the best per-
formance predicting traits under the NN algorithm.
To some extent, the NN algorithm exploits the inter-
activity between features (genes) already present in
the Boruta set, itself obtained through the random
forest heuristics that are particularly sensitive to in-
teractions. To some extent, the high connectivity of
high kME value core genes is well captured by inter-
action sensitive algorithms to improve prediction.

In a contrasting way, Boruta and core sets per-
formed poorly under LM modeling, where the two
classes of peripherals obtained the best predictabil-
ities. Such a performance from peripherals is some-
how surprising, in the sense that this class of genes,
notably the grey module, is usually pruned from
transcriptomic studies, while they seem nonetheless
to harbor important biological information that is
relevant to the trait variation. Judging from the
nature of the LM modeling, peripherals would have
more a type of additive gene action, which could be
in turn a penalizing feature when a reduction in the
number of genes operates to focus only on the most
relevant ones. Thus, peripherals appear to be rele-
vant when allowed to contribute cumulatively to pre-
diction, although they can be otherwise easily sum-
marized by more integrative genes when variable se-
lection procedures operate to obtain optimal sets. It
is important to note, however, that adding peripher-
als (following an increasing kME) beyond the num-
bers present in their original sets did not improve pre-
dictability (Figure [S10)), suggesting the existence
of a plateau in their capacity to explain trait varia-
tion. The low connectivity of peripheral genes, re-
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flecting independent features, is best exploited by
linear model approaches capturing mostly additive
genetic actions.

Finally, random sets offered a convenient frame-
work for inferences when comparing gene sets. Their
performance in terms of predicting quality was never
the best under either of the alternative modeling ap-
proaches (LM or NN) but was good enough to sug-
gest that relevant information can be nevertheless
obtained from many different gene sets, pointing at
some degree of pervasive redundancy in the genetic
architecture of traits. In practical terms, when a
trait prediction is required but there is no biolog-
ical a priori on the choice of genes, a random set
modeled through LM appears like a satisfying solu-
tion. This is not far from the SNP based counter-
part in genome-wide evaluation (Meuwissen et al.)
2001)), where markers are often a choice that is not
driven by biological context. However, if some pre-
vious selection of genes is required, the combination
of Boruta selection and subsequent NN modeling has
been shown here to be a good option for predictabil-
ity on a reduced genic panel. Indeed, Boruta is an
advantageous alternative in genomic evaluation for
breeding to more classic methods, often based on
the imposition of a priori constraints for shrinkage
or variable selection (de los Campos et al., |2013]).

One of the particularities of core genes, that of
showing highly structured genetic variation among
populations, led us to think that they might be pref-
erentially involved in traits also showing high levels
of Qgr. Such a hypothesis was not confirmed by
our results, where highly structured traits were gen-
erally better predicted than traits with no apparent
structure, but with no clear differences in such an
advantage between gene sets. Therefore, the highly
structured core genes did not contribute to improv-
ing the prediction of highly structured traits, sug-
gesting that trait covariation between populations is
affected by other genic sources not conveniently un-
raveled here. It is important to note that prediction
quality is highly variable between traits, somehow
masking the differences that might be found between
gene sets. We have already pinpointed the relevance
of KkME in establishing a gradient of genes whose ex-
tremes show different behaviors in quantitative and
population genetics statistics. These extremes also
contribute differently to the explanation of pheno-
typic variability, through the light of different predic-
tion models. One aspect that remained unanswered,
however, is to what extent kME is also relevant to
prediction without circumscribing our scope to the
extremes. When computing the correlations between
connectivity (kME) and prediction coefficients (im-
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portance in terms of effect) from LM across all the
full set of genes, results showed that there are some
strong positive correlations for three of the traits
(Circ.Orl, S.G.Orl and Extractives.Orl). However,
there is not a systematic trend across all the traits,
suggesting that other differences in their genetic vari-
ability and genomic architectures might be also of
importance here.

