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ABSTRACT The capacity to accurately predict an individual’s phenotype from their DNA sequence is
one of the great promises of genomics and precision medicine. Recently, Bayesian methods for generating
polygenic predictors have been successfully applied in human genomics but require the individual level
data, which are often limited in their access due to privacy or logistical concerns, and are computationally
very intensive. This has motivated methodological frameworks that utilise publicly available genome-wide
association studies (GWAS) summary data, which now for some traits include results from greater than a
million individuals. In this study, we extend the established summary statistics methodological framework
to include a class of point-normal mixture prior Bayesian regression models, which have been shown to
generate optimal genetic predictions and can perform heritability estimation, variant mapping and estimate
the distribution of the genetic effects. In a wide range of simulations and cross-validation using 10 real
quantitative traits and 1.1 million variants on 350,000 individuals from the UK Biobank (UKB), we establish
that our summary based method, SBayesR, performs similarly to methods that use the individual level
data and outperforms other state-of-the-art summary statistics methods in terms of prediction accuracy and
heritability estimation at a fraction of the computational resources. We generate polygenic predictors for
body mass index and height in two independent data sets and show that by exploiting summary statistics
on 1.1 million variants from the largest GWAS meta-analysis (n ≈ 700, 000) that the SBayesR prediction R2

improved on average across traits by 6.8% relative to that estimated from an individual-level data BayesR
analysis of data from the UKB (n ≈ 450, 000). Compared with commonly used state-of-the-art summary-
based methods, SBayesR improved the prediction R2 by 4.1% relative to LDpred and by 28.7% relative
to clumping and p-value thresholding. SBayesR gave comparable prediction accuracy to the recent RSS
method, which has a similar model, but at a computational time that is two orders of magnitude smaller.
The methodology is implemented in a very efficient and user-friendly software tool titled GCTB.

KEYWORDS Complex trait genetics; Genome-wide association studies; Linear mixed models; UK Biobank; High-dimensional
regression
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Introduction1

The capacity to accurately predict an individual’s phenotype from their DNA sequence2

is one of the great promises of genomics and precision medicine1–5, recognising that the3

accuracy of a genetic risk predictor is dependent on the genetic contribution to variation4

in the trait. It is anticipated that genetic risk prediction will be useful for informing early5

disease intervention and aiding diagnosis by identifying individuals with an increased6

genetic risk of disease5–7. Accurate genetic predictors for complex traits and disorders are7

currently limited, due mainly to an incomplete understanding of complex genetic varia-8

tion, small training sample sizes and suboptimal modelling4,8,9. Through large consortia9

and biobank initiatives, sample sizes for genome-wide association studies (GWASs) are10

reaching a critical point, now for some traits greater than a million individuals, at which,11

and under optimal modelling conditions, the predictors generated 3 could approach their12

maximum (from theory) prediction accuracy for some traits10–13.13

One common approach for generating polygenic predictions uses GWASs effect size14

estimates derived from simple linear regression applied to each single-nucleotide poly-15

morphism (SNP) independently across the genome, and uses a linear combination of the16

estimated effects and allele counts at genetic markers, chosen via marker pruning coupled17

with p-value thresholding14–17. Although simple to implement and useful, this method18

has been shown to provide suboptimal predictions with the best estimate of each marker’s19

effect requiring the effects to be treated as random18–20. In this work, we will restrict the20

term polygenic risk score to those predictors generated from using simple linear regression21

and use the term estimated genetic value (EGV) for the general concept of generating a22

polygenic predictor from SNP data. Linear mixed model (LMM) methodologies have been23

successfully applied in human genetics21–25 and are derived under the multiple regression24

model. These methods jointly analyse all SNPs, which accounts for linkage disequilibrium25

(LD) between markers capturing the maximum amount of variation at a genetic locus26

especially if multiple causal variants colocalise. Bayesian extensions of the standard LMM,27

which assumes a single normal distribution on the genetic effects, have been made to28
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include alternative prior distributions for the genetic effects that deviate from the assump-29

tions of the infinitesimal model, and were pioneered in plant and animal breeding26–30.30

Recent implementations of Bayesian multiple regression methodology require access to31

the individual level data29,31 and currently do not scale well computationally to sample32

sizes of greater than half a million individuals and millions of genetic variants.33

The inability to access individual level genetic and phenotypic data has motivated34

methodological frameworks that only require publicly available summary data9. Sum-35

mary statistics methodology now covers the gamut of statistical genetics analyses in-36

cluding: effect size distribution estimation32,33, joint SNP association analysis and fine37

mapping34,35, allele frequency and association statistic imputation36–38, heritability and38

genetic correlation estimation39–43 and polygenic prediction44–46. These methods require39

GWAS summary data, which typically include the estimated univariate effect, standard40

error, sample size and allele frequency, and an estimate of LD among genetic markers,41

which are easily accessed via public databases.42

In this work, we extend the established summary statistics methodological framework43

through the utilisation of a likelihood that connects the multiple regression coefficients44

with the summary statistics from GWAS (similar to Zhu and Stephens42). We perform45

Bayesian posterior inference through the combination of this likelihood and a finite mix-46

ture of normal distributions prior on the markers effects, which encompasses the models47

proposed in Habier et al.27, Erbe et al.28 and Moser et al.31. Here, we focus on optimis-48

ing prediction accuracy but the methodology is capable of simultaneously estimating49

SNP-based heritability (h2
SNP), marker mapping and estimating the distribution of marker50

effects. We maximise computational efficiency by taking advantage of LD matrix sparsity51

and, importantly, once the GWAS effect size estimates have been generated the computa-52

tional time of our method is independent of sample size making the method applicable to53

an arbitrary number of individuals.54

We establish that our summary-based method, SBayesR, outperforms other state-of-the-55

art summary statistics methods in terms of prediction accuracy and h2
SNP estimation in a56
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wide range of simulations using real genotype data from 350,000 unrelated individuals of57

European ancestry from the UK Biobank (UKB). The state-of-the-art summary statistics58

methods used for comparison include those that seek to estimate posterior mean effect59

sizes from GWAS summary statistics by assuming a prior for the genetics effects and60

LD information from a reference panel stored for each chromosome in a block diagonal61

form or constructed from an LD matrix shrinkage estimator. Specifically, we compare62

with LDpred44, which assumes a point-normal mixture prior for the genetics effects and a63

block-diagonal LD matrix, summary best linear unbiased prediction (SBLUP)45, which64

assumes a normal distribution for the genetics effects and a block-diagonal LD matrix,65

Regression with Summary Statistics (RSS)42, which has a class of priors for the genetic66

effects to select from but we compare against the mixture of two normal distributions67

prior29 and is optimised for the use of a shrunk LD matrix36 . We further compare with68

clumping and then p-value thresholding (P+T) implemented in the PLINK 2 software47
69

and the individual data implementation of the BayesR model31, which assumes a finite70

mixture or normal distributions (including a point mass at zero) prior on the genetic effects71

and has been optimised for time and memory efficiency. For h2
SNP estimation comparison72

we use the widely used summary data LD score regression (LDSC) method39, which relies73

on the expected relationship between, under a polygenic model, per variant chi-squared74

summary statistics and LD scores from a reference, RSS, which can estimate h2
SNP given the75

posterior mean of the genetics effects and the individual data Haseman-Elston regression76

