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ABSTRACT 24 

The heterogeneous stock (HS) is an outbred rat population derived from eight inbred rat strains. 25 

The population is maintained with the goal of minimizing inbreeding and maximizing the genetic 26 

diversity of the stock. To effectively utilize this rat strain for fine-scale genetic mapping, genotype 27 

data is necessary for large numbers of animals. A few genotyping microarrays have been created 28 

for rats; however, they were expensive and are no longer in production. Thus, to obtain high-29 

density genome-wide marker data for genetic mapping, we have adapted genotype-by-sequencing 30 

(GBS) for use in rats. Here, we outline the laboratory and computational steps we took to design 31 

and optimize an efficient double digest genotype-by-sequencing (ddGBS) protocol for rats. We 32 

include a detailed protocol to perform ddGBS in rats. To analyze the ddGBS sequencing data, we 33 

evaluated multiple existing computational tools and designed a workflow that allowed us to call 34 

and impute over 3.7 million SNPs genome-wide in the HS. We also compared various rat genetic 35 

maps for use in imputation, including a recently developed map specific to the HS. Using the 36 

pipeline, we obtained concordance rates of 99% with data from a rat genotyping array. The 37 

computational pipeline that we have developed can be easily adapted for use in other species.  38 

INTRODUCTION 39 

Advances in next-generation sequencing technology over the past decade have enabled the 40 

discovery of high-density, genome-wide single nucleotide polymorphisms (SNPs) in model 41 

systems. Comprehensive assays of the standing genetic variation in these organisms has allowed 42 

for the identification of quantitative trait loci (QTL) and the application of numerous population 43 

genetic and phylogenetic methods. However, due to the high degree of linkage disequilibrium 44 

(LD) in many structured breeding populations, sequencing whole genomes is not necessary. SNPs 45 

are frequently in strong LD with adjacent loci, effectively ‘tagging’ nearby variation, and thereby 46 
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reducing the number of sites that need to be genotyped.  Several reduced-representation 47 

sequencing approaches that take advantage of LD structure have been previously described (Miller 48 

et al. 2007; van Orsouw et al. 2007; Van Tassell et al. 2008; Baird et al. 2008; X. Huang et al. 49 

2009; Davey et al. 2011; Elshire et al. 2011; Poland et al. 2012; Peterson et al. 2012; Sun et al. 50 

2013; Scheben, Batley, and Edwards 2017). Thousands of SNPs can be identified in large numbers 51 

of samples for a fraction of the price of whole-genome sequencing methods (Chen et al. 2013; He 52 

et al. 2014). The advantages of these methods are especially attractive when applied to less 53 

commonly utilized species or strains for which genotyping microarrays are not available.  54 

Of the existing reduced-representation protocols, the genotyping-by-sequencing (GBS) 55 

approach developed by Elshire et al. (Elshire et al. 2011) has been frequently modified to 56 

accommodate non-model species, such as: soybean (Sonah et al. 2013), rice (Furuta et al. 2017), 57 

oat (Fu and Yang 2017), chicken (Pértille et al. 2016; Wang et al. 2017), mouse (Parker et al. 58 

2016), fox (Johnson et al. 2015), and cattle (De Donato et al. 2013), among others. The greatly 59 

varying genomic composition among organisms necessitates a diverse and customized set of 60 

approaches for obtaining high-quality genotypes. As such, both the GBS protocol and 61 

computational pipeline require modifications when applied to a new species. Recent work from 62 

our group showed that GBS can be effectively applied to outbred mice (Parker et al. 2016; 63 

Gonzales et al. 2017; Zhou et al. 2018) and rats (Fitzpatrick et al. 2013). However, those 64 

publications used protocols that had not been optimized, leaving significant room for improvement 65 

in genotype quality and marker density. Additionally, although several tools and workflows for 66 

the analysis of GBS data have been described, including Stacks (Catchen et al. 2013), IGST-GBS 67 

(Sonah et al. 2013), TASSEL-GBS (Glaubitz et al. 2014), Fast-GBS (Torkamaneh et al. 2017), 68 

and GB-eaSy (Wickland et al. 2017), the majority were developed and optimized for use in plant 69 
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species and given the lack of well-developed genomic resources in these species, do not leverage 70 

the wealth of genomic data available for model organisms such as rats. Here we describe the 71 

customized computational and laboratory protocols for applying GBS to HS rats.   72 

The HS is an outbred rat population created in 1984 using eight inbred strains and has been 73 

maintained since then with the goal of minimizing inbreeding and maximizing the genetic diversity 74 

of the colony (Johannesson et al. 2008; Woods and Mott 2017). After more than 80 generations of 75 

accumulated recombination events, their genome has become a fine-scale mosaic of the inbred 76 

founders’ haplotypes. The breeding scheme and the number of accumulated generations has made 77 

the HS colony attractive for genetic studies. Additionally, extensive deep sequencing data exists 78 

for the eight progenitor strains, allowing for accurate imputation from sites directly captured by 79 

GBS to millions of additional SNPs.   80 

Detailed here are the steps we have taken to optimize a rat GBS protocol and computational 81 

pipeline. Drawing on existing protocols (Elshire et al. 2011; Peterson et al. 2012; Poland et al. 82 

2012; Parker et al. 2016) as templates, we redesigned our GBS approach and have developed a 83 

novel, reference-based, high-throughput workflow to accurately and cost-effectively call and 84 

impute variants from low-coverage double digest GBS (ddGBS) data in HS rats. This publication 85 

is intended as a resource for others who might wish to perform GBS in rats and should provide a 86 

roadmap for adapting GBS for use in new species. We demonstrate that with a suitable reference 87 

panel, applying reduced representation approaches and imputation in model systems can provide 88 

high-confidence genotypes on millions of genome-wide markers. 89 

MATERIALS AND METHODS 90 

Tissue samples and DNA extraction 91 
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Samples for this study originated from three sources: an inhouse advanced intercross line (AIL) 92 

derived from LG/J and SM/J mice (Gonzales et al. 2018), Sprague Dawley (SD) rats from Charles 93 

River Laboratories and Harlan Sprague Dawley, Inc. (Gileta et al. 2018), and an HS rat colony 94 

(Woods and Mott 2017; Chitre et al. 2018). Early stages of ddGBS optimization utilized AIL 95 

genomic DNA extracted from spleen by a standard salting-out protocol. Later optimization steps 96 

were performed using genomic DNA from SD rats extracted from tail tissue using the PureLink 97 

