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10 Abstract

11 Reinforcement learning can bias decision-making towards the option with the highest expected
12 outcome. Cognitive learning theories associate this bias with the constant tracking of stimulus values and
13 the evaluation of choice outcomes in the striatum and prefrontal cortex. Decisions however first require
14 processing of sensory input, and to-date, we know far less about the interplay between learning and
15 perception. This fMRI study (N=43), relates visual BOLD responses to value-beliefs during choice, and,
16 signed prediction errors after outcomes. To understand these relationships, which co-occurred in the
17 striatum, we sought relevance by evaluating the prediction of future value-based decisions in a separate
18 transfer phase where learning was already established. We decoded choice outcomes with a 70% accuracy
10 with a supervised machine learning algorithm that was given trial-by-trial BOLD from visual regions
20 alongside more traditional motor, prefrontal, and striatal regions. Importantly, this decoding of future
21 value-driven choice outcomes again highligted an important role for visual activity. These results raise
2 the intriguing possibility that the tracking of value in visual cortex is supportive for the striatal bias
23 towards the more valued option in future choice.

24
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27

s In decision-making, our value beliefs bias future choices. This bias is shaped by the outcomes of similar
2 decisions made in the past where the action, or stimulus chosen, becomes associated with a positive or
w  negative outcome (‘value beliefs’). The evaluation of value after an outcome, or the comparison of value in
s decisions, is traditionally associated with activity in the prefrontal cortex and striatum (O’Doherty et al.

2 2004, 2017; Daw et al. 2006; Kahnt et al. 2009; Hare et al. 2011; Jocham et al. 2011; Klein et al. 2017).

33 To underset the bias in action selection midbrain dopamine neurons are thought to send a teaching signal
u towards the striatum and prefrontal cortex after an outcome (Montague et al. 1996; Schultz et al. 1997;
s Tobler et al. 2005). In the striatum, future actions are facilitated by bursts in dopamine after positive
3 outcomes or discouraged by dopamine dips after negative outcomes. The dorsal and ventral parts of the
w striatum are known to receive differential, but also overlapping, inputs from midbrain neurons (O’Doherty et
s al. 2004; Atallah et al. 2007). Ventral and dorsal striatum have also been ascribed a differential role during
3 learning by reinforcement learning theories. Here, the ventral parts of the striatum are involved with the
w0 prediction of future outcomes through the processing of prediction errors, whereas the dorsal striatum uses
a1 the same information to maintain action values as a way to bias future actions towards the most favored
« option (Joel et al. 2002; Kahnt et al. 2009; Collins and Frank 2014). Intriguingly, however, before many
13 of these value-based computations can take place, stimuli first have to be parsed from the natural world,
w an environment where most reward predicting events are perceptually complex. This suggests that sensory

s processing might be an important integral part of optimized value-based decision-making.

s Here, we investigate whether choice outcomes can modulate the early sensory processing of perceptually
«w  complex stimuli to help bias future decisions. Recent neurophysiological studies find visually responsive
s mneurons in the tail of the caudate nucleus, which is part of the dorsal striatum (Kim and Hikosaka 2013;
» Hikosaka et al. 2014). These neurons encode and differentiate stable reward values of visual objects to
s facilitate eye movements towards the most valued target, while at the same time inhibiting a movement
si towards the lesser valued object (Kim et al. 2017). Critically, differential modulations are also observed in the
2 primary visual cortex where stronger cortical responses are seen for objects with higher values (Serences 2008;
53 Serences and Saproo 2010), which is consistent with the response of visual neurons in the caudate. As visual
s« cortex is densely connected to the striatum (Fernandez-Ruiz et al. 2001; Kravitz et al. 2013), prioritized
55 visual processing of high-value stimuli could aid the integration of information regarding the most-valued
5o choice in the striatum (Lim et al. 2011, 2013; Jahfari et al. 2015; Jahfari and Theeuwes 2017). To understand

s these visual-striatal interactions, we focus on a more detailed parsing of the underlying computations.
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ss  Specifically, we explored two questions by reanalyzing fMRI data from a probabilistic reinforcement learning
s task using faces as visual stimuli (Jahfari et al. 2018) (Figure 1la). First, we focus on the interplay between
o learning and visual activity in the fusiform face area (FFA) and occipital cortex (OC). Here, with the use of
s a Bayesian hierarchical reinforcement learning model (Figure 1b) we outline how trial-by-trial estimates of
e action values (Q-value) and reward prediction errors (RPE) relate to the BOLD response of visual regions
63 and the striatum (O’Doherty et al. 2007; Daw 2011) (Figure 1c). Second, we analyze data from a follow-up
e transfer phase, where the learning of value was already established. In our analysis, the importance of
e visual brain activity in the prediction, or decoding, of future value-based decisions is evaluated by using a
s supervised Random Forest (RF) machine learning algorithm (Breiman 2001, 2004). Specifically, transfer
e phase single-trial BOLD estimates from anatomically defined visual, prefrontal, and subcortical regions are
e combined by RF to predict, or decode, choice outcomes in a seperate validation set. We focus on classification
e accuracy, and the relative importance of each brain region in the correct classification of future value-based

7 decisions.
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Figure 1: Design and Model. a) Reinforcement learning task using faces. During learning, two faces
were presented on each trial, and participants learned to select the optimal face identity (A, C, E) through
probabilistic feedback (% of correct is shown beneath each stimulus). The learning-phase contained three
face pairs (AB, CD, ED) for which feedback was given. In a follow-up transfer phase these faces were
rearranged into 12 novel combinations to asses learning. These trials were identical to learning trials, with
the exception of feedback. *Example faces were removed for the publication on BioRxiv, for an impression
see Jahfari et al. (2018), or the Radboud face database from where the faces were originally selected
(http://www.socsci.ru.nl:8180/RaFD2/RaFD). b) Graphical Q-learning model with hierarchical Bayesian
parameter estimation. The model consists of an outer subject (i = 1,.....,N), and an inner trial plane
(t =1,...,T). Nodes represent variables of interest. Arrows are used to indicate dependencies between
variables. Double borders indicate deterministic variables. Continuous variables are denoted with circular
nodes, and discrete with square nodes. Observed variables are shaded in grey (see methods for details about
the fitting procedure). ¢) Illustration of the observed trial-by-trial input (i.e., the choice made, and feedback
received), and output (i.e., @ for the chosen and unchosen stimulus, AValue, and RPE) of the model given
the estimated variability in learning rates from either positive (a¢;) or negative (ay;) feedback, and the
tendency to exploit 8 higher values 1.
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» Materials and Methods

7 To understand how value learning relates to the activity pattern in perceptual regions we reanalyzed the
7 behavioral and fMRI recordings of a recent study (Jahfari et al. 2018). In this study, BOLD signals were
n recorded while participants performed a reinforcement learning task using male or female faces, and a
s stop-signal task (which was discussed in Jahfari et al. (2018)). The fusiform face area (FFA) was localized

% using a separate experimental run.

