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Abstract

Recent literature on the differential role of genes within networks distinguishes core from peripheral genes.
If previous works have shown contrasting features between them, whether such categorization matters for
phenotype prediction remains to be studied. We sequenced RNA in a Populus nigra collection and built
co-expression networks to define core and peripheral genes. We found that cores were more differentiated
between populations than peripherals while being less variable, suggesting that they have been constrained
through potentially divergent selection. We also showed that while cores were overrepresented in a subset
of genes deemed important for trait prediction, they did not systematically predict better than peripherals
or even random genes. Our work is the first attempt to assess the importance of co-expression network
connectivity in phenotype prediction. While highly connected core genes appear to be important, they do
not bear enough information to systematically predict better quantitative traits than other gene sets.
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Introduction1

Gene-to-gene interaction is a pervasive although elu-2

sive phenomenon underlying phenotype expression.3

Genes operate within networks with more or less me-4

diated actions on the phenome. Systems biology ap-5

proaches are required to grasp the functional topol-6

ogy of these networks and ultimately gain insights7

into how gene interactions interplay at different bio-8

logical levels to produce global phenotypes (Mackay9

et al., 2009). New sources of information and their10

subsequent use in the inference of gene networks are11

populating the wide gap existing between phenotypes12

and DNA sequences and, therefore, opening the door13

to systems biology approaches for the development14

of context-dependent phenotypic predictions. RNA15

sequencing (RNAseq) is one of such new sources of16

information that can be used to infer gene networks17

(Han et al., 2015).18

Among the many works on gene network infer-19

ence based on transcriptomic data, two recent stud-20

ies aimed at characterizing the different gene roles21

within co-expression networks (Josephs et al., 2017;22

Mähler et al., 2017). Josephs et al. (2017) stud-23

ied the link between gene expression, gene connec-24

tivity (Langfelder and Horvath, 2008), divergence25

(Williamson et al., 2005) and traces of natural se-26

lection (Josephs et al., 2015; Sicard et al., 2015) in a27

natural population of the plant Capsella grandiflora.28

They showed that both connectivity and local reg-29

ulatory variation on the genome are important fac-30

tors, while not being able to disentangle which of31

them is directly responsible for patterns of selection32

among genes. Mähler et al. (2017) recalled the im-33

portance of studying the general features of biological34

networks in natural populations. With a genome-35

wide association study (GWAS) on expression data36

from RNAseq, they suggested that purifying selec-37

tion is the main mechanism maintaining functional38

connectivity of core genes in a network and that this39

connectivity is inversely related to eQTLs effect size.40

These two studies start to outline the first elements41

of a gene network theory based on connectivity, stat-42

ing that core genes, which are highly connected, are43

each of high importance, and thus highly constrained44

by selection. In contrast to these central genes, there45

are peripheral, less connected genes, never far from a46

core hub. These peripheral genes are less constrained47

than core genes and consequently, they harbor larger48

amounts of variation at population levels.49

Furthermore, classic studies of molecular evolu-50

tion in biological pathways can help us understand51

the link between gene connectivity and traits. Sev-52

eral articles showed that selection pressure is corre-53

lated to the gene position within the pathway, ei-54

ther positively (Han et al., 2013; Lu, 2003; Rausher55

et al., 2008, 1999; Riley et al., 2003; Yu et al., 2011)56

or negatively (Han et al., 2013; Jovelin and Phillips,57

2011; Song et al., 2012; Wu et al., 2010), depending58

on the pathway. Jovelin and Phillips (2011) showed59

that selective constraints are positively correlated to60

expression level, confirming previous studies (Drum-61

mond et al., 2005; Duret and Mouchiroud, 2000; Pál62

et al., 2001). Montanucci et al. (2011) showed a63

positive correlation between selective constraints and64

connectivity, although such a possibility remained65

contentious in previous works (Bloom and Adami,66

2004; Fraser and Hirsh, 2004).67

While Josephs’ (Josephs et al., 2017) and68

Mahler’s (Mähler et al., 2017) studies framed a gen-69

eral view of genes organization based on topological70

features described in molecular evolution studies of71

biological pathways, a point remains quite unclear so72

far: to what extent core and peripheral genes based73

on connectivity within a co-expression network are74

involved in the definition of a phenotype? One way75

to clarify this would be to study the respective roles76

of core and peripheral genes, as defined on the basis77

of their connectivity within a co-expression network,78

in the prediction of a phenotype. Even if predictions79

are still one step before validation by in vivo experi-80

ments, they already represent a landmark that may81

not only be correlative but also closer to causation,82

depending on the modeling strategy.83

Present study aims at exploring gene ability to84

predict traits, with datasets representing core genes85

and peripheral genes. By making use of two meth-86

ods to predict these phenotypes, a classic additive87

linear model, and a more complex and interactive88

neural network model, we further aimed at studying89

the mode of action of each type of genes, in order to90

gain insight into the genetic architecture of complex91

traits. On the one hand, genes that are better pre-92

dictors with an additive model are supposed to have93

an overall more additive, direct mode of action repre-94

senting a gene that would be downstream in a biolog-95

ical pathway. We expect core genes to display such96

additive behavior, with a high but selectively con-97

strained expression level (Jovelin and Phillips, 2011;98

Montanucci et al., 2011). On the other hand, genes99

being better predictors with an interactive model are100

supposed to be upstream in pathways. We expect pe-101

ripheral genes to behave interactively, with a lower102

but relatively more variable expression level. With a103

lower variation, we also expect core genes to be worse104

predictors for traits than peripheral genes unless the105

former also bear larger effects.106
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To answer the questions concerning the respective107

roles of core and peripheral genes on phenotypic vari-108

ation, we have sequenced the RNA of 459 samples of109

black poplar (Populus nigra), corresponding to 241110

genotypes, from 11 populations representing the nat-111

ural distribution of the species across Western Eu-112

rope. We also have for each of these trees phenotypic113

records for 17 traits, covering the growth, phenol-114

ogy, physical and chemical properties of wood. They115

cover two different environments where the trees were116

grown in common gardens, in central France and117

northern Italy. With the transcriptomic data, we118

built a co-expression network in order to define con-119

trasting gene sets according to their connectivity120

within the network. We then asked whether these121

contrasting sets differed in terms of both population122

and quantitative genetics parameters and quantita-123

tive trait prediction.124

Results125

Wood samples, phenotypes, and tran-126

scriptomes127

Wood collection and phenotypic data (Table S1)128

have been previously described (Gebreselassie et al.,129

2017). Further details are provided in the materi-130

als and methods section. The complete pipeline is131

sketched in Figure 1. Briefly, we are focusing on132

241 genotypes coming from different natural pop-133

ulations in western Europe and planted in 2 com-134

mon gardens (to avoid the confounding between ge-135

netic and large environmental effects) at two differ-136

ent locations in 6 replicated and randomized com-137

plete blocks, in Orléans (central France) and Sav-138

igliano (northern Italy). A total of 17 phenotypic139

traits (Table S1) have been collected on these geno-140

types (10 traits in Orléans and 7 in Savigliano). In141

Orléans only, we used 2 clonal trees per genotype142

(from 2 blocks) to sample xylem and cambium dur-143

ing the 2015 growing season for RNA sequencing. No144

tree from Savigliano was used for RNAseq. Because145

of sampling and experimental mistakes that were fur-146

ther revealed by the polymorphisms in the RNA se-147

quences, we ended up with 459 samples for which148

we confirmed the genotype identity (comparison to149

previously available genotyping data from an SNP150

chip). These samples correspond to 218 genotypes151

with two biological replicates and 23 genotypes with152

a single biological replicate. We mapped the sequenc-153

ing reads on the Populus trichocarpa transcriptome154

(v3.0) to obtain gene expression data.155

Orléans (France)

RNAseq

Expression in >10%
of the samples

TMM normalization

log2(n+1)

34229 gene expressions

WGCNA kME

LM and NN predictions

Core Random Peripheral
Peripheral
no grey

Boruta

Environment correction
+ BLUP computation

Measure of 17 phenotypes

Each genotype is
planted in each
replicated block

Savigliano (Italy)