Genomic DNA Mini Kit (Thermo Fisher Scientific, Waltham, MA). HS rat DNA was extracted 98 

from spleen tissue using the Agencourt DNAdvance Kit (Beckman Coulter Life Sciences, 99 

Indianapolis, IN). All genomic DNA quality and purity was assessed by NanoDrop 8000 (Thermo 100 

Fisher Scientific, Waltham, MA). Interestingly, we observed that rat genomic DNA appears to 101 

degrade faster than mouse genomic DNA following extraction; therefore, we recommend storing 102 

rat genomic DNA at -20° and using it within weeks of extraction whenever possible. 103 

In silico digest of rat genome 104 

We used in silico digests to aid in the selection of restriction enzymes, with the goal of maximizing 105 

the proportion of the genome captured at sufficient depth to make confident genotype calls We 106 

used the restrict function in EMBOSS (version 6.6.0) (Rice, Longden, and Bleasby 2000) in 107 

conjunction with the REBASE database published by New England BioLabs (NEB; version 808) 108 

(Roberts and Macelis 1999) to perform in silico digest of the current release of the Norway brown 109 

rat reference genome, designated rn6. For the primary restriction enzyme, we chose PstI, which 110 

had been successfully used in numerous project (Fitzpatrick et al. 2013; Parker et al. 2016; 111 

Gonzales et al. 2018). We performed the digest with PstI alone and then with PstI paired with each 112 

of 7 secondary enzymes: AluI, BfaI, DpnI, HaeIII, MluCI, MspI, and NlaIII. We only considered 113 

fragments with one PstI cut site and one cut site from the secondary enzyme because the adapter 114 
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and primer sets are designed to only allow these fragments to be amplified. The final choice of 115 

enzyme (NlaIII) was determined empirically and is detailed in the Results. 116 

Restriction enzyme selection 117 

Initial criteria for selecting a secondary restriction enzyme were: a 4bp recognition sequence, no 118 

ambiguity in the recognition sequence (i.e. N’s), compatibility with the NEB CutSmart Buffer, and 119 

an incubation temperature of 37oC. The list of enzymes meeting these criteria at the time included: 120 

AluI, BfaI, DpnI, HaeIII, MluCI, MspI, and NlaIII. Using the in silico digest data, we looked to 121 

maximize the portion of the genome contained within a fragment size range of 125-275bp (250-122 

400bp with annealed adapters and primers) (Figure 1; Table 1). We excluded enzymes that 123 

produced blunt ends, both because it would be more difficult to anneal adapters to blunt ended 124 

fragments and because our adapters would then also anneal to blunt ends produced by DNA 125 

shearing. We also excluded methylation-sensitive enzymes, as we did not want to limit the breadth 126 

of our sequencing efforts, accepting the possibility of read pileup in repetitive regions. Based on 127 

these criteria, NlaIII, BfaI, and MluCI were selected for further testing.  128 

ddGBS library preparation and sequencing 129 

The full ddGBS protocol is available in File S1. In brief, approximately 1µg of DNA is used per 130 

sample. Sample DNA, PstI barcoded adapters, and NlaIII Y-adapter are combined in a 96-well 131 

plate and allowed to evaporate at 37oC overnight. Sample DNA and adapters are re-eluted on day 132 

two with a PstI/NlaIII digestion mix and incubated at 37oC for two hours to allow for complete 133 

digestion. Ligation reagents are then added and incubated at 16oC for one hour to anneal the 134 

adapters to the DNA fragments, followed by a 30-minute incubation at 80oC to inactivate the 135 

restriction enzymes. Sample libraries are purified using a plate from a MinElute 96 UF PCR 136 
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Purification Kit (QIAGEN Inc., Hilden, Germany), vacuum manifold, and ddH2O. Once re-eluted, 137 

libraries are quantified in duplicate with Quanit-iT PicoGreen (Thermo Fisher Scientific, Waltham, 138 

MA) and pooled to the desired level of multiplexing (i.e. 12, 24, or 48 samples per library). Pooled 139 

libraries are concentrated to obtain the desired volume for use in the Pippin Prep. The concentrated 140 

pool is quantified to ensure the gel cassette will not be overloaded with DNA (>5µg). The pool is 141 

then loaded into the Pippin Prep for size selection (300-450bps) using a 2% agarose gel cassette 142 

on a Pippin Prep (Sage Science, Beverly, MA). Size-selected libraries were then PCR amplified 143 

for 12 cycles to increase the quantity of DNA, concentrated, and checked for quality on an Agilent 144 

2100 Bioanalyzer with a DNA 1000 Series II chip (Agilent Technologies, Santa Clara, CA)., 145 

Bioanalyzer results were used to assure sufficient DNA concentration and to identify excessive 146 

primer dimer peaks.  147 

An initial 96 HS samples were sequenced, 12 samples per library, at Beckman Coulter 148 

Genomics (now GENEWIZ) on an Illumina HiSeq 2500 with v4 chemistry and 125bp single-end 149 

reads. Subsequently, we began using a set of 48 unique barcoded adapters (File S2) to multiplex 150 

48 HS samples per ddGBS library. Each library was run on a single flow cell lane on an Illumina 151 

HiSeq 4000 with 100bp single-end reads at the IGM Genomics Center (University of California 152 

San Diego, La Jolla, CA).  153 

 154 

 155 

 156 

 157 
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Figure 2. ddGBS sequencing data analysis workflow. Each step of the workflow is described 158 
in the text.  159 

 160 
 161 

Evaluation of ddGBS pipeline performance 162 

We present the steps required to call and impute genotypes from raw ddGBS sequencing data in 163 

Figure 2. During optimization of the pipeline, performance was assessed by two primary metrics: 164 

(1) the number of variants called and (2) genotype concordance rates for calls made in 96 HS rats 165 

that had both ddGBS genotypes and array genotypes from a custom Affymetrix Axiom MiRat 166 

625k microarray (Part#: 550572). There were two checkpoints in the GBS pipeline where genotype 167 

quality (measured by concordance rate) was assessed: after internal imputation within Beagle 168 

(Browning and Browning 2009, 2016) and again after imputation to the reference panel with 169 
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IMPUTE2 (B. N. Howie, Donnelly, and Marchini 2009; B. Howie et al. 2012). A third, additional 170 

metric we checked was the transition to transversion ratio (TSTV), which is expected to be ~2 for 171 

intergenic regions.  172 

Demultiplexing 173 

The PstI adapter barcodes were used to demultiplex FASTQ files into individual sample files. 174 