In the end, differential connectivity as reflected
by our kME gradient from gene expressions pinpoints
at the importance of mechanisms of gene interactions
in the genetic architecture of traits. On top of the
DNA sequence, the superposing layer of transcrip-
tomics adds up the intermediate pattern of gene in-
teractions and physiological epistasis, before the final
level of phenotypic expression (Schrag et al. [2018).
It is important to note, however, that such gene in-
teraction at the transcriptomic level is not directly or
necessarily related to epistasis in the context of sta-
tistical genetics literature, i.e. the interaction effect
between alleles from different loci on a given pheno-
type (Cordell, |2002)). The extent to which connec-
tivity or transcriptomic interactivity relates to that
level of epistasis is beyond the scope of current work
but clearly deserves further investigation.

Conclusion

This work shows that all genes seem important to
some extent to predict phenotypes. If the Boruta se-
lection leads us to think that core genes may be very
important, prediction results across a range of phe-
notypes underlined that they are not the only ones.
The information that they contain has to be com-
pleted by other genes. The mean connectivity score
(kME) of the Boruta sets is around 0.7. However, as
genes seem to be very interactive, predicting a phe-
notype with a subset of genes summarizing the infor-
mation is possible and efficient. Our work is globally
in accordance with the recent work on the omnigenic
model (Boyle et all 2017 [Liu et all |2019), describ-
ing that all genes expressed in an organ participate
in the traits of that organ. We are also able to pre-
dict phenotypes of an organ or at the organism level,
with gene expression from another organ. However
predicting and explaining are 2 different things, and
the information contained by genes may be too re-
dundant to lead us to good mechanistic models from
statistical ones. Statistical models may, nevertheless,
provide information on the ranking of importance of
the genes involved in a phenotype.
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Materials and Methods

Samples collection

As described in previous works (Gebreselassie et al.,
2017; \Guet et al., 2015), we established in 2008
a partially replicated experiment with 1160 cloned
genotypes, in two contrasting sites in central France
(Orléans, ORL) and northern Italy (Savigliano,
SAV). At ORL, the total number of genotypes was
1,098 while at SAV there were 815 genotypes. In
both sites, the genotypes were replicated 6 times in
a randomized complete block design. At SAV, the
trees were pruned at the base after one year of growth
(winter 2008-2009) to remove a potential cutting ef-
fect and were subsequently evaluated for their growth
and wood properties during winter 2010-2011. At
ORL, the trees had the same pruning treatment after
two years of growth (winter 2009-2010) and were also
subsequently evaluated for growth and wood proper-
ties after two years (winter 2011-2012). After eval-
uation, we pruned again for a new growth cycle. In
their fourth year of growth of this third cycle (2015),
241 genotypes present in two blocks of the French site
were selected to perform sampling for RNA sequenc-
ing. In the end, we obtained transcriptomic data
from 459 samples, 218 genotypes duplicated in the
two blocks and 23 genotypes available from only one
block. These 241 genotypes were representative of
the natural west European range of P. nigra through
11 river catchments in 4 countries (Table [S3).

We described 14 of the 17 phenotypic traits in
previous work (Gebreselassie et all 2017). Briefly,
these traits can be divided into two categories,
growth traits and biochemical traits which were all
evaluated on up to 6 clonal replicates by genotype at
each site after two years of growth in the second cy-
cle. The first set is composed of the circumference of
the tree at a 1-meter height measured in Savigliano
at the end of 2009 (CIRC2009.Sav) and in Orléans
at the end of 2011 (CIRC2011.0rl). The second set
is composed, each time at both sites, of measures
of ratios between the different components of the
lignin, p-hydroxyphenyl (H), guaiacyl (G) and sy-
ringyl (S) (H.G.Orl, H.G.Sav, S.G.Orl and S.G.Sav),
measures of the total lignin content (Lignin.Orl :
measure of the lignin in Orléans, Lignin.Sav: mea-
sure of the lignin in Savigliano), measure of the to-
tal glucose (Glucose.Orl and Glucose.Sav), measure
of ratio between 5 and 6 carbon sugars (C5.C6.0rl
and C5.C6.Sav) and measure of the extractives (Ex-
tractives.Orl and Extractives.Sav). For each of these
traits, we computed mean values per genotype previ-
ously adjusted for microenvironmental effects (block
or spatial position in the field).
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The 3 remaining traits were measured in 2015
on the trees harvested for the RNA sequencing ex-
periment (2 replicates per genotype). They include
the mean diameter of the stem section harvested for
RNA sequencing (MeanDiameter), the date of bud
flush of the tree in 2015 (Date3Doy) and the basic
density of the wood (Infraden). Date of bud flush
consisted of a prediction of the day of the year at
which the apical bud of the tree was in stage 3 ac-
cording to the scale defined in Dillen et al. (2009).
Predictions were done with a lowess regression from
discrete scores recorded at consecutive dates in the
spring of 2015. Wood’s basic density was measured
on a piece of wood from the stem section harvested
for RNA sequencing following the Technical Associ-
ation of Pulp and Paper Industry (TAPPI) standard
test method T 258 ”Basic density and moisture con-
tent of pulpwood”.