» Participants

s 49 young adults (25 male; mean age = 22 years; range 19-29 years) participated in the study. All participants
7 had normal or corrected-to-normal vision and provided written consent before the scanning session, in
s accordance with the declaration of Helsinki. The ethics committee of the University of Amsterdam approved
a1 the experiment, and all procedures were in accordance with relevant laws and institutional guidelines. In
@ total, six participants were excluded from all analyses due to movement (2), incomplete sessions (3), or

s misunderstanding of task instructions (1). In total data from 43 participants was analyzed.

=« Reinforcement learning task

s Full details of the reinforcement learning task are provided in Jahfari et al. (2018). In brief, the task consisted
s of two phases (Figure 1a). In the first learning phase, three male or female face pairs (AB, CD, EF) were
& presented in a random order, and participants learned to select the most optimal face (A, C, E) in each pair
s solely through probabilistic feedback (‘correct’: happy smiley, ‘incorrect’: sad smiley). Choosing face-A lead
s to ‘correct’ on 80% of the trials, whereas a choice for face-B only lead to the feedback ‘correct’ for 20% of the
o trials. Other ratios for ‘correct’ were 70:30 (CD) and 60:40 (EF). Participants were not informed about the
o1 complementary relationship in pairs. All trials started with a jitter interval where only a white fixation cross
oo was presented and had a duration of 0, 500, 1000 or 1500ms to obtain an interpolated temporal resolution of
o3 500ms. Two faces were then shown left and right of the fixation-cross and remained on screen up to response,
o or trial end (4000ms). If a response was given on time, a white box surrounding the chosen face was then
s shown (300ms) and followed (interval 0-450ms) by feedback (500ms). Omissions were followed by the text
o ‘miss’ (2000ms). The transfer-phase contained the three face-pairs from the learning phase, and 12 novel
o7 combinations, in which participants had to select which item they thought had been more rewarding during

s learning. Transfer-phase trials were identical to the learning phase, with the exception that no feedback was
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9 provided. All trials had a fixed duration of 4000ms, where in addition to the jitter used at the beginning of
wo each trial, null trials (4000ms) were randomly interspersed across the learning (60 trials; 20%) and transfer
(72 trials; 20%) phase. Each face was presented equally often on the left or right side, and choices were
102 indicated with the right-hand index (left) or middle (right) finger. Before the MRI session, participants
103 performed a complete learning phase to familiarize with the task (300 trials with different faces). In the MRI
s scanner, participants performed two learning blocks of 150 trials each (300 trials total; equal numbers of AB,
s CD and EF), and three transfer phase blocks of 120 trials each (360 total; 24 presentations of each pair). All
s stimuli were presented on a black-projection screen that was viewed via a mirror-system attached to the MRI

17 head coil.

1w Reinforcement learning model

w09 Trial-by-trial updating in value beliefs about the face selected in the learning phase, and reward prediction
uo errors (signed expectancy violations) were estimated with a variant of the computational Q-learning algorithm
w (Watkins and Dayan 1992; Frank et al. 2007; Daw 2011) that is frequently used with this reinforcement
uz learning task and contains two separate learning rate parameters for positive (gain) and negative (aoss)
us  reward prediction errors (Frank et al. 2007; Kahnt et al. 2009; Niv et al. 2012; Jahfari and Theeuwes 2017;
us Jahfari et al. 2018). @Q-learning assumes participants to maintain reward expectations for each of the six
us  (A-to-F) stimuli presented during the learning phase. The expected value (Q) for selecting a stimulus ¢ (could

us be A-to-F) upon the next presentation is then updated as follows:

Ot +1) = Qu(t) 4 4 “Comlri®) = QL it =1

OéLOSS[’I“i(t) — Qi(t)], if r=20

ur - Where 0 < agqin O Qyoss < 1 represent learning rates, ¢ is trial number, and r = 1 (positive feedback) or r =0

us (negative feedback). The probability of selecting one response over the other (i.e., A over B) is computed as:

exp(f * Qi (A4))
exp(8 * Qi(B)) + exp(B * Q¢(A))

Pa(t) =

e With 0 < 8 <100 known as the inverse temperature.
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0 Bayesian hierarchical estimation procedure

1w To fit this @-learning algorithm with two learning rate parameters we used Bayesian hierarchical estimation
12 procedure. The full estimation procedure is explained in (Jahfari et al. 2018). To summarize, this
123 implementation assumes that probit-transformed model parameters for each participant are drawn from
122 & group-level normal distribution characterized by group level mean and standard deviation parameters:
sz~ N(u,0.). A normal prior was assigned to group-level means p, ~ N(0,1), and a uniform prior to the
s group-level standard deviations o, ~ U(1,1.5). Model fits were implemented in Stan, where multiple chains

127 were generated to ensure convergence.

s Image acquisition

19 The fMRI data for the Reinforcement learning task was acquired in a single scanning session with two learning
130 and three transfer phase runs on a 3-T scanner (Philips Achieva TX, Andover, MA) using a 32-channel head
1 coil. Each scanning run contained 340 functional T2*-weighted echo-planar images for the learning phase,
3 and 290 T2*-weighted echo planar images for the transfer phase (TR = 2000 ms; TE = 27.63 ms; FA =
133 76.1°; 3 mm slice thickness; 0.3 mm slice spacing; FOV = 240 x 121.8 x 240; 80 x 80 matrix; 37 slices,
1 ascending slice order). After a short break of 10 minutes with no scanning, data collection was continued
s with a three-dimensional T'1 scan for registration purposes (repetition time [TR] = 8.5080 ms; echo time
s [TE] = 3.95ms; flip angle [FA] = 8°; 1 mm slice thickness; 0 mm slice spacing; field of view [FOV] = 240
w x 220 x 188), the fMRI data collection using a stop signal task (described in Jahfari et al. (2018)), and
138 a localizer task with faces, houses, objects, and scrambled scenes to identify FFA responsive regions on an
1o individual level (317 T2* weighted echo-planar images; TR = 1500 msec; TE = 27.6 msec; FA = 70° 2.5
1o mm slice thickness; 0.25 mm slice spacing; FOV = 240 x 79.5 x 240; 96 x 96 matrix; 29 slices, ascending
w1 slice order). Here, participants viewed a series of houses, faces, objects as well as phase-scrambled scenes.
12 To sustain attention during functional localization, subjects pressed a button when an image was directly

w3 repeated (12.5% likelihood).