Three demultiplexing software packages were tested: FASTX Barcode Splitter v0.0.13 [RRID: 175 

SCR_005534] (Hannon Lab 2010), GBSX v1.3 (Herten et al. 2015), and an in-house Python script 176 

(Parker et al. 2016). Reads that could not be matched with any barcode (maximum of 1 mismatch 177 

allowed), or that lacked the appropriate enzyme cut site, were discarded. Samples with less than 178 

two million reads after demultiplexing were discarded. Data concerning demultiplexing are shown 179 

in Table S1 are from a single HS rat sequenced in a 12-sample library on one lane after 180 

demultiplexing and adapter/quality trimming.  181 

Barcode, adapter, and quality trimming 182 

Read quality was assessed using FastQC v0.11.6 (Andrews 2017). We compared the efficacy of 183 

two rapid, lightweight software options for trimming barcodes, adapters, and low-quality bases 184 

from the NGS reads: Cutadapt v1.9.1 (Martin 2011) and the FASTX Clipper/Trimmer/Quality 185 

Trimmer tools v0.0.13 (Hannon Lab 2010) (Table S2). A base quality threshold of 20 was used 186 

and reads shorter than 25bp were discarded. 187 

Read alignment and indel realignment 188 

Rattus norvegicus genome assembly rn6 was used as the reference genome for read alignment with 189 

the Burrows-Wheeler Aligner v0.7.5a (BWA) [RRID: SCR_010910] (H. Li and Durbin 2009) 190 

using the mem algorithm. We then used GATK IndelRealginer v3.5 [RRID: SCR001876] 191 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 7, 2019. ; https://doi.org/10.1101/523043doi: bioRxiv preprint 

https://doi.org/10.1101/523043
http://creativecommons.org/licenses/by/4.0/


11 
 

(McKenna et al. 2010) to improve alignment quality by locally realigning reads around a reference 192 

set of known indels in 42 whole-genome sequenced inbred rat strains, including the eight HS 193 

progenitor strains (Hermsen et al. 2015).   194 

Variant calling 195 

Variants were called, and genotype likelihoods were computed at variant sites using ANGSD 196 

v0.911, under the SAMtools model for genotype likelihoods (Korneliussen, Albrechtsen, and 197 

Nielsen 2014; Durvasula et al. n.d.). Further, using ANGSD, we inferred the major and minor 198 

alleles (-domajorminor 1) from the genotype likelihoods, retaining only high confidence 199 

polymorphic sites (-snp_pval 1e-6), and estimated the allele frequencies based on the inferred 200 

alleles (-domaf 1). We discarded sites missing read data in more than 4% of samples (–minInd). 201 

Additionally, we tested multiple thresholds for minimum base (-minQ) and mapping (-minMapQ) 202 

qualities. 203 

Internal imputation  204 

Beagle v4.1 (Browning and Browning 2009, 2016) was used to improve the genotyping within the 205 

samples without the use of an external reference panel. Missing and low quality genotypes were 206 

imputed by borrowing information from other individuals in the dataset with high quality 207 

information at these same variant sites. . It must be noted that before settling on the combination 208 

of ANGSD and Beagle for genotype calling and internal imputation, we also experimented with 209 

GATK’s UnifiedGenotyper and HaplotypeCaller (McKenna et al. 2010) with various parameter 210 

settings, but with unsatisfactory results.    211 

Quality Control for genotypes before imputation using and external reference panel 212 
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To verify the quality of the “internally” imputed genotypes prior to imputing SNPs from the 42 213 

inbred strain reference panel (Hermsen et al. 2015), we checked concordance rates for the 96 HS 214 

animals with array genotypes, examined the TSTV ratio, and assessed whether the sex as recorded 215 

in the pedigree records agreed with the sex empirically determined by the proportion of reads on 216 

the X-chromosome out of the total number of reads (Figure S1). We also identified Mendelian 217 

errors using the --mendel option in plink and known pedigree information for 1,136 trios from 214 218 

families within the HS sample. Using the fraction of the trios that were informative for a given 219 

SNP and the formula 1-(1-2p(1-p))3, where p represents the minor allele frequency of the allele, 220 

we formed curves for the distributions of the expected number of Mendelian errors for both SNPs 221 

and samples and chose the inflection points as thresholds for the number of Mendelian errors 222 

allowed. 223 

Data preparation for phasing with external reference panel 224 

 First, in our study sample of 96 samples, we only retained variants previously identified in 225 

the 8 HS founder strains because we expected the polymorphisms in our samples to be limited to 226 

the variation present in the founders (Hermsen et al. 2015; Ramdas et al. 2018). Further, to improve 227 

imputation accuracy and computational efficiency, we employed a pre-phasing step with 228 

IMPUTE2 (prephase_g) (B. Howie et al. 2012) prior to imputation. A flowchart outlining the pre-229 

phasing protocol is presented in Figure S2.  230 

Genetic maps 231 

Genetic maps are required for phasing and imputation with IMPUTE2. When we began this 232 

project, no strain-specific recombination map was available for HS rats. Thus, we considered a 233 

sparse genetic map for SHRSPxBN (Steen et al. 1999). We also tested two types of linearly 234 
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interpolated genetic maps, with recombination rates set at either 1cM/Mb or the chromosome 235 

specific averages for rats, as reported by Jensen-Seaman et al. (Jensen-Seaman 2004). Lastly, late 236 

in the course of this project, we experimented with an HS-specific genetic map developed by 237 

Littrell et al. the Medical College of Wisconsin (Littrell et al. 2018).  238 

Imputation to reference panel 239 

We used a combination of existing sequencing and array genotyping data from the HS rat founder 240 

and other inbred laboratory rat strains (Hermsen et al. 2015) as reference panel for imputation. 241 

Genotype data underwent QC and were phased by Beagle into single chromosome haplotype files. 242 

Haplotype files were then created using the workflow detailed in Figure S2. Imputation by 243 

IMPUTE2 was performed in 5Mb windows using the aforementioned reference panels and genetic 244 

maps. 245 

Data availability 246 

Genotype data will be available at 247 

https://figshare.com/articles/Heterogeneous_Stock_Genotype_Data/8243222 and the code 248 

necessary to run the steps outline in the publication are provided at  249 

https://figshare.com/articles/ddGBS_Pipeline_Commands/8243156. Supplementary Files are 250 

available at https://figshare.com/articles/Supplementary_Files/8243129. Additional data is 251 

available upon request.  252 

RESULTS 253 

ddGBS optimization 254 
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Previous projects utilizing GBS in mice and rats (Fitzpatrick et al. 2013; Parker et al. 2016; 255 