(HEreg) method48, which relies on identity by state relatedness measures derived from a77

genetic relatedness matrix and the cross product of the phenotypes for pairwise individuals78

and is efficient on large data sets.79

We show that SBayesR performs similarly in terms of prediction accuracy to individual80

data methods and outperforms other state-of-the-art summary methods in five-fold cross-81

validation with 1.1 million HapMap 3 (HM3) variants and 10 real quantitative traits82

from the UKB. We further perform large-scale analyses for height and body mass index83

using 1.1 million HM3 variants and the full UKB European ancestry (both related and84
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unrelated individuals) data set and predict into two independent samples from the Health85

and Retirement Study (HRS) and the Estonian Biobank (ESTB). In these across biobank86

analyses, we show that by exploiting summary statistics from the largest GWAS meta-87

analysis (n ≈ 700, 000) on height and body mass index49 that on average across traits88

the SBayesR prediction accuracy improved by 6.8% relative to that estimated from an89

individual-level data BayesR analysis of data from the UKB (n ≈ 450, 000). Compared90

with commonly used state-of-the-art summary-based methods, SBayesR improved the91

prediction R2 by 4.1% relative to LDpred and by 28.7% relative to clumping and p-value92

thresholding. SBayesR gave comparable prediction accuracy to the recent RSS method,93

which has a similar algorithm, but at a computational time that is two orders of magnitude94

smaller. The methodology is implemented in a very efficient and user-friendly software95

tool titled GCTB30.96

Materials and Methods97

Data98

UK Biobank We used real genotype and phenotype data from the full release of the UK99

Biobank (UKB). The UKB is a prospective community cohort of over 500,000 individu-100

als from across the United Kingdom and contains extensive phenotypic and genotypic101

information about its participants50. The UKB data contains genotypes for 488,377 in-102

dividuals (including related individuals) that passed sample quality control (99.9% of103

total samples). A subset of 456,426 European ancestry individuals was selected using the104

protocol described in Yengo et al.49. To exclude related individuals, a genomic relationship105

matrix (GRM) was constructed with 1,123,943 HM3 variants further filtered for minor allele106

frequency (MAF) > 0.01, pHWE < 10−6 and missingness < 0.05 in the European subset,107

resulting in a final set of 348,580 unrelated (absolute GRM off-diagonal < 0.05) Europeans.108

Genotype data were imputed to the Haplotype reference consortium and UK10K panel,109

which was provided as part of the data release and described in50, and contained SNPs,110

short indels and large structural variants. Variant quality control included: removal of111

Bayesian multiple regression 5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 28, 2019. ; https://doi.org/10.1101/522961doi: bioRxiv preprint 

https://doi.org/10.1101/522961
http://creativecommons.org/licenses/by-nc-nd/4.0/


multi-allelic variants, SNPs with imputation info score < 0.3, retained SNPs with hard-call112

genotypes with > 0.9 probability, removed variants with minor allele count (MAC) 6 5,113

Hardy-Weinberg p-value (pHWE) < 10−5 and removed variants with missingness > 0.05,114

which resulted in 46,500,935 SNPs for the 456,426 individuals.115

Atherosclerosis Risk in Communities, 1000 Genomes and UK10K data The implemented116

summary statistics methodology requires an estimate of LD among genetic markers. In117

addition to the UKB, three data sets were used to calculate LD reference matrices. We118

used the genotype data from the Atherosclerosis Risk in Communities (ARIC)51 and119

GENEVA Diabetes study obtained via dbGaP. The ARIC+GENEVA data consisted of120

12,942 unrelated individuals determined by an absolute GRM off-diagonal relatedness121

cutoff of < 0.05. After imputation to the Phase 3 of the 1000 Genomes Project (1000G)52,122

1,182,558 HM3 SNPs (MAF > 0.01) were selected and available for analysis after quality123

control. Whole-genome sequencing data from the 1000G project was used for LD matrix124

reference calculation. These data were subsetted to a set of 397 individuals with European125

ancestry to be consistent with the LD reference used in Zhu and Stephens42. Whole-126

genome sequencing data from the UK10K project53 was also used for analysis. The UK10K127

contains 17.6 million genetic variants (excluding singletons and doubletons) in 3,642128

unrelated individuals after quality control, which was performed as per Yang et al.54.129

Health and Retirement Study and Estonian Biobank For out-of-sample validation of ge-130

netic predictors we used two cohorts that are independent of the UKB. We used genotypes131

imputed to the 1000G reference panel and phenotypes from 8,552 unrelated (absolute132

GRM off-diagonal < 0.05) participants of the Health and Retirement Study (HRS)55. After133

imputation and restricting variants with an imputation quality score > 0.3, MAF > 0.01134

and a pHWE > 10−6 there were 24,777,992 SNPs available for prediction. The Estonian135

Biobank56 is a cohort study of over 50,000 individuals over 18 years of age with phenotypic136

and genotypic data. For the prediction analysis we used data from 32,594 individuals137

genotyped on the Global Screening Array. These data were imputed to the Estonian138

reference57, created from the whole genome sequence data of 2,244 participants. Markers139
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with imputation quality score > 0.3 were selected leaving a total of 11,130,313 SNPs for140

prediction.141

Overview of summary statistics based Bayesian multiple regression142

We relate the phenotype to the set of genetic variants under the multiple linear regression143

model144

y = Xβ + ε, (1)

where y is an n× 1 vector of trait phenotypes, which has been centred, X is an n× p matrix145

of genotypes coded as 0, 1 or 2 representing the number of copies of the reference allele at146

each marker, β is a p× 1 vector of multiple regression coefficients (marker effects) and ε is147

the error term (n× 1). We can relate the multiple regression model to the estimates of the148

regression coefficients from p simple linear regressions b from GWAS, by multiplying (1)149

by D−1X′ where D = diag(x′1x1, . . . , x′pxp) to arrive at150

D−1X′y = D−1X′Xβ + D−1X′ε. (2)

Noting that b = D−1X′y is the vector (p× 1) of least-squares marginal regression effect

estimates and the correlation matrix between all genetic markers B = D−
1
2 X′XD−

1
2 , we

rewrite the multiple regression model as151

b = D−
1
2 BD

1
2 β + D−1X′ε. (3)

Assuming ε1, . . . , εn are independent N(0, σ2
ε ), the following likelihood can be proposed

for the multiple regression coefficients β152

L(β; b, D, B) := N (b; D−
1
2 BD

1
2 β, D−

1
2 BD−

1
2 ), (4)
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where N (ξ; µ, Σ) represents the multivariate normal distribution with mean vector µ and153

covariance matrix Σ for ξ. If individual level data are available then inference about β can154

be obtained by replacing D and B with estimates (D̂, B̂) from the individual level data. If155

individual level data are unavailable then we can replace D with D̂ = diag{1/[σ̂2(b1) +156

b2
1/n1], . . . , 1/[σ̂2(bp) + b2

p/np]}, where [nj, bj, σ̂2(bj)] are the sample size used to compute157

the simple linear regression coefficient, an estimate of the simple linear regression allele158

effect coefficient and σ̂(bj) the standard error of the effect for the jth variant respectively.159

This reconstruction of D̂ assumes that the markers have been centred to mean 0 (please see160

the Supplemental Note for a detailed reasoning of this reconstruction of D̂). If we make161

the further assumption that the genetic markers have been scaled to unit variance then162

we can replace D with D̂ = diag{n1, . . . , np}. Similarly, we replace B, the LD correlation163

matrix between the genotypes at all markers in the population, which the genotypes in164

the sample are assumed to be a random sample, with B̂ an estimate calculated from a165

population reference that is assumed to closely resemble the sample used to generate the166

GWAS summary statistics. Zhu and Stephens42 discuss further the theoretical properties of167

a similar likelihood. We assess the limits of replacing D and B with these approximations168

through simulation and real data analysis.169

We perform Bayesian posterior inference by assuming a prior on the multiple regression170

genetic effects and the posterior171

p(β|b, D, B) ∝ p(b|β, D, B)p(β|D, B). (5)

In this paper we implement the BayesR model28,31, which assumes that172

β j|π, σ2
β =



0 with probability π1,

∼ N(0, γ2σ2
β) with probability π2,

...