Transcriptome data generation

We sampled stem sections of approximately 80 cm
long starting at 20 cm above the ground and up to
1 meter in June 2015. The bark was detached from
the trunk in order to scratch young differentiating
xylem and cambium tissues using a scalpel. The tis-
sues were immediately immersed in liquid nitrogen
and crudely ground before storage at -80°C pending
milling and RNA extraction. Prior to RNA extrac-
tion, the samples were finely milled with a swing mill
(Retsch, Germany) and tungsten beads under cryo-
genic conditions with liquid nitrogen during 25 sec-
onds (frequency 25 cps/sec). About 100 mg of milled
tissue was used to isolate separately total RNA from
xylem and cambium of each tree with RNeasy Plant
kit (Qiagen, France), according to manufacturer’s
recommendations. Treatment with DNase I (Qia-
gen, France) to ensure the elimination of genomic
DNA was made during this purification step. RNA
was eluted in RNAse-DNAse free water and quanti-
fied with a Nanodrop spectrophotometer. RNA from
xylem and cambium of the same tree were pooled in
an equimolar extract (250 ng/uL) before sending it
to the sequencing platform.

RNAseq experiment was carried out at
the platform POPS  (transcriptOmic  Plat-
form of Institute of Plant Sciences - Paris-

Saclay) thanks to IG-CNS Illumina Hiseq2000.
RNAseq libraries were constructed  using
TruSeq_Stranded_mRNA _SamplePrep_Guide_150310
47 D protocol (Ilumina®), California, U.S.A.). The
RNAseq samples have been sequenced in single-end
reads (SR) with an insert library size of 260 bp and
a read length of 100 bases. Images from the in-
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struments were processed using the manufacturer’s
pipeline software to generate FAST(Q sequence files.
Ten samples by lane of Hiseq2000 using individually
barcoded adapters gave approximately 20 millions of
SR per sample. We mapped the reads on the Pop-
ulus trichocarpa v3.0 transcriptome with bowtie2
(Langmead and Salzberg) [2012), and obtained the
read counts for each of the 41,335 transcripts by
homemade scripts (a median of 17 millions of reads
were mapped per sample, with a minimum of 6 and
a maximum of 42 million). Initially, we considered
using the genotype means to reduce our data vol-
ume. However, differences between replicates were
not normally distributed, because of variation in
gene expression due to plasticity. We thus could not
summarize our data with their mean, as it would
have removed this information and finally we chose
to keep replicates as separate data samples.

Filtering the non-expressed genes, nor-
malization and variance stabilization

We started cleaning our raw count data by remov-
ing the transcripts without at least 1 count in 10%
of the individuals. From the original 41,335 genes,
7,106 were thus removed, leaving 34,229 genes. Af-
ter this first filtration, we normalized the raw count
data by Trimmed Mean of M-values (TMM, edgeR
(Robinson and Oshlackl 2010)). As most features are
not differentially expressed, this method takes into
account the fact that the total number of reads can
be strongly influenced by a low number of features.
Then, we calculated the counts per millions (CPM
(Law et al.| |2014)).

To stabilize the variance of the CPM data, we
computed a loga(n + 1) instead of a loga(n + 0.5)
typically used in a voom analysis (Law et al., |2014]),
to avoid negative values, which are problematic for
the rest of the analysis.