Gonzales et al. 2018) often encountered an issue where certain regions of the genome experienced 256 

high pileups of reads per sample (>100x), while other regions were covered by just 1-2 reads. This 257 

read distribution imbalance can be caused in part by PCR amplification bias, where a subset of 258 

fragments are preferentially amplified until they dominate the final library (Kanagawa 2003; Aird 259 

et al. 2011). These previous protocols utilized 18 cycles of amplification. We tested reducing this 260 

to 8, 10, 12, or 14 cycles and found that below 12 cycles, there was insufficient PCR product to 261 

accurately quantify and pool for sequencing. The reduction in the number of PCR cycles was 262 

expected to reduce PCR bias, though this was not explicitly tested. 263 

Another concern regarding previous sequencing results was an excess of long fragments 264 

(>700bps as determined by in silico digest), which do not provide sufficient reads to make 265 

confident genotype calls (< 5 reads per sample) and are therefore wasteful. We tested three 266 

methods of combating this issue, including: increasing the digestion time or enzyme concentration, 267 

performing size selection on the libraries, and using a two-enzyme restriction digest.  268 

We considered the possibility that the restriction enzyme digests might not be running to 269 

completion. To address this possibility, we increased the duration of the digestion from 2 hours to 270 

3 or 4 hours. We also tried increasing the number of units of PstI enzyme added, to ensure complete 271 

digest. Neither of these modifications impacted the final fragment length distribution of the library, 272 

indicating that the digest was reaching completion after 2 hours using the original concentration 273 

of PstI (File S3 – wells 1-6). 274 

Our previous GBS protocol did not have an explicit library fragment size selection step. 275 

The final library was purified using a MinElute PCR Purification Kit (QIAGEN Inc., Hilden, 276 

Germany), which isolates PCR products 70bp-4kb in length, leaving a wide range of fragment 277 
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sizes in the final library, under the assumption that only shorter fragments would bridge amplify 278 

on the flow cell. This method was imprecise and had low reproducibility, negatively impacting our 279 

ability obtain reads at consistent sites across libraries. Rather than attempt size selection by gel 280 

extraction, we chose to utilize a Pippin Prep, which automates the elution of DNA libraries of 281 

desired fragment size ranges. By using this automated size selection, we reduced the proportion of 282 

the genome targeted for sequencing, and because restriction enzymes make the consistent cuts 283 

across samples, ensure the same fragments are sequenced in the majority of libraries. Since the 284 

clustering process involves a bridge amplification step that preferentially amplifies library 285 

fragments with shorter insert sizes (Illumina, Inc. 2014), we kept the size selection window narrow 286 

(250-400bps) to avoid introducing a bias in which fragments were sequenced. A comparison of 287 

the fragment size distributions for the protocols before and after introduction of the Pippin Prep is 288 

shown in File S4.  289 

To increase the proportion of the genome captured within the fragment size window, we 290 

pursued a double digest of the genome using a secondary enzyme with a more frequently occurring 291 

recognition sequence. When used alone, in silico digest of the rn6 reference genome by PstI 292 

(Figure 1; Table 1) showed that only ~0.5% of the genome would have fallen within a 150bp 293 

fragment size window selected on the Pippin Prep. Previously, we performed GBS in CFW mice 294 

using the single-enzyme approach and observed that large regions of the genome that were not 295 

covered by sequencing reads (Parker et al. 2016). Therefore, we sought to increase the fraction of 296 

the genome that was accessible to GBS, so that there would be sufficient SNPs to tag majority of 297 

the variation in the rat genome. Additionally, we were concerned about potential biases in 298 

coverage, heterozygosity, and the minor allele frequency (MAF) spectrum that may be introduced 299 

by incomplete capture of the genome (Flanagan and Jones 2018).  300 
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The number of fragments with one of each of the cut sites were summed for all observed 301 

lengths and the results summarized in Figure 1 and Table 1.  BfaI, MluCI, and NlaIII were chosen 302 

for further testing due to their compatibility with PstI digestion reagents and temperatures, sticky 303 

ends, and the proportion of the genome falling in the size selection window. We ruled out BfaI 304 

because it only had a 2bp overhang after cleavage, which led to a high concentration of adapter 305 

dimer in the sequencing libraries (S5 File). NlaIII was chosen because it contained the greatest 306 

portion of the genome in the size selection window.  307 

 308 

Table 1. Restriction enzyme options for double digest.  309 

The percent genome in region columns indicate the percentage of the genome that falls within the 310 
provided fragment size ranges and can therefore be captured by GBS.  311 

 312 

* Restriction enzyme is methylation sensitive.  313 
+ Calculated using rn6 genome length of 2,870,182,909bps. 314 

 315 

 316 

 317 

Restriction 
Enzyme(s) 

Recognition 
sequence 

Length of 
Overhang (bp) 

% Genome in  
250-400bp Region+ 

% Genome in  
300-450bp Region+ 

PstI CTGCA^G 4 0.48% 0.56% 
PstI + AluI AG^CT 0 3.06% 2.88% 
PstI + BfaI C^TAG 2 3.10% 3.25% 

PstI + DpnI* GA^TC 0 2.69% 3.00% 
PstI + HaeIII GG^CC 0 2.71% 2.79% 
PstI + MluCI ^AATT 4 3.32% 3.21% 
PstI +  MspI C^CGG 2 1.16% 1.24% 
PstI + NlaIII CATG^ 4 3.45% 3.31% 
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Figure 1. In silico digest fragment distributions for PstI and potential secondary restriction 318 
enzymes. 319 

 320 

 321 

 322 

Each panel represents an independent digest of rn6 with the listed enzyme(s). Regions highlighted 323 
in blue are fragments that would be selected by the Pippin Prep (125-275bp) after annealing 324 
adapters and primers. These regions are quantified in Table 1 by multiplying the length of the 325 
fragments by the number of fragments to estimate the portion of the genome captured. 326 

