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ABSTRACT

The heterogeneous stock (HS) is an outbred rat population derived from eight inbred rat strains.
The population is maintained with the goal of minimizing inbreeding and maximizing the genetic
diversity of the stock. To effectively utilize this rat strain for fine-scale genetic mapping, genotype
data is necessary for large numbers of animals. A few genotyping microarrays have been created
for rats; however, they were expensive and are no longer in production. Thus, to obtain high-
density genome-wide marker data for genetic mapping, we have adapted genotype-by-sequencing
(GBS) for use in rats. Here, we outline the laboratory and computational steps we took to design
and optimize an efficient double digest genotype-by-sequencing (ddGBS) protocol for rats. We
include a detailed protocol to perform ddGBS in rats. To analyze the ddGBS sequencing data, we
evaluated multiple existing computational tools and designed a workflow that allowed us to call
and impute over 3.7 million SNPs genome-wide in the HS. We also compared various rat genetic
maps for use in imputation, including a recently developed map specific to the HS. Using the
pipeline, we obtained concordance rates of 99% with data from a rat genotyping array. The

computational pipeline that we have developed can be easily adapted for use in other species.

INTRODUCTION

Advances in next-generation sequencing technology over the past decade have enabled the
discovery of high-density, genome-wide single nucleotide polymorphisms (SNPs) in model
systems. Comprehensive assays of the standing genetic variation in these organisms has allowed
for the identification of quantitative trait loci (QTL) and the application of numerous population
genetic and phylogenetic methods. However, due to the high degree of linkage disequilibrium
(LD) in many structured breeding populations, sequencing whole genomes is not necessary. SNPs

are frequently in strong LD with adjacent loci, effectively ‘tagging’ nearby variation, and thereby
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reducing the number of sites that need to be genotyped. Several reduced-representation
sequencing approaches that take advantage of LD structure have been previously described (Miller
et al. 2007; van Orsouw et al. 2007; Van Tassell et al. 2008; Baird et al. 2008; X. Huang et al.
2009; Davey et al. 2011; Elshire et al. 2011; Poland et al. 2012; Peterson et al. 2012; Sun et al.
2013; Scheben, Batley, and Edwards 2017). Thousands of SNPs can be identified in large numbers
of samples for a fraction of the price of whole-genome sequencing methods (Chen et al. 2013; He
et al. 2014). The advantages of these methods are especially attractive when applied to less

commonly utilized species or strains for which genotyping microarrays are not available.

Of the existing reduced-representation protocols, the genotyping-by-sequencing (GBS)
approach developed by Elshire et al. (Elshire et al. 2011) has been frequently modified to
accommodate non-model species, such as: soybean (Sonah et al. 2013), rice (Furuta et al. 2017),
oat (Fu and Yang 2017), chicken (Pértille et al. 2016; Wang et al. 2017), mouse (Parker et al.
2016), fox (Johnson et al. 2015), and cattle (De Donato et al. 2013), among others. The greatly
varying genomic composition among organisms necessitates a diverse and customized set of
approaches for obtaining high-quality genotypes. As such, both the GBS protocol and
computational pipeline require modifications when applied to a new species. Recent work from
our group showed that GBS can be effectively applied to outbred mice (Parker et al. 2016;
Gonzales et al. 2017; Zhou et al. 2018) and rats (Fitzpatrick et al. 2013). However, those
publications used protocols that had not been optimized, leaving significant room for improvement
in genotype quality and marker density. Additionally, although several tools and workflows for
the analysis of GBS data have been described, including Stacks (Catchen et al. 2013), IGST-GBS
(Sonah et al. 2013), TASSEL-GBS (Glaubitz et al. 2014), Fast-GBS (Torkamaneh et al. 2017),

and GB-eaSy (Wickland et al. 2017), the majority were developed and optimized for use in plant
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species and given the lack of well-developed genomic resources in these species, do not leverage
the wealth of genomic data available for model organisms such as rats. Here we describe the

customized computational and laboratory protocols for applying GBS to HS rats.

The HS is an outbred rat population created in 1984 using eight inbred strains and has been
maintained since then with the goal of minimizing inbreeding and maximizing the genetic diversity
of the colony (Johannesson et al. 2008; Woods and Mott 2017). After more than 80 generations of
accumulated recombination events, their genome has become a fine-scale mosaic of the inbred
founders’ haplotypes. The breeding scheme and the number of accumulated generations has made
the HS colony attractive for genetic studies. Additionally, extensive deep sequencing data exists
for the eight progenitor strains, allowing for accurate imputation from sites directly captured by

GBS to millions of additional SNPs.

Detailed here are the steps we have taken to optimize a rat GBS protocol and computational
pipeline. Drawing on existing protocols (Elshire et al. 2011; Peterson et al. 2012; Poland et al.
2012; Parker et al. 2016) as templates, we redesigned our GBS approach and have developed a
novel, reference-based, high-throughput workflow to accurately and cost-effectively call and
impute variants from low-coverage double digest GBS (ddGBS) data in HS rats. This publication
is intended as a resource for others who might wish to perform GBS in rats and should provide a
roadmap for adapting GBS for use in new species. We demonstrate that with a suitable reference
panel, applying reduced representation approaches and imputation in model systems can provide

high-confidence genotypes on millions of genome-wide markers.

MATERIALS AND METHODS

Tissue samples and DNA extraction


https://doi.org/10.1101/523043
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/523043; this version posted June 7, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

92  Samples for this study originated from three sources: an inhouse advanced intercross line (AIL)
93  derived from LG/J and SM/J mice (Gonzales et al. 2018), Sprague Dawley (SD) rats from Charles
94  River Laboratories and Harlan Sprague Dawley, Inc. (Gileta et al. 2018), and an HS rat colony
95 (Woods and Mott 2017; Chitre et al. 2018). Early stages of ddGBS optimization utilized AIL
96 genomic DNA extracted from spleen by a standard salting-out protocol. Later optimization steps
97  were performed using genomic DNA from SD rats extracted from tail tissue using the PureLink
98  Genomic DNA Mini Kit (Thermo Fisher Scientific, Waltham, MA). HS rat DNA was extracted
99 from spleen tissue using the Agencourt DNAdvance Kit (Beckman Coulter Life Sciences,
100 Indianapolis, IN). All genomic DNA quality and purity was assessed by NanoDrop 8000 (Thermo
101  Fisher Scientific, Waltham, MA). Interestingly, we observed that rat genomic DNA appears to
102  degrade faster than mouse genomic DNA following extraction; therefore, we recommend storing

103  rat genomic DNA at -20° and using it within weeks of extraction whenever possible.