Block 2Block 1

Block 3 Block 4

Block 5 Block 6
Common gardens

Block 2Block 1

Block 3 Block 4

Block 5 Block 6

Circumference
S/G
Glucose
C5/C6
Extractives
Lignin
H/G

Circumference
S/G

Glucose
C5/C6

Extractives
Lignin

H/G
Diameter

Infradensity
Date of bud f ush

Figure 1: General sketch of the experiment. From
the top to the bottom: Map of the location of the dif-
ferent populations sampled for this experiment. From
these populations, genotypes were collected and planted
in 2 locations (Orléans, in central France, and Savigliano,
in northern Italy). At each site, we planted 6 clones of
each genotype, 1 in each of the 6 blocks, and their po-
sition in each block was randomized. For all the blocks,
we collected phenotypes: 10 in Orléans (circumference,
S/G, glucose, C5/C6, extractives, lignin, H/G, diameter,
infradensity and date of bud flush) and 7 in Savigliano
(circumference, S/G, glucose, C5/C6, extractives, lignin,
H/G). Only on the clones of 2 blocks in Orléans, we per-
formed the RNA sequencing and treatment of data. The
treated RNAseq data were used with different algorithms
and in different sets to predict the phenotypes measured
on the same trees (in Orléans) or on the same genotype
but on different trees (in Savigliano).
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We did PCA analyses on the cofactors that156

were presumably involved in the experience, to look157

whether any confounding effect could be identified158

(Figure S1). No clear segregation was found for159

any of those, except for the ones associated with160

block, date and hour of sampling. We used a lin-161

ear mixed-model framework to correct the effects of162

these cofactors on each transcript (see the materi-163

als and methods section for a formal description of164

the model used), with the breedR R package (Muñoz165

and Sanchez, 2017), and further computed from the166

models the complete BLUP for each genotype. Here-167

after, we refer to this set of BLUPs for the 34,229168

transcripts as the full gene set (83% of annotated169

transcripts).170

Clustering and network construction171

The classical approach to build a signed scale-free172

gene expression network is to use the weighted173

correlation network analysis (implemented in the174

WGCNA R package (Langfelder and Horvath,175

2008)), using a power function on correlations be-176

tween gene expressions. We chose to use Spearman’s177

rank correlation to avoid any assumption on the lin-178

earity of relationships. The scale-free topology fitting179

index (R2) did not reach the soft-threshold of 0.85, so180

we chose the classical power value of 12, correspond-181

ing to the first decrease in the slope growth of the182

index, resulting in an average connectivity of 195.2183

(Figure 2A). We detected 16 gene expression mod-184

ules (Table S2) with automatic detection (merging185

threshold: 0.25, minimum module size: 30, Fig-186

ure 2B). Spearman correlations between phenotypic187

and expression data, presented in the lower panel of188

Figure 2B below the module membership of each189

gene, display a structure when the order follows the190

gene expression tree. The traits themselves are line191

ordered according to clustering on their scaled values192

to represent their relationships (Figure S2). Inter-193

estingly, some patterns in the correlation between194

expression and traits do not follow what we would195

expect from the similarity between traits (5 traits196

out of 7 with data in both geographical sites). For197

instance, in the group composed of S/G ratios and198

glucose composition, the patterns were more similar199

between sites across traits than between traits across200

sites (Figure 2B, Figure S3). Complex shared201

regulations mediated by the environment seem to202

be in control of these phenotypes, suggesting site-203

specific genetic control. Otherwise, glucose compo-204

sition in Savigliano, wood basic density, and extrac-205

tives in Orléans presented similar patterns, contrarily206

to what would be expected from the correlations be-207

tween these traits. These results from the compara-208

tive analysis of correlations pinpoint some underlying209

links between traits that are not obvious from factual210

phenotypic and genetic correlations between traits.211

To get further insight into the relationships be-212

tween module composition and traits, we looked213

at the strongest correlations between the best the-214

oretical representative of a gene expression mod-215

ule (eigengene) and each trait, in order to identify216

genes in relevant modules with an influence on the217

trait (Figure 2C). Following a Bonferroni correc-218

tion of the p-values provided by WGCNA, only 80219

correlations remained significant (p ≤ 0.05) out of220

the initial 272 traits by module combinations. Six221

traits displayed no significant correlations with any222

module (Glucose.Sav, both C5.C6, Extractives.Sav,223

Lignin.Sav and H.G.Sav) and 1 module was not sig-224

nificantly correlated with any of the traits studied225

(purple, Figure S3). In significantly correlated226

modules, gene expression correlation with trait was227

also significantly correlated with centrality in the228

module (represented by the kME, the correlation229

with the module eigengene), while no correlation was230

found in poorly correlated modules (Figure 2D,231

Figure S4). In other words, there is a three-way cor-232

relation. The genes with the highest kME in a given233

module are the most correlated to the eigengene and,234

consequently, are also the most correlated to those235

traits with the largest correlation with the module236

eigengene. Although this is somehow expected, it237

underlines the usefulness of kME as a centrality score238

to further characterize the genes within each module.239

We thus used this centrality score to define further240

the topological position of our gene expressions in the241

network and to serve as a basis for role comparisons242

between genes. For each gene, we used its highest243

absolute score, which corresponds to its score within244

the module to which it was assigned. We selected the245

10% of genes with the highest global absolute scores246

to define the core genes group, and 10% with the247

lowest global absolute scores to define the peripheral248

genes group. Finally, we selected 100 samples of 3422249

(10%) random genes as control groups (Figure S5,250

bottom panel).251

One particular module from the WGCNA cluster-252

ing is the grey module. This module typically gathers253

genes with poor membership to any other module. In254

our case, it is the 2nd largest module, with 7674 genes255

(23% of the full set). It gathers the vast majority of256

genes with very low kME (Figure S5, bottom panel)257

and 99% of the peripheral genes set (Table S4).258
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Figure 2: GCNA analysis of gene expression data. (A) Selection of the soft threshold (green dot) based on the
correlation maximization with scale-free topology (left panel) producing low mean connectivity (right panel). (B) Gene
expression hierarchical clustering dendrogram, based on the Spearman correlations (top panel), resulting in clusters
identified by colors (first line of the bottom panel). Spearman correlations between gene expressions and traits values
are represented as color bands on the other lines of the bottom panel, from highly negative correlations (dark blue) to
highly positive correlations (light yellow), according to the scale displayed in panel C. (C) Spearman correlation between
eigengenes (the best theoretical representative of a gene expression module) of modules identified in the previous panel
and traits, again on a dark blue (highly negative) to light yellow (highly positive) scale. (D) Focus on two modules from
the previous graph, representing the correlations between gene expression correlation with the circumference in Savigliano
and centrality in the module. These two panels represent the strongest (right panel, magenta module, R2 = 0.86) and
the weakest (left panel, brown module, R2 = 0.09) correlations with the corresponding trait.

While it is typically discarded in classic cluster-259

ing studies, we chose to maintain it and rather un-260

derstand its composition and role, by adding to the261

comparative study two peripheral sets, one with and262

one without grey module genes (subsequently called263

”peripheral NG”, NG for ”no grey”).264

To assess the robustness of WGCNA analysis re-265

sults, we compared it to a k-means clustering (R266

package coseq, (Rau and Maugis-Rabusseau, 2017))267

of the gene expressions (Figure S6A). The distribu-268

tion of WGCNA and k-means’ clusters showed a cor-269

relation of -0.49 (Figure S6B). k-means clustering270

tends to form groups of comparable size (Biernacki271

et al., 2006), which does not seem biologically cred-272

ible. Furthermore, the correlations between the k-273

mean modules eigengenes and traits were lower than274

with WGCNA’s, with a poor repartition of the differ-275

ent modules on the first 2 principal component analy-276

sis space (Figure S6C). We thus preferred WGCNA277

clustering to k-means clustering for this analysis.278

Heritability and population differenti-279

ation of modules280

To get further insights into the biological role of core281

and peripheral genes at population levels, we looked282

at the distribution of various characteristics between283

gene sets (Figure 3): gene expression level, several284

classical population statistics, including heritability285

(h2), coefficient of quantitative genetic differentia-286

tion (QST ), coefficient of genetic variation (CVg),287

gene diversity (Ht), and a contemporaneous equiva-288

lent to FST for genome scans (PCadapt score). Gene289

expression level, h2, QST , and CVg were computed290

from gene expression data, while Ht and PCadapt291

score (Luu et al., 2017) were computed from poly-292
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morphism data (SNP) and averaged per gene model.293

For more details see the materials and methods sec-294

tion.295

Figure 3: Heritability h2, differentiation QST , gene
mean expression (in counts per million, power 0.2), ge-
netic variation coefficient CVg (power 0.05), overall gene
diversity Ht and PCadapt score (power 0.2) violin and
box plots with median (black line) and interquartile
range (black box) for each of the core (in blue), random
(in grey), peripheral NG (in orange) and peripheral (in
brown) gene sets.