∼ N(0, γCσ2
β) with probability 1−∑C−1

c=1 πc,
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where C denotes the maximum number of components in the finite mixture model, which173

is prespecified. The γc coefficients are prespecified and constrain how the common marker174

effect variance σ2
β scales in each distribution. In previous implementations of BayesR175

the variance weights γ were with respect to the genetic variance σ2
g . For example, it176

is common in the BayesR model to assume C = 4 such that γ = (γ1, γ2, γ3, γ4)
′ =177

(0, 0.0001, 0.001, 0.01)′. This requires the genotypes to be centred and scaled and equates178

σ2
g = mσ2

β, where m is the number of variants. We relax this assumption to disentangle179

the relationship between these parameters and to maintain the flexibility of the model180

to assume scaled or unscaled genotypes. In this implementation, we let the weights181

be with respect to σ2
β and have a default γ = (0, 0.01, 0.1, 1.0)′, which maintains the182

relative magnitude of the variance classes as in the original model. The Supplementary183

Note details further the hierarchical model and hyperparameter prior specification. The184

Supplementary Note also details the derivation of the Markov chain Monte Carlo Gibbs185

sampling routine for sampling of the key model parameters θ = (β′, π′, σ2
β, σ2

ε )
′ from186

their full conditional distributions. SNP-based heritability estimation is performed by187

calculating h2
SNP = σ2

g/(σ2
ε + σ2

g), where the genetic variance σ2
g is calculated as Var(Xβ)188

for each sampled set of β(i) in iteration i of the MCMC chain (see Supplemental Note for189

further details).190

To illustrate why the Gibbs sampling routine proposed lends itself to the use of summary191

statistics, we focus on the full conditional distribution of β j under the proposed multiple192

regression model. To facilitate the explanation we make the simplifying assumption193

that C = 2 and γ = (γ1, γ2) = (0, 1). The full conditional distribution of β j under this194

assumption (see Supplemental Note) is195

f (β j|θ−β j , y) ∝ exp

[
−1

2
(β j − β̂ j)

2

σ2
ε /lj

]
, (6)

where lj = (x′jxj + σ2
ε /σ2

β) and β̂ j = x′jw/lj. The term lj only involves the diagonal196

elements of X′X and is easily calculated from summary statistics via X′X = D
1
2 BD

1
2 . For197
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β̂ j, we require x′jw, which is defined as198

rj = x′ jw = x′ j[y− X−jβ−j], (7)

where X−j is X without the jth column. This quantity can be efficiently stored and cal-

culated in each MCMC iteration via a right-hand side updating scheme. We define the

right-hand side X′y corrected for all current β as199

r∗ = X′y− X′Xβ, (8)

where r∗ is a vector of dimension p× 1. The jth element of r∗ can be used to calculate200

rj = x′ jw = r∗j + x′ jxjβ j. (9)

Therefore, once a variant has been chosen to be in the model its effect is sampled from (6),201

which is the kernel of the normal distribution with mean β̂ j and variance σ2
e /lj (see the202

Supplemental Note for more detail). After the effect for variant j has been sampled we203

update204

(r∗)(i+1) = (r∗)(i) − X′xj(β
(i+1)
j − β

(i)
j ). (10)

Importantly, after the initial reconstruction of X′y = Db from summary statistics, equation205

(10) only requires X′xj, which is the jth column of X′X. The operation in (10) is a very206

efficient vector subtraction and only requires the subtraction of the non-zero elements of207

the shrinkage estimator of the LD correlation matrix from Wen and Stephens36, which we208

perform using sparse matrix operations. The other elements of the Gibbs sampling routine209

are the same as the individual data model except for the sampling of σ2
ε , which is outlined210

in the Supplemental Note.211
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Genome-wide simulation study212

Before performing simulations using genome-wide variants, we first thoroughly tested213

and compared individual level and summary statistics based methods using a simulation214

study on two chromosomes (Supplemental Note and Figures S1, S2, S3 and S4). This215

small-scale simulation established the implementation of the method by comparing the216

individual data BayesR method with SBayesR using the full LD matrix constructed from217

the cohort used to perform the GWAS, which should theoretically give equivalent results.218

Furthermore, it allowed for a thorough investigation of the method’s properties as a219

function of genetic architecture and LD reference in reasonable computing time relative220

to genome-wide analyses. In particular, we observed that SBayesR outperformed other221

summary statistics methods when the genetic architecture of the simulated trait contained222

very large genetic effects and a polygenic background, which is expected due to the very223

flexible SBayesR prior (Supplemental Figure S3). Overall at the scale of two chromosomes,224

SBayesR generally outperformed other methods in terms of prediction accuracy and225

performed well at h2
SNP estimation.226

To investigate the performance of the methodology at a genome-wide scale, we simu-227

lated quantitative phenotypes using 1,094,841 genome-wide HM3 variants and a random228

subset of 100,000 individuals from the 348,580 unrelated European ancestry individuals in229

the UKB data set. For the same set of 1,094,841 variants, we generated two independent230

tuning and validation genotype sets from the remaining 248,580 unrelated European indi-231

viduals each containing 10,000 individuals. The 1,094,841 variant subset was formed from232

the 1,365,446 HM3 SNPs further filtered on MAF> 0.01, strand ambiguous SNPs (as do233

Vilhjálmsson et al.44 and Bulik-Sullivan et al.39), removal of long-range LD regions (defined234

in Bycroft et al.50 Table S13 and includes the MHC), which increased model stability across235

a large set of phenotypes, and overlapped with the 1000G genetic map downloaded from236

joepickrell/1000-genomes-genetic-maps. The 1000G genetic map is required for use in the237

LD matrix shrinkage estimator36. The genetic map files contain interpolated map positions238

for the CEU population generated from the 1000G OMNI arrays. The shrinkage estimator239
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of the LD matrix36, shrinks the off-diagonal entries of the LD correlation matrix toward240

zero and is required for the Regression with Summary Statistics (RSS)42 and SBayesR241

methods.242

The simulation study on two chromosomes established that the LD reference cohort from243

50,000 random individuals from the UKB gave the highest prediction accuracy and lowest244

bias in h2
SNP estimation (Supplemental Note). The overlap between this random subsample245

with the 100,000 random individuals used to generate the simulated phenotypes was 13,967.246

For this LD reference cohort, chromosome-wise LD matrices i.e., all inter chromosomal247

LD is ignored, were built and the shrinkage estimator of the LD matrix calculated using248

an efficient implementation in the GCTB software. The calculation of the shrunk LD249

matrix requires the effective population sample size, which we set to be 11,400 (as in250