104  Inmsilico digest of rat genome

105  Weused in silico digests to aid in the selection of restriction enzymes, with the goal of maximizing
106  the proportion of the genome captured at sufficient depth to make confident genotype calls We
107  used the restrict function in EMBOSS (version 6.6.0) (Rice, Longden, and Bleasby 2000) in
108  conjunction with the REBASE database published by New England BioLabs (NEB; version 808)
109  (Roberts and Macelis 1999) to perform in silico digest of the current release of the Norway brown
110  rat reference genome, designated 6. For the primary restriction enzyme, we chose Pstl, which
111 had been successfully used in numerous project (Fitzpatrick et al. 2013; Parker et al. 2016;
112 Gonzales et al. 2018). We performed the digest with Pstl alone and then with PstI paired with each
113 of 7 secondary enzymes: Alul, Bfal, Dpnl, Haelll, MIuCI, Mspl, and Nlalll. We only considered

114  fragments with one Pstl cut site and one cut site from the secondary enzyme because the adapter
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115  and primer sets are designed to only allow these fragments to be amplified. The final choice of

116  enzyme (Nlalll) was determined empirically and is detailed in the Results.

117  Restriction enzyme selection

118 Initial criteria for selecting a secondary restriction enzyme were: a 4bp recognition sequence, no
119  ambiguity in the recognition sequence (i.e. N’s), compatibility with the NEB CutSmart Buffer, and
120  an incubation temperature of 37°C. The list of enzymes meeting these criteria at the time included:
121 Alul, Bfal, Dpnl, Haelll, MluCI, Mspl, and Nlalll. Using the in silico digest data, we looked to
122 maximize the portion of the genome contained within a fragment size range of 125-275bp (250-
123 400bp with annealed adapters and primers) (Figure 1; Table 1). We excluded enzymes that
124  produced blunt ends, both because it would be more difficult to anneal adapters to blunt ended
125  fragments and because our adapters would then also anneal to blunt ends produced by DNA
126  shearing. We also excluded methylation-sensitive enzymes, as we did not want to limit the breadth
127  of our sequencing efforts, accepting the possibility of read pileup in repetitive regions. Based on

128  these criteria, Nlalll, Bfal, and MIuCI were selected for further testing.

129  ddGBS library preparation and sequencing

130  The full ddGBS protocol is available in File S1. In brief, approximately 1pug of DNA is used per
131 sample. Sample DNA, Pstl barcoded adapters, and Nlalll Y-adapter are combined in a 96-well
132 plate and allowed to evaporate at 37°C overnight. Sample DNA and adapters are re-eluted on day
133 two with a Pstl/NIlalll digestion mix and incubated at 37°C for two hours to allow for complete
134  digestion. Ligation reagents are then added and incubated at 16°C for one hour to anneal the
135 adapters to the DNA fragments, followed by a 30-minute incubation at 80°C to inactivate the

136  restriction enzymes. Sample libraries are purified using a plate from a MinElute 96 UF PCR
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137  Purification Kit (QIAGEN Inc., Hilden, Germany), vacuum manifold, and ddH»O. Once re-eluted,
138  libraries are quantified in duplicate with Quanit-iT PicoGreen (Thermo Fisher Scientific, Waltham,
139  MA) and pooled to the desired level of multiplexing (i.e. 12, 24, or 48 samples per library). Pooled
140  libraries are concentrated to obtain the desired volume for use in the Pippin Prep. The concentrated
141  pool is quantified to ensure the gel cassette will not be overloaded with DNA (>5ug). The pool is
142 then loaded into the Pippin Prep for size selection (300-450bps) using a 2% agarose gel cassette
143 on a Pippin Prep (Sage Science, Beverly, MA). Size-selected libraries were then PCR amplified
144  for 12 cycles to increase the quantity of DNA, concentrated, and checked for quality on an Agilent
145 2100 Bioanalyzer with a DNA 1000 Series II chip (Agilent Technologies, Santa Clara, CA).,
146  Bioanalyzer results were used to assure sufficient DNA concentration and to identify excessive

147  primer dimer peaks.

148 An initial 96 HS samples were sequenced, 12 samples per library, at Beckman Coulter
149  Genomics (now GENEWIZ) on an Illumina HiSeq 2500 with v4 chemistry and 125bp single-end
150 reads. Subsequently, we began using a set of 48 unique barcoded adapters (File S2) to multiplex
151 48 HS samples per ddGBS library. Each library was run on a single flow cell lane on an Illumina
152  HiSeq 4000 with 100bp single-end reads at the IGM Genomics Center (University of California

153  San Diego, La Jolla, CA).

154

155

156

157
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158  Figure 2. ddGBS sequencing data analysis workflow. Each step of the workflow is described
159  in the text.
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162  Evaluation of ddGBS pipeline performance

163  We present the steps required to call and impute genotypes from raw ddGBS sequencing data in
164  Figure 2. During optimization of the pipeline, performance was assessed by two primary metrics:
165 (1) the number of variants called and (2) genotype concordance rates for calls made in 96 HS rats
166  that had both ddGBS genotypes and array genotypes from a custom Affymetrix Axiom MiRat
167 625k microarray (Part#: 550572). There were two checkpoints in the GBS pipeline where genotype
168  quality (measured by concordance rate) was assessed: after internal imputation within Beagle

169  (Browning and Browning 2009, 2016) and again after imputation to the reference panel with

9
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170 IMPUTE2 (B. N. Howie, Donnelly, and Marchini 2009; B. Howie et al. 2012). A third, additional
171  metric we checked was the transition to transversion ratio (TsTv), which is expected to be ~2 for

172 intergenic regions.