ws fMRI analysis learning phase

s The interplay between learning and perceptual activity was examined by evaluating how trial-by-trial
us computations of value-beliefs, and reward prediction errors relate to BOLD responses in the occipital cortex

wr (OC) and fusiform face area (FFA). To compare perceptual responses with the more traditional literature, we
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us  first show how value-beliefs and RPEs relate to the activity pattern of the dorsal (i.e., caudate, or putamen)
us or ventral (i.e., accumbens) parts of the striatum. Regions of interest (ROI) templates were defined using
10 anatomical atlases available in FSL, or the localizer task for FFA. For this purpose, the localizer scans
151 were preprocessed using motion correction, slice-time correction, and pre-whitening (Woolrich et al. 2001).
12 For each subject, a GLM was fitted with the following EVs: for FFA, faces > (houses and objects), for
153 parahippocampal place area (PPA), houses > (faces and objects) and for lateral occipital complex (LOC),
154 intact scenes > scrambled scenes. Higher-level analysis was performed using FLAME Stage 1 and Stage
155 2 with automatic outlier detection (Beckmann et al. 2003). For the whole-brain analysis Z (Gaussianized
s T/F) statistic images were thresholded using clusters determined by z > 2.3 and p < .05 (GRFT) to define
157 a group-level binary FFA region. Templates used for the caudate [center of gravity (cog): (-) 13, 10, 10],
158 putamen [cog: (-) 25, 1, 1], and nucleus accumbens [cog: (-)19, 12, -7] were based on binary masks. Because
159 participants were asked to differentiate faces, for each participant, we multiplied the binary templates of OC
w0 [cog: 1,-83, 5], FFA [cog: 23, -48, -18] with the individual t-stats from the localizer task contrast faces >
11 (houses and objects). All anatomical masks, and the localizer group-level FFA mask can be downloaded from

12 github (see acknowledgements).

s Deconvolution analysis learning phase

16« To more precisely examine the time course of activation in the striatal and perceptual regions, we performed
165 finite impulse response estimation (FIR) on the BOLD signals. After motion correction, temporal filtering
166 (3rd order savitzky-golay filter with window of 120 s) and percent signal change conversion, data from each
w7 region was averaged across voxels while weighting voxels according to ROI probability masks, and upsampled
s from 0.5 to 3 Hz. This allows the FIR fitting procedure to capitalize on the random timings (relative to
10 TR onset) of the stimulus presentation and feedback events in the experiment. Separate response time
o courses were simultaneously estimated triggered on two separate events: stimulus onset, feedback onset. FIR
m  time courses for all trial types were estimated simultaneously using a penalized (ridge) least-squares fit, as
2 implemented in the FIRDeconvolution package (Knapen and Gee 2016), and the appropriate penalization
s parameter was estimated using cross-validation. For stimulus onset events (i.e., onset presentation of face
e  pairs) response time courses were fit separately for the AB, CD and EF pairs, while also estimating the time
s courses of signal covariation with chosen and unchosen value for these pairs. For these events, our analysis
e corrected for the duration of the decision process. For the feedback events, the co-variation response time
w7 course with signed and unsigned prediction errors were estimated. These signal response time courses were

s analysed using across-subjects GLMs at each time-point using the statsmodels package (Seabold and Perktold
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o 2010). The « value for the contributions of @ or RPE was set to 0.0125 (i.e. a Bonferroni corrected value of

1o 0.05 given the interval of interest between 0 and 8 s).

s Random Forest classification

122 To specify the relevance of perceptual regions in the resolve of future value-driven choices a random forest
s (RF) classifier was used (Breiman 2001, 2004). The RF classifier relies on an ensemble of decision trees as
1« base learners, where the final prediction (e.g., for a given trial is the choice going to be correct/optimal? or
185 incorrect/suboptimal? given past learning) is obtained by a majority vote that combines the prediction of
186 all decision trees. To achieve controlled variation, each decision tree is trained on a random subset of the
7 variables (i.e. regions of interest chosen), and a bootstrapped sample of data points (i.e. trials or rows of
s the matrix in Figure 2¢). In the construction of each tree about 1/3 of all trials is left out - termed as the
189 “out-of-bag” sample — and later used to see how well each tree preforms on unseen data in the training set.
10 Because in RF each tree is built from a different sample of the original data each observation is “out-of-bag”
1 (OOB) for some of the trees. As such, each OOB sample is offered to all trees where the sample was not
12 used for construction, and the average vote across those trees is taken as the classification outcome. The
13 proportion of times that the classification outcome is not equal to the actual choice is averaged over all cases
104 and represents the RF OOB error estimate. In other words, the generalized error for predictions is calculated
105 by aggregating the prediction for every out-of-bag sample across all trees. In the results section, the OOB
106 errors obtained from RF during training were well matched with the classification accuracy seen for the
07 validation set given only the ‘good learners’ (OOB=30%, RF error validation set= 31%) or all participants
s (OOB= 33%, RF error validation set= 35%). An important feature of the RF classification method is the
190 ease to measure the relative importance of each variable (i.e., region), in the overall predictive performance.

