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Abstract 
Motivation: Rapid advances in single cell RNA sequencing have produced more granular subtypes 
of cells in multiple tissues from different species. There exists a need to develop rigorous methods 
that can i) model multiple datasets with ambiguous labels across species and studies and ii) remove 
systematic biases across datasets and species. 
Results: We developed a species- and dataset-independent transfer learning framework (LAmbDA) 
to train models on multiple datasets and applied our framework on scRNA-seq experiments. These 
models mapped corresponding cell types between datasets with inconsistent labels while simultane-
ously reducing batch effects. We achieved high accuracy in labeling cellular subtypes (weighted ac-
curacy pancreas: 91%, brain: 78%) using LAmbDA Random Forest. LAmbDA Feedforward 1 Layer 
Neural Network achieved higher weighted accuracy in labeling cellular subtypes than CaSTLe or 
MetaNeighbor in brain (48%, 32%, 20% respectively). Furthermore, LAmbDA Feedforward 1 Layer 
Neural Network was the only method to correctly predict ambiguous cellular subtype labels in both 
pancreas and brain compared to CaSTLe and MetaNeighbor. LAmbDA is model- and dataset- inde-
pendent and generalizable to diverse data types representing an advance in biocomputing. 
Availability:	github.com/tsteelejohnson91/LAmbDA	
Contact:	kunhuang@iu.edu, jizhan@iu.edu   
Supplementary information:	Supplementary data are	available	at	XXXXXXXXXXXX	online. 

 
 

1 Introduction  
Amidst trillions of cells and hundreds of distinct cell types in the hu-

man body, understanding tissue heterogeneity and the resulting pheno-
typic consequences is a mammoth task with far-reaching impact. For 
example, the brain consists of diverse co-localized neural, glial, immune, 
and vascular cell types that work in concert to form complex nervous 
tissues. Complex tissues and their constituent cell types have already 
been studied at the tissue level of granularity (Dorrell, et al., 2008; 
Dorrell, et al., 2011; Erlandsen, et al., 1976; Gomori, 1939; Zhang, et al., 
2014). Fundamentally, these tissues are composed of intricate popula-

tions of cells; researchers are now turning to the single cell level to dis-
cern new cellular subtypes (Baron, et al., 2016; Darmanis, et al., 2015), 
which are often spatially indistinct in their tissue of origin (Kumar, et al., 
1999). For these reasons, there is a critical need to differentiate cells 
from complex tissues during sequencing.  

The rapid advance of single cell RNA sequencing (scRNA-seq) ena-
bles researchers to study cell differentiation and tissue heterogeneity in 
various, tissues, diseases and physiological states. Studies have analyzed 
scRNA-seq data from different species, such as mouse (Chen, et al., 
2017; Li, et al., 2016; Zeisel, et al., 2015) and human (Darmanis, et al., 
2015; Lake, et al., 2016). Tissue studies have conducted mouse-human 
comparisons (Baron, et al., 2016) and normal-diabetes comparisons 
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(Segerstolpe, et al., 2016). Some studies have directly compared human 
and mouse cell types from the same brain region (Johnson, et al., 2016; 
La Manno, et al., 2016). These studies are especially important if data 
from mouse tissues can be used to identify or fill in the missing human 
tissues of counterpart cell types into “in silico chimeric” datasets. These 
integrative datasets could prove especially useful when human data is 
scarce or technically infeasible to generate. However, the increased 
number of scRNA-seq experiments has produced unforeseen challenges. 