173  Demultiplexing

174  The Pstl adapter barcodes were used to demultiplex FASTQ files into individual sample files.
175  Three demultiplexing software packages were tested: FASTX Barcode Splitter v0.0.13 [RRID:
176  SCR _005534] (Hannon Lab 2010), GBSX v1.3 (Herten et al. 2015), and an in-house Python script
177  (Parker et al. 2016). Reads that could not be matched with any barcode (maximum of 1 mismatch
178  allowed), or that lacked the appropriate enzyme cut site, were discarded. Samples with less than
179  two million reads after demultiplexing were discarded. Data concerning demultiplexing are shown
180 in Table S1 are from a single HS rat sequenced in a 12-sample library on one lane after

181  demultiplexing and adapter/quality trimming.

182  Barcode, adapter, and quality trimming

183  Read quality was assessed using FastQC v0.11.6 (Andrews 2017). We compared the efficacy of
184  two rapid, lightweight software options for trimming barcodes, adapters, and low-quality bases
185  from the NGS reads: Cutadapt v1.9.1 (Martin 2011) and the FASTX Clipper/Trimmer/Quality
186  Trimmer tools v0.0.13 (Hannon Lab 2010) (Table S2). A base quality threshold of 20 was used

187  and reads shorter than 25bp were discarded.

188 Read alignment and indel realignment

189  Rattus norvegicus genome assembly rn6 was used as the reference genome for read alignment with
190 the Burrows-Wheeler Aligner v0.7.5a (BWA) [RRID: SCR 010910] (H. Li and Durbin 2009)
191  using the mem algorithm. We then used GATK IndelRealginer v3.5 [RRID: SCR001876]

10
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192  (McKenna et al. 2010) to improve alignment quality by locally realigning reads around a reference
193  set of known indels in 42 whole-genome sequenced inbred rat strains, including the eight HS

194  progenitor strains (Hermsen et al. 2015).

195  Variant calling

196  Variants were called, and genotype likelihoods were computed at variant sites using ANGSD
197  v0.911, under the SAMtools model for genotype likelihoods (Korneliussen, Albrechtsen, and
198  Nielsen 2014; Durvasula et al. n.d.). Further, using ANGSD, we inferred the major and minor
199  alleles (-domajorminor 1) from the genotype likelihoods, retaining only high confidence
200  polymorphic sites (-sup_pval le-6), and estimated the allele frequencies based on the inferred
201 alleles (-domaf 1). We discarded sites missing read data in more than 4% of samples (—minlnd).
202  Additionally, we tested multiple thresholds for minimum base (-minQ) and mapping (-minMapQ)

203  qualities.

204  Internal imputation

205 Beagle v4.1 (Browning and Browning 2009, 2016) was used to improve the genotyping within the
206  samples without the use of an external reference panel. Missing and low quality genotypes were
207  imputed by borrowing information from other individuals in the dataset with high quality
208 information at these same variant sites. . It must be noted that before settling on the combination
209  of ANGSD and Beagle for genotype calling and internal imputation, we also experimented with
210  GATK'’s UnifiedGenotyper and HaplotypeCaller (McKenna et al. 2010) with various parameter

211 settings, but with unsatisfactory results.

212 Quality Control for genotypes before imputation using and external reference panel

11
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213 To verify the quality of the “internally” imputed genotypes prior to imputing SNPs from the 42
214  inbred strain reference panel (Hermsen et al. 2015), we checked concordance rates for the 96 HS
215  animals with array genotypes, examined the TsTy ratio, and assessed whether the sex as recorded
216  in the pedigree records agreed with the sex empirically determined by the proportion of reads on
217  the X-chromosome out of the total number of reads (Figure S1). We also identified Mendelian
218  errors using the --mendel option in pl/ink and known pedigree information for 1,136 trios from 214
219  families within the HS sample. Using the fraction of the trios that were informative for a given
220  SNP and the formula 1-(1-2p(1-p))*, where p represents the minor allele frequency of the allele,
221 we formed curves for the distributions of the expected number of Mendelian errors for both SNPs
222 and samples and chose the inflection points as thresholds for the number of Mendelian errors

223 allowed.
224  Data preparation for phasing with external reference panel

225 First, in our study sample of 96 samples, we only retained variants previously identified in
226  the 8 HS founder strains because we expected the polymorphisms in our samples to be limited to
227  the variation present in the founders (Hermsen et al. 2015; Ramdas et al. 2018). Further, to improve
228  imputation accuracy and computational efficiency, we employed a pre-phasing step with
229 IMPUTE2 (prephase _g) (B. Howie et al. 2012) prior to imputation. A flowchart outlining the pre-

230  phasing protocol is presented in Figure S2.
231  Genetic maps

232 Genetic maps are required for phasing and imputation with IMPUTE2. When we began this
233 project, no strain-specific recombination map was available for HS rats. Thus, we considered a

234 sparse genetic map for SHRSPxBN (Steen et al. 1999). We also tested two types of linearly

12
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235  interpolated genetic maps, with recombination rates set at either 1cM/Mb or the chromosome
236  specific averages for rats, as reported by Jensen-Seaman et al. (Jensen-Seaman 2004). Lastly, late
237  in the course of this project, we experimented with an HS-specific genetic map developed by

238 Littrell et al. the Medical College of Wisconsin (Littrell et al. 2018).

239  Imputation to reference panel

240  We used a combination of existing sequencing and array genotyping data from the HS rat founder
241 and other inbred laboratory rat strains (Hermsen et al. 2015) as reference panel for imputation.
242 Genotype data underwent QC and were phased by Beagle into single chromosome haplotype files.
243 Haplotype files were then created using the workflow detailed in Figure S2. Imputation by
244  IMPUTE2 was performed in SMb windows using the aforementioned reference panels and genetic

245  maps.

246 Data availability

247  Genotype data will be available at

248  https://figshare.com/articles/Heterogeneous_Stock Genotype Data/8243222 and the code

249  necessary to run the steps outline in the publication are provided at

250  https://figshare.com/articles/ddGBS_Pipeline_Commands/8243156. Supplementary Files are

251  available at https://figshare.com/articles/Supplementary Files/8243129. Additional data is

252  available upon request.