20 That is, it allows for the ranking of all regions evaluated in the prediction of future value-based decisions.

a1 ROI selection and Random Forest procedure

202 This study used the ‘Breiman and Cutler’s Random Forests for Classification and Regression’ package in R,
23 termed randomForest (randomForest 4.6-14). RF evaluations relied on the fMRI data recorded during the
24 transfer phase, in a set of 9 regions of interest (ROIs). These ROIs included all templates from the learning
25 phase (i.e., caudate, putamen, accumbens, OC, and FFA), as well as, the ventromedial prefrontal cortex
25 (vimPFC), dorsolateral prefrontal cortex (DLPFC), pre-supplementary motor area (preSMA), and the primary

2r - motor cortex (M1). The selection of these additional anatomical templates was inspired by our previous
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28 analysis of this data with those templates focusing on networks (Pircalabelu et al. 2015; Schmittmann et
20 al. 2015; Jahfari et al. 2018). Specifically, the DLPFC template was obtained from an earlier study, linking
20 especially the posterior part to action execution (Cieslik et al. 2012). The preSMA, vinPFC, and M1 mask
- were created from cortical atalases available in FSL. Please notice that we used the same anatomical ROIs for
22 both the model-based deconvolution analysis (Figure 4&5) and the decoding analysis (Figure 2&6).From each
a3 ROI a single parameter estimate (averaged normalized § estimate across voxels in each ROI) was obtained
as per trial, per subject. All, pre-processing steps to obtain single-trial images are described in Jahfari et
25 al. (2018). Single-trial activity estimates were used as input variables in RF to predict choice outcomes
26 (optimal/sub-optimal) in the transfer phase. Here, participants choose the best/optimal option based on
ar - values learned during the learning phase. We defined optimal choices as correct (i.e, when participants choose
28 the option with the higher value), and sub-optimal choices as incorrect. Misses were excluded from RF

20 evaluations.

20 By design, the transfer-phase contained 360 trials including 15 different pairs (12 novel), where each pair was
a1 presented 24 times with the higher value presented left in 12 of the 24 presentations, and on the right for the
22 other half. With so many subtle value differences across the options presented and only one BOLD estimate
23 per trial/region the prediction of future choices is under powered (Figure 2a). Therefore, assuming that all
» participants come from the same population, a fixed effects approach was taken for evaluations with RF.
25 Here, the trialxregion activity matrices for all participants were combined into one big data matrix (Figure
26 2b) and subsequently shuffled across the rows, so that both participants and trials were re-arranged in a
27 random order across rows. Besides the single trial BOLD estimates from the 9 ROI’s, this shuffled matrix
28 contained two additional columns, which specified subject_id (to which subject does each trial belong), and
20 Trial Sign — i.e., is the choice between the two faces about two positive (+/+; AC, AE, CE), negative (-/-;
20 BD, BF, DF), or a positive-negative (+/-; e.g. AD, CF etc. ) associations given the task manipulation during
2 learning. Subject_id was included to control for different BOLD fluctuations across participants, whereas
2 Trial Sign was added because both BOLD and choice patterns differ across these options (please see Jahfari et
2 al. (2018)). The shuffled fixed effect matrix was divided into a separate training (2/3 of whole matrix), and
2 validation (1/3) set, to be used for RF evaluations (Figure 2¢). Based on our previous connectivity work with
25 this data (Jahfari et al. 2018), we were aware that many of our single-trial BOLD response were correlated
26 accross time, which potenentially results from shared learning effects (Supplementary figure 4). With RF the
257 problem of correlated features is minimized for predictions with variable selection - i.e., the random selection
28 of a set of regions to use for each tree. With more variables selected, we get better splits in each tree but also

230 highly correlated decisions trees across the forest, which in essence diminishes the forest effect. To find the

10
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20 best balance, this study optimized the number of variables to select with a tuning function using the OOB
a1 error estimate. Learning was based on the training set, using 2000 trees with the number of variables (regions)
22 used by each tree optimized with the tuneRF function in R, and accordingly set to 5. For the construction of
23 each tree about 1/3 of all trials is left out - termed as the out-of-bag sample — and later used to see how well
s each tree preforms on unseen data. The generalized error for predictions is calculated by aggregating the
s prediction for every out-of-bag sample across all trees. Besides this out-of-bag approximation we evaluated
xs  the predictive accuracy of the whole RF on the separate unseen validation-set. We further reasoned that RF
a7 predictions can result from alternative BOLD patterns such as the buildup of a motor response, the ease of
ugs face distinctions, or to us alternative functional fluctuations. Therefore, prior to the evaluation of region
20 importance (or ranking), we preformed two control analysis ensuring that RF predictions are sensitive to
0 the consistency of past learning, and the representation of AValue. These are the evaluations comparing
s ‘good’ to ‘all’ learners, as well as, the relationship between AValue and RF uncertainty. In addition, while
»2  potential confounds of colinearity on the RF ranking cannot be excluded, we tried to minimize this with the
53 use of permutation importance. Here, by using the OOB samples the importance of each variable (region) is
»s computed as the difference between the models baseline accuracy and the drop in overall accuracy caused
25 by permuting that column (region). While being more slow, permutation importance is described as more
26 robust in comparison to the default (gini) importance computation where only the uncertainty of predictions
»7 18 evaluated (with no checks on accuracy fluctuations after region permutation). The single trial data used as
»s  input, the RF evaluation codes, and ROI templates can all be downloaded from the github link provided in

0 acknowledgements.
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Training set (70% of all data)

Trial-by-subject data frame Create 2000 decision trees to predict optimal/subobtimal choice.
with signal from each ROI For each tree, select a random subset of rows
(with replacement) and 5 predictors.
o
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Validation set (30% of all data)
For each trial, use the majority vote across the 2000 trees
to evaluate optimal/suboptimal predictions
in the unseen validation set.

Combine subjects into one data frame
shuffle rows to divide subjects and trials across matrix

Figure 2: Random Forest input and data-structure. (a) Trial-by-subject data matrix with the % signal
change drawn for each choice trial in the transfer-phase (rows) from 9 a-priori defined regions of interest
(columns). In addition to the ROI data, the matrix contained a column with the identity of participants
(sub-01, etc) and Trial Sign, which specified a choice between two positives (+/+; AC, AE, CE), negatives
(-/-, BD, BF, DF), or between a negative and positive option (+/-, e.g., AD, CF, etc) given the feedback
scheme in the learning-phase. (b) The individual subject data frames were then combined into one matrix, in
which the rows were subsequently shuffled to randomly distribute trials and subjects across the rows. (c)
This matrix was then divided into a training set (2/3 of the data) for the creation of 2000 decision trees of
which the majority vote on each trial is then used to evaluate the predictive accuracy of optimal/suboptimal
choices in a separate validation set (1/3 of the data).