Computing the BLUP, heritability, and
st while correcting the co-variables

As the sampling ran along 2 weeks, we expected
environmental variables to blur the signal. To un-
derstand how our data were impacted, we ran a
PCA analysis to identify the impact of each cofac-
tor (Figure [S1). We identified the block and the
sampling date and time as cofactors with a substan-
tial impact.

A 12k bead chip (Faivre-Rampant et al., |2016)
provided 7,896 SNPs in our population. A ge-
nomic relationship matrix between genotypes was

computed with these SNPs with LDAK (Speed et al.,
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2012), and further split into between (mean popula-
tion kinship, Ky,) and within-population relationship
matrices (kinship kept only for the members of the
same population, all the others are equal to 0, Ky).
These matrices were used in a mixed linear model to
compute the additive genetic variances between and
within populations for the expression of each gene:

(1)

Where, y is a gene expression vector across in-
dividual trees, By is a vector of fixed effects (overall
mean or intercept); b and w are respectively random
effects of populations and individuals within popu-
lations, which follow normal distributions, centered
around 0, of variance agKb and anKw. op and oy,
are the between and within-population variance com-
ponents and Ky, and K, are the between and within-
population kinship matrices. Zy, and Z., are known
incidence matrices between and within populations,
relating observations to random effects b and w. € is
the residual component of gene expression, following
a normal distribution centered around 0, of variance
021, where o, is the residual variance and I is an
identity matrix.

We used the function ”remlf90” from the R pack-
age breedR (Munoz and Sanchez, [2017)) to fit the
model, with the Expectation-Maximization method
followed by one round with Average-Information al-
gorithm to compute the standard deviations. From
the resulting between and within-population vari-
ance components, we computed the best linear un-
biased predictors of between and within population
random genetic effects (f) and W, respectively) and
summed them up to obtain the total genetic value for
each gene expression (BLUP). We also computed
heritability (h?) and population differentiation esti-
mates (Qsr) for each gene expression as follows:

Yy =50+ Zpb+Zyw+e

2 2
2 _ Ty + Tw (2)

o + 03 + o

2

Qsr= 2t
ST —
of + 202,

(3)

Finally, we computed for each gene expression
the coefficient of genetic variation (CVj) by dividing
its total genetic variance (o + 02 by its expression
mean.

Other population statistics

We further used a previously developed bioinformat-
ics pipeline to call SNPs within our RNA sequences
(Rogier et al., 2018). Briefly, this pipeline involves
classical cleaning and quality control steps, mapping
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on the P. trichocarpa v3.0 reference genome, and
SNP calling using the combination of four different
callers. We ended up with a set of 874,923 SNPs
having less than 50% of missing values per genotype.
The missing values were further imputed with the
software FImpute (Sargolzaei et al., 2014)). We vali-
dated our genotyping by RNA sequencing approach
by comparing the genotype calls with genotyping
previously obtained with an SNP chip on the same in-
dividuals (Faivre-Rampant et al.||2016)). Genotyping
accuracy based on 3,841 common positions was very
high, with a mean value of 0.96 and a median value
of 0.99. The imputed set of SNP was then annotated
using Annovar (Wang et al., |2010) in order to group
the SNPs per gene model of P. trichocarpa reference
genome. For each SNP, we computed the overall ge-
netic diversity statistics with the hierfstat R package
(Goudet and Jombart|, |2015) and this statistic was
then averaged by gene model in order to get informa-
tion on the extent of diversity. We further computed
PCadaptscore with the pcadapt R package (Luu
et al., [2017)) with 8 retained principal components.
Here again, PCadapt scores were then summarized
(averaged) by gene-model in order to get informa-
tion about their potential involvement in adaptation.
Based on the principal component analysis, pcadapt
is more powerful to perform genome scans for se-
lection in next-generation sequencing data than ap-
proaches based on Fgr outliers detection (Luu et al.,
2017). We found a positive correlation between Fgr
and PCadapt score (data not shown), but PCadapt
score highlighted differences between Core, random
and peripheral gene sets (Figure 3) while Fsp did
not.