One such challenge arises in that each scRNA-seq dataset generates its 
own subtype labels, which are often identified based on unsupervised 
approaches, such as clustering, and carry intrinsic systemic biases (i.e. 
batch effects). These labels are often not consistent enough to be directly 
used across datasets/studies/species without first identifying their corre-
spondence to each other. There have been efforts to i) identify the corre-
spondence of subtypes across datasets using gene set correlations (Crow, 
et al., 2018), ii) to combine datasets for integrative clustering (Butler, et 
al., 2018), and iii) predict labels in one dataset with another (Lieberman, 
et al., 2018). These represent three of the major tasks in combining 
scRNA-seq datasets for analysis. The second task is significant in that it 
can remove batch effects when clustering single cells from multiple 
experiments (Butler, et al., 2018; Lin, et al., 2018; Risso, et al., 2018; 
Zappia, et al., 2018). However, these methods often require labels to 
have a precise match between datasets and none of these methods ad-
dress all three tasks simultaneously. The third methodology leverages 
transfer learning, a subset of machine learning, but cannot simultaneous-
ly train on more than two datasets. 

In transfer learning, neural networks (NNs) can be trained more effi-
ciently and effectively on a target task when first trained on source ex-
amples (Pratt, 1993). Training on multiple datasets drawn from different 
distributions can reduce the amount of sample selection bias, a potential 
cause of batch effects, in the resulting model (Huang, et al., 2006). Fur-
thermore, unknown labels can be derived through domain adaptive train-
ing, resulting in a target task with labels (Ganin, et al., 2016). In comput-
er vision, there have been multiple studies aiming at training convolu-
tional NNs with label ambiguity (Cour, et al., 2011; Geng, 2017; 
Hullermeier and Beringer, 2005; Jie and Orabona, 2010). 

Fortunately, recent developments in deep learning have allowed NNs 
to accomplish classification and identification tasks in scRNA-seq. For 
example, (Chu, et al., 2016) leveraged the large amount of scRNA-seq 
data to train NN classifiers and identified the tissues of origin in circulat-
ing cells. However, these NN models, while important for feature reduc-
tion and identifying tissue of origin, were not optimally trained to be 
accurate across species in a single tissue type (Lin, et al., 2017) and did 
not carry out dataset integration with other tissues despite the data rich 
environment of single cell transcriptomics (Andrews and Hemberg, 
2018). To take advantage of single-cell data from different sources and 
species, effective machine learning algorithms are needed for across-
species cell type mapping and gene feature reduction. 

In this paper, we present a novel integrative transfer learning frame-
work called LAmbDA (Label Ambiguous Domain Adaption), which 
reduces inter-dataset distances and learns the label for ambiguously 
labeled cells. We tested multiple machine learning algorithms including 
logistic regression (LR), Feedforward 1 Layer NN (FF1), Feedforward 3 
Layer NN (FF3), Recurrent Neural Network (RNN1), and Random For-
est (RF) to optimize LAmbDA, and applied it to both human pancreas 
and human/mouse brain scRNA-seq datasets for subtype identification 
and matching. Subtypes of cells shared across datasets are considered 
replicable and robust (Crow, et al., 2018). We refer to these robust clas-
ses of cellular subtypes as “conserved” since they are consistent regard-

less of dataset, species, and condition. These biologically relevant con-
served subtypes were discovered by LAmbDA. 

To summarize, we demonstrate that LAmbDA-based models are ca-
pable of simultaneously matching unstandardized labels with varying 
degrees of overlap, combining disparate datasets from different spe-
cies/platforms using training and testing set, and predicting conserved 
subtypes of cells learned during training with high accuracy. LAmbDA 
can serve as the framework to accommodate other models beyond these 
biological applications to suit a variety of data types and analyses. 

2 Methods 

2.1 Datasets 
Six scRNA-seq datasets were used to test LAmbDA in two different 

tissue types consisting of three pancreatic and three brain scRNA-seq 
datasets. We intentionally chose a heterogeneous mix of datasets to study 
the robustness of our method.  

The pancreatic datasets included (Fig. 1A): one human dataset with 15 
cell types (Seg, 1980 cells) (Segerstolpe, et al., 2016), one human dataset 
with 10 cell types (Mur, 2126 cells) (Muraro, et al., 2016), and one hu-
man dataset with 14 cell types (Bar, 8569 cells) (Baron, et al., 2016). The 
brain datasets included (Fig. 1B): one human dataset with only neurons 
and 16 subtype level labels (HumN, 3086 cells) (Lake, et al., 2016), one 
human dataset with neurons and glia and six major cell type level labels 
(HumNG, 285 cells) (Darmanis, et al., 2015), and one mouse dataset 
with neurons and glia and 48 subtype level labels (MusNG, 3005 cells) 
(Zeisel, et al., 2015). 