Globally, there is a clear trend from core to ran-296

dom, to peripheral NG and to peripheral among297

these characteristics: with an increase for h2, CVg298

and Ht, and a decrease for QST , expression and299

PCadapt score. The only differences that are not300

significant after Bonferroni correction are those be-301

tween peripheral NG and peripheral sets in gene ex-302

pression (p-value = 0.14) and between random and303

peripheral NG sets in the PCadapt score (p-value =304

0.39). All the other comparisons have p-values below305

0.001.306

Altogether, these statistics showed clear differ-307

ences between core and peripheral genes: core genes308

are highly expressed, highly differentiated between309

populations in their expression and by their allele310

frequencies at linked markers, and with generally311

low levels of genetic variation. Contrastingly, periph-312

eral genes are poorly expressed, poorly differentiated313

between populations, with generally higher genetic314

variation.315

Boruta gene expression selection316

In addition to previous gene sets building (full, core,317

random, peripheral NG and peripheral), we wanted318

to have a set of genes being relevant for their pre-319

dictability of the phenotype. Our hypothesis here320

was that this set would be the one that enables the321

best prediction of a given trait but with a limited322

gene number. For that purpose, we performed a323

Boruta (Boruta R package, (Kursa and Rudnicki,324

2010)) analysis on 60% of the full genes set (train-325

ing set). This algorithm performs several random326

forests to analyze which gene expression profile is327

important to predict a phenotype. We tested 4 dif-328

ferent p-values for this algorithm, as we originally329

wanted to relax the selection and get eventually sets330

of different sizes. However, the number of genes se-331

lected decreased while relaxing the p-value (613, 593,332

578 and 578 respectively for 0.01, 0.05, 0.1 and 0.2).333

Among the 4 p-values tested, 190 genes were system-334

atically selected (114 are core, 2 are peripheral NG335

and 2 are peripheral genes), and 153 were selected336

on 3 of the 4 p-value sets (73 are core, 4 are pe-337

ripheral NG and 4 are peripheral genes). There is a338

6.61 mean over-representation of core genes for the339

4 p-values and 0.30 and 0.31 under-representation340

of respectively peripheral NG and peripheral genes341

(Figure S7). In the end, with a p-value of 0.01,342

a pool of 613 unique gene expressions was found to343

be important to predict our phenotypes. Traits with344

the highest number of important genes are related to345

growth. For the other traits, we always have more346

genes selected when the trait is measured in Orléans347

compared to Savigliano (respective medians of 23 and348

10), which fits well with the fact that RNA collection349

was performed on trees in Orléans. On average, genes350

that were specific to single traits represented 94% of351

selected genes, 1 gene was shared across sites for a352

given trait, genes shared by trait category (growth,353

phenology, physical, chemical) were 4%, and genes354

shared among all traits were 2%.355

Phenotype prediction with gene ex-356

pression357

For our 6 genes sets (full, core, random, peripheral358

NG, peripheral and Boruta), we trained two contrast-359

ing classes of models to predict the phenotypes: an360

additive linear model (ridge regression) and an in-361

teractive neural networks model. For the former, we362

used ridge regression to deal with the fact that for all363

gene sets the number of predictors was larger than364

the number of observations. For the latter, we chose365

neural networks as a contemporary machine-learning366

method, which is not subjected to dimensionality367

problems (González-Recio et al., 2014) and is able368

to capture interactions without a priori explicit dec-369

laration between the entries, here gene expressions.370
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These contrasting models let us capture more effi-371

ciently either additivity or interactivity and are thus372

likely to inform us about the preferential mode of373

action of each gene set depending on their relative374

performances in predictability. Figure 4 and Fig-375

ure S8 show that for linear modeling with ridge re-376

gression, the best genes set to predict phenotypes was377

the full set, as expected because it contains more in-378

formation, followed, more surprisingly, by the periph-379

eral and peripheral NG genes set, then the random,380

core and Boruta sets (respective mean prediction R2
381

across all traits of 0.22, 0.21, 0.20, 0.19, 0.18 and382

0.17). On the contrary, for neural network modeling,383

random genes constituted the worst set by far, fol-384

lowed by core, peripheral, peripheral NG and Boruta385

sets (respective mean prediction R2 across all traits386

of 0.14, 0.16, 0.17, 0.18 and 0.22). We have not been387

able to compute neural network models with the full388

set as the number of predictors remains too large389

to be fitted within a reasonable time on computing390

clusters. Across phenotypes, predictions were gener-391

ally slightly less variable under neural networks than392

under the ridge regression counterpart (interquartile393

range mean division by 1.12).394

Figure 4: Predictions scores on test sets (R2 on the y axis) for the 2 algorithms (LM Ridge, top panel; neural network,
bottom panel) for each phenotypic trait (on the x axis). The color of each bar represents the gene set that has been
used for the prediction. Intervals for the random set represent the first and third quartiles of the distribution of the 100
different realizations, while the height of the bar corresponds to the median.
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To further investigate the behavior of genes with395