Hierarchical and k-means clustering

We performed a weighted correlation network anal-
ysis with the R package WGCNA (Langtelder and
Horvath, 2008) on our full RNAseq gene set. We
followed the classic approach, except that we first
ranked our expression data, to work subsequently
with Spearman’s non-parametric correlations and
avoid problems due to linear modeling assumptions.
We first chose the soft threshold with a power of 12,
which is the classical value for signed networks (and
default value in WGCNA) (R? = 0.81, connectiv-
ity: mean = 195.17, median = 9.23, max = 1403.96,
Figure ) Then, we used the automatic mod-
ule detection (function "blockwiseModules”) via dy-
namic tree cutting with a merging threshold of 0.25,
a minimum module size of 30 and bidweight midcor-
relations (Figure [2B). All other options were left
to default. This also computes module eigengenes.
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To sort the traits, we clustered their scaled values
with the pvclust R packages (Suzuki and Shimodairal,
2015)), the Ward agglomerative method (” Ward.D2”)
on correlations (Figure , 2C, Figure [S2)). The
clustering on euclidean distance results in the exact
same hierarchical tree. Correlations between traits
and gene expression or module eigengenes were com-
puted as Spearman’s rank correlations (Figure @B,
2C). We also performed a k-means clustering with
the R package coseq (Rau and Maugis-Rabusseau,
2017) considering 10 initial runs, 1000 iterations,
without any other data transformation, and for a
number of clusters (K) between 2 and 20. At first,
it identified a K without strong agreement between
the two evaluation algorithms included in coseq. We
thus further computed additional rounds of k-means
clustering, around the previously identified K (plus
or minus 5 clusters), with 100 initial runs and 10000
iterations, until both evaluation algorithms agreed.

Machine learning
Boruta gene expression selection

In addition to the inconvenience of working with a
large number of features (time and power consump-
tion), most machine learning algorithms perform bet-
ter when the number of predicting variables used is
kept as low as the optimal set (Kohavi and John,
1997). We thus performed an all relevant variable
selection (Nilsson et all [2007) with the Boruta func-
tion (Kursa and Rudnicki, [2010)) from the eponym
R package, with 4 p-value thresholds (1, 5, 10 and
20%), on the training subpart of the full gene expres-
sion set, for each phenotype independently. Then,
features that were not rejected by the algorithm were
pooled together, so that all the important genes were
in the selected gene pool, one pool for each p-value
threshold. The enrichment in core or peripheral
genes in each of these pools was evaluated by Fisher’s
exact test for count data (" fisher.test” function in the
stats R package).

Models

Both additive linear model (ridge regression) and in-
teractive neural network models were computed by
the R package h2o (LeDell et al., [2019). They both
used the gene expression sets as predictors and one
phenotypic trait at a time as a response. Gene sets
were split by the function "h2o.splitFrame” into 3
sets, a training set, a validation set and a test set,
with the respective proportions of 60%, 20%, 20%.
We checked that the split preserves the distribution
of samples within populations. The training set was
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used to train the models, the validation set was used
to validate and improve the models, while the test
set was used to compute and report prediction accu-
racies as R? between observed and predicted values
within this set and using the function "R2” of the
R package compositions (van den Boogaart et al.
2018)). This set has never been used to improve the
model and therefore represents a proxy of new data,
avoiding the report of results from overfitted models.
All the reported predictions scores were computed on
this test set. These results are thus representing real-
life predictions and are not subject to over-fitting.

For linear models, we used the function "h2o.glm
with” default parameters, except 2-folds cross-
validation and alpha set at zero to perform a ridge re-
gression. The same splits and score reporting meth-
ods were used.