Zhu and Stephens42), the sample size of the genetic map reference, which corresponds251

to the 183 individuals from the CEU cohort of the 1000G and the hard threshold on the252

shrinkage value, which we set to 10−3. This threshold gave a good balance between253

computational efficiency and accuracy with, on average, each SNP having 4,113 (SD=1,211)254

non-zero elements across the autosomes (Figure S5). We further stored the shrunk LD255

matrix in sparse matrix format (ignoring matrix elements equal to 0) for efficient SBayesR256

computation. For LDpred44, SBLUP45 and PLINK clumping and then p-value thresholding257

(P+T) (implemented in the PLINK 2 software47), a separate genotype data set is required258

for LD correlation reference and utilisation within each method’s program. This was set259

to be the same set of genotypes from 50,000 individual used to calculate the LD reference260

matrix for SBayesR and RSS.261

Two genetic architecture scenarios were generated: 10,000 causal variants sampled262

under the SBayesR model i.e., 2500, 5000, and 2500 variants from each of N(0, 0.01σ2
β),263

N(0, 0.1σ2
β), and N(0, σ2

β) distributions respectively and σ2
β = 1. For the second architecture,264

50,000 causal variants were sampled from a single standard normal distribution. For each265

replicate a new sample of causal variants was chosen at random from the set of 1,094,841266

variants. For each scenario, 10 simulation replicates were generated under the multiple267
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regression model using the phenotype simulation tool in the GCTA software58 and centred268

and scaled genotypes for all 100,000 individuals. For each architecture the residual variance269

was scaled such that the total h2
SNP was 0.1, 0.2 and 0.5, which led to a total of six simulation270

scenarios.271

For each of the the six scenarios, simple linear regression for each variant was run using272

the –linear option in the PLINK 2 software for each of the 10 simulation replicates to273

generate summary statistics. For each of the simulation scenarios the following methods274

were used to estimate the genetic effects: LDpred, RSS, SBLUP, P+T, BayesR31, and SBayesR.275

For h2
SNP comparison we ran LD score regression (LDSC)39 and Haseman-Elston regression276

(HEreg) in the GCTA software48,59. HEreg requires a GRM, which was built from the277

1,094,841 genome-wide HM3 variants in the GCTA software. For LDpred, we specified278

h2
SNP to be equal to the true simulated value, specified the number of SNPs on each side of279

the focal SNP for which LD should be adjusted to be 350 (approximately 1,094,841/3,000280

as suggested by Vilhjálmsson et al.44), and calculated effect size estimates for all of the281

10 fraction of non-zero effects pre-specified parameters, which included LDpred-inf, 1,282

0.3, 0.1, 0.03, 0.01, 0.003, 0.001, 0.0003, and 0.0001. For RSS, analyses were performed for283

each chromosome with the chromosome-wise shrunk LD matrices calculated in GCTB and284

stored in MATLAB format. The RSS-BSLMM model was run for 2 million MCMC iterations285

with 1 million as burn in and a thinning rate of 1 in 100 to arrive at 10,000 posterior samples286

for each of the model parameters. For each chromosome, the posterior mean over posterior287

samples for the SNP effects and h2
SNP estimates was used. The chromosome wise h2

SNP288

estimates were summed to get the genome-wide estimate. For SBLUP, we used the GCTA289

software implementation and set the shrinkage parameter λ = m(1/h2
SNP− 1) for each true290

simulated h2
SNP = (0.1, 0.2, 0.5) and m = 1, 094, 841 and the LD window size specification291

was set to 1 MB. LDSC was run using LD scores calculated from the 1000G Europeans292

provided by the software and h2
SNP estimation performed. For P+T, we used the PLINK 2293

software to clump the GWAS summary statistics discarding variants within 1 MB of and294

in LD R2 > 0.1 with the most associated SNP in the region. Using these clumped results,295
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we generated polygenic risk scores for sets of SNPs at the following p-value thresholds:296

5×10−8, 1×10−6, 1×10−4, 0.001, 0.01, 0.05, 0.1, 0.2, 0.5, and 1.0. BayesR was run using297

a mixture of four normal distributions model with distribution variance weights γ = (0,298

10−4, 10−3, 10−2)′. BayesR was run for 4,000 iterations with 2,000 taken as burn in and a299

thinning rate of 1 in 10. For SBayesR, the MCMC chain was run for 4,000 iterations with300

2,000 taken as burn in and a thinning rate of 1 in 10 and run with four distributions and301

variance weights γ = (0, 0.01, 0.1, 1)’. The posterior mean of the effects and the proportion302

of variance explained over the 200 posterior samples was taken as the parameter estimate303

for each scenario replicate for both methods.304

To assess prediction accuracy, we calculated the EGV (using the score function in the305

PLINK 2 software) for each individual using the genotypes from the 10,000 individual306

tuning and validations data sets and the genetic effects estimated from each method.307

Parameter tuning was performed for LDpred and P+T, where for each simulation replicate308

the prediction accuracy was assessed for each of the pre-specified fraction of non-zero309

effects parameters for LDpred and the p-value thresholds for P+T. The parameter that310

gave the maximum prediction R2 in the tuning data set was then used for calculating the311

EGV for each individual in the validation data set. SNP effects from BayesR and SBayesR312

were estimated using scaled genotypes and thus each variant’s effect was divided by313 √
2qj(1− qj), where qj is the minor allele frequency from the validation cohort of the jth314

variant, before PLINK scoring was performed. The prediction R2 was calculated via linear315

regression of the true simulated phenotype on that predicted from each method.316

Application to 10 quantitative traits in the UK Biobank317

To assess the methodology in real data, we performed five-fold cross-validation using318

phenotypes and genotypes from 348,580 unrelated individuals of European ancestry from319

the full release of the UKB data set. We chose 10 quantitative traits including: standing320

height (n=347,106), basal metabolic rate (BMR, n=341,819), heel bone mineral density321

T-score (hBMD, n=197,789), forced vital capacity (FVC, n=317,502), body mass index (BMI,322

n=346,738), body fat percentage (BFP, n=341,633), forced expiratory volume in one-second323
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(FEV, n=317,502), hip circumference (HC, n=347,231), waist-to-hip ratio (WHR, n=347,198)324

and birth weight (BW, n=197,778). All phenotypes were pre-adjusted for age, sex and the325

first ten principal components using the R programming language60. Principal components326

were calculated using high-quality genotyped variants as defined in Bycroft et al.50 that327

passed additional quality control filters (as applied in the European unrelated UKB data)328

that were LD pruned (R2<0.1) and had long-range LD regions removed (Bycroft et al.50
329

Table S13) leaving 137,102 SNPs for principal component calculation in the European330

unrelated individuals using flashPCA61. Following covariate correction the residuals were331

standardised to have mean zero and unit variance and finally rank-based inverse-normal332

transformed. A set of 5,000 individuals was kept separate for LDpred and P+T parameter333

tuning. To perform the cross-validation, the remaining 343,580 individuals were randomly334

partitioned into five equal sized disjoint subsamples. For each fold analysis, a single335

subsample was retained for validation with the remaining four subsamples used as the336

training data. This process was repeated five times, with each of the five subsamples used337

exactly once as the validation data. The SNP set used for analysis was the same set of338