 327 
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In our previous GBS protocol, all fragments were cut on both ends by PstI. By using a 328 

substantially lower concentration of the barcoded PstI adapter than the common PstI adapter, we 329 

ensured the barcoded adapter would be the limiting reagent and the majority of fragments with an 330 

annealed barcoded adapter would have a common adapter on the other end. This is crucial, as 331 

having one of each of the adapters is required for proper amplification of the fragments on the flow 332 

cell. However, when using both PstI and NlaIII, the library is predominantly composed of 333 

fragments cut on both sides by NlaIII (File S6), which will amplify during PCR with a common 334 

adapter, but not on the flow cell. Therefore, we employed a Y-adapter (Poland et al. 2012) to 335 

control the direction of the first round of PCR and prevent two-sided NlaIII fragments from 336 

dominating the final sequencing library (File S2).  337 

We tested numerous quantities of PstI and NlaIII adapters in an attempt minimize the 338 

amount used and avoid adapter dimers in the final libraries. For the barcoded PstI adapters, we 339 

tested 120pmol, 60pmol, 20pmol, 4.0pmol, 2.67pmol, 1.60pmol, 0.53pmol, and 0.20pmol; for the 340 

NlaIII Y-adapter, 30pmol, 10pmol, 5.0pmol, 4.0pmol, and 1.0pmol (Files S7 & S8). We found 341 

that 0.20pmol of PstI adapter and 4pmol of NlaIII Y-adapter yielded sufficient library and 342 

minimized the presence of adapter dimers.  343 

We sequenced a trial flow cell with 8 pooled ddGBS libraries of 12 SD rat samples each 344 

(96 total) on a HiSeq 2500 (Illumina, San Diego, CA) with 125bp reads and v3 chemistry, 345 

obtaining an average of 15.3 million reads per sample. Given the NlaIII in silico digest results 346 

suggested we were capturing ~3.4% of the genome and that we were using 125bp reads, this 347 

corresponded to approximately 20x coverage of captured sites. We subsequently increased the 348 

number of samples to 48 per library for the HS rats because we hypothesized 5x would be sufficient 349 

coverage per sample when utilizing imputation to a reference panel. We also discovered that a 350 
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portion of the reads contained sequence fragments of the NlaIII adapter sequence, indicating there 351 

were fragments with insert sizes smaller than 125bps in the final library. To avoid this, we 352 

increased the fragment size range to 300-450bps (Table 1), which corresponds to a 175-325bp 353 

insert size once the adapters and primers are accounted for. Due to the high concentrations of our 354 

libraries after pooling, the library size distribution obtained from the Pippin Prep was uniformly 355 

shifted towards higher fragment lengths (Figure S3). 356 

The final ddGBS protocol can be found in File S1 and the necessary primer and adapter 357 

sequences in File S2. This protocol was used for the sequencing of all HS rats included in the 358 

following computational optimization steps.  359 

Demultiplexing 360 

The number of base pairs of sequencing data retained after demultiplexing was fairly consistent 361 

across demultiplexing software (Table S1). We ultimately decided to use FASTX Barcode Splitter 362 

because it yielded the greatest number of reads after quality/adapter trimming and had faster run 363 

times. An average of 330 million 100bp reads were obtained per library, resulting in ~7 million 364 

reads per sample. Figure S4 shows the distribution of reads counts for all samples after 365 

demultiplexing. 366 

Adapter and quality trimming 367 

Read quality was substantially improved after trimming the barcode and adapter sequences and 368 

low-quality base pairs at the ends of reads (Figure S5). Overall read counts were only marginally 369 

reduced by quality trimming (Table S1). We observed that the number of called variant sites and 370 

the genotyping rate were both greater when using reads initially processed by cutadapt (Martin, 371 

2011) than reads processed by the FASTX_Toolkit (Table S2). Importantly, a large portion of the 372 
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additional identified variants were known variant sites from the 42 inbred strains reference set 373 

(Figure S6), indicating the elevated call rate was at least in part due to capturing more true variant 374 

sites. We viewed this as sufficient support for proceeding with cutadapt for adapter removal and 375 

quality trimming.  376 

Mapping quality 377 

The number of called variants and genotype call rates were identical at read mapping quality 378 

(mapQ) thresholds of either 20 or 30 (Table S3) within ANGSD. As the ANGSD mapQ threshold 379 

was raised to 45, there was a small reduction in the number of called variants, and then much 380 

greater losses at thresholds of 60 or 90.  Fortunately, genotype concordance rates at both low and 381 

high mapQ thresholds were stable, despite the putatively higher quality of the alignments (Figure 382 

S7). This permitted us to select a lower mapQ threshold (mapQ = 20), maximizing the number of 383 

variants called without sacrificing genotyping accuracy. 384 

Variant calling 385 

Figure 3 shows that across all levels of genotype discordance rates (with the array genotyping 386 

data), the combination of the ANGSD (samtools model) with BEAGLE produced more SNPs, at  387 

various genotyping concordance thresholds, than GATK’s HaplotypeCaller (McKenna et al. 2010; 388 

DePristo et al. 2011). This observation held when variants were limited only to biallelic sites and 389 

SNPs with an MAF > 0.05 (Figure S8). 390 

 391 

 392 
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 393 
Figure 3. Genotype discordance rates between array data and variants called by GATK or 394 
ANGSD. 395 

 396 

The figure compares the number variants called by combination of ANGSD and Beagle or GATK 397 
HaplotypeCaller and Beagle at various thresholds of genotype discordance with array data. Calls 398 
were made using the 96 HS rats with array data. (A) The x-axis represents the genotype 399 
discordance rate thresholds and the y-axis is the number of variants that surpass that threshold for 400 
each genotype calling method. (B) Additional filters were applied to the original SNP sets and the 401 
plot zooms in on a smaller range of acceptable discordance rates. Blue lines represent the unfiltered 402 
SNP set. Yellow lines have been filtered for singletons. Red lines have further excluded SNPs with 403 
an MAF < 0.05. Each line contains the same number of points. 404 

 405 

ANGSD supports four different models for estimating genotype likelihoods:  SAMtools, 406 

GATK, SOAPsnp and SYK. We compared the methods to determine which produced the most 407 

SNPs with the lowest error rates. The SOAPsnp model demonstrated an advantage in genotype 408 

accuracy and number of variants called post-imputation with Beagle (Figure S9). However, 409 

SOAPsnp requires considerably more time (1.7x for 96 samples) and memory and scales poorly 410 
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with sample size. With greater than 2,000 samples, we were unable to allocate sufficient memory 411 

for the SOAPsnp model to successfully run, even after dividing the chromosomes into several, 412 

smaller chunks. The marginal benefits of SOAPsnp in accuracy and number of variants were far 413 

outweighed by its limitations when applied to a large sample set.  The GATK model showed a 414 

greater number of variants for more lenient genotype discordance rate threshold, but as stringency 415 

increased, the number of variants converged across the remaining 3 models. We proceeded with 416 

the SAMtools model for genotype likelihood estimation due to its previous support in the GBS 417 

literature (Torkamaneh et al. 2017), accepting a nominal decrease in highly concordant variants 418 