253 RESULTS

254  ddGBS optimization

13
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255  Previous projects utilizing GBS in mice and rats (Fitzpatrick et al. 2013; Parker et al. 2016;
256  Gonzales et al. 2018) often encountered an issue where certain regions of the genome experienced
257  high pileups of reads per sample (>100x), while other regions were covered by just 1-2 reads. This
258  read distribution imbalance can be caused in part by PCR amplification bias, where a subset of
259  fragments are preferentially amplified until they dominate the final library (Kanagawa 2003; Aird
260 etal. 2011). These previous protocols utilized 18 cycles of amplification. We tested reducing this
261 to 8, 10, 12, or 14 cycles and found that below 12 cycles, there was insufficient PCR product to
262  accurately quantify and pool for sequencing. The reduction in the number of PCR cycles was

263  expected to reduce PCR bias, though this was not explicitly tested.

264 Another concern regarding previous sequencing results was an excess of long fragments
265 (>700bps as determined by in silico digest), which do not provide sufficient reads to make
266  confident genotype calls (< 5 reads per sample) and are therefore wasteful. We tested three
267  methods of combating this issue, including: increasing the digestion time or enzyme concentration,

268  performing size selection on the libraries, and using a two-enzyme restriction digest.

269 We considered the possibility that the restriction enzyme digests might not be running to
270  completion. To address this possibility, we increased the duration of the digestion from 2 hours to
271 3 or4 hours. We also tried increasing the number of units of Pstl enzyme added, to ensure complete
272 digest. Neither of these modifications impacted the final fragment length distribution of the library,
273 indicating that the digest was reaching completion after 2 hours using the original concentration

274 of Pstl (File S3 — wells 1-6).

275 Our previous GBS protocol did not have an explicit library fragment size selection step.
276 The final library was purified using a MinElute PCR Purification Kit (QIAGEN Inc., Hilden,

277  Germany), which isolates PCR products 70bp-4kb in length, leaving a wide range of fragment

14


https://doi.org/10.1101/523043
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/523043; this version posted June 7, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

278  sizes in the final library, under the assumption that only shorter fragments would bridge amplify
279  on the flow cell. This method was imprecise and had low reproducibility, negatively impacting our
280 ability obtain reads at consistent sites across libraries. Rather than attempt size selection by gel
281  extraction, we chose to utilize a Pippin Prep, which automates the elution of DNA libraries of
282  desired fragment size ranges. By using this automated size selection, we reduced the proportion of
283  the genome targeted for sequencing, and because restriction enzymes make the consistent cuts
284  across samples, ensure the same fragments are sequenced in the majority of libraries. Since the
285  clustering process involves a bridge amplification step that preferentially amplifies library
286  fragments with shorter insert sizes (Illumina, Inc. 2014), we kept the size selection window narrow
287  (250-400bps) to avoid introducing a bias in which fragments were sequenced. A comparison of
288 the fragment size distributions for the protocols before and after introduction of the Pippin Prep is

289  shown in File S4.

290 To increase the proportion of the genome captured within the fragment size window, we
291  pursued a double digest of the genome using a secondary enzyme with a more frequently occurring
292  recognition sequence. When used alone, in silico digest of the 6 reference genome by Pstl
293 (Figure 1; Table 1) showed that only ~0.5% of the genome would have fallen within a 150bp
294  fragment size window selected on the Pippin Prep. Previously, we performed GBS in CFW mice
295  using the single-enzyme approach and observed that large regions of the genome that were not
296  covered by sequencing reads (Parker et al. 2016). Therefore, we sought to increase the fraction of
297  the genome that was accessible to GBS, so that there would be sufficient SNPs to tag majority of
298 the variation in the rat genome. Additionally, we were concerned about potential biases in
299  coverage, heterozygosity, and the minor allele frequency (MAF) spectrum that may be introduced

300 by incomplete capture of the genome (Flanagan and Jones 2018).
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301 The number of fragments with one of each of the cut sites were summed for all observed
302 lengths and the results summarized in Figure 1 and Table 1. Bfal, MIuCl, and Nlalll were chosen
303 for further testing due to their compatibility with Pstl digestion reagents and temperatures, sticky
304 ends, and the proportion of the genome falling in the size selection window. We ruled out Bfal
305 because it only had a 2bp overhang after cleavage, which led to a high concentration of adapter
306  dimer in the sequencing libraries (S5 File). Nlalll was chosen because it contained the greatest

307 portion of the genome in the size selection window.

308

309 Table 1. Restriction enzyme options for double digest.

Restriction = Recognition Length of % Genome in % Genome in
Enzyme(s) sequence Overhang (bp) 250-400bp Region® 300-450bp Region®
Pstl CTGCA"G 4 0.48% 0.56%
Pstl + Alul AG"CT 0 3.06% 2.88%
Pstl + Bfal C "TAG 2 3.10% 3.25%
Pstl + Dpnl* GANTC 0 2.69% 3.00%
Pstl + Haelll GG*CC 0 2.71% 2.79%
Pstl + MIuCI "AATT 4 3.32% 3.21%
Pstl + Mspl CrCGG 2 1.16% 1.24%
Pstl + Nlalll CATG" 4 3.45% 3.31%

310  The percent genome in region columns indicate the percentage of the genome that falls within the
311  provided fragment size ranges and can therefore be captured by GBS.

312
313  * Restriction enzyme is methylation sensitive.

314 Calculated using m6 genome length of 2,870,182,909bps.

315

316

317
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318  Figure 1. In silico digest fragment distributions for Pstl and potential secondary restriction
319  enzymes.
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323 Each panel represents an independent digest of rn6 with the listed enzyme(s). Regions highlighted
324  in blue are fragments that would be selected by the Pippin Prep (125-275bp) after annealing
325 adapters and primers. These regions are quantified in Table 1 by multiplying the length of the
326  fragments by the number of fragments to estimate the portion of the genome captured.

327
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328 In our previous GBS protocol, all fragments were cut on both ends by Pstl. By using a
329  substantially lower concentration of the barcoded Pstl adapter than the common Pstl adapter, we
330  ensured the barcoded adapter would be the limiting reagent and the majority of fragments with an
331 annealed barcoded adapter would have a common adapter on the other end. This is crucial, as
332 having one of each of the adapters is required for proper amplification of the fragments on the flow
333  cell. However, when using both Pstl and NIlalll, the library is predominantly composed of
334  fragments cut on both sides by Nlalll (File S6), which will amplify during PCR with a common
335 adapter, but not on the flow cell. Therefore, we employed a Y-adapter (Poland et al. 2012) to
336  control the direction of the first round of PCR and prevent two-sided Nlalll fragments from

337  dominating the final sequencing library (File S2).