1,094,841 HM3 variants described in the genome-wide simulation study.339

We generated summary statistics for each pre-adjusted trait in the training sample340

in each fold by using PLINK 2 to run simple linear regression for all variants. Using341

the individual level data and the summary statistics we performed analyses using the342

following methods: LDpred, RSS, SBLUP, P+T, BayesR, and SBayesR. For h2
SNP comparison343

we ran LDSC and HEreg. The same shrunk sparse reference LD correlation matrix from344

the genome-wide simulation study was used for SBayesR and RSS analyses. For LDpred,345

we specified the number of SNPs on each side of the focal SNP for which LD should346

be adjusted to be 350, and calculated effect size estimates for all of the 10 fraction of347

non-zero effects pre-specified parameters, which included LDpred-inf, 1, 0.3, 0.1, 0.03,348

0.01, 0.003, 0.001, 0.0003, and 0.0001. The optimal parameter was chosen by predicting349

into the independent subset of 5,000 individuals initially partitioned off and choosing that350

which had the highest prediction R2 when the predicted phenotype was regressed on the351
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true simulated phenotype. For RSS, analyses were performed for each chromosome with352

the chromosome-wise shrunk LD matrices calculated in GCTB and stored in MATLAB353

format. The RSS-BSLMM model was run for 2 million MCMC iterations with 1 million as354

burn in and a thinning rate of 1 in 100 to arrive at 10,000 posterior samples for each of the355

model parameters. For each chromosome, the posterior mean over posterior samples for356

the SNP effects and h2
SNP estimates was used. The chromosome wise h2

SNP estimates were357

then summed to get the genome-wide estimate. For SBLUP, we used the GCTA software358

implementation, which requires the specification of the λ = m(1/h2
SNP − 1) parameter.359

For each fold, h2
SNP was taken to be the estimate from HEreg and m = 1, 094, 841. The LD360

window size specification was set to 1 MB for ease of computation. SBLUP and LDpred361

were run on each chromosome separately to improve computational efficiency. LDSC was362

run using LD scores from the 1000G European data and h2
SNP estimation performed. For363

P+T, we ran the same clumping procedure and calculated polygenic risk scores for the364

same set of p-value thresholds as in the simulation studies. BayesR and SBayesR were365

run using the same protocols as in the simulation studies. SNP effects from BayesR and366

SBayesR were again rescaled before PLINK scoring was performed.367

To assess prediction accuracy, we calculated EGVs using the genotype data from the368

independent validation retained set in each fold. The PLINK 2 software was used to369

calculate EGVs for all methods and the prediction R2 calculated via linear regression of370

the true phenotype on that calculated from each method.371

Across biobank prediction analysis372

To investigate how the proposed methods scale and perform in very large data sets, we373

analysed the full set of unrelated and related (n = 456, 426) UKB European ancestry374

individuals and used summary statistics from the largest meta-analysis of height and375

BMI49. For these analyses, the same set of 1,094,841 genome-wide HM3 variants described376

in the simulations was used. The set of traits was limited to those that were present in the377

UKB and had large independent validations sets, which included the HRS and the ESTB56,378

which contain imputed genotype and phenotype information on BMI and height.379
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To generate a baseline for comparison between the individual data BayesR method380

and the SBayesR method we first analysed data from the same set of individuals and381

variants from the full set of unrelated and related UKB individuals. BMI and height382

phenotypes were pre-adjusted for age, sex and the first ten principal components using383

the R programming language as per the cross-validation. We generated summary statistics384

for SBayesR analysis for height and BMI using a linear mixed-model to account for sample385

relatedness in the BOLT-LMM v2.3 software13,25 for the 1,094,841 HM3 variants in the full386

UKB data set. Using these summary statistics, we ran SBayesR for 4,000 iterations with387

2,000 taken as burn in and a thinning rate of 1 in 10 and four distributions and variance388

weights γ = (0, 0.01, 0.1, 1)’. For comparison in the full UKB data set, we ran the individual389

level BayesR method using a mixture of four normal distributions model with distribution390

variance weights γ = (0, 10−4, 10−3, 10−2)′. BayesR was run for 4,000 iterations with 2,000391

taken as burn in and a thinning rate of 1 in 10. The posterior mean of the sampled genetic392

effects and h2
SNP over the 200 posterior samples was taken as the parameter estimate for393

each trait for both methods.394

Motivated by the hypothesis that summary statistics methodologies can increase pre-395

diction accuracy over large-scale individual level analyses by utilising publicly available396

summary statistics from very large GWASs, we took the summary statistics from the largest397

meta-analysis of BMI and height49 and analysed them using SBayesR, RSS and LDpred,398

which were the best performing summary based methods (in terms of prediction accuracy)399

in the cross-validation. We subsetted the set of 1,094,841 HM3 variants to 982,074 vari-400

ants that overlapped with those in both the BMI and height summary statistics sets. The401

summary based methodology implicitly assumes that the summary statistics have been402

generated on the same set of individuals42. Empirically we observed that the methodology403

can tolerate deviations from this assumption up to a limit. To improve method convergence404

we removed variants from the Yengo et al.49 summary statistics that had a per variant405

sample size that deviated substantially from the mean of the sample size distribution over406

all variants, which was also performed by Pickrell et al.62 and recommended by Zhu and407
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Stephens42. To minimise the variants removed, we interrogated the distributions of per408

variant sample size in each of the BMI and height summary statistics sets and removed409

variants in the lower 2.5th percentile and upper 5th percentile of the per variant sample410

size distribution for BMI and in the lower 5th percentile for height (Figure S6). This left411

932,969 and 909,293 variants with summary information for height and BMI respectively.412

These sets of variants were also used in the LDpred and RSS analyses.413

SBayesR was run as above with the default γ for BMI and γ = (0, 10−4, 10−3, 1)′ for414

height. Empirically, we observed that this constraint on the elements of γ was a further415

requirement for SBayesR model convergence using these height summary statistics. For416

LDpred, we specified the number of SNPs on each side of the focal SNP for which LD417

should be adjusted to be 350, and calculated effects size estimates for all of the 10 fraction418

of non-zero effects pre-specified parameters, which included LDpred-inf, 1, 0.3, 0.1, 0.03,419

0.01, 0.003, 0.001, 0.0003, and 0.0001. The optimal parameter was chosen by predicting420

into the HRS data set and choosing the parameter that had the highest prediction R2 when421

the predicted phenotype was regressed on the true phenotype. This optimal parameter422

was then used for prediction into the ESTB. For RSS, analyses were performed for each423

chromosome with the chromosome-wise shrunk LD matrices from the simulation and424

cross-validation analyses used. The RSS-BSLMM model was run for 2 million MCMC425

iterations with 1 million as burn in and a thinning rate of 1 in 100 to arrive at 10,000426

posterior samples for each of the model parameters. For each chromosome, the posterior427

mean over posterior samples for the SNP effects and h2
SNP estimates was used. The428

chromosome-wise h2
SNP estimates were then summed to get the genome-wide estimate.429

To assess prediction accuracy, we calculated EGVs using the genotype data from the430

independent test data sets using the PLINK 2 software for all methods. Prediction R2 was431

calculated via linear regression of the true phenotype on that estimated from each method,432

which was used as a measure of prediction accuracy for each trait.433
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Results434

Genome-wide simulation study435

Across the simulation scenarios, we observed that BayesR or SBayesR gave the highest or436

equal highest mean validation prediction R2 across the 10 replicates (Figure 1). SBayesR437

showed the highest or equal highest mean prediction R2 of the summary statistics method-438

ologies across all scenarios. The difference between the mean prediction R2 from BayesR439

and that from SBayesR was minimal for less heritable traits with SBayesR showing a440

marginally higher mean R2 for lower heritable traits with 50k causal variants. Prediction441