» Results

x  Model and Behavior

% As shown in Figure la, in the reinforcement learning task participants learned to select among choices with
3 different probabilities of reinforcement (i.e., AB 80:20, CD 70:30, and EF 60:40). A subsequent transfer phase,
s where feedback was omitted, required participants to select the optimal option among novel pair combinations
s of the faces that were used during the learning phase (Figure 1a). In the learning phase, subjects reliably
%6 learned to choose the most optimal face option in all pairs. For each pair the probability of choosing the
7 better option was above chance (p’s < .001), and the effect of learning decreased from AB (80:20) and CD
28 (70:30) to the most uncertain EF (60:40) pair (F'(2,84) = 13.74,p < .0001). At the end of learning, value
%0 beliefs differentiating the optimal (A, C, E) from the sub-optimal (B, D, F) action were very distinct for

a0 the AB and CD face pairs but decreased with uncertainty (F(2,84) = 39.70,p < 0.0001, Figure 3a). Value
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on beliefs were estimated using the individual subject parameters of the Q-learning model that best captured

a2 the observed data (Figure 3b-e; reproduced from Jahfari et al. (2018) to show performance).

a b ~
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Figure 3: Value differentiation and model performance. (a) Value differentiation (AValue) for the
selection of the optimal (A,C,E) stimuli over the suboptimal (B,D,F) stimuli decreased as a function of feedback
reliability, and was smallest for the most uncertain EF stimuli. % % x = p < 0.0001, Bonferroni corrected. (b)
Group-level posteriors for all @-learning parameters. The bottom row shows model performance, where data
was simulated with the estimated individual subject parameters and evaluated against the observed data for
the AB (c), CD (d), or EF (e) pairs. Bins contain +/— 16 trials. Error bars represent standard error of the
mean (SEM).

s BOLD is modulated by reliable value differences between faces in striatal and

visual regions

x5 For each pair of faces presented during the learning phase (AB, CD, EF) we asked how the BOLD signal
a6 time-course in striatal and visual regions relates to trial-by-trial value beliefs about the two faces presented
a7 as a choice. First, as a reference, we focused on the activity pattern of three striatal regions. Results showed
s BOLD responses in dorsal (caudate, putamen) but not ventral (accumbens) striatum to be differentially
29 modulated by the estimated value beliefs of the chosen face (Qcposen), in comparison to value beliefs about
20 the face that was not chosen (Qunchosen). Thus, BOLD responses in the dorsal striatum were modulated
s more strongly by value beliefs about the chosen stimulus (Qcposen; Figure 4a bottom row). Critically, this
s differential modulation was only observed with the presentation of AB faces where value differences were
263 most distinct because of the reliable feedback scheme. Next, we evaluated the relationship between value and

2 BOLD in the FFA, and OC. Again, only with the presentation of the AB face option, trial-by-trial BOLD
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25 fluctuations were differentially modulated by values of the chosen versus not chosen face option (Figure
26 4b bottom row). These evaluations highlight how the BOLD response in striatal and perceptual regions is

27 especially sensitive to values of the (to-be) chosen stimulus when belief representations are stable and distinct.
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Figure 4: BOLD and the modulation of AValue in the learning phase. Top row shows the BOLD
signal time course, time-locked to presentations of AB (80:20, red lines), CD (70:30, green lines), and EF
(60:40, blue lines) face pairs, for three striatal regions (a) and two perceptual regions (b). Bottom row
displays differential modulation by value (AValue = modulation Qcposen — modulation Qunchosen). Horizontal
lines show the interval in which modulation was significantly stronger for Qcnosen- With the presentation of
AB faces, BOLD responses in the dorsal striatum (caudate and putamen) and visual regions (FFA and OC)
were modulated more by values of the chosen stimulus when compared to values of the unchosen stimulus.
Differential AB value modulation was not significant in the ventral striatum (i.e., accumbens). Nor did we
observe any differential value modulations with the presentation of the more uncertain CD and EF pairs.
Confidence intervals were estimated using bootstrap analysis across participants (n = 1000), where the shaded
region represents the standard error of the mean across participants (bootstrapped 68% confidence interval).

x»s Reward prediction errors in striatal and visual regions

20 Our findings so far described relationships between BOLD and value time-locked to the moment of stimulus
20 presentation — i.e., when a choice is requested. Learning occurs when an outcome is different from what
21 was expected. We therefore next focused on modulations of the BOLD response when participants received

22 feedback. Learning modulations were explored by asking how trial-by-trial BOLD responses in perceptual and
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203 striatal regions relate to either signed (outcome was better or worse than expected) or unsigned (magnitude of
2 expected violation) reward prediction errors (Fouragnan et al. 2018). Consistent with the literature, BOLD
25 responses in all striatal regions were modulated by signed RPEs, with larger responses after positive RPEs or
26 smaller responses after negative RPEs (Figure 5a bottom row). Activity in the accumbens (ventral striatum)
27 was additionally tied to unsigned RPEs in the tail of the BOLD time-course, with larger violations (either
28 positive or negative) tied to smaller dips. Consistently, estimated BOLD responses in both visual regions
200 were modulated by the signed RPE, and once more mirrored the striatal modulations with stronger positive
w0 RPEs eliciting stronger BOLD responses (Figure 5b bottom row). FFA BOLD responses were additionally
sn modulated by unsigned RPEs. However, in contrast to the relationship found between unsigned RPEs and
s the accumbens, the FFA modulation was positive and co-occurred with the modulation of the signed RPE.

w3 That is, bigger violations and more positive outcomes each elicited a stronger response in the FFA.
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Figure 5: Reward prediction errors modulate BOLD in striatal and visual regions. The top row
shows the FIR-estimated BOLD signal time-course, which was time-locked to the presentation of choice
feedback and evaluated for three striatal regions (a) and two perceptual regions (b). Bottom row displays
modulations of the estimated BOLD time-course by singed (green lines), or unsigned (orange lines) RPEs.
The horizontal lines represent the interval in which signed or unsigned RPEs contributed significantly to the
modulation of BOLD in the multiple regression. Note that both variables were always evaluated simultaneously
in one GLM.
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s« Can past learning in visual regions support the prediction of future value-based

ws  decisions?

s Stable value representations and reward prediction errors both modulated the activity of visual and striatal
sor  regions. These modulations in the striatum are described to bias future actions towards the most favored
w8 option (the dorsal striatum), or to predict future reward outcomes (the ventral striatum). To better understand
a0 the value and RPE modulations observed in visual regions, we next assessed the importance of these visual
a0 regions alongside the striatum in the correct classification (decoding) of future value-driven choice outcomes.
au  Here, activity of prefrontal regions was added to the importance evaluation based on our previous work with
sz this data in the transfer phase (Jahfari et al. 2018) (please see supplementary Figures 1&2 for the evaluation

a3 of these regions during learning).