2.2 General Framework 

Dataset Integration 

We illustrate the LAmbDA framework using an example with three 
different datasets. In our annotation, bold uppercase denotes matrix (X), 
bold lowercase denotes vector (x), lowercase letter denotes numeric 
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Fig. 1. t-SNE plot of scRNAs-seq data after feature selection step. A) Pancreatic datasets. Colors 
indicate different datasets: Seg (red), Mur (green), Bar (red). B) Brain datasets: MusNG (red), 
HumN (green), HumNG (blue). C) A scheme of conserved subtype identification using transfer 
learning approach (a three-dataset example).  
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value (x), and uppercase denotes a set (e.g. gene set or sample set, X). 
Given three scRNA-seq expression matrices (𝑿𝟏,𝑿𝟐,𝑿𝟑) with 𝑛!, 𝑛!, 𝑛! 
cells (samples) and 𝑇!, 𝑇!, 𝑇! transcripts (feature) sets, the number of 
transcripts are first reduced to the intersection of all three datasets (𝑇). 
The subtype labels of each cell across all three datasets are denoted by 
𝒀𝟏,𝒀𝟐,𝒀𝟑 each containing 𝑙!, 𝑙!, 𝑙! labels, respectively, shown below: 

𝑡 =  𝑇  𝑤ℎ𝑒𝑟𝑒 𝑇 = 𝑇! ∩ 𝑇! ∩ 𝑇! 
𝑿(𝒊) ∈ ℝ!!×!| 𝑖 = 1, 2, 3 
𝒀(𝒊) ∈ ℤ!!×!!| 𝑖 = 1, 2, 3 

The labels are one-hot encoded such that each row of 𝒀(𝒊) contains a 
single value of one indicating the label of the specific cell. Each row will 
have a single value of one in the column corresponding to that subtype 
label. To pool all of the datasets together for a single model, we combine 
the expression matrix (𝑿) and label matrix (𝒀) described below: 

𝑿 =
𝑿𝟏
𝑿𝟐
𝑿𝟑

∈ ℝ!×! , 𝒀 =
𝒀𝟏 0!!×!! 0!!×!!

0!!×!! 𝒀𝟐 0!!×!!
0!!×!! 0!!×!! 𝒀𝟑

∈ ℝ!×!  

𝑛 = 𝑛!
!

!!!
,           𝑙 = 𝑙!

!

!!!
. 

Using this encoding, it would be straightforward to train a logistic re-
gression, random forest, or NN model (𝑓(𝑿)) on the data using one of 
the multiple optimization algorithms to minimize the following objective 
function: 

min 𝑚𝑒𝑎𝑛 𝒀 − 𝑓 𝑿 !
. 

However, all the labels (𝐿) in the three datasets are not identical nor 
mutually exclusive. For example, in the brain study, all interneuron 
subtypes in dataset 2 could potentially match any of the interneuron 
subtypes in dataset 1. This label overlap between datasets means a subset 
of the more refined conserved subtypes (𝐿) exists in 𝐿 such that all sub-

types in 𝐿 can be assigned to a subtype in 𝐿 (Fig. 1C). A new and more 
refined label matrix (𝒀) is generated using 𝐿: 

𝐿 = 𝑘 ∈ ℤ 1 ≤ 𝑘 ≤ 𝑙  
∃𝐿 ⊆ 𝐿, 𝑙 = 𝐿   

 ∃𝒀 ∈ ℤ!×! . 
As a result, we propose that it is possible to train a model (𝑓(𝑥)) on 

the more refined subtypes (𝐿 and 𝒀) using an optimization algorithm on 
the following optimization problem: 

min 𝑚𝑒𝑎𝑛 𝒀 − 𝑓 𝑿
!