338 We tested numerous quantities of Pstl and Nlalll adapters in an attempt minimize the
339 amount used and avoid adapter dimers in the final libraries. For the barcoded Pstl adapters, we
340 tested 120pmol, 60pmol, 20pmol, 4.0pmol, 2.67pmol, 1.60pmol, 0.53pmol, and 0.20pmol; for the
341  Nlalll Y-adapter, 30pmol, 10pmol, 5.0pmol, 4.0pmol, and 1.0pmol (Files S7 & S8). We found
342  that 0.20pmol of Pstl adapter and 4pmol of Nlalll Y-adapter yielded sufficient library and

343  minimized the presence of adapter dimers.

344 We sequenced a trial flow cell with 8 pooled ddGBS libraries of 12 SD rat samples each
345 (96 total) on a HiSeq 2500 (Illumina, San Diego, CA) with 125bp reads and v3 chemistry,
346  obtaining an average of 15.3 million reads per sample. Given the Nlalll in silico digest results
347  suggested we were capturing ~3.4% of the genome and that we were using 125bp reads, this
348  corresponded to approximately 20x coverage of captured sites. We subsequently increased the
349  number of samples to 48 per library for the HS rats because we hypothesized 5x would be sufficient

350 coverage per sample when utilizing imputation to a reference panel. We also discovered that a
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351  portion of the reads contained sequence fragments of the Nlalll adapter sequence, indicating there
352  were fragments with insert sizes smaller than 125bps in the final library. To avoid this, we
353  increased the fragment size range to 300-450bps (Table 1), which corresponds to a 175-325bp
354  insert size once the adapters and primers are accounted for. Due to the high concentrations of our
355  libraries after pooling, the library size distribution obtained from the Pippin Prep was uniformly

356  shifted towards higher fragment lengths (Figure S3).

357 The final ddGBS protocol can be found in File S1 and the necessary primer and adapter
358 sequences in File S2. This protocol was used for the sequencing of all HS rats included in the

359  following computational optimization steps.

360 Demultiplexing

361  The number of base pairs of sequencing data retained after demultiplexing was fairly consistent
362  across demultiplexing software (Table S1). We ultimately decided to use FASTX Barcode Splitter
363  because it yielded the greatest number of reads after quality/adapter trimming and had faster run
364  times. An average of 330 million 100bp reads were obtained per library, resulting in ~7 million
365 reads per sample. Figure S4 shows the distribution of reads counts for all samples after

366  demultiplexing.

367 Adapter and quality trimming

368  Read quality was substantially improved after trimming the barcode and adapter sequences and
369  low-quality base pairs at the ends of reads (Figure S5). Overall read counts were only marginally
370  reduced by quality trimming (Table S1). We observed that the number of called variant sites and
371  the genotyping rate were both greater when using reads initially processed by cutadapt (Martin,

372 2011) than reads processed by the FASTX Toolkit (Table S2). Importantly, a large portion of the
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373  additional identified variants were known variant sites from the 42 inbred strains reference set
374  (Figure S6), indicating the elevated call rate was at least in part due to capturing more true variant
375  sites. We viewed this as sufficient support for proceeding with cutadapt for adapter removal and

376  quality trimming.

377  Mapping quality

378  The number of called variants and genotype call rates were identical at read mapping quality
379  (mapQ) thresholds of either 20 or 30 (Table S3) within ANGSD. As the ANGSD mapQ threshold
380 was raised to 45, there was a small reduction in the number of called variants, and then much
381  greater losses at thresholds of 60 or 90. Fortunately, genotype concordance rates at both low and
382  high mapQ thresholds were stable, despite the putatively higher quality of the alignments (Figure
383  S7). This permitted us to select a lower mapQ threshold (mapQ = 20), maximizing the number of

384  variants called without sacrificing genotyping accuracy.

385  Variant calling

386  Figure 3 shows that across all levels of genotype discordance rates (with the array genotyping
387 data), the combination of the ANGSD (samtools model) with BEAGLE produced more SNPs, at
388  various genotyping concordance thresholds, than GATK’s HaplotypeCaller (McKenna et al. 2010;
389  DePristo et al. 2011). This observation held when variants were limited only to biallelic sites and

390 SNPs with an MAF > 0.05 (Figure S8).

391

392
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393
394  Figure 3. Genotype discordance rates between array data and variants called by GATK or
395 ANGSD.
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397  The figure compares the number variants called by combination of ANGSD and Beagle or GATK
398  HaplotypeCaller and Beagle at various thresholds of genotype discordance with array data. Calls
399 were made using the 96 HS rats with array data. (A) The x-axis represents the genotype
400  discordance rate thresholds and the y-axis is the number of variants that surpass that threshold for
401  each genotype calling method. (B) Additional filters were applied to the original SNP sets and the
402  plot zooms in on a smaller range of acceptable discordance rates. Blue lines represent the unfiltered
403  SNP set. Yellow lines have been filtered for singletons. Red lines have further excluded SNPs with
404  an MAF < 0.05. Each line contains the same number of points.

405

406 ANGSD supports four different models for estimating genotype likelihoods: SAMtools,
407 GATK, SOAPsnp and SYK. We compared the methods to determine which produced the most
408  SNPs with the lowest error rates. The SOAPsnp model demonstrated an advantage in genotype
409  accuracy and number of variants called post-imputation with Beagle (Figure S9). However,

410  SOAPsnp requires considerably more time (1.7x for 96 samples) and memory and scales poorly
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411 with sample size. With greater than 2,000 samples, we were unable to allocate sufficient memory
412 for the SOAPsnp model to successfully run, even after dividing the chromosomes into several,
413 smaller chunks. The marginal benefits of SOAPsnp in accuracy and number of variants were far
414  outweighed by its limitations when applied to a large sample set. The GATK model showed a
415  greater number of variants for more lenient genotype discordance rate threshold, but as stringency
416  increased, the number of variants converged across the remaining 3 models. We proceeded with
417  the SAMtools model for genotype likelihood estimation due to its previous support in the GBS
418 literature (Torkamaneh et al. 2017), accepting a nominal decrease in highly concordant variants

419  (Figure S9) for a large reduction in run time and memory usage.