aiu  In the transfer phase, participants had to make a value-driven choice based on what was learned before, i.e.,
a5 during the learning phase. To specify the relevance of visual regions in the resolve of value-driven choice
a6 outcomes, in the transfer phase, a random forest (RF) classifier was used (Breiman 2001, 2004) (Please see
s Figure 2a-c for the procedure). The RF classifier was trained to predict the participant’s choice, on each trial,
ss  given trial-by-trial BOLD estimates from striatal, prefrontal, and visual regions. The RF classifier relies on
a0 an ensemble of decision trees as base learners, where the prediction of each trial outcome is obtained by a
»20 majority vote that combines the prediction of all decision trees (Figure 6a). To achieve controlled variation,
sn each decision tree is trained on a random subset of the variables (i.e. subset of columns shown in Figure 2a),
a2 and a bootstrapped sample of data points (i.e. trials). Importantly, we ensured that the forest was not simply
33 learning the proportion of optimal choices in the transfer phase by training all models on balanced draws

324 from the training set with equal numbers of optimal and sub-optimal choices.

25 Evaluation of all participants resulted in a classification accuracy of 65% (AUC = 0.75) using the trial-by-trial
26 BOLD estimates from the ROIs and increased to 70% with the evaluation of the good learners (AUC = 0.76;
a2 N = 34, criteria: accuracy > 60% across all three learning pairs). Hence, in 65 (all participants) or 70 (good
x2s  learners) out of 100 trials the forest correctly classified whether participants would pick the option with
20 the highest value (optimal choice) or not (sub-optimal choice) in the validation set. RF predictions were
a0 substantially lower when labels of the validation set were randomly shuffled (accuracy: all participants= 52%;

s good learners= 56%).

3 The improvement of accuracy with the evaluation of only the good learners is remarkable because the
s classifier was given less data to learn the correct labelling (fewer subjects/trials) and implied that the 2000

s decision trees were picking up information related to the consistency of past learning. Further support
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s for this important observation was found by asking how the uncertainty of each prediction (defined as the
136 proportion of agreement in the predicted outcome among the 2000 trees for each trial) relates to the difference
37 in value beliefs (AValue) about the two options presented on each trial (computed using the end Qpericts
as  of participants at the end of learning about face A-to-F), Figure 6¢ right side. As plotted in Figure 6¢ on
30 the left, the uncertainty in predicting that a trial choice outcome is optimal — defined as the proportion of
auo  disagreement among the 2000 decision trees - decreased with larger belief differences in the assigned values

s (please see supplementary Figure 3 for the evaluation of all participants).

s Besides providing insights into how BOLD responses in the transfer-phase contribute to predict value-driven
u3  choice outcomes (i.e., whether participants would choose the option with the highest value given past learning)
s the RF algorithm additionally outputs a hierarchy, thereby ranking the contribution of each region in the
us achieved classification accuracy. Figure 6d shows the ranking of all ROIs for good learners where the model
us  had the highest predictive accuracy. First, regions in the dorsal striatum were most important, which aligned
s well with both the literature and the BOLD modulations we found by AValue and RPE during the learning
us  phase. These regions were next followed by the preSMA. Evaluation of this region during the learning
20 phase showed no modulations by AValue or RPE on BOLD (supplementary Figure 1&2). Nevertheless,
0 this region is typically associated with choice difficulty/conflict and might be essential in the resolve of a
s choice when value differences are small. Remarkably, the third region in this hierarchy was the FFA. In
s a task where participants pick the most valued face based on past learning, this ranking of the FFA just
3 above the vimPFC implies that the AValue and RPE modulations of BOLD observed during learning could
s function to strengthen the recognition of valuable features. With the evaluation of all participants — including
35 some who were less good in learning — the ranking of both the FFA and vinPFC was much lower (please see

6 supplementary Figure 3b), which might be caused by more noise across the group in learning.

7 Further insights in the role of perceptual regions came from the separate evaluation of RF for only the
s easiest (with AValue between the two choice options being large), or hardest (with small AValue) choices
30 (supplementary Figure 6). Results showed that when AValue is large, or the choice is easy, RF predictions
w0 are best served by BOLD fluctuations in both dorsal and ventral striatum, followed by vinPFC, the preSMA
s and M1. With easy choices, regions involved with evidence accumulation (DLPFC), or perceptual processing
2 (FFA and OC) rank last. More specifically, the processing of BOLD from OC even has a negative effect on
13 RF accuracy, which means that running RF without OC will improve decoding. At the same time, with the
s evaluation of the most difficult choices - where participants decide between two very close in value positive
w5 (e.g., A or C) or negative (e.g., B or D) faces - we instead find perceptual regions to rank in the top. With

s difficult choices, where AValue is very small, the caudate is followed by the FFA and OC in serving RF
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7 predictions. We will return to the interpretation of these different rankings in the discussion.

ws Finally, we focused on two sets of control analysis. First, we evaluated RF accuracy and ranking with an
s0 additional random variable that was sampled from A(0, 1), and unrelated to the BOLD activity of any
s region, or AValue. Here, the added random control region ranks last with negative importance, meaning that
sn removing it improves model performance with 0.5% (good learners) or 0.3% (all learners) points (right side
sz Figure 6d, or supplementary Figure 3). Second, RF performance was evaluated with the removal of perceptual,
w3 striatal, or frontal regions. Despite the positive ranking of each region shown in Figure 6d (or supplementary
s Figure 3b), RF decoding was not affected by the removal of just one or two regions (supplementary Figure
a5 5). However, accuracy is reduced when striatal (putamen, caudate, and accumbens), frontal (vinPFC, M1,
s  DLPFC, and preSMA), or perceptual (FFA and OC) regions are evaluated in isolation. These alternative
sr - evaluations show that RF works best when trial-by-trial BOLD across multiple ‘learning’ brain regions is
;s combined, but also that neither of the regions in isolation is crucial for the accuracy of predictions. Moreover,
so these control check highlight that when a variable is unrelated to learning, or single trial BOLD, ranking