. 

The above optimization problem is solved using the two following 
algorithms. Algorithm 1 corresponds to the more general version of 
LAmbDA used for LR and RF. Algorithm 2 corresponds to the NN 
implementation that actively removes batch effects in the hidden layer. 

Algorithms 

To train the LAmbDA models, we used the Adam Optimizer (Kingma 
and Ba, 2014) with step size of 0.01 and random mini-batches of size 
𝒑𝒃𝒂𝒕𝒄𝒉 (a percentage of 𝒏, see Eq S3) that were changed every 50 itera-
tions to prevent overfitting of unambiguous labels. We ran each model 
for 2000 iterations except for the RF model, which was run for 100 itera-
tions. The code was written for GPU-enabled TensorFlow Python3 pack-
age. The input matrices (𝑿, 𝒀) were preprocessed into 𝑿, 𝒀 and the pos-
sible inter-dataset label mappings were preprocessed into an adjacency 
matrix (𝑮) before running the algorithms. For details on the prepro-
cessing and individual equations used, please see Supplementary Mate-
rial Sec. 2.1. 
Algorithm 1 Label Ambiguous Domain Adaption (LAmbDA) 
Input: preprocessed expression matrix 𝑿, preprocessed labels 𝒀, and label mask 𝑮, Eq S1-3 
Output: a trained classifier 𝑓 𝑥  with mapped ambiguous labels and batch effects removed 
Random initialization 
1. Train on unambiguous labels 
Using the subset of samples that have only one possible label 
For the first half of total iterations: 

    i.  Forward propagate predicted labels 
 ii. Back propagate gradient from label error (i.e. update model) 

2. Train on ambiguous labels 
Using all samples regardless of number of possible labels 
For the second half of total iterations: 

 i. Forward propagate predicted labels (i.e. calculate 𝑓 𝑿 , Eq S13,17) 
 ii. Assign labels to ambiguously labeled cells (i.e. calculate 𝒀, Eq S8) 
 iii. Calculate label error using 𝒀 and 𝑓 𝑿   
 vi. Back propagate gradient from label error (i.e. update model, Eq S18,19) 

3. Assigning labels to test set 
Using test set 

i. Assign cells to conserved subtypes 
ii. Identify ambiguous label mappings using cell assignments 

 
Algorithm 2 Label Ambiguous Domain Adaption (LAmbDA) Neural Network 
Input: preprocessed expression matrix 𝑿, preprocessed labels 𝒀, and label mask 𝑮, Eq S1-3 
Output: a trained classifier 𝑓 𝑥  with mapped ambiguous labels and batch effects removed 
Random initialization 
1. Train on unambiguous labels 
Using the subset of samples that have only one possible label 
For the first half of total iterations: 

 i. Forward propagate predicted labels 
 ii. Back propagate gradient from label error (i.e. update network) 

2. Train on ambiguous labels 
Using all samples regardless of number of possible labels 
For the second half of total iterations: 

 i. Forward propagate predicted labels (i.e. calculate 𝑓 𝑿 , Eq S14-16) 
 ii. Assign labels to ambiguously labeled cells (i.e. calculate 𝒀, Eq S8) 
iii. Calculate Euclidean distances between subtypes (i.e. calculate 𝑬, Eq S9,10) 
 iv. Calculate label error using 𝒀 and 𝑓 𝑿   
 v. Calculate batch effects error using 𝑴𝟏, 𝑴𝟐 and 𝑬 (Eq S10-12) 
 vi. Back propagate gradient from error terms (i.e. update network, Eq S20) 

3. Assigning labels to test set 
Using test set 

i. Assign cells to conserved subtypes 
ii. Identify ambiguous label mappings using cell assignments 