(Figure S9) for a large reduction in run time and memory usage. 419 

Imputation to reference panel 420 

Imputation is use in two ways in our protocol. As described above, we use imputation to assign 421 

missing genotypes at SNPs called in only a subset of individuals. In addition, we use imputation 422 

in this section to call genotypes at sites where GBS that were inaccessible to ddGBS sequencing. 423 

Thus, our second application (described here) is similar to the human genetics application in which 424 

imputation using 1000 Genomes increases the number of SNPs beyond those included on a given 425 

microarray platform.   426 

Before starting this imputation step, we observed an inflated transition/transversion ratio 427 

(Table S4) in our ANGSD/Beagle SNPs. This issue was ameliorated when the SNP set was filtered 428 

for only “known” variants that were previously identified in either the 42 inbred strains (Hermsen 429 

et al. 2015) or the 8 deep-sequenced HS founders (Ramdas et al. 2018). For imputation, we 430 

therefore only provided IMPUTE2 with previously identified variant sites from our 431 

ANGSD/Beagle output. Prior to running IMPUTE2, we also filtered the variants for biallelic sites 432 

with a genotype call in at least two individuals. Using pedigree data for the HS rats, we further 433 
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removed samples showing an order of magnitude higher level of Mendelian error than the sample 434 

mean. We further removed SNPs that had an error rate surpassing a threshold of ~0.005 (Figure 435 

S10; inflection point). There were 4 samples and 4,179 SNPs removed from subsequent analyses.  436 

Lastly, we removed any samples where the sex chromosome read ratio was incompatible with their 437 

reported sex (Figure S1).  438 

To determine which reference set to use for imputation, we tested six different possible 439 

combinations of available reference data (Table 2). The most accurate imputation was observed 440 

for the reference set containing only the 8 deep-sequenced HS founder strains (Ramdas et al. 2018); 441 

however, imputation to this set had the lowest genotyping rate of all panels. In contrast, using the 442 

42 rat inbred strains displayed a balance of high accuracy and low missingness, leading us to 443 

choose this as our reference set. To better understand the role of the 8 founder strains, which were 444 

part of the 42 strains reference panel, we created a reference panel that included only the 34 non-445 

HS founder strains. As expected, discordance rates were much higher when only considering non-446 

founders. However, the genotype missingness was lower for the 34 than the 8 founders alone, 447 

suggesting a combination of the two was the optimal set.  448 

 449 

 450 

 451 

 452 

 453 

 454 
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 455 
Table 2. Imputation accuracy based on different variant reference panels for IMPUTE2. 456 

The table includes six different possible reference panels for imputation. The 42 inbred strains, 34 457 
non-founder inbred strains, and 8 HS founders from the 42 inbred strains all were derived from 458 
Hermsen et al. 2015 (Hermsen et al. 2015). The UMich 8 HS founders were obtained from Ramdas 459 
et al. 2018 (Ramdas et al. 2018). The final set of 8 HS founder was taken from Baud et al. 2013 460 
(Rat Genome Sequencing and Mapping Consortium et al. 2013). 461 

 Chr1 Chr2 

42 inbred strains 

Discordance rate 0.011 0.010 

# Variants 790,659 882,993 

Genotyping Rate 0.85 0.81 

All 34 non-founder 
inbred strains 

Discordance rate 0.035 0.030 

# Variants 812,550 912,749 

Genotyping Rate 0.84 0.80 

8 HS founders only 
from the 42 inbred 

strains 

Discordance rate 0.012 0.011 

# Variants 805,424 902,061 

Genotyping Rate 0.57 0.53 

UMich 8 HS founders 
only 

Discordance rate 0.0059 0.008 

# Variants 865,514 898,621 

Genotyping Rate 0.42 0.41 

Baud et. al 2013 
 8 HS founders only 

Discordance rate 0.0095 0.0096 

# Variants 507,909 540,844 

Genotyping Rate 0.43 0.40 
 462 

 463 

IMPUTE2 requires a genetic map. As described in the methods section, we considered four 464 

different genetic maps, two that were empirically derived and two that were linear extrapolations 465 

based on the physical map (Figure S11). All genetic map performed similarly (Table S5).  466 

Surprisingly, the linear genetic maps performed just as well as the HS-specific map (Littrell et al. 467 
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2018). Thus, for simplicity, we chose to use the chromosome-specific values initially published by 468 

Jensen-Seaman (Jensen-Seaman 2004).  469 

 To obtain our final set of ~3.7 million variants, a final round of variant filtering was 470 

performed after imputation to the 42 strain reference panel. We removed SNPs with MAF < 0.005, 471 

a post-imputation genotyping rate < 90%, and SNPs that violated HWE with p<1x10-10.  472 

DISCUSSION 473 

The use of microarrays and WGS for genotyping large samples in model organisms remains cost-474 

prohibitive. There is therefore an urgent and wide-spread need for high-performance and 475 

economical methods of obtaining genome-wide genotype data. While reduced-representation 476 

approaches have been utilized in numerous species of plants and animals, including rodents 477 

(Peterson et al. 2012; Fitzpatrick et al. 2013; Parker et al. 2016; Gonzales et al. 2017; Zhou et al. 478 

2018), there has yet to be a published protocol optimized specifically for rats. Prior to sequencing 479 

thousands of HS samples with GBS for our mapping efforts, we wanted to ensure we were 480 

capturing the greatest possible number of high-quality variants at the lowest possible cost. The 481 

protocol we present here is the culmination of careful testing and optimization of each step of the 482 

GBS protocol for rats. We have now applied the approach to 4,973 HS rats, as well as 4,608 483 

Sprague Dawley rats (Gileta et al. 2018). 484 

Our previous GBS protocol (Parker et al, 2016), which was designed for use with CFW 485 

mice, was unsuitable for our current genotyping efforts in HS rats, due to the much higher levels 486 

of genetic diversity in the HS population. There are multiple reasons we chose to develop our own 487 

computational pipeline for GBS rather than using existing workflows. Foremost, the prominent 488 

GBS analysis pipelines were developed and optimized for use in crop species (Sonah et al. 2013; 489 
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Catchen et al. 2013; Glaubitz et al. 2014; Torkamaneh et al. 2017; Wickland et al. 2017), which 490 

are polyploid and have differing levels of variation and LD than outbred rodent populations. 491 