0 drops to last (as is to be expected) with counterproductive effects on RF accuracy.
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Figure 6: Random Forest performance and importance ranking. Prediction of value-driven choice
outcomes in the transfer phase using trial-by-trial BOLD responses from striatal, perceptual, and prefrontal
cortex regions. (a) Overview of the Random Forest approach where the training-set is used to predict choice
outcomes for each trial by using the majority vote of 2000 different decision trees. Each tree is built using a
different set, or sample, of trials and predictors from the training set. The forest is trained on a training set
sampled from all participants (N=43), or only ‘the good learners’ (N=34). (b) Shows the classification, or
decoding, accuracy (green) given the separate unseen validation sets, for all participants and good learners.
(c) On the left, overview of the feedback scheme in the learning phase, and the new combination in transfer
about which the RF is making an prediction with an illustration of how AValue is computed for each trial.
AValue was computed for each trial in the transfer phase by using the end beliefs (@) that participants
had about each stimulus (A-to-F) at the end of the learning phase. On the right side, plotted relationship
between forest uncertainty (i.e., proportion of agreement across 2000 trees), on each prediction/trial (x-axis)
and AValue (y-axis) for the model with the highest accuracy (i.e., the good learners). Forest uncertainty is
defined as the proportion of trees saying ‘ves! the choice on this trial was optimal/correct’. When this ratio
is bellow 0.5 the forest will predict ‘no’ (sub-optimal/wrong choice), otherwise the prediction is ‘yes! the
choice on this trial was optimal/correct’ (optimal). R?=adjusted R?. Note that, the same pattern was found
for all participants (R?= 0.41***, please see supplementary Figure 3). (d) Ranking of the ROI’s in their
contribution to the predictive accuracy of the best performing model (i.e., good learners). Left, shows the
original ranking. On the right, we evaluate ranking with all 9 original regions, but now add a control region
that was sampled randomly from N(0, 1), and unrelated to the activity of any region, or AValue. Notice
that the random variable has negative importance in the ranking, meaning that removing it improves model
performance with 0.5%.
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w Discussion

sz This study provides novel insights into how reinforcements modulate visual activity and specifies its potential
33 in the prediction of future value-driven choice outcomes. First, by focusing on how participants learn, we find
s BOLD in visual regions to change with trial-by-trial adaptations in value beliefs about the faces presented,
;s and then to be subsequently scaled by the signed RPE after feedback. Next, the relevance of these observed
s value and feedback modulations was sought by exploring the prediction of future value-driven choice outcomes
s7  in a follow-up transfer phase where feedback was omitted. Our machine learning algorithm here shows a
s classification accuracy of 70% for participants who were efficient in learning by combining trial-by-trial BOLD
0 estimates from perceptual, striatal, and prefrontal regions. The evaluation of region importance in these
a0 predictions ranked the FFA just after the dorsal striatum and the preSMA, thereby showing an important
s role for visual regions in the prediction of future value-driven choice outcomes in a phase where learning is

32 established.

s In a choice between two faces, BOLD responses in both the dorsal striatum and perceptual regions were
s affected more by values of the chosen face, relative to the unchosen face. Across three levels of uncertainty,
s we only observed the differential modulation of value on BOLD when belief representations were stable.
w6 This specificity aligns with neuronal responses to perceptual stimuli in the caudate tail (Kim et al. 2017),
sr - visual cortex (Shuler and Bear 2006; Weil et al. 2010; Cicmil et al. 2015), and imaging work across sensory
s modalities (Serences 2008; Serences and Saproo 2010; LimOdoherty2013; Pleger et al. 2009; Kahnt et al.
s 2011; Vickery et al. 2011; FitzGerald et al. 2013; Kaskan et al. 2016), where it fuels theories in which the
w0 learning of stable reward expectations can develop to modulate, or sharpen, the representation of sensory
«  information critical for perceptual decision making (Roelfsema et al. 2010; Kahnt et al. 2011; Cicmil et al.

w2 2015).

w3 After a choice was made, feedback modulations of signed (‘valence’) and unsigned (‘surprise’) RPEs (Fouragnan
s et al. 2018) were evaluated on BOLD responses, by using an orthogonal design where the unsigned and signed
ws  RPE compete to explain BOLD variances. Both visual and striatal regions respond to prediction errors
ws (Den Ouden et al. 2012). In the striatum both valence and surprise are thought to optimize future action
w7 selection in the dorsal striatum, or the prediction of future rewards in the ventral striatum. In perceptual
w8 regions, a mismatch between the expected and received outcome is often explained as surprise where a boost
w0 in attention or salience changes the representation of an image without a representation of value per se. We
a0 found positive modulatory effects of signed RPEs in all striatal regions, as well as, in the FFA and OC.

a1 Concurrently, modulations of unsigned RPEs were only observed in the accumbens (ventral striatum) and
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a2 FFA, where notably the direction of modulation was reversed. We speculate that this contrast arises from the
a3 differential role of the regions. In the FFA, specialized and dedicated information processing is essential to
as  quickly recognize valuable face features. Complementary boosts of surprise and valence here could prioritize
a5 attention towards the most rewarding face feature to strengthen the reward association in memory, or help
a6 speed up future recognition (Gottlieb 2012; Gottlieb et al. 2014; Stérmer et al. 2014). In the accumbens,
a7 boosted effects of positive valence on BOLD were dampened by larger mismatches. Large mismatches in
s what was expected are rare in stable environments. We therefore reason that in the accumbens the contrast
a9 between valence and surprise could function as a scale to refine learning, eventually leading to more reliable

a0 predictions of future rewards.

w21 Whereas BOLD in the ventral striatum was shaped by both signed and unsigned RPEs, the dorsal striatum
2 was sensitive to differential value up-to a choice and signed RPEs with the presentation of feedback (Kaskan
w3 et al. 2016; Lak et al. 2016, 2017; McCoy et al. 2018; Van Slooten et al. 2018). The concurrent modulation
2 of differential value in the primary motor cortex (please see M1 in supplementary Figure 1) associates the
w5 dorsal striatum with the integration of sensory information (Ding and Gold 2010; Yamamoto et al. 2012;
«2s Hikosaka et al. 2013; Kim et al. 2017), where increased visual cortex BOLD responses to faces with the

«27 highest value could potentially help bias the outcome of a value-driven choice.