420 Imputation to reference panel

421  Imputation is use in two ways in our protocol. As described above, we use imputation to assign
422  missing genotypes at SNPs called in only a subset of individuals. In addition, we use imputation
423  in this section to call genotypes at sites where GBS that were inaccessible to ddGBS sequencing.
424  Thus, our second application (described here) is similar to the human genetics application in which
425  imputation using 1000 Genomes increases the number of SNPs beyond those included on a given

426  microarray platform.

427 Before starting this imputation step, we observed an inflated transition/transversion ratio
428  (Table S4) in our ANGSD/Beagle SNPs. This issue was ameliorated when the SNP set was filtered
429  for only “known” variants that were previously identified in either the 42 inbred strains (Hermsen
430 et al. 2015) or the 8 deep-sequenced HS founders (Ramdas et al. 2018). For imputation, we
431  therefore only provided IMPUTE2 with previously identified variant sites from our
432  ANGSD/Beagle output. Prior to running IMPUTE2, we also filtered the variants for biallelic sites

433  with a genotype call in at least two individuals. Using pedigree data for the HS rats, we further
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434  removed samples showing an order of magnitude higher level of Mendelian error than the sample
435  mean. We further removed SNPs that had an error rate surpassing a threshold of ~0.005 (Figure
436 S10; inflection point). There were 4 samples and 4,179 SNPs removed from subsequent analyses.
437  Lastly, we removed any samples where the sex chromosome read ratio was incompatible with their

438  reported sex (Figure S1).

439 To determine which reference set to use for imputation, we tested six different possible
440  combinations of available reference data (Table 2). The most accurate imputation was observed
441  for the reference set containing only the 8 deep-sequenced HS founder strains (Ramdas et al. 2018);
442  however, imputation to this set had the lowest genotyping rate of all panels. In contrast, using the
443 42 rat inbred strains displayed a balance of high accuracy and low missingness, leading us to
444  choose this as our reference set. To better understand the role of the 8 founder strains, which were
445  part of the 42 strains reference panel, we created a reference panel that included only the 34 non-
446  HS founder strains. As expected, discordance rates were much higher when only considering non-
447  founders. However, the genotype missingness was lower for the 34 than the 8 founders alone,

448  suggesting a combination of the two was the optimal set.

449

450

451

452

453

454
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Table 2. Imputation accuracy based on different variant reference panels for IMPUTE?2.

The table includes six different possible reference panels for imputation. The 42 inbred strains, 34
non-founder inbred strains, and 8 HS founders from the 42 inbred strains all were derived from

Hermsen et al. 2015 (Hermsen et al. 2015). The UMich 8 HS founders were obtained from Ramdas
et al. 2018 (Ramdas et al. 2018). The final set of 8 HS founder was taken from Baud et al. 2013
(Rat Genome Sequencing and Mapping Consortium et al. 2013).
Chrl Chr2
Discordance rate 0.011 0.010
42 inbred strains # Variants 790,659 882,993
Genotyping Rate 0.85 0.81
Discordance rate 0.035 0.030
All 34 non-founder # Variants 812,550 912,749
inbred strains
Genotyping Rate 0.84 0.80
Di d t 0.012 0.011
8 HS founders only iscordance rate
from the 42 inbred # Variants 805,424 902,061
trai
strains Genotyping Rate 0.57 0.53
Discordance rate 0.0059 0.008
UMich 8 HS founders # Variants 865,514 898,621
only
Genotyping Rate 0.42 0.41
Discordance rate 0.0095 0.0096
Baud et. al 2013 .
8 HS founders only # Variants 507,909 540,844
Genotyping Rate 0.43 0.40

IMPUTE2 requires a genetic map. As described in the methods section, we considered four
different genetic maps, two that were empirically derived and two that were linear extrapolations
based on the physical map (Figure S11). All genetic map performed similarly (Table S5).

Surprisingly, the linear genetic maps performed just as well as the HS-specific map (Littrell et al.
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468  2018). Thus, for simplicity, we chose to use the chromosome-specific values initially published by

469  Jensen-Seaman (Jensen-Seaman 2004).

470 To obtain our final set of ~3.7 million variants, a final round of variant filtering was
471  performed after imputation to the 42 strain reference panel. We removed SNPs with MAF < 0.005,

472  apost-imputation genotyping rate < 90%, and SNPs that violated HWE with p<1x10-1°.
473 DISCUSSION

474  The use of microarrays and WGS for genotyping large samples in model organisms remains cost-
475  prohibitive. There is therefore an urgent and wide-spread need for high-performance and
476  economical methods of obtaining genome-wide genotype data. While reduced-representation
477  approaches have been utilized in numerous species of plants and animals, including rodents
478  (Peterson et al. 2012; Fitzpatrick et al. 2013; Parker et al. 2016; Gonzales et al. 2017; Zhou et al.
479  2018), there has yet to be a published protocol optimized specifically for rats. Prior to sequencing
480  thousands of HS samples with GBS for our mapping efforts, we wanted to ensure we were
481  capturing the greatest possible number of high-quality variants at the lowest possible cost. The
482  protocol we present here is the culmination of careful testing and optimization of each step of the
483 GBS protocol for rats. We have now applied the approach to 4,973 HS rats, as well as 4,608

484  Sprague Dawley rats (Gileta et al. 2018).

485 Our previous GBS protocol (Parker et al/, 2016), which was designed for use with CFW
486  mice, was unsuitable for our current genotyping efforts in HS rats, due to the much higher levels
487  of genetic diversity in the HS population. There are multiple reasons we chose to develop our own
488  computational pipeline for GBS rather than using existing workflows. Foremost, the prominent