Additionally, there were elements of each pipeline that did not meet our needs or lacked 492 

customizability. For instance, TASSEL-GBS v2 (Glaubitz et al. 2014) trims all reads to 92 base 493 

pairs; however, other projects underway in our lab utilized up to 125bp reads, leading to a ~20% 494 

reduction in data. TASSEL-GBS also ignores read base quality scores, which are informative in 495 

probabilistic frameworks for estimating uncertainty in alignments and variant calls (H. Li, Ruan, 496 

and Durbin 2008; DePristo et al. 2011; Nielsen et al. 2011), and uses a naïve binomial likelihood 497 

ratio method for calling SNPs. Stacks has previously shown poor performance in demultiplexing 498 

(Herten et al. 2015; Torkamaneh et al. 2017) and does not make use of the reference genome for 499 

priors when calling SNPs (Catchen et al. 2013). Fast-GBS relies on Platypus (Rimmer et al. 2014) 500 

for variant calling (WGS500 Consortium et al. 2014; Torkamaneh et al. 2017), which employs a 501 

Bayesian method of constructing candidate haplotypes that works poorly with low-pass 502 

sequencing data and does not scale well to large sample sizes (Z. Li, Wang, and Wang 2018). 503 

Lastly, none of these pipelines included an imputation step, which is crucial for filling in missing 504 

genotypes in GBS data and can provide millions of additional SNPs given an appropriate 505 

composite reference panel (B. Howie, Marchini, and Stephens 2011; G.-H. Huang and Tseng 506 

2014). 507 

Though we have not explicitly tested each alternate GBS pipeline for the purposes of this 508 

publication, this has been recently done by Wickland et al. (Wickland et al. 2017). Their pipeline 509 

GB-eaSy, which ours most closely resembles, was found to be superior by a number of metrics to 510 

Stacks, TASSEL-GBS, IGST, and Fast-GBS. Similar to GB-eaSy, our pipeline utilizes a double-511 

digest GBS protocol, aligns reads to the reference genome with bwa mem, and uses the SAMtools 512 
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genotype likelihood model for calling SNPs (H. Li 2011). The combination of bwa mem and 513 

SAMtools algorithm was independently shown to have the best performance for calling SNPs from 514 

Illumina data (Hwang et al. 2015), further supporting our choice of these programs for read 515 

alignment and variant calling. Additionally, using the ANGSD wrapper provided us with the 516 

ability to convert the posterior genotype probabilities into genotype dosages for mapping studies 517 

(Korneliussen, Albrechtsen, and Nielsen 2014).  518 

A minor difference between GB-eaSy and our pipeline is the use of cutadapt (Martin 2011) 519 

rather than GBSX (Herten et al. 2015) for demultiplexing, though both performed equally well 520 

(Table S1). The primary improvement is our extension of the pipeline with the implementation of 521 

effective internal and reference-based imputation steps using the 42 inbred rat genomes (Hermsen 522 

et al. 2015) and 8 deep-sequenced HS founders from UMich (Ramdas et al. 2018). There are two 523 

stages of imputation in our pipeline: the first one is accomplished by Beagle and aims to fill in 524 

missing genotypes at called variants using information from other samples; this raising the 525 

genotype call rate to 100%, but it may also introduce errors due to insufficient information, 526 

emphasizing the need for careful filtering steps. The second stage of imputation made use of 527 

IMPTUE2 and an external reference panels of variants called from WGS data on the 8 inbred HS 528 

founders, as well as 34 additional inbred rat strains. We decided to include the 34 additional strains 529 

because of the elevated genotyping rate we observed upon their inclusion in the IMPUTE2 530 

reference panel. We attribute this to the presence of haplotypes that exist in both the 8 the HS 531 

founder strains and a subset of the 34 additional strains in this panel. The benefits of using a 532 

composite reference panel have been previously noted (Zhang et al. 2013; G.-H. Huang and Tseng 533 

2014); there is increased accuracy and decreased missingness in the imputed genotype data. 534 
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In summary, we have adapted a GBS protocol and genotyping and imputation pipeline to 535 

obtain dense genotypes on genome-wide markers in highly-multiplexed HS rats. After quality 536 

filtering on the level of SNP and sample, over 3.7 million were called with a concordance rate of 537 

99%.  The ddGBS protocol and bioinformatic methods used to produce this data are publicly 538 

available, easy to handle, and cost-effective. The presented workflow could be feasibly followed 539 

with marginal modifications for application in other species. 540 

 541 

 542 
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 807 

Figure S1. Ratio of reads on X-chromosome to total sequencing reads.  808 

The color of the points indicates the pedigree-recorded sex of the samples. Females are expected 809 
to have approximately twice as many reads for the X-chromosome. Samples that did not cluster 810 
with their pedigree-recorded sex were removed from the study for possible sample mix-up. 811 
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 821 

Figure S2. Data preparation workflow for imputation with IMPUTE2. 822 
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 838 

 839 
Figure S3. Programmed vs. empirical Pippin Prep fragment size range. 840 

This plot comes from the Bioanalyzer output for a pooled HS library. The x-axis shows the library 841 
fragment sizes in base pairs, and the y-axis is in fluorescent units, which represent the quantity of 842 
the fragments on the gel chip. There is approximately a 50-75bp shift in the empirical library 843 
distribution compared to expectation due to the high quantity of fragments loaded into the Pippin 844 
Prep gel cassette.  845 
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 857 
Figure S4. Raw read counts grouped by shipment batch. 858 

Raw read counts are on a per-sample basis after demultiplexing FASTQ files with FASTX Barcode 859 
Splitter. 860 
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 872 
Figure S5. FASTQC results pre- and post-filtering with Cutadapt. 873 

FASTQC results are from a single sample from the original set of 96 HS samples prepared in 12-874 
plex  875 
and sequenced on the Illumina HiSeq 2500 with 125bp reads. 876 
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 890 
Figure S6. Overlap of called SNPs with known variants after read trimming with FASTX or 891 
Cutadapt.  892 
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 910 
Figure S7. Mapping quality thresholds. 911 
Genotyping error rate and number of variants by men depth per sample per variant site for 912 
mapping quality thresholds of 20, 30, and 60.  913 
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Figure S8. ANGSD vs GATK HaplotypeCaller, filtered calls. 931 