w28 We explored this line of reasoning with the prediction of value-driven choice outcomes in a follow-up transfer
w29 phase after leaning. In recent years, machine learning approaches have become increasingly important in
0 mneuroscience (Naselaris et al. 2011; Hassabis et al. 2017; Hebart and Baker 2018; Snoek et al. 2019), where
1 the ease of interpretation has often motivated a choice for linear methods above non-linear methods (Naselaris
2 et al. 2011; Kriegeskorte and Douglas 2018). Despite the latter being less constrained and able to reach a
3 better classification accuracy by capturing non-arbitrary, or unexpected relationships (King et al. 2018).
s Value-driven choices after a phase of initial learning are influenced by the consistency of past learning, memory
s updating, and attention. All of these processes are affected by both linear and non-linear neurotransmitter
s modulations (Aston-Jones and Cohen 2005; Yu and Dayan 2005; Cools and D’Esposito 2011; Beste et al.
w7 2018). Our RF approach was unconstrained by linearity with classification accuracies well above chance and
s improved with the evaluation of only the good learners; despite substantial decreases in data given to the
a9 algorithm to learn the correct labelling. Critically, we additionally found that the uncertainty of trial-by-trial
w0 predictions made by RF is tied to the differentiability of value beliefs — an index that we could compute for
w1 the novel pair combination in the transfer phase by using the value (Q) beliefs that participants had about
a2 each face at the end of learning. These results showcase how trial-by-trial BOLD fluctuations in striatal,

w3 prefrontal, and sensory regions can be combined by machine learning, or decoding, algorithms to reliably
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aa predict the outcome of a value-driven choice. Where we refine the interpretation of non-linear predictions
wus by combining the RF output with cognitive computational modelling. With this combination we essentially

us  show how the uncertainty of RF predictions is tied to value beliefs acquired with learning in the past.

w7 An important evaluation intended with our machine learning approach was the ranking of regions by their
ws  contribution to the predictive (decoding) accuracy in the transfer phase. After the observed modulations of
wus BOLD in the learning phase this explorative analysis sought the relevance of learning-BOLD relationships in
w0 the resolve of future choices. Here, the ranking made by RF first identified signals from the dorsal striatum
1 (putamen and caudate) as most important followed by the preSMA, and then most notably, visual regions.
2 That is, when the quality of leaning was high across participants, FFA ranked just above traditional regions
»s3 such as the vinPFC and the accumbens (O’Doherty et al. 2003, 2017; Hare et al. 2011; Niv et al. 2012; Klein
e et al. 2017). Notably, FFA was replaced by OC in ranking with the evaluation of all participants (please see
»s5  supplementary Figure 3b). This difference could occur because the quality of learning was more variable
w6 across all participants, or because RF predictions based on the heterogeneous data from all participants were
w7 less accurate. In general, the shift in ranking implies that when learning is less consistent choice outcomes
s are better predicted by fluctuations in OC - perhaps with the identification of rewarding low-level features.
w9 With better or more consistent learning, however, participants should increasingly rely on memory and
w0 specialized visual areas. Thus, search for specific face features associated with high value by recruiting the
w1 FFA in the visual ventral stream. Consistent with this reasoning recent neuronal recordings show rapid visual
w2 processing of category-specific value cues in the ventral visual stream. These specific value cues are only
w3 seen for well-learned reward categories, and critically, precede the processing of value in prefrontal cortex

s (Sasikumar et al. 2018).

s Additionally, in the learning phase both OC and the FFA were modulated more by values of the (to be) chosen
ws stimulus when belief representations were stable and distinct - i.e., we only observed differential @-value
w7 modulations for the most reliable and easy to learn AB pair. This combined with the RPE modulations found
ws in the same regions suggests an effect of value and learning on perceptual regions that is both specialized
w0 (FFA) and global (OC). Note however that this possibility must be studied further with designs that can
w0 zoom in on specificity with the separation of different perceptual dimensions (e.g., houses vs faces). Our
an  transfer phase resluts imply a differential role for the specialized FFA, and the more low-level general OC,
a2 with the comparison of good vs all learners. Tasked with predicting the outcome of future value-driven
a3 choices RF rankings showed a specialized and prominent FFA role for good/efficient learners whereas OC
ws  was more important with the evaluation of all participants (where learning was less consistent or noisier

w5 across participants). Recent work on the interplay between learning and attention suggests a bi-directional
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as  relationship between learning and attention: we learn what to attend from feedback, and in turn, use selective
s attention to constrain learning towards relevant value dimensions (Leong et al. 2017; Rusch et al. 2017).
s In our study, better learning helps a more refined identification of rewarding features in a face, which we
w9 interpret as a narrower focus of selective attention in the FFA during learning (Niv et al. 2015). With past
w0 learning being more noisy, or less established, extraction of relevant features is less straightforward with
w1 attention being more spread to both specialized and global regions. Additionally, we observed both FFA and
w2 OC to only rank in the top (just after the caudate) when AValue was very small (supplementary Figure 6).
i3 With easy choices this effect was reversed where processing of OC BOLD even declined the RF accuracy. This
¢ contrast suggests, that especially when the options to choose from are just too similair in value (i.e., think of
s the options A:C, or B:D), past learning in perceptual regions could serve the striatum with a selective boost
a5 to highlight the most rewarding face features. In contrast, when the distinction is easy and clear-cut, choices

w7 depend far more on inputs from the ventral striatum and vimPFC.

s We note that although BOLD fluctuations in the preSMA ranked second in the prediction of value-driven
w0 choice outcomes, no reliable modulations of BOLD were observed by either differential value or RPEs in
w0 the learning phase. The preSMA is densely connected to the dorsal striatum and consistently associated
w1 with action-reward learning (Jocham et al. 2016), or choice difficulty (Shenhav et al. 2014). The lack of
w2 associations in this study might result from our noisier estimates of the BOLD response that is typical
w3 for regions in the prefrontal cortex (Pircalabelu et al. 2015; Bhandari et al. 2018), the anatomical masks
ws  selected, or smaller variability across trials in the learning phase (i.e., 3 pairs in learning-phase vs 15 pairs
w5 in transfer-phase). Nevertheless, the importance indicated by RF, combined with our previous analysis of
w6 this transfer phase data (Jahfari et al. 2018), implies an important role for the preSMA in the resolve of
a7 value-driven choices in concert with the striatum. More research with optimized sequences to estimate BOLD

ws in PFC is required to clarify the link between learning and transfer.

w9 To summarize, we find an important role for perceptual regions in the prediction of future value-driven choice
s outcomes, which coincides with the sensitivity of BOLD in visual regions to differential value and signed
s feedback. These findings imply visual regions to learn prioritize high value features with the integration of

s feedback, to support and fasten, optimal response selection via the dorsal striatum in future encounters.
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