R2 for BayesR was maximally greater than SBayesR when h2
SNP = 0.5 and for the 10k causal442

variant scenario with a relative increase of 13.2% (from 0.356 to 0.403). P+T performed443

well across scenarios and showed increased mean prediction R2 relative to LDpred-inf and444

SBLUP in the 10k causal variant scenarios but did not perform substantially better than445

LDpred tuned for the polygenicity parameter across all scenarios. RSS showed the closest446

mean prediction R2 to SBayesR in the 10k causal variant simulation scenarios. Similarly,447

SBLUP showed a mean prediction R2 close to SBayesR in the 50k causal variant simulation448

scenarios. SBayesR showed the largest nominally significant (p-value=0.015) improvement449

in prediction R2 over other summary statistics methodologies in the 10k causal variant450

scenario and h2
SNP = 0.5 with an relative difference in mean of 3.5% (from 0.344 to 0.356)451

over RSS.452

Across all simulation scenarios, all methods except RSS showed minimal bias in h2
SNP453

estimation (Figure S7), with HEreg showing the least bias across all scenarios. SBayesR454

maintained a small upward bias across all simulation scenarios and a maximum upward455

relative on mean bias of 5.0% (0.105 compared to 0.1) in the 10k causal variant scenarios456

(Figure S7). Similar to RSS, LDSC maintained a small downward bias in mean h2
SNP with a457

maximum of relative deviation of 6.4% (0.468 compared to 0.5) for the h2
SNP = 0.5 and 10k458

causal variant scenario.459

We compared the CPU time and memory usage between all methods in each scenario.460

P+T, HEreg and LDSC were not compared as they required minimal relative computational461
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resources but do not estimate the genetic effects. For the Bayesian methodologies, runtime462

is dependent on the length of the MCMC chain. The chain length of 4,000 MCMC iterations463

for BayesR was chosen as a compromise between maximum prediction accuracy and464

computational efficiency. We observed that a marginal relative gain in the mean prediction465

accuracy of 0.5% (e.g., 0.403 to 0.405) could be achieved if the chain was run for 10,000466

iterations (mean runtime of 110 hours) (Figure S8) at a cost of twice the runtime. An467

MCMC chain length of 4,000 iterations was chosen for SBayesR to allow direct comparison468

with the results from BayesR with no improvement in mean prediction R2 if a chain length469

of 100,000 (mean runtime of 15 hours) was used (Figure S9). We observed substantial470

differences between prediction accuracy results from RSS when the chain length was471

reduced to 200,000 iterations (in an attempt to reduce computational time) (Figure S10)472

and we thus maintained an MCMC chain length of 2 million iterations, which was used473

in Zhu and Stephens42. Across the simulation scenarios, SBayesR had the shortest mean474

runtime (approximately one hour) with a greater than 10-fold improvement over the475

second quickest LDpred (Figure S12). SBayesR required ≈ 50 GB of memory usage, which476

was similar to SBLUP (35-40 GB), although SBLUP had a much longer on mean runtime.477

SBayesR required half the memory of the individual data BayesR, which has been highly478

optimised for time and memory efficiency, and showed a seven-fold improvement over479

LDpred and a 30-fold improvement over RSS (Figure S13). We note that the memory480

requirements for SBayesR are fixed for this set of variants for an arbitrary number of481

individuals, which is not the case for the individual level BayesR method. The total482

time and memory used to compute the SBayesR LD reference is not included in these483

assessments. The building of the sparse LD reference for SBayesR took in total 13 and484

1/3 CPU days and approximately 500 GB of memory. SBayesR can compute the sparse485

LD matrix in parallel via dividing each chromosome into genomic ‘chunks’. We used 100486

CPUs to compute the LD matrix, which brought the average runtime and memory for487

computing each LD matrix chunk to 3.25 hours and 5 gigabytes. These chromosome-wise488

LD matrices are a once off computation cost that can be distributed with the program and489
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were used for all SBayesR and RSS analysis in the genome-wide simulation and further490

analyses using this HM3 variant set.491

Application to 10 quantitative traits in the UK Biobank492

We compared all methods in terms of prediction accuracy and h2
SNP estimation across493

10 quantitative traits in the UKB using five-fold cross-validation. SBayesR consistently494

improved or equalled the mean prediction R2 of all other methods, including the individual495

level BayesR method, across the five folds for 8/10 traits (Figure 2). BayesR was the only496

method to exceed SBayesR in mean prediction R2 and showed a relative increase of 4.3%497

(from 0.187 to 0.195) for heel BMD and 4.3% (from 0.349 to 0.364) for height. Heel BMD,498

height and FVC showed nominal significance (p-value = (0.007, 0.029, 0.011) respectively)499

in prediction accuracy improvement over RSS with a relative improvement in mean500

prediction R2 of 2.5% (from 0.182 to 0.187), 2.0% (from 0.342 to 0.349) and 2.5% (from 0.123501

to 0.127) respectively (Figure 2). SBayesR showed larger improvements relative to LDpred502

tuned for the polygenicity parameter with SBayesR showing mean relative prediction R2
503

increases over LDpred ranging from 2% (BFP) to 37% (hBMD).504

For all traits except height, h2
SNP estimates were consistent across all methods (Figure505

S14). Across all traits except BW and FEV, SBayesR gave the highest mean h2
SNP estimate506

and LDSC the lowest mean value, with the largest deviation in mean LDSC estimates from507

other methods for hBMD and height. On mean across the five folds, relative deviations508

in mean h2
SNP estimates between SBayesR and HEreg were between 1.0%-14.6% with the509

largest deviations being for WHR (6.4%), BFP (9.7%) and BW (14.7%). Similar ranges in510

relative deviations from mean HEreg h2
SNP estimates were observed for other methods,511

with BayesR showing a range of 1.8%-20.1% and RSS 1.2%-23.1%.512

We summarised the time and memory requirements of BayesR, SBayesR, RSS, LDpred513

and SBLUP for all traits across the five folds. P+T, HEreg and LDSC are very time514

and memory efficient and we therefore did not summarise their resource requirements.515

SBayesR on mean took approximately one to two hours and required 50 GB of memory to516

complete a genome wide analysis (1,094,841 HM3 variants) with variability depending517
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on the number of non-zero variants in the model (Figures 3 and S17). For example, BFP518

and BMI had approximately 120,000 non zero effects whereas hBMD had approximately519

30,000 and consequently the shortest runtime (Figure 3). The difference in the number520

of non-zero effects in the model for these traits may be driven in part by the sample size521

differences between BMI (n=346,738) and hBMD (n=197,789). RSS had the longest runtime522

with a total on mean CPU runtime being in the order of 400 hours. Again, shortening of523

the chain to 200,000 iterations to reduce runtime decreased the prediction accuracy of RSS524

with marginal changes in mean h2
SNP estimates (Figures S15 and S16). LDpred was the525

closest to SBayesR in terms of runtime with total time being 25 hours on mean across the526

traits. SBayesR showed a six-fold memory improvement over BayesR and LDpred and a 30527

fold improvement over RSS (Figure S17). The improvements in memory between SBayesR,528

LDpred and SBLUP are likely a result of not having to compute the LD correlations for529

each fold in each trait. The memory improvement over RSS is due to the sparse matrix530

storage and computation in SBayesR.531

Across biobank prediction analysis532

Overall, SBayesR gave similar but consistently higher prediction R2 values than BayesR533

for both BMI and height in both the HRS and ESTB samples (Figure 4), when the summary534

statistics from the full European ancestry (related and unrelated individuals) UKB data535

set were used (n = 453, 458 and n = 454, 047 for BMI and height respectively). When the536

summary statistics from Yengo et al.49 were used, a further improvement in prediction537