Neural networks have the reputation to be able
to predict any problem, based on the Universal ap-
proximation theorem (Cybenko, 1989; [Hornik et al.,
1989). However, this capacity comes at the cost of
a very large number of neurons in one layer, or a
reasonable number of neurons per layer in a high
number of layers. Both settings lead to difficult in-
terpretation when very many gene expressions are
involved. In that sense, we chose to keep our mod-
els simple, with two layers of a reasonable number of
neurons. This obviously comes at the price of lower
prediction power. However, we believe that these
topologies give us the power to model 2 levels of in-
teractions between genes (1 level per layer). Further-
more, since both methods yielded comparable predic-
tion R? (median ridge regression R? = 0.19, mean
neural network R? = 0.173), this complexity seemed
appropriate. To find the best models for neural net-
works, we computed a random grid for each response.
We tested the following four hyperparameters: (i)
activation function (”Rectifier”, ”Tanh”, ”Rectifier-
WithDropout” or ”TanhWithDropout”); (ii) net-
work structure; (iii) input layer dropout ratio (0 or
0.2) (iv) L1 and L2 regularization (comprised be-
tween 0 and 1 x 10~%, with steps of 5 x 107%). Net-
work structure corresponded to the number of neu-
rons within each of the two hidden layers, which was
based on the number of input genes (h). The first
layer was composed of h, %h or %h neurons. The sec-
ond layer had a number of nodes equal or lower to the
first one and is also composed of h, %h or %h neurons.
This represented a total of 6 different structures. We
performed a random discrete strategy to find the best
search criteria, computing a maximum of 100 mod-
els, with a stopping tolerance of 10~3 and 10 stopping
rounds. Finally, "h2o0.grid” parameters were the fol-
lowing: the algorithm was ”deeplearning”, with 10
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epochs, 2 fold cross-validation, maximum duty cycle
fraction for scoring is 0.025 constraint for a squared
sum of incoming weights per unit is 10. All other pa-
rameters were set to default values. The best model
was selected from the lowest RMSE score within the
validation set.
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Supplemental Material

Supplemental tables

Table S1: Correspondence between traits, their abbreviations, and families.

Trait Abbreviation Family

Mean diameter of the stem section harvested for RNA sequencing MeanDiameter Growth

Circumference in Orléans CIRC.Orl Growth

Circumference in Savigliano CIRC.Sav Growth

Ratio between syringyl and guaiacyl lignin subunits in Orléans S.G.Orl Chemical
Ratio between syringyl and guaiacyl lignin subunits in Savigliano S.G.Sav Chemical
Total glucose in Orléans Glucose.Orl Chemical
Total glucose in Savigliano Glucose.Sav Chemical
Basic wood density of the stem section harvested for RNA sequencing Infraden Physical

Ratio between 5 carbon- and 6 carbon-sugars in Orléans C5.C6.0rl1 Chemical
Ratio between 5 carbon- and 6 carbon-sugars in Savigliano C5.C6.Sav Chemical
Ratio between p-hydroxyphenyl and guaiacyl lignin subunits in Orléans H.G.Orl Chemical
Ratio between p-hydroxyphenyl and guaiacyl lignin subunits in Savigliano H.G.Sav Chemical
Lignin content in Orléans Lignin.Orl Chemical
Lignin content in Savigliano Lignin.Sav Chemical
Extractives content in Orléans Extractives.Orl ~ Chemical
Extractives content in Savigliano Extractives.Sav ~ Chemical
Date of bud flush of the tree in Orléans in 2015 Date3Doy Phenology

Table S2: Module membership of each gene (see Supplemental file).

Table S3: Number of genotypes sampled for each population.

Population name Country Number of genotypes
Adour France 36
Basento Italy 5
Dranse France 16
Kuhkopf Germany 19
Loire France 34
NL Netherlands 4
Paglia Italy 13
Ramieres France 26
Rhin France 15
Ticino Ttaly 54
ValAllier France 19
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Table S4: Distribution of core and peripheral genes across modules.

Module core peripheral peripheral no grey
grey 0 2942 0
blue 519 300 1438
turquoise 498 85 933
yellow 368 1 99
brown 258 13 152
magenta 119 12 167
pink 135 14 107
red 120 8 111
lightcyan 170 1 21
cyan 74 4 68
salmon 75 8 63
grey60 136 1 1
darkturquoise 69 3 32
purple 45 4 52
black 70 5 21
greenyellow 56 3 20
darkgrey 37 1 21
saddlebrown 58 0 1
violet 53 0 0
white 27 0 23
darkmagenta 39 3 7
lightyellow 33 4 10
orange 45 0 0
darkorange 43 0 1
darkred 43 0 0
royalblue 37 0 )
green 25 0 14
lightgreen 37 0 0
paleturquoise 24 1 12
skyblue 32 1 4
tan 27 1 9
darkgreen 22 1 10
darkolivegreen 25 1 3
midnightblue 18 1 10
steelblue 25 1 3
yellowgreen 22 1 2
siennad 19 2 2
skyblue3 19 0 0
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Supplemental figures