different positions in the network with respect to396

the prediction model used, we computed 2 types of397

differences: between LM and NN prediction scores398

for each gene set (Figure S9A), and between core399

and peripheral genes sets for LM and for NN mod-400

els (Figure S9B). As a null reference for inference401

in the between sets difference (Figure S9B), we402

computed the differences between all the 100 ran-403

dom sets, for a total of 4950 differences correspond-404

ing to all pairwise differences, excluding reciprocals405

and self-comparisons. In the top panel, a positive406

difference indicates that LM predicted better than407

NN and vice versa, while in the bottom panel, a pos-408

itive difference indicates an advantage of core genes409

sets over peripherals and, conversely, a negative dif-410

ference indicates an advantage of peripheral genes.411

In any of the two panels, we did not detect any sys-412

tematic difference, which would have led us to con-413

clude on more interactivity or more additivity for any414

gene set. Moreover, the few cases where a difference415

could have been noted are due to very poor predic-416

tion scores. The only difference that can be noted417

is the difference between core and both peripheral418

genes in NN for the date of bud burst (Date3Doy),419

in favor of the peripheral genes.420

Finally, we investigated to what extent trait QST421

would influence the prediction scores of each combi-422

nation of set and algorithm. We thus separated traits423

according to whether their QST is above or below the424

99th percentile of the FST . The rationale under this425

split is that because core genes are more differenti-426

ated between populations than random or peripheral427

genes, we should expect them to predict better those428

traits with a similar structuration behavior and vice429

versa. We found that traits above the 99th percentile430

of the FST are systematically better predicted than431

less differentiated traits. However, we did not find432

significant differences between gene groups once the433

difference between traits was taken into account.434

Discussion435

Characterizing the way genes contribute to pheno-436

typic variation could prove highly valuable to bet-437

ter understand the genetic architecture of complex438

traits. With the advent of omics data, a huge amount439

of information is nowadays becoming available to fill440

the gap between variations at the DNA and pheno-441

type levels. It is by the use of gene expression data442

that the present study aimed at gaining insights into443

the genetic architecture behind complex traits.444

One key premise in the study was the availability445

of a common garden experiment comprising relevant446

samples of natural variation, in our case black poplar447

from Western Europe. Such an experimental setting448

makes it possible to accurately evaluate phenotypes449

to calibrate and serve as a target for predictions. In-450

deed, evaluating all the genotypes in a given loca-451

tion with experimental design and replicates enabled452

to unravel the confounding between genotype and453

macro-environment (or micro-environment) that typ-454

ically occur when considering genotypes in the wild455

(de Villemereuil et al., 2016). Likewise, RNAseq data456

were collected on up to two biological replicates in457

the common garden and also corrected for environ-458

mental and design covariables, to obtain the geno-459

typic BLUP, which is the genetic value of the geno-460

type. Such adjustments at both phenotypic and ge-461

nomic ends provided proper grounds with reasonable462

confidence in the absence of confounding effects for463

the study of associations between the two sources of464

data.465

Two recent works used RNAseq in natural pop-466

ulations of plants to build co-expression networks467

and study the relationship between network topol-468

ogy and patterns of natural selection (Josephs et al.,469

2017; Mähler et al., 2017). While they found differ-470

ences in natural selection among genes given their471

connectivity within networks, they did not investi-472

gate how these differences affect phenotypic varia-473

tion. We thus embraced the classic WGCNA ap-474

proach (Langfelder and Horvath, 2008) to build the475

co-expression network within our dataset in order476

to study the relationship between gene connectivity477

and phenotypic prediction. This clustering of genes478

gave us different groups that we found to be dif-479

ferently correlated to traits values and according to480

sites. However, this method was simply for us a way481

to obtain a centrality score for each gene, with the482

subsequent possibility to classify them into core and483

peripherals. The biological interpretation of corre-484

lations between gene groups and traits would clearly485

deserve further work which is beyond the scope of the486

present study. We based our definition of core and487

peripheral on Mähler et al. (2017), as respectively the488

10% most central and most peripheral genes. The489

only specificity of our work here is that we did not490

discard, as it is classically done (called pruning in the491

WGCNA manual), the genes from the grey group,492

i.e. those showing a poor membership to any other493

module. We considered instead two alternative pe-494

ripheral sets by keeping or excluding genes from the495

grey group. The pertinence of kME as a classification496

criterion became evident in our study when looking497

at the differences between core and peripherals in498

terms of classic quantitative and population genetic499

parameters. Core genes (high kME) showed high lev-500
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els of population differentiation, mostly in quantita-501

tive genetic terms (QST ), while being simultaneously502

less variable than the rest of the genes. Such results503

would suggest that core genes are genes potentially504

subjected to divergent selection, with subsequently505

reduced levels of extant variation, and involved in lo-506

cal adaptations. Contrarily, peripherals (low kME)507

showed larger levels of variation with respect to their508

expression level and little structure across popula-509

tions, suggesting less selection pressure or weaker510

connection to selected traits, with mostly stabilizing511

selection patterns across populations. Therefore, de-512

spite the fact that a subdivision in core and periph-513

erals is somehow an oversimplification, an extreme514

contrast of an otherwise continuous phenomenon, it515

helped to reveal the different natures of genes char-516

acterized by extreme values of kME.517

To further test whether this gene categorization518

matters for trait prediction, we decided to go one step519

further by trying to predict traits from the different520

gene sets. We also wanted to have a gene set designed521

to be composed of good predictors of the traits. We522

thus used the Boruta algorithm (Kursa and Rud-523

nicki, 2010) to select genes, by performing random524

forest predictions and selecting the genes with the525

highest prediction importances. We have to keep in526

mind that random forest algorithm allows for im-527

plicit interactions between predictors (here gene ex-528

pressions, (McKinney et al., 2006; Chen et al., 2007;529

Jiang et al., 2009)). Results pinpointed again one530

feature differentiating the behavior of core and pe-531

ripheral genes. Cores were largely overrepresented532

in the different Boruta selections (by at least 38%533

of Boruta genes), involving systematically the same534

114 genes across all threshold p-values (153 over 3535

values). Peripherals were systematically underrep-536

resented to a very large extent (less than 7%). Al-537

though the remaining genes, neither cores nor periph-538

erals according to our previous definition, were the539

majority (53%) among the selected by Boruta, they540

were sampled from a vaster pool of more than 27,000541

genes. Another important result from the Boruta se-542

lections is the fact that relaxing the p-value threshold543

(from 0.01 to 0.2) did not increase the size of the re-544

sulting selection set, while the set itself could change545

partially in composition across different thresholds.546

One can assume that relaxing the threshold would547

lead to increasing the number of features if these548

acted independently and contributed with novel in-549

formation. The fact that numbers did not change550

substantially, while the composition was indeed im-551

pacted, leads to thinking that features are deeply in-552

terconnected and do not add up independently. This553

would suggest that different arrangements of genes554

could contain comparable levels of information or,555

in other words, that genes bear some redundancy556

through networks of interactivity.557

With these 6 genes sets, we predicted 17 pheno-558

typic traits with 2 alternative algorithms, one ex-559

pected to capture mostly additivity between predic-560

tors (LM), the other one interactivity (NN). As ex-561

pected, the full set resulted in best predictions with562

the LM model (NN not available), as it comprised563

all available genetic information. Core genes, how-564

ever, were far from being the best set to predict the565

different traits under either of the two algorithms.566

Such results would be a priori surprising considering567

previous statements on the composition of Boruta se-568

lection where cores had an important contribution.569

The key difference, however, is that cores were not570

the only contributors to the Boruta sets. It seems571

that cores are able to summarize key information for572

quality predictions but require a complementary con-573

tribution from other interacting genes to round up574

the optimal set. This is better reflected by the perfor-575

mance of the Boruta set, which obtained the best per-576

formance predicting traits under the NN algorithm.577

To some extent, the NN algorithm exploits the inter-578

activity between features (genes) already present in579

the Boruta set, itself obtained through the random580

forest heuristics that are particularly sensitive to in-581

teractions. To some extent, the high connectivity of582

high kME value core genes is well captured by inter-583

action sensitive algorithms to improve prediction.584

In a contrasting way, Boruta and core sets per-585

formed poorly under LM modeling, where the two586

classes of peripherals obtained the best predictabil-587

ities. Such a performance from peripherals is some-588

how surprising, in the sense that this class of genes,589

notably the grey module, is usually pruned from590

transcriptomic studies, while they seem nonetheless591

to harbor important biological information that is592

relevant to the trait variation. Judging from the593

nature of the LM modeling, peripherals would have594

more a type of additive gene action, which could be595

in turn a penalizing feature when a reduction in the596

number of genes operates to focus only on the most597

relevant ones. Thus, peripherals appear to be rele-598

vant when allowed to contribute cumulatively to pre-599

diction, although they can be otherwise easily sum-600

marized by more integrative genes when variable se-601

lection procedures operate to obtain optimal sets. It602

is important to note, however, that adding peripher-603

als (following an increasing kME) beyond the num-604

bers present in their original sets did not improve pre-605

dictability (Figure S10), suggesting the existence606

of a plateau in their capacity to explain trait varia-607

tion. The low connectivity of peripheral genes, re-608
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flecting independent features, is best exploited by609