R2 was observed for SBayesR and RSS, except for height and in HRS (Figure 4). SBayesR538

and RSS gave the same prediction R2 values for BMI with marginal increases of SBayesR539

over RSS for height, which is consistent with the results from the cross-validation. The540

maximum increase in SBayesR prediction R2 relative to the BayesR analysis using just541

the UKB data for BMI was 11.3% (from 0.106 to 0.118) and 4.9% (from 0.307 to 0.322) for542

height in the ESTB sample when the summary statistics from the49 data set were used.543

The maximum increase in prediction R2 relative to that from the predictor built from the544

GCTA-COJO analysis thresholded at p-value< 0.001 performed in Yengo et al.49 for BMI545
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was 32.5% (from 0.089 to 0.118) in the ESTB. For height, we observed a maximum relative546

increase of 31.6% (from 0.244 to 0.321) in prediction R2 over the P+T predictor of Yengo et547

al.49 in the HRS sample when the summary statistics from the full UKB data set were used548

for SBayesR analysis.549

Discussion550

Clinically relevant genetic predictors for complex traits and disorders will require the551

analysis of data from large consortia and biobank initiatives, with sample sizes for GWASs552

set to soon regularly reach into the millions of individuals. Efficient methods that produce553

theoretically optimal predictors under the multiple regression model will therefore be554

critical to this goal. We have presented one solution, that rests on an extension of the555

established summary statistics methodological framework to include a class of point-556

normal mixture prior Bayesian regression models, which encompasses many previously557

proposed models27,28,31.558

We observed that the cohort used to construct the LD reference matrix influenced the559

prediction accuracy and h2
SNP estimation. The LD reference built from a random sample of560

50k individuals from the UKB showed the maximum prediction accuracy and smallest561

upward bias in h2
SNP estimation across all scenarios in the small-scale simulation on two562

chromosomes although these were marginal relative to those from the smaller UK10K563

sequence reference. We anticipate that the UKB will contribute to future large-scale GWASs564

and thus we anticipate that the LD reference built from a large subset of this cohort in this565

study will be highly beneficial to future summary statistics analyses of complex traits.566

The simulation studies thoroughly compared prediction methods as a function of genetic567

architecture, LD reference and other parameters, with SBayesR generally outperforming568

other methods. In simulation, P+T performed well across scenarios and showed increased569

mean prediction R2 relative to SBLUP and LDpred-inf in a subset of the simulation570

scenarios but did not perform better than LDpred tuned for the polygenicity parameter571

across all scenarios, which is contrary to observations made by Mak et al.46. In the five-fold572
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cross-validation, SBayesR consistently improved or equalled the mean prediction R2 of all573

other methods, with a marginal improvement over the individual level BayesR method for574

most traits. SBayesR maintained a minimal upward bias across all simulation scenarios575

(maximum upward bias of ≈ 5.0%) and showed h2
SNP estimates close to that from HEreg576

in the cross-validation analysis. SBayesR gave consistently higher but similar prediction577

R2 values than BayesR for both BMI and height in across biobank predictions into the578

HRS and ESTB samples. This was both the case when the summary statistics from the full579

European UKB data set were used with a further improvement in prediction R2 observed580

when the summary statistics from Yengo et al.49 were used. The maximum increase in581

prediction R2 relative to the prediction R2 from Yengo et al.49 for height was in the the582

HRS sample when the summary statistics from the full UKB data set were used 31.6%583

(from 0.244 to 0.321). The maximal prediction accuracy in HRS and ESTB was R2 = 0.321584

(correlation between outcome and predictor of
√

0.32 = 0.57), which is starting to reach585

the initial estimates of h2
SNP of 0.45 in Yang et al.21.586

The observation that SBayesR improves on the BayesR prediction accuracy in real data587

cross-validation and independent out-of-sample prediction is contrary to expectation.588

In the small-scale simulation we observed that SBayesR using the full LD correlation589

matrix and BayesR, which are theoretically equivalent, returned equal on mean prediction590

accuracies and h2
SNP estimates and thus the numerical implementation is not substantially591

superior. When we scaled the simulation to the whole genome, we observed that BayesR592

showed relatively smaller improvements over SBayesR for lower heritable traits in the593

10k causal variant scenarios and for 50k causal variants scenarios SBayesR improved on594

BayesR mean prediction R2 for lower heritability traits, which was also the case for lower595

heritable traits in the cross-validation. For lower heritable traits the length of the BayesR596

MCMC chain may play a larger role with marginal improvements in prediction accuracy597

observed for longer BayesR chains for the 10k causal variants and h2
SNP = 0.5 genome-598

wide simulation scenario. A further factor is the impact of using summary statistics results599

from a LMM (e.g., Loh et al.25), where the model is derived under the assumption that600
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the summary statistics have been generated from a least squares analysis. The use of601

summary statistics from a LMM will affect the reconstruction of X′y. One further, and602

likely major, difference between these two methods is the ignorance of interchromosomal603

LD in the SBayesR method, where interchromosomal LD may result from genetic sampling604

in finite population sizes, population structure and non-random mating (e.g., assortative605

mating). The incorporation of this information appears only advantageous for predictions606

performed within an independent subset from the same population e.g., the partitioning607

of the UKB in the simulation studies and in cross-validation. The HRS and ESTB data608

are unlikely to contain the same interchromosomal LD correlation structure and thus its609

inclusion in the BayesR analysis may be partially detrimental as it comes into the model610

as informative within data set (UKB) but as noise across data sets (UKB to HRS/ESTB).611

One hypothesis for this is that the HRS and ESTB populations have different patterns of612

assortative mating for specific traits than in the UKB, or individuals in HRS or ESTB are613

more randomly mated than in those in the UKB.614

The method is implemented in a very efficient and user-friendly software tool that615

maximises computational efficiency via precomputing and efficiently storing sparse LD616

matrices that account for the variation in the number of LD ‘friends’ for each variant. In617

simulation and cross-validation we showed large fold improvements in time and memory618

over current state-of-the-art individual and summary data methods. The improvements in619

efficiency are not just a result of the computational implementation but are a contributed620

to by the faster convergence of the the Gibbs sampling algorithm. This is evidenced by the621

comparison with RSS, which requires a much longer chain length to arrive at maximum622

prediction accuracy. Importantly, once the GWAS effect size estimates have been generated623

the method’s runtime is independent of the sample size making it applicable to an arbitrary624

number of individuals.625

We found that model convergence is sensitive to inconsistencies in summary statistics626

generated from external consortia and meta-analyses. We observed that the shrinkage627

estimator of the LD matrix36 can assist with more stable model convergence. We observed628
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a persistent small upward bias in h2
SNP estimation, which was also observed by Zhu and629

Stephens42. We did not observe this upward bias in the RSS analyses, which may in part630

be attributed to the much larger LD reference used. Zhu and Stephens42 hypothesised631

that the persistent upward inflation to be due to deviations from the assumption of small632

effects underlying the RSS model. However, we did not observe large differences in633

upward bias in h2
SNP estimation between simulation scenarios containing very large effects634

compared to scenarios with effect sizes similar to those for very polygenic traits. It is635

difficult to assess the impact of the small effect assumption versus the contribution from the636

replacement of the D and LD matrices with estimates reconstructed from GWAS summary637

statistics from external references or a subset of the GWAS data. Through simulation,638

we observed that this upward bias can be minimised through an optimally sparse and639

sufficiently large LD reference. The impact from residual population stratification in the640