Figure S1: PCA of the different cofactors (Xylem and cambium scraper, extractor and extraction method, population,
sequencing column, line and plate, the growth rate at harvest, sampling date, time, temperature, solar radiation, humidity
and wind speed). Each of these represents the distribution of the individuals on the 2 first axes of the PCA (representing

17,7% of the variation), colored by class. Cofactors related to weather are presented in the 6 lower plots.
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Figure S2: Scaled traits hierarchical clustering dendrogram computed from their correlations with Ward method
(?Ward.D2”) by the R package pvclust. Approximately Unbiased (au, in red) and Bootstrap Probability (bp, in green)
p-values indicated the degree of belief associated with clusters. Highly supported modules are framed by a red square,
grouping (a) the mean sample diameter with the two circumference traits, (b) the S/G ratios with glucose composition,
(c) the two C5/C6 together, and (d) the H/G ratios.
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Figure S3: Heatmap of module-trait Spearman’s correlations, on a dark blue (high negative correlation) to light yellow
(high positive correlation) scale. We removed correlations with a p-value lower than 5% after Bonferroni correction. From
the total of 425 correlations, 72 remained.
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Figure S4: Relationship between Spearman’s correlations between module-trait (y-axis) and gene significance-kME
(x-axis).
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Figure S5: Histogram of the centrality scores without (top panel) or with (botom panel) the grey group. Core,
peripheral and peripheral without grey sets are represented respectively by the blue, dark orange and orange bars.
Random sets are distributed across the histogram and do not appear on this figure. Distribution of genes clustered in
the grey module is represented by the grey bars, white bars are for other genes.
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Figure S6: Gene expression k-means clustering (A) Correlation between eigengenes of modules identified by k-means
clustering, on a light yellow (positive) to dark blue (negative) scale. P-values are indicated on the second line of each
square. (B) Heatmap representing the concordance between WGCNA (abscissa) and k-means (ordinate) clusterings. (C)
Principal component analysis graph of the k-means clustering.
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Figure S7: Distribution of the kME for the core (blue), peripheral NG (orange), peripheral (brown) and other (NA,
in black) genes in the sets selected by Boruta for the different p-values (0.01, 0.05, 0.1 and 0.2).
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Figure S8: Violin and boxplots of prediction R? across all phenotypes, split by model and gene sets.

LM NN

0.8-

L]

L]

L]
~ 0.4-

o

0.0- T

-0.4-
X o o o o X o o o ©
6)@ (\Q < (\6 (2 6}@ (\Q (\0 $ (\Q; (\Q
‘\§ & & & & & ‘\\\o & & & & &
S o N & @ 0 S & & 2 @ o
N (@) & N e N N (@ & N & Q
%)) & 2 s (9) 8% O 'Q N (3
Q « () K 2 e i« e K <
& 3 < 3
& N & o~ N <
Q K Q 9 N R
()o& ® ()06\ @
Set

27


https://doi.org/10.1101/523365
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/523365; this version posted November 21, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

Figure S9: Difference of prediction scores (on the y-axis) between algorithms (A) and sets (B). (A) the difference
between LM and NN prediction scores for the core (in blue), random (in grey), peripheral (in brown), peripheral (in
orange) and Boruta gene sets (in green).(B) the LM differences are in red and the NN differences in turquoise and the
color filling the bar represents the difference between core and peripheral genes in brown, core and peripheral NG in
orange and between the random sets in grey. For the random pairs, error bars represent the first and third quartiles of
the differences between pairs of randomized sets and the bar corresponds to the median.
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Figure S10: Violin plots of the predictions scores on test sets (R? on the y-axis) for the LM Ridge algorithm for
increasing sizes of the peripheral genes set (in brown) and the peripheral NG genes set (in orange), used for the predictions
(in percent of the full set).
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