linear model approaches capturing mostly additive610

genetic actions.611

Finally, random sets offered a convenient frame-612

work for inferences when comparing gene sets. Their613

performance in terms of predicting quality was never614

the best under either of the alternative modeling ap-615

proaches (LM or NN) but was good enough to sug-616

gest that relevant information can be nevertheless617

obtained from many different gene sets, pointing at618

some degree of pervasive redundancy in the genetic619

architecture of traits. In practical terms, when a620

trait prediction is required but there is no biolog-621

ical a priori on the choice of genes, a random set622

modeled through LM appears like a satisfying solu-623

tion. This is not far from the SNP based counter-624

part in genome-wide evaluation (Meuwissen et al.,625

2001), where markers are often a choice that is not626

driven by biological context. However, if some pre-627

vious selection of genes is required, the combination628

of Boruta selection and subsequent NN modeling has629

been shown here to be a good option for predictabil-630

ity on a reduced genic panel. Indeed, Boruta is an631

advantageous alternative in genomic evaluation for632

breeding to more classic methods, often based on633

the imposition of a priori constraints for shrinkage634

or variable selection (de los Campos et al., 2013).635

One of the particularities of core genes, that of636

showing highly structured genetic variation among637

populations, led us to think that they might be pref-638

erentially involved in traits also showing high levels639

of QST . Such a hypothesis was not confirmed by640

our results, where highly structured traits were gen-641

erally better predicted than traits with no apparent642

structure, but with no clear differences in such an643

advantage between gene sets. Therefore, the highly644

structured core genes did not contribute to improv-645

ing the prediction of highly structured traits, sug-646

gesting that trait covariation between populations is647

affected by other genic sources not conveniently un-648

raveled here. It is important to note that prediction649

quality is highly variable between traits, somehow650

masking the differences that might be found between651

gene sets. We have already pinpointed the relevance652

of kME in establishing a gradient of genes whose ex-653

tremes show different behaviors in quantitative and654

population genetics statistics. These extremes also655

contribute differently to the explanation of pheno-656

typic variability, through the light of different predic-657

tion models. One aspect that remained unanswered,658

however, is to what extent kME is also relevant to659

prediction without circumscribing our scope to the660

extremes. When computing the correlations between661

connectivity (kME) and prediction coefficients (im-662

portance in terms of effect) from LM across all the663

full set of genes, results showed that there are some664

strong positive correlations for three of the traits665

(Circ.Orl, S.G.Orl and Extractives.Orl). However,666

there is not a systematic trend across all the traits,667

suggesting that other differences in their genetic vari-668

ability and genomic architectures might be also of669

importance here.670

In the end, differential connectivity as reflected671

by our kME gradient from gene expressions pinpoints672

at the importance of mechanisms of gene interactions673

in the genetic architecture of traits. On top of the674

DNA sequence, the superposing layer of transcrip-675

tomics adds up the intermediate pattern of gene in-676

teractions and physiological epistasis, before the final677

level of phenotypic expression (Schrag et al., 2018).678

It is important to note, however, that such gene in-679

teraction at the transcriptomic level is not directly or680

necessarily related to epistasis in the context of sta-681

tistical genetics literature, i.e. the interaction effect682

between alleles from different loci on a given pheno-683

type (Cordell, 2002). The extent to which connec-684

tivity or transcriptomic interactivity relates to that685

level of epistasis is beyond the scope of current work686

but clearly deserves further investigation.687

Conclusion688

This work shows that all genes seem important to689

some extent to predict phenotypes. If the Boruta se-690

lection leads us to think that core genes may be very691

important, prediction results across a range of phe-692

notypes underlined that they are not the only ones.693

The information that they contain has to be com-694

pleted by other genes. The mean connectivity score695

(kME) of the Boruta sets is around 0.7. However, as696

genes seem to be very interactive, predicting a phe-697

notype with a subset of genes summarizing the infor-698

mation is possible and efficient. Our work is globally699

in accordance with the recent work on the omnigenic700

model (Boyle et al., 2017; Liu et al., 2019), describ-701

ing that all genes expressed in an organ participate702

in the traits of that organ. We are also able to pre-703

dict phenotypes of an organ or at the organism level,704

with gene expression from another organ. However705

predicting and explaining are 2 different things, and706

the information contained by genes may be too re-707

dundant to lead us to good mechanistic models from708

statistical ones. Statistical models may, nevertheless,709

provide information on the ranking of importance of710

the genes involved in a phenotype.711
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Materials and Methods712

Samples collection713

As described in previous works (Gebreselassie et al.,714

2017; Guet et al., 2015), we established in 2008715

a partially replicated experiment with 1160 cloned716

genotypes, in two contrasting sites in central France717

(Orléans, ORL) and northern Italy (Savigliano,718

SAV). At ORL, the total number of genotypes was719

1,098 while at SAV there were 815 genotypes. In720

both sites, the genotypes were replicated 6 times in721

a randomized complete block design. At SAV, the722

trees were pruned at the base after one year of growth723

(winter 2008-2009) to remove a potential cutting ef-724

fect and were subsequently evaluated for their growth725

and wood properties during winter 2010-2011. At726

ORL, the trees had the same pruning treatment after727

two years of growth (winter 2009-2010) and were also728

subsequently evaluated for growth and wood proper-729

ties after two years (winter 2011-2012). After eval-730

uation, we pruned again for a new growth cycle. In731

their fourth year of growth of this third cycle (2015),732

241 genotypes present in two blocks of the French site733

were selected to perform sampling for RNA sequenc-734

ing. In the end, we obtained transcriptomic data735

from 459 samples, 218 genotypes duplicated in the736

two blocks and 23 genotypes available from only one737

block. These 241 genotypes were representative of738

the natural west European range of P. nigra through739

11 river catchments in 4 countries (Table S3).740

We described 14 of the 17 phenotypic traits in741

previous work (Gebreselassie et al., 2017). Briefly,742

these traits can be divided into two categories,743

growth traits and biochemical traits which were all744

evaluated on up to 6 clonal replicates by genotype at745

each site after two years of growth in the second cy-746

cle. The first set is composed of the circumference of747

the tree at a 1-meter height measured in Savigliano748

at the end of 2009 (CIRC2009.Sav) and in Orléans749

at the end of 2011 (CIRC2011.Orl). The second set750

is composed, each time at both sites, of measures751

of ratios between the different components of the752

lignin, p-hydroxyphenyl (H), guaiacyl (G) and sy-753

ringyl (S) (H.G.Orl, H.G.Sav, S.G.Orl and S.G.Sav),754

measures of the total lignin content (Lignin.Orl :755

measure of the lignin in Orléans, Lignin.Sav: mea-756

sure of the lignin in Savigliano), measure of the to-757

tal glucose (Glucose.Orl and Glucose.Sav), measure758

of ratio between 5 and 6 carbon sugars (C5.C6.Orl759

and C5.C6.Sav) and measure of the extractives (Ex-760

tractives.Orl and Extractives.Sav). For each of these761

traits, we computed mean values per genotype previ-762

ously adjusted for microenvironmental effects (block763

or spatial position in the field).764

The 3 remaining traits were measured in 2015765

on the trees harvested for the RNA sequencing ex-766

periment (2 replicates per genotype). They include767

the mean diameter of the stem section harvested for768

RNA sequencing (MeanDiameter), the date of bud769

flush of the tree in 2015 (Date3Doy) and the basic770

density of the wood (Infraden). Date of bud flush771

consisted of a prediction of the day of the year at772

which the apical bud of the tree was in stage 3 ac-773

cording to the scale defined in Dillen et al. (2009).774

Predictions were done with a lowess regression from775

discrete scores recorded at consecutive dates in the776

spring of 2015. Wood’s basic density was measured777

on a piece of wood from the stem section harvested778

for RNA sequencing following the Technical Associ-779

ation of Pulp and Paper Industry (TAPPI) standard780

test method T 258 ”Basic density and moisture con-781

tent of pulpwood”.782

Transcriptome data generation783

We sampled stem sections of approximately 80 cm784

long starting at 20 cm above the ground and up to785

1 meter in June 2015. The bark was detached from786

the trunk in order to scratch young differentiating787

xylem and cambium tissues using a scalpel. The tis-788

sues were immediately immersed in liquid nitrogen789

and crudely ground before storage at -80◦C pending790

milling and RNA extraction. Prior to RNA extrac-791

tion, the samples were finely milled with a swing mill792

(Retsch, Germany) and tungsten beads under cryo-793

genic conditions with liquid nitrogen during 25 sec-794

onds (frequency 25 cps/sec). About 100 mg of milled795

tissue was used to isolate separately total RNA from796

xylem and cambium of each tree with RNeasy Plant797

kit (Qiagen, France), according to manufacturer’s798

recommendations. Treatment with DNase I (Qia-799

gen, France) to ensure the elimination of genomic800

DNA was made during this purification step. RNA801

was eluted in RNAse-DNAse free water and quanti-802

fied with a Nanodrop spectrophotometer. RNA from803

xylem and cambium of the same tree were pooled in804

an equimolar extract (250 ng/µL) before sending it805

to the sequencing platform.806

RNAseq experiment was carried out at807

the platform POPS (transcriptOmic Plat-808

form of Institute of Plant Sciences - Paris-809

Saclay) thanks to IG-CNS Illumina Hiseq2000.810

RNAseq libraries were constructed using811

TruSeq Stranded mRNA SamplePrep Guide 150310812

47 D protocol (Illumina R©, California, U.S.A.). The813

RNAseq samples have been sequenced in single-end814

reads (SR) with an insert library size of 260 bp and815

a read length of 100 bases. Images from the in-816
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struments were processed using the manufacturer’s817