GWAS summary statistics is another potential source in upward bias in h2
SNP estimates641

but was not investigated via simulation.642

There are distinct practical advantages in estimating h2
SNP and the genetic effects within643

one framework with the method encompassing many available summary statistics method-644

ologies. Zhu and Stephens42 presented a similar omnibus method and showed the ca-645

pacity of this similar methodology for variant mapping. Although we haven’t assessed646

our method’s effectiveness for mapping causal variants we expect it to be capable of647

performing this task, which is to be inherited from the individual-level BayesR method’s648

capacity to perform this task31,63,64. SBayesR estimates all parameters from the data and649

does not require any post-hoc tuning of prediction relevant parameters in a test data subset650

(as in the polygenicity parameter in LDpred or P+T), which has practical advantages in651

terms of relieving the analytical burden of tuning these parameters in an external data652

set. Furthermore, this leads to more generalisable predictors as the parameters have been653

optimised over all possible values rather than selected from a finite grid.654

The method assumes certain ideal data constraints such as summary data computed from655

a single set of individuals at fully observed genotypes as well as minimal imputation error656
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and data processing errors such as allele coding and frequency mismatch. Summary data657

in the public domain often substantially deviate from these ideals and can contain residual658

population stratification, which is not accounted for in this model. Practical solutions to659

these ideal data deviations include the use of data that are imputed and the restriction of660

analyses to variants that are known to be imputed with high accuracy as in Bulik-Sullivan661

et al.39 and Zhu and Stephens42. We found that the simple filtering of SNPs with sample662

sizes that deviate substantially from the mean across all variants from an analysis, as663

in Pickrell et al.62, when using summary statistics from the public domain substantially664

improved model convergence. We explored LD pruning of variants to remove variants665

in very high LD (R2 > 0.99) but found that this did not substantially improve model666

convergence or parameter estimates although this was not formally assessed. However,667

removal of high LD regions, such as the MHC region improved model convergence for real668

traits. High LD regions are expected to have the potential to be extreme sources of model669

misspecification with the model expecting summary data in to be very similar for variants670

in high LD. Small deviations due to data error not expected in the model likelihood at671

these loci thus have high potential to lead to model divergence (see Zhu and Stephens42
672

for further discussion). Future research into efficient diagnostic tools and methods that can673

assist analysts with the assessment of sources of bias and error and summary data quality674

would be highly beneficial.675

We expect that as GWAS sample sizes continue to grow that polygenic predictions will676

become more accurate. We expect that they will be important in future clinical settings, for677

improving prediction in diverse populations and for understanding quantitative genetics678

more generally. The very efficient implementation of our method makes the analysis of679

millions of variants and an arbitrary number of individuals possible. The implementation680

and model are very flexible and can easily incorporate other model formalisations such as681

understanding the contributions of genomic annotations to prediction and h2
SNP enrich-682

ment such as in41,65 or understanding genetic architecture via summary statistics versions683

of models such as those presented in Gazel et al.66 and Zeng et al.30.684
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Figure 1 Prediction accuracy performance for the UKB genome-wide simulation. Each panel displays boxplot summaries of the
prediction R2 (y-axis) in the 10,000 individual validation data set for each method (x-axis) across the 10 replicates. The simulation
study contained six scenarios that varied in the number of causal variants, 10,000 (10k) and 50,000 (50k), and the true simulated
heritability h2

SNP = (0.1, 0.2, 0.5). The two genetic architecture scenarios generated were: 10,000 causal variants sampled under
the SBayesR model i.e., 2500, 5000, and 2500 variants from each of N(0, 0.01), N(0, 0.1), and N(0, 1) distributions respectively,
and 50,000 causal variants sampled from a standard normal distribution. For each replicate a new sample of causal variants was
chosen at random from the set of 1,094,841 HapMap 3 variants. In each panel LDpred has two boxplot summaries, one that has
been optimised for the polygenicity parameter and the other is LDpred-inf, which is displayed for comparison with SBLUP. The
mean prediction accuracy across the 10 replicates is displayed above the boxplot for each method.
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Figure 2 Prediction accuracy in five-fold cross-validation for 10 quantitative traits in the UK Biobank. Panel headings de-
scribe the abbreviation for 10 quantitative traits including: standing height (HEIGHT, n=347,106), basal metabolic rate (BMR,
n=341,819), heel bone mineral density T-score (hBMD, n=197,789), forced vital capacity (FVC, n=317,502), body mass index (BMI,
n=346,738), body fat percentage (BFP, n=341,633), forced expiratory volume in one-second (FEV, n=317,502), hip circumference
(HC, n=347,231), waist-to-hip ratio (WHR, n=347,198) and birth weight (BW, n=197,778). Each panel shows a boxplot summary
of the prediction R2 across the five folds with the mean across the five folds displayed above each method’s boxplot. Traits are
ordered by mean estimated h2

SNP (see Figure S14) from highest to lowest.
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Figure 3 Runtime (log10(minutes)) comparison for BayesR, SBayesR, RSS, LDpred and SBLUP in cross-validation analysis of
10 quantitative traits in the UKB. Panel headings describe the abbreviation for 10 quantitative traits including: standing height
(HEIGHT, n=347,106), basal metabolic rate (BMR, n=341,819), heel bone mineral density T-score (hBMD, n=197,789), forced vital
capacity (FVC, n=317,502), body mass index (BMI, n=346,738), body fat percentage (BFP, n=341,633), forced expiratory volume
in one-second (FEV, n=317,502), hip circumference (HC, n=347,231), waist-to-hip ratio (WHR, n=347,198) and birth weight (BW,
n=197,778). Each panel shows a boxplot summary of runtime with the mean across the five folds displayed above each method’s
boxplot. Results for RSS, LDpred and SBLUP represent the sum over time for each chromosome-wise analysis. Results for RSS
and SBayesR do not include the time to compute the LD reference matrix. Results for P+T, HEreg and LDSC are not shown as
they required relatively minimal computing resources.
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Figure 4 Prediction accuracy for height and body mass index in the independent Health and Retirement Study and Estonian
Biobank data sets. Panels depict prediction R2 (y-axis) generated from regression of the predicted phenotype on the observed phenotype
for body mass index (BMI) and height for different methods in the independent HRS and ESTB data sets. P+T refers refers to the prediction
R2 generated from the summary statistics of Yengo et al. 2018 (n ≈ 700,000), which included 6,781 SNPs for BMI and 11,816 SNPs for height
from a GCTA-COJO analysis thresholded at p-value < 0.001. The BayesR* and SBayesR* predictions were calculated using 1,094,841 HM3
variants estimated from the full set of unrelated and related UKB European individuals (n = 453, 458 and n = 454, 047 for BMI and height
respectively). Summary statistics for SBayesR analysis for the UKB European individuals were generated using the BOLT-LMM software.
All other prediction R2 results were generated using summary statistics methodology and were calculated from the analysis of summary
statistics from Yengo et al.49 for 909,293 and 932,969 variants for BMI and height that overlapped with the 1,094,841 HM3 variants set used for
the UKB analyses. The overlap of the sets of variants used in each of the analyses and those available in the imputed HRS and ESTB data sets
for prediction had a minimum value of 98%.
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