A1	
A1	A1	

B1	

B1	
A1	

A2	

B2	B1	

A2	

A2	
A2	

B2	 B2	B2	

A1	 A2	 B1	 B2	

A1	 0	 4	 2	 4	

A2	 4	 0	 5	 1	

B1	 2	 5	 0	 6	

B2	 4	 1	 6	 0	

A1	

A1	

A1	

B1	

B1	 A1	
A2	
B2	

B1	

A2	

A2	
A2	

B2	
B2	

B2	

A1	 A2	 B1	 B2	

A1	 0	 2	 4	 4	

A2	 2	 0	 5	 5	

B1	 4	 5	 0	 1	

B2	 4	 5	 1	 0	

E	(After	LAmbDA)	

E (Before	LAmbDA)	

A	

B	

Fig. 2. LAmbDA framework: A) The LAmbDA framework including the simplified label 
mapping (𝒀!, Eq S8) and batch effect removal (𝑬⊗𝑴𝟏, 𝑬⊗𝑴𝟐, Eq S10-12). B) The distance 
ratios used to evaluate batch effect reduction where letter indicates dataset and number indicates 
subtype. The cells are in a reduced feature space in the NN last hidden layer where the distance 
between subtypes of cells can be measured. The first and second ratio should be less than one and 
the third ratio should be 1. 
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2.3 LAmbDA Model Performance 

We applied the LAmbDA framework with five different algorithms 
(LR, FF1, FF3, RNN1, RF) to determine the performance of the LAmb-
DA-based methods in cell type classification. We measured the follow-
ing metrics: i) test accuracy of unambiguous labels and corresponding 
binomial probability of correctly mapping the unambiguous cells (poor 
mapping = 1.0, accurate mapping = 0.0); ii) cluster-wise distance ratios; 
iii) Wilcoxon rank sum p-values for comparisons between labels where 
label ambiguity was added (in the case of pancreas data) and where the 
true mapping can be inferred in the original publications (in the case of 
brain data); and iv) a comparison with the MetaNeighbor (Crow, et al., 
2018) and CaSTLe packages (Lieberman, et al., 2018).  

Unambiguous Label Accuracy and Binomial Probability 

The test set accuracy of unambiguous labels was generated from the 
difference between the unambiguous labels and the one-hot predicted 
labels averaged across each round of cross validation. The weighted 
accuracy was generated from the mean of each of the individual label 
accuracies so that each output label was equally weighted. The binomial 
probability measure was used to calculate the probability of seeing the 
number of cells correctly assigned to a subtype. Specifically, the binomi-
al probability was the sum of the probabilities that the number of the 
correctly mapped cells or more would be seen by chance.  

Distance Ratios to Measure Batch Effects 

Three cluster-wise median distance ratios were calculated based on 
relevant combinations of labels (subtypes) and datasets. The data in these 
combinations consisted of the Euclidean distances between subtypes of 
cells in the last hidden layer of the NN implementations of LAmbDA. 
These combinations were: same dataset-same subtype (𝐷𝑎𝑡!𝑆𝑢𝑏!) , 
which was not used because they were a trivial case that had Euclidean 
distance = 0.0; same dataset-different subtype (𝐷𝑎𝑡!𝑆𝑢𝑏!); different 
dataset-same subtype (𝐷𝑎𝑡!𝑆𝑢𝑏!); and different dataset-different sub-
type (𝐷𝑎𝑡!𝑆𝑢𝑏!). For each of the combinations, the median Euclidean 
distance was calculated from the distances in that group. These median 
distance values were used to generate 3 ratios for comparison, i) 
𝐷𝑎𝑡!𝑆𝑢𝑏!/𝐷𝑎𝑡!𝑆𝑢𝑏!  (theoretically<1); ii)  𝐷𝑎𝑡!𝑆𝑢𝑏!/𝐷𝑎𝑡!𝑆𝑢𝑏! 
(theoretically<1); and iii) 𝐷𝑎𝑡!𝑆𝑢𝑏!/𝐷𝑎𝑡!𝑆𝑢𝑏!  (theoretically=1, i.e. 
control). These ratios measured the reduction of dataset batch effects (i), 
inter-dataset subtype differences (ii), as well as the level of noise intro-
duction by LAmbDA (iii