489 GBS analysis pipelines were developed and optimized for use in crop species (Sonah et al. 2013;
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490  Catchen et al. 2013; Glaubitz et al. 2014; Torkamaneh et al. 2017; Wickland et al. 2017), which
491  are polyploid and have differing levels of variation and LD than outbred rodent populations.
492  Additionally, there were elements of each pipeline that did not meet our needs or lacked
493  customizability. For instance, TASSEL-GBS v2 (Glaubitz et al. 2014) trims all reads to 92 base
494  pairs; however, other projects underway in our lab utilized up to 125bp reads, leading to a ~20%
495  reduction in data. TASSEL-GBS also ignores read base quality scores, which are informative in
496  probabilistic frameworks for estimating uncertainty in alignments and variant calls (H. Li, Ruan,
497  and Durbin 2008; DePristo et al. 2011; Nielsen et al. 2011), and uses a naive binomial likelihood
498  ratio method for calling SNPs. Stacks has previously shown poor performance in demultiplexing
499  (Herten et al. 2015; Torkamaneh et al. 2017) and does not make use of the reference genome for
500 priors when calling SNPs (Catchen et al. 2013). Fast-GBS relies on Platypus (Rimmer et al. 2014)
501 for variant calling (WGS500 Consortium et al. 2014; Torkamaneh et al. 2017), which employs a
502 Bayesian method of constructing candidate haplotypes that works poorly with low-pass
503 sequencing data and does not scale well to large sample sizes (Z. Li, Wang, and Wang 2018).
504 Lastly, none of these pipelines included an imputation step, which is crucial for filling in missing
505 genotypes in GBS data and can provide millions of additional SNPs given an appropriate
506  composite reference panel (B. Howie, Marchini, and Stephens 2011; G.-H. Huang and Tseng

507 2014).

508 Though we have not explicitly tested each alternate GBS pipeline for the purposes of this
509 publication, this has been recently done by Wickland et al. (Wickland et al. 2017). Their pipeline
510 GB-eaSy, which ours most closely resembles, was found to be superior by a number of metrics to
511  Stacks, TASSEL-GBS, IGST, and Fast-GBS. Similar to GB-eaSy, our pipeline utilizes a double-

512  digest GBS protocol, aligns reads to the reference genome with bwa mem, and uses the SAMtools
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513  genotype likelihood model for calling SNPs (H. Li 2011). The combination of bwa mem and
514  SAMtools algorithm was independently shown to have the best performance for calling SNPs from
515 Illumina data (Hwang et al. 2015), further supporting our choice of these programs for read
516  alignment and variant calling. Additionally, using the ANGSD wrapper provided us with the
517 ability to convert the posterior genotype probabilities into genotype dosages for mapping studies

518 (Korneliussen, Albrechtsen, and Nielsen 2014).

519 A minor difference between GB-eaSy and our pipeline is the use of cutadapt (Martin 2011)
520 rather than GBSX (Herten et al. 2015) for demultiplexing, though both performed equally well
521  (Table S1). The primary improvement is our extension of the pipeline with the implementation of
522  effective internal and reference-based imputation steps using the 42 inbred rat genomes (Hermsen
523  etal. 2015) and 8 deep-sequenced HS founders from UMich (Ramdas et al. 2018). There are two
524  stages of imputation in our pipeline: the first one is accomplished by Beagle and aims to fill in
525 missing genotypes at called variants using information from other samples; this raising the
526  genotype call rate to 100%, but it may also introduce errors due to insufficient information,
527 emphasizing the need for careful filtering steps. The second stage of imputation made use of
528 IMPTUE2 and an external reference panels of variants called from WGS data on the 8 inbred HS
529  founders, as well as 34 additional inbred rat strains. We decided to include the 34 additional strains
530 because of the elevated genotyping rate we observed upon their inclusion in the IMPUTE2
531 reference panel. We attribute this to the presence of haplotypes that exist in both the 8 the HS
532  founder strains and a subset of the 34 additional strains in this panel. The benefits of using a
533  composite reference panel have been previously noted (Zhang et al. 2013; G.-H. Huang and Tseng

534  2014); there is increased accuracy and decreased missingness in the imputed genotype data.

27


https://doi.org/10.1101/523043
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/523043; this version posted June 7, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

535 In summary, we have adapted a GBS protocol and genotyping and imputation pipeline to
536 obtain dense genotypes on genome-wide markers in highly-multiplexed HS rats. After quality
537 filtering on the level of SNP and sample, over 3.7 million were called with a concordance rate of
538  99%. The ddGBS protocol and bioinformatic methods used to produce this data are publicly
539 available, easy to handle, and cost-effective. The presented workflow could be feasibly followed

540  with marginal modifications for application in other species.
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807

808  Figure S1. Ratio of reads on X-chromosome to total sequencing reads.

809  The color of the points indicates the pedigree-recorded sex of the samples. Females are expected
810  to have approximately twice as many reads for the X-chromosome. Samples that did not cluster
811  with their pedigree-recorded sex were removed from the study for possible sample mix-up.
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821

822  Figure S2. Data preparation workflow for imputation with IMPUTE2.
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838

839
840  Figure S3. Programmed vs. empirical Pippin Prep fragment size range.

841  This plot comes from the Bioanalyzer output for a pooled HS library. The x-axis shows the library
842  fragment sizes in base pairs, and the y-axis is in fluorescent units, which represent the quantity of
843  the fragments on the gel chip. There is approximately a 50-75bp shift in the empirical library
844  distribution compared to expectation due to the high quantity of fragments loaded into the Pippin
845  Prep gel cassette.
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857
858  Figure S4. Raw read counts grouped by shipment batch.

859  Rawread counts are on a per-sample basis after demultiplexing FASTQ files with FASTX Barcode
860  Splitter.

861
14,000,000 -
. .
12,000,000 - .
+ Jan 2017
= Nov 2016
10,000,000 « Feb 2017
= Apr2017
* May 2017
£ 8,000,000 + Jul 2017
3
8 =Sep 2017 - A
-]
i Sep 2017 -B
2
& 6,000,000 * 5ep2017-C
= Oct 2017
Jan 2018
Mar 2018
4,000,000
Apr2018
o Jun 2018
Aug 2018
2,000,000
o
o B ; . ; ; ; ; . : ,
0 50 100 150 200 250 300 350 400 450
862
863
864
865
866
867
868
869
870
871

39


https://doi.org/10.1101/523043
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/523043; this version posted June 7, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

872
873  Figure S5. FASTQC results pre- and post-filtering with Cutadapt.