pipeline software to generate FASTQ sequence files.818

Ten samples by lane of Hiseq2000 using individually819

barcoded adapters gave approximately 20 millions of820

SR per sample. We mapped the reads on the Pop-821

ulus trichocarpa v3.0 transcriptome with bowtie2822

(Langmead and Salzberg, 2012), and obtained the823

read counts for each of the 41,335 transcripts by824

homemade scripts (a median of 17 millions of reads825

were mapped per sample, with a minimum of 6 and826

a maximum of 42 million). Initially, we considered827

using the genotype means to reduce our data vol-828

ume. However, differences between replicates were829

not normally distributed, because of variation in830

gene expression due to plasticity. We thus could not831

summarize our data with their mean, as it would832

have removed this information and finally we chose833

to keep replicates as separate data samples.834

Filtering the non-expressed genes, nor-835

malization and variance stabilization836

We started cleaning our raw count data by remov-837

ing the transcripts without at least 1 count in 10%838

of the individuals. From the original 41,335 genes,839

7,106 were thus removed, leaving 34,229 genes. Af-840

ter this first filtration, we normalized the raw count841

data by Trimmed Mean of M-values (TMM, edgeR842

(Robinson and Oshlack, 2010)). As most features are843

not differentially expressed, this method takes into844

account the fact that the total number of reads can845

be strongly influenced by a low number of features.846

Then, we calculated the counts per millions (CPM847

(Law et al., 2014)).848

To stabilize the variance of the CPM data, we849

computed a log2(n + 1) instead of a log2(n + 0.5)850

typically used in a voom analysis (Law et al., 2014),851

to avoid negative values, which are problematic for852

the rest of the analysis.853

Computing the BLUP, heritability, and854

QST while correcting the co-variables855

As the sampling ran along 2 weeks, we expected856

environmental variables to blur the signal. To un-857

derstand how our data were impacted, we ran a858

PCA analysis to identify the impact of each cofac-859

tor (Figure S1). We identified the block and the860

sampling date and time as cofactors with a substan-861

tial impact.862

A 12k bead chip (Faivre-Rampant et al., 2016)863

provided 7,896 SNPs in our population. A ge-864

nomic relationship matrix between genotypes was865

computed with these SNPs with LDAK (Speed et al.,866

2012), and further split into between (mean popula-867

tion kinship, Kb) and within-population relationship868

matrices (kinship kept only for the members of the869

same population, all the others are equal to 0, Kw).870

These matrices were used in a mixed linear model to871

compute the additive genetic variances between and872

within populations for the expression of each gene:873

y = β0 + Zbb + Zww + ε (1)

Where, y is a gene expression vector across in-874

dividual trees, β0 is a vector of fixed effects (overall875

mean or intercept); b and w are respectively random876

effects of populations and individuals within popu-877

lations, which follow normal distributions, centered878

around 0, of variance σ2
bKb and σ2

wKw. σb and σw879

are the between and within-population variance com-880

ponents and Kb and Kw are the between and within-881

population kinship matrices. Zb and Zw are known882

incidence matrices between and within populations,883

relating observations to random effects b and w. ε is884

the residual component of gene expression, following885

a normal distribution centered around 0, of variance886

σ2
ε I, where σε is the residual variance and I is an887

identity matrix.888

We used the function ”remlf90” from the R pack-889

age breedR (Muñoz and Sanchez, 2017) to fit the890

model, with the Expectation-Maximization method891

followed by one round with Average-Information al-892

gorithm to compute the standard deviations. From893

the resulting between and within-population vari-894

ance components, we computed the best linear un-895

biased predictors of between and within population896

random genetic effects (b̂ and ŵ, respectively) and897

summed them up to obtain the total genetic value for898

each gene expression (BLUP ). We also computed899

heritability (h2) and population differentiation esti-900

mates (QST ) for each gene expression as follows:901

h2 =
σ2
b + σ2

w

σ2
b + σ2

w + σ2
ε

(2)

QST =
σ2
b

σ2
b + 2σ2

w

(3)

Finally, we computed for each gene expression902

the coefficient of genetic variation (CVg) by dividing903

its total genetic variance (σ2
b + σ2

w) by its expression904

mean.905

Other population statistics906

We further used a previously developed bioinformat-907

ics pipeline to call SNPs within our RNA sequences908

(Rogier et al., 2018). Briefly, this pipeline involves909

classical cleaning and quality control steps, mapping910
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on the P. trichocarpa v3.0 reference genome, and911

SNP calling using the combination of four different912

callers. We ended up with a set of 874,923 SNPs913

having less than 50% of missing values per genotype.914

The missing values were further imputed with the915

software FImpute (Sargolzaei et al., 2014). We vali-916

dated our genotyping by RNA sequencing approach917

by comparing the genotype calls with genotyping918

previously obtained with an SNP chip on the same in-919

dividuals (Faivre-Rampant et al., 2016). Genotyping920

accuracy based on 3,841 common positions was very921

high, with a mean value of 0.96 and a median value922

of 0.99. The imputed set of SNP was then annotated923

using Annovar (Wang et al., 2010) in order to group924

the SNPs per gene model of P. trichocarpa reference925

genome. For each SNP, we computed the overall ge-926

netic diversity statistics with the hierfstat R package927

(Goudet and Jombart, 2015) and this statistic was928

then averaged by gene model in order to get informa-929

tion on the extent of diversity. We further computed930

PCadaptscore with the pcadapt R package (Luu931

et al., 2017) with 8 retained principal components.932

Here again, PCadapt scores were then summarized933

(averaged) by gene-model in order to get informa-934

tion about their potential involvement in adaptation.935

Based on the principal component analysis, pcadapt936

is more powerful to perform genome scans for se-937

lection in next-generation sequencing data than ap-938

proaches based on FST outliers detection (Luu et al.,939

2017). We found a positive correlation between FST940

and PCadapt score (data not shown), but PCadapt941

score highlighted differences between Core, random942

and peripheral gene sets (Figure 3) while FST did943

not.944

Hierarchical and k-means clustering945

We performed a weighted correlation network anal-946

ysis with the R package WGCNA (Langfelder and947

Horvath, 2008) on our full RNAseq gene set. We948

followed the classic approach, except that we first949

ranked our expression data, to work subsequently950

with Spearman’s non-parametric correlations and951

avoid problems due to linear modeling assumptions.952

We first chose the soft threshold with a power of 12,953

which is the classical value for signed networks (and954

default value in WGCNA) (R2 = 0.81, connectiv-955

ity: mean = 195.17, median = 9.23, max = 1403.96,956

Figure 2A). Then, we used the automatic mod-957

ule detection (function ”blockwiseModules”) via dy-958

namic tree cutting with a merging threshold of 0.25,959

a minimum module size of 30 and bidweight midcor-960

relations (Figure 2B). All other options were left961

to default. This also computes module eigengenes.962

To sort the traits, we clustered their scaled values963

with the pvclust R packages (Suzuki and Shimodaira,964

2015), the Ward agglomerative method (”Ward.D2”)965

on correlations (Figure 2B, 2C, Figure S2). The966

clustering on euclidean distance results in the exact967

same hierarchical tree. Correlations between traits968

and gene expression or module eigengenes were com-969

puted as Spearman’s rank correlations (Figure 2B,970

2C). We also performed a k-means clustering with971

the R package coseq (Rau and Maugis-Rabusseau,972

2017) considering 10 initial runs, 1000 iterations,973

without any other data transformation, and for a974

number of clusters (K) between 2 and 20. At first,975

it identified a K without strong agreement between976

the two evaluation algorithms included in coseq. We977

thus further computed additional rounds of k-means978

clustering, around the previously identified K (plus979

or minus 5 clusters), with 100 initial runs and 10000980

iterations, until both evaluation algorithms agreed.981

Machine learning982

Boruta gene expression selection983

In addition to the inconvenience of working with a984

large number of features (time and power consump-985

tion), most machine learning algorithms perform bet-986

ter when the number of predicting variables used is987

kept as low as the optimal set (Kohavi and John,988

1997). We thus performed an all relevant variable989

selection (Nilsson et al., 2007) with the Boruta func-990

tion (Kursa and Rudnicki, 2010) from the eponym991

R package, with 4 p-value thresholds (1, 5, 10 and992

20%), on the training subpart of the full gene expres-993

sion set, for each phenotype independently. Then,994

features that were not rejected by the algorithm were995

pooled together, so that all the important genes were996

in the selected gene pool, one pool for each p-value997

threshold. The enrichment in core or peripheral998

genes in each of these pools was evaluated by Fisher’s999

exact test for count data (”fisher.test” function in the1000

stats R package).1001

Models1002

Both additive linear model (ridge regression) and in-1003

teractive neural network models were computed by1004

the R package h2o (LeDell et al., 2019). They both1005

used the gene expression sets as predictors and one1006

phenotypic trait at a time as a response. Gene sets1007

were split by the function ”h2o.splitFrame” into 31008

sets, a training set, a validation set and a test set,1009

with the respective proportions of 60%, 20%, 20%.1010

We checked that the split preserves the distribution1011

of samples within populations. The training set was1012
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used to train the models, the validation set was used1013