The panel compares the number variants called by combination of ANGSD and Beagle or GATK 932 
HaplotypeCaller and Beagle at various thresholds of genotype discordance with array data. Calls 933 
were made using the 96 HS rats with array data. The x-axis represents the genotype discordance 934 
rate thresholds and the y-axis is the number of variants that surpass that threshold for each 935 
genotype calling method. Additional filters were applied to the original SNP sets and the plot 936 
zooms in on a smaller range of acceptable discordance rates compared to Figure 3. Blue lines 937 
represent the unfiltered SNP set. Yellow lines have been filtered for singletons. Red lines have 938 
further excluded SNPs with an MAF < 0.05. Each line contains the same number of points. 939 

 940 

 941 

 942 

 943 

 944 

 945 

 946 

 947 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 7, 2019. ; https://doi.org/10.1101/523043doi: bioRxiv preprint 

https://doi.org/10.1101/523043
http://creativecommons.org/licenses/by/4.0/


44 
 

 948 
Figure S9. Number of variants by genotype discordance rates for 4 ANGSD genotype 949 
likelihood models. 950 
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 963 
Figure S10. Mendelian error rates 964 

The plot shows the Mendelian error rate for all SNPs. A threshold was set at the inflection point 965 
of the curve (~0.005) and all SNPs above that threshold were removed from the data set. 966 
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 979 
Figure S11. Available rat genetic maps. 980 

Plotted physical and genetic distances are for chromosome 12. 981 
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 992 

 993 

Table S1. Demultiplexing performance. 994 

All methods began with the same number of reads from the original FASTQ. Final read and base 995 
pair counts are from after the reads have been trimmed of adapter, barcode, and restriction site 996 
sequences, as well as low-quality base pairs (< Q20). 997 

 998 

 In-house Python 
Script GBSX FASTX 

Barcode Splitter 
Reads with NlaIII 
adapter sequence 545,177 (3.07%) 475,581 (2.67%) 547,697 (3.07%) 

Total bps processed 2,061,523,464 2,116,436,361 2,227,542,500 
Total bps written to file 2,059,714,312 2,114,841,934 2,225,724,833 

Proportion of bps 
retained 99.91% 99.92% 99.92% 

Reads post-processing 17,771,754 17,786,280 17,820,340 
 999 

 1000 

 1001 
  1002 
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 1003 

Table S2. Comparison of variants calls after filtering with FASTX vs Cutadapt. 1004 

Data shown comes from the original set of 96 HS samples prepared in 12-plex and sequenced on 1005 
the Illumina HiSeq 2500. At this step of pipeline optimization, variants were called utilizing 1006 
GATK UnifiedGenotyper. 1007 

 1008 

 FASTX Clipper Cutadapt 
Number of variants 6,075,821 6,581,115 

Genotyping call rate 0.17 0.19 
Mean minor allele count 3.96 4.25 

Mean minor allele frequency  0.15 0.15 
Number of singletons 433,960 548,975 

Number monomorphic sites 807,453 773,074 
Transition/transversion ratio 2.32 2.40 

TITV ratio for singletons 3.23 3.40 
Mean variant read depth  109.56 126.35 

Mean quality score  601.79 715.56 
 1009 

 1010 
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 1016 

Table S3. Variant metrics resulting from reads filtered at different mapping quality 1017 
thresholds. 1018 

Data shown comes from the original set of 96 HS samples prepared in 12-plex and sequenced on 1019 
the Illumina HiSeq 2500. Variants were called utilizing the SAMtools model and the -minMapQ 1020 
filter in ANGSD. Calls were unfiltered. 1021 

 MAPQ = 20 MAPQ = 30 MAPQ = 45 MAPQ = 60 MAPQ = 90 
Number of variants 372,860 372,330 363,790 316,949 233,322 
Genotyping call rate 0.64 0.64 0.64 0.61 0.75 
Mean minor allele 

count 5.96 5.96 6.06 5.86 7.36 

Mean minor allele 
frequency 0.18 0.18 0.18 0.18 0.19 

Number of singletons 16,781 
(4.50%) 

16,732 
(4.49%) 

16,550 
(4.55%) 

17,352 
(5.47%) 

11,773 
(5.05%) 

Number of 
monomorphic sites 

122,478 
(32.85%) 

122,188 
(32.82%) 

116,738 
(32.09%) 

100,074 
(31.57%) 

56,179 
(24.08%) 

Transition/transversion 
ratio 1.23 1.24 1.26 1.31 1.41 

TITV ratio for 
singletons 1.27 1.28 1.28 1.31 1.38 

Mean variant read 
depth 157.78 157.73 159.25 152.48 188.80 

Mean quality score 2,547 2,548 2,556 2,461 2,954 
 1022 
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 1025 

Table S4. Transition/transversion ratio before and after known sites filtering. 1026 

The presented data comes from ANGSD/Beagle variant calls for 3,601 HS samples, prior to 1027 
imputation with IMPUTE2. Known SNPs came from both the 42 inbred genomes from Hermsen 1028 
et. al 2015 (Hermsen et al. 2015) and the 8 inbred HS founder strains sequenced by the University 1029 
of Michigan (Ramdas et al. 2018). 1030 

 1031 

 Unfiltered SNPs Filtered for known SNPs 
AC 15,157 9,166 
AG 888,657 42,275 
AT 15,432 7,610 
CG 18,043 8,061 
CT 893,653 41,938 
GT 15,118 9,177 
TS 1,782,310 84,213 
TV 63,750 34,014 

TSTV 27.96 2.48 
Total # SNPs 1,846,060 118,227 

 1032 
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 1035 

Table S5. Imputation accuracy for chromosome 12 across different genetic maps. 1036 

The number of variants used for the concordance check is dependent on the overlap of the imputed 1037 
variants with array data for the 96 HS rats with array genotypes. The MAF filter only removes 1038 
monomorphic sites within the 96 HS rat sample used for the concordance check. 1039 

 1040 

 cM/Mb = 1.00 cM/Mb = 1.16 SHRSPxPN HS-specific 
Number of variants 

before QC 158,452 158,452 158,452 158,452 

Genotyping rate 
before QC 0.94 0.92 0.92 0.92 

Variant removed for 
missingness > 10% 22,217 28,959 28,356 28,858 

Variants removed for 
MAF < 0.005 50,380 61,270 61,592 59,812 

Variants removed for 
HWE < 1x10-10 53 56 57 56 

Number of variants 
after QC 85,802 68,167 68,447 69,726 

Genotyping rate  
after QC 0.93 0.91 0.92 0.91 

Number of variants in 
concordance check 5,912 5,590 5,594 5,646 

Discordance rate 0.095 0.011 0.011 0.010 
 1041 

 1042 
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