874  FASTQC results are from a single sample from the original set of 96 HS samples prepared in 12-
875  plex
876  and sequenced on the Illumina HiSeq 2500 with 125bp reads.
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Figure S6. Overlap of called SNPs with known variants after read trimming with FASTX or
Cutadapt.
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910

911  Figure S7. Mapping quality thresholds.

912  Genotyping error rate and number of variants by men depth per sample per variant site for
913  mapping quality thresholds of 20, 30, and 60.
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931  Figure S8. ANGSD vs GATK HaplotypeCaller, filtered calls.

932  The panel compares the number variants called by combination of ANGSD and Beagle or GATK
933  HaplotypeCaller and Beagle at various thresholds of genotype discordance with array data. Calls
934  were made using the 96 HS rats with array data. The x-axis represents the genotype discordance
935 rate thresholds and the y-axis is the number of variants that surpass that threshold for each

936  genotype calling method. Additional filters were applied to the original SNP sets and the plot

937  zooms in on a smaller range of acceptable discordance rates compared to Figure 3. Blue lines

938  represent the unfiltered SNP set. Yellow lines have been filtered for singletons. Red lines have
939 further excluded SNPs with an MAF < 0.05. Each line contains the same number of points.
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948
949  Figure S9. Number of variants by genotype discordance rates for 4 ANGSD genotype
950 likelihood models.
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963
964  Figure S10. Mendelian error rates

965  The plot shows the Mendelian error rate for all SNPs. A threshold was set at the inflection point
966  of the curve (~0.005) and all SNPs above that threshold were removed from the data set.
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979
980  Figure S11. Available rat genetic maps.

981  Plotted physical and genetic distances are for chromosome 12.
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992

993
994  Table S1. Demultiplexing performance.

995  All methods began with the same number of reads from the original FASTQ. Final read and base
996  pair counts are from after the reads have been trimmed of adapter, barcode, and restriction site
997  sequences, as well as low-quality base pairs (< Q20).

998
In-house Python FASTX
Script GBSX Barcode Splitter
Reads with NlalIl 545,177 (3.07%) 475,581 (2.67%) 547,697 (3.07%)
adapter sequence
Total bps processed 2,061,523,464 2,116,436,361 2,227,542,500
Total bps written to file 2,059,714,312 2,114,841,934 2,225,724,833
Proportion of bps 99.91% 99.92% 99.92%
retained
Reads post-processing 17,771,754 17,786,280 17,820,340
999
1000
1001
1002
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1003

1004  Table S2. Comparison of variants calls after filtering with FASTX vs Cutadapt.

1005  Data shown comes from the original set of 96 HS samples prepared in 12-plex and sequenced on
1006  the Illumina HiSeq 2500. At this step of pipeline optimization, variants were called utilizing
1007  GATK UnifiedGenotyper.

1008
FASTX Clipper Cutadapt
Number of variants 6,075,821 6,581,115
Genotyping call rate 0.17 0.19
Mean minor allele count 3.96 4.25
Mean minor allele frequency 0.15 0.15
Number of singletons 433,960 548,975
Number monomorphic sites 807,453 773,074
Transition/transversion ratio 2.32 2.40
TiTv ratio for singletons 3.23 3.40
Mean variant read depth 109.56 126.35
Mean quality score 601.79 715.56
1009
1010
1011
1012
1013
1014
1015
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Table S3. Variant metrics resulting from reads filtered at different mapping quality
thresholds.

Data shown comes from the original set of 96 HS samples prepared in 12-plex and sequenced on
the Illumina HiSeq 2500. Variants were called utilizing the SAMtools model and the -minMapQ
filter in ANGSD. Calls were unfiltered.

MAPQ =20 | MAPQ =30 | MAPQ =45 | MAPQ = 60 | MAPQ = 90
Number of variants 372,860 372,330 363,790 316,949 233,322
Genotyping call rate 0.64 0.64 0.64 0.61 0.75
Mean minor allele 5.96 5.96 6.06 5.86 7.36
count
Mean minor allele 0.18 0.18 0.18 0.18 0.19
frequency
Number of sineletons 16,781 16,732 16,550 17.352 11,773
g (4.50%) (4.49%) (4.55%) (5.47%) (5.05%)
Number of 122,478 122,188 116,738 100,074 56,179
monomorphic sites (32.85%) (32.82%) (32.09%) (31.57%) (24.08%)
Transntlon/tl:ansverswn 123 124 126 131 1.41
ratio
TiTy ratio for 127 1.28 1.28 131 1.38
singletons
Mean variant read 157.78 157.73 159.25 152.48 188.80
depth
Mean quality score 2,547 2,548 2,556 2,461 2,954
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Table S4. Transition/transversion ratio before and after known sites filtering.

The presented data comes from ANGSD/Beagle variant calls for 3,601 HS samples, prior to
imputation with IMPUTE2. Known SNPs came from both the 42 inbred genomes from Hermsen
et. al 2015 (Hermsen et al. 2015) and the 8 inbred HS founder strains sequenced by the University
of Michigan (Ramdas et al. 2018).

Unfiltered SNPs Filtered for known SNPs
AC 15,157 9,166
AG 888,657 42,275
AT 15,432 7,610
CG 18,043 8,061
CT 893,653 41,938
GT 15,118 9,177
Ts 1,782,310 84,213
Tv 63,750 34,014
TsTv 27.96 2.48
Total # SNPs 1,846,060 118,227
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Table S5. Imputation accuracy for chromosome 12 across different genetic maps.

The number of variants used for the concordance check is dependent on the overlap of the imputed
variants with array data for the 96 HS rats with array genotypes. The MAF filter only removes
monomorphic sites within the 96 HS rat sample used for the concordance check.

cM/Mb=1.00 | cM/Mb=1.16 | SHRSPxPN HS-specific
Number of variants
before QC 158,452 158,452 158,452 158,452
Genotyping rate
before QC 0.94 0.92 0.92 0.92
Variant removed for 22,217 28,959 28,356 28,858
missingness > 10%
Variants removed for
MAF < 0.005 50,380 61,270 61,592 59,812
Variants removed for
HWE < 1x101° >3 26 >7 >6
Number of variants 85,802 68,167 68,447 69,726
after QC
Genotyping rate
after QC 0.93 0.91 0.92 0.91
Number of variants in 5.912 5,590 5,594 5.646
concordance check
Discordance rate 0.095 0.011 0.011 0.010
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