to validate and improve the models, while the test1014

set was used to compute and report prediction accu-1015

racies as R2 between observed and predicted values1016

within this set and using the function ”R2” of the1017

R package compositions (van den Boogaart et al.,1018

2018). This set has never been used to improve the1019

model and therefore represents a proxy of new data,1020

avoiding the report of results from overfitted models.1021

All the reported predictions scores were computed on1022

this test set. These results are thus representing real-1023

life predictions and are not subject to over-fitting.1024

For linear models, we used the function ”h2o.glm1025

with” default parameters, except 2-folds cross-1026

validation and alpha set at zero to perform a ridge re-1027

gression. The same splits and score reporting meth-1028

ods were used.1029

Neural networks have the reputation to be able1030

to predict any problem, based on the Universal ap-1031

proximation theorem (Cybenko, 1989; Hornik et al.,1032

1989). However, this capacity comes at the cost of1033

a very large number of neurons in one layer, or a1034

reasonable number of neurons per layer in a high1035

number of layers. Both settings lead to difficult in-1036

terpretation when very many gene expressions are1037

involved. In that sense, we chose to keep our mod-1038

els simple, with two layers of a reasonable number of1039

neurons. This obviously comes at the price of lower1040

prediction power. However, we believe that these1041

topologies give us the power to model 2 levels of in-1042

teractions between genes (1 level per layer). Further-1043

more, since both methods yielded comparable predic-1044

tion R2 (median ridge regression R2 = 0.19, mean1045

neural network R2 = 0.173), this complexity seemed1046

appropriate. To find the best models for neural net-1047

works, we computed a random grid for each response.1048

We tested the following four hyperparameters: (i)1049

activation function (”Rectifier”, ”Tanh”, ”Rectifier-1050

WithDropout” or ”TanhWithDropout”); (ii) net-1051

work structure; (iii) input layer dropout ratio (0 or1052

0.2) (iv) L1 and L2 regularization (comprised be-1053

tween 0 and 1 × 10−4, with steps of 5 × 10−6). Net-1054

work structure corresponded to the number of neu-1055

rons within each of the two hidden layers, which was1056

based on the number of input genes (h). The first1057

layer was composed of h, 2
3h or 1

3h neurons. The sec-1058

ond layer had a number of nodes equal or lower to the1059

first one and is also composed of h, 2
3h or 1

3h neurons.1060

This represented a total of 6 different structures. We1061

performed a random discrete strategy to find the best1062

search criteria, computing a maximum of 100 mod-1063

els, with a stopping tolerance of 10−3 and 10 stopping1064

rounds. Finally, ”h2o.grid” parameters were the fol-1065

lowing: the algorithm was ”deeplearning”, with 101066

epochs, 2 fold cross-validation, maximum duty cycle1067

fraction for scoring is 0.025 constraint for a squared1068

sum of incoming weights per unit is 10. All other pa-1069

rameters were set to default values. The best model1070

was selected from the lowest RMSE score within the1071

validation set.1072
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surements on poplars in Orléans; Alasia Franco Vi-1116

vai staff for management of the poplar experimen-1117

tal plantation in Savigliano, and M. Sabatti and F.1118

Fabbrini for their contribution to phenotypic mea-1119

surements on poplars in Savigliano. We acknowl-1120

edge the staff of BioForA for their contribution to1121

RNA collection in the field. We are grateful to1122

the genotoul bioinformatics platform Toulouse Midi-1123

Pyrennées for providing computing and storage re-1124

sources. We would also like to thank M. Nordborg1125

for useful discussions on this work and J. Salse for1126

useful comments on the manuscript.1127

References1128

Biernacki, C., Celeux, G., Govaert, G., and Lan-1129

grognet, F., 2006. Model-based cluster and1130

discriminant analysis with the MIXMOD soft-1131

ware. Computational Statistics & Data Analysis,1132

51(2):587–600.1133

Bloom, J. D. and Adami, C., 2004. Evolutionary rate1134

depends on number of protein-protein interactions1135

independently of gene expression level: response.1136

BMC evolutionary biology, 4(1):14.1137

Boyle, E. A., Li, Y. I., and Pritchard, J. K., 2017.1138

An Expanded View of Complex Traits: From Poly-1139

genic to Omnigenic. Cell, 169(7):1177–1186.1140

Chen, X., Liu, C. T., Zhang, M., and Zhang, H.,1141

2007. A forest-based approach to identifying gene1142

and gene-gene interactions. Proceedings of the Na-1143

tional Academy of Sciences of the United States of1144

America, 104(49):19199–19203.1145

Cordell, H. J., 2002. Epistasis: what it means, what1146

it doesn’t mean, and statistical methods to de-1147

tect it in humans. Human Molecular Genetics,1148

11(20):2463–2468.1149

Cybenko, G., 1989. Approximation by superpositions1150

of a sigmoidal function. Mathematics of Control,1151

Signals, and Systems, 2(4):303–314.1152

de los Campos, G., Hickey, J. M., Pong-Wong, R.,1153

Daetwyler, H. D., and Calus, M. P. L., 2013.1154

Whole-Genome Regression and Prediction Meth-1155

ods Applied to Plant and Animal Breeding. Ge-1156

netics, 193(2):327–345.1157

de Villemereuil, P., Gaggiotti, O. E., Mouterde, M.,1158

and Till-Bottraud, I., 2016. Common garden ex-1159

periments in the genomic era: new perspectives1160

and opportunities. Heredity, 116(3):249–254.1161

Dillen, S. Y., Marron, N., Sabatti, M., Ceulemans,1162

R., and Bastien, C., 2009. Relationships among1163

productivity determinants in two hybrid poplar1164

families grown during three years at two contrast-1165

ing sites. Tree Physiology, 29(8):975–987.1166

Drummond, D. A., Bloom, J. D., Adami, C., Wilke,1167

C. O., and Arnold, F. H., 2005. Why highly1168

expressed proteins evolve slowly. Proceedings of1169

the National Academy of Sciences, 102(40):14338–1170

14343.1171

Duret, L. and Mouchiroud, D., 2000. Determinants1172

of Substitution Rates in Mammalian Genes: Ex-1173

pression Pattern Affects Selection Intensity but1174

Not Mutation Rate. Molecular Biology and Evolu-1175

tion, 17(1):68–070.1176

Faivre-Rampant, P., Zaina, G., Jorge, V., Gia-1177

comello, S., Segura, V., Scalabrin, S., Guérin, V.,1178
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Supplemental Material

Supplemental tables

Table S1: Correspondence between traits, their abbreviations, and families.

Trait Abbreviation Family
Mean diameter of the stem section harvested for RNA sequencing MeanDiameter Growth
Circumference in Orléans CIRC.Orl Growth
Circumference in Savigliano CIRC.Sav Growth
Ratio between syringyl and guaiacyl lignin subunits in Orléans S.G.Orl Chemical
Ratio between syringyl and guaiacyl lignin subunits in Savigliano S.G.Sav Chemical
Total glucose in Orléans Glucose.Orl Chemical
Total glucose in Savigliano Glucose.Sav Chemical
Basic wood density of the stem section harvested for RNA sequencing Infraden Physical
Ratio between 5 carbon- and 6 carbon-sugars in Orléans C5.C6.Orl Chemical
Ratio between 5 carbon- and 6 carbon-sugars in Savigliano C5.C6.Sav Chemical
Ratio between p-hydroxyphenyl and guaiacyl lignin subunits in Orléans H.G.Orl Chemical
Ratio between p-hydroxyphenyl and guaiacyl lignin subunits in Savigliano H.G.Sav Chemical
Lignin content in Orléans Lignin.Orl Chemical
Lignin content in Savigliano Lignin.Sav Chemical
Extractives content in Orléans Extractives.Orl Chemical
Extractives content in Savigliano Extractives.Sav Chemical
Date of bud flush of the tree in Orléans in 2015 Date3Doy Phenology

Table S2: Module membership of each gene (see Supplemental file).

Table S3: Number of genotypes sampled for each population.

Population name Country Number of genotypes
Adour France 36

Basento Italy 5
Dranse France 16

Kuhkopf Germany 19
Loire France 34
NL Netherlands 4

Paglia Italy 13
Ramieres France 26

Rhin France 15
Ticino Italy 54

ValAllier France 19
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Table S4: Distribution of core and peripheral genes across modules.

Module core peripheral peripheral no grey
grey 0 2942 0
blue 519 300 1438
turquoise 498 85 933
yellow 368 1 99
brown 258 13 152
magenta 119 12 167
pink 135 14 107
red 120 8 111
lightcyan 170 1 21
cyan 74 4 68
salmon 75 8 63
grey60 136 1 1
darkturquoise 69 3 32
purple 45 4 52
black 70 5 21
greenyellow 56 3 20
darkgrey 37 1 21
saddlebrown 58 0 1
violet 53 0 0
white 27 0 23
darkmagenta 39 3 7
lightyellow 33 4 10
orange 45 0 0
darkorange 43 0 1
darkred 43 0 0
royalblue 37 0 5
green 25 0 14
lightgreen 37 0 0
paleturquoise 24 1 12
skyblue 32 1 4
tan 27 1 9
darkgreen 22 1 10
darkolivegreen 25 1 3
midnightblue 18 1 10
steelblue 25 1 3
yellowgreen 22 1 2
sienna3 19 2 2
skyblue3 19 0 0
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Supplemental figures

Figure S1: PCA of the different cofactors (Xylem and cambium scraper, extractor and extraction method, population,
sequencing column, line and plate, the growth rate at harvest, sampling date, time, temperature, solar radiation, humidity
and wind speed). Each of these represents the distribution of the individuals on the 2 first axes of the PCA (representing
17,7% of the variation), colored by class. Cofactors related to weather are presented in the 6 lower plots.
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Figure S2: Scaled traits hierarchical clustering dendrogram computed from their correlations with Ward method
(”Ward.D2”) by the R package pvclust. Approximately Unbiased (au, in red) and Bootstrap Probability (bp, in green)
p-values indicated the degree of belief associated with clusters. Highly supported modules are framed by a red square,
grouping (a) the mean sample diameter with the two circumference traits, (b) the S/G ratios with glucose composition,
(c) the two C5/C6 together, and (d) the H/G ratios.
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Figure S3: Heatmap of module-trait Spearman’s correlations, on a dark blue (high negative correlation) to light yellow
(high positive correlation) scale. We removed correlations with a p-value lower than 5% after Bonferroni correction. From
the total of 425 correlations, 72 remained.
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Figure S4: Relationship between Spearman’s correlations between module-trait (y-axis) and gene significance-kME
(x-axis).
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Figure S5: Histogram of the centrality scores without (top panel) or with (botom panel) the grey group. Core,
peripheral and peripheral without grey sets are represented respectively by the blue, dark orange and orange bars.
Random sets are distributed across the histogram and do not appear on this figure. Distribution of genes clustered in
the grey module is represented by the grey bars, white bars are for other genes.
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Figure S6: Gene expression k-means clustering (A) Correlation between eigengenes of modules identified by k-means
clustering, on a light yellow (positive) to dark blue (negative) scale. P-values are indicated on the second line of each
square. (B) Heatmap representing the concordance between WGCNA (abscissa) and k-means (ordinate) clusterings. (C)
Principal component analysis graph of the k-means clustering.

bl
ue

ye
llo

w

br
ow

n

re
d

gr
ee

n

pu
rp

le

m
ag

en
ta

cy
an

m
id

ni
gh

tb
lu

e

sa
lm

on ta
n

gr
ee

ny
el

lo
w

pi
nk

bl
ac

k

gr
ey

tu
rq

uo
is

e

3

4

1

2

Module−trait relationships

−1

−0.5

0

0.5

1

Circ
.S

av

M
ea

nD
iam

et
er

Circ
.O

rl

S.G
.O

rl

S.G
.S

av

Gluc
os

e.
Orl

Gluc
os

e.
Sav

In
fra

de
n

C5.
C6.

Orl

C5.
C6.

Sav

Dat
e3

Doy

Extr
ac

tiv
es

.O
rl

Extr
ac

tiv
es

.S
av

Lig
nin

.O
rl

Lig
nin

.S
av

H.G
.O

rl

H.G
.S

av

ME4

ME2

ME1

ME3

0.44
(5e−13)

0.83
(7e−62)

0.75
(1e−45)

0.3
(1e−06)

0.047
(0.5)

0.19
(0.003)

−0.14
(0.02)

−0.42
(1e−11)

0.049
(0.5)

0.1
(0.1)

−0.22
(5e−04)

−0.5
(7e−17)

0.051
(0.4)

0.11
(0.09)

0.12
(0.07)

0.23
(3e−04)

0.23
(3e−04)

−0.59
(5e−24)

−0.8
(7e−55)

−0.75
(2e−45)

−0.33
(1e−07)

−0.13
(0.05)

−0.15
(0.02)

0.095
(0.1)

0.48
(3e−15)

−0.0038
(1)

−0.11
(0.09)

0.22
(5e−04)

0.51
(1e−17)

−0.078
(0.2)

−0.18
(0.005)

−0.054
(0.4)

−0.31
(1e−06)

−0.2
(0.002)

−0.51
(1e−17)

−0.77
(3e−48)

−0.71
(8e−38)

−0.38
(9e−10)

−0.15
(0.02)

−0.14
(0.03)

0.097
(0.1)

0.43
(2e−12)

−0.034
(0.6)

−0.13
(0.05)

0.18
(0.004)

0.47
(2e−14)

−0.056
(0.4)

−0.16
(0.01)

−0.058
(0.4)

−0.28
(9e−06)

−0.17
(0.007)

−0.43
(3e−12)

−0.83
(2e−62)

−0.74
(2e−43)

−0.36
(1e−08)

−0.076
(0.2)

−0.19
(0.003)

0.14
(0.04)

0.39
(2e−10)

−0.069
(0.3)

−0.11
(0.08)

0.19
(0.003)

0.49
(3e−16)

−0.047
(0.5)

−0.1
(0.1)

−0.1
(0.1)

−0.22
(5e−04)

−0.21
(0.001)

●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Dim 1 (95.05%)

D
im

 2
 (

2.
80

%
)

ME4

ME2

ME1

ME3

A

B C

25

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 21, 2019. ; https://doi.org/10.1101/523365doi: bioRxiv preprint 

https://doi.org/10.1101/523365
http://creativecommons.org/licenses/by/4.0/


Figure S7: Distribution of the kME for the core (blue), peripheral NG (orange), peripheral (brown) and other (NA,
in black) genes in the sets selected by Boruta for the different p-values (0.01, 0.05, 0.1 and 0.2).
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Figure S8: Violin and boxplots of prediction R2 across all phenotypes, split by model and gene sets.
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Figure S9: Difference of prediction scores (on the y-axis) between algorithms (A) and sets (B). (A) the difference
between LM and NN prediction scores for the core (in blue), random (in grey), peripheral (in brown), peripheral (in
orange) and Boruta gene sets (in green).(B) the LM differences are in red and the NN differences in turquoise and the
color filling the bar represents the difference between core and peripheral genes in brown, core and peripheral NG in
orange and between the random sets in grey. For the random pairs, error bars represent the first and third quartiles of
the differences between pairs of randomized sets and the bar corresponds to the median.
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Figure S10: Violin plots of the predictions scores on test sets (R2 on the y-axis) for the LM Ridge algorithm for
increasing sizes of the peripheral genes set (in brown) and the peripheral NG genes set (in orange), used for the predictions
(in percent of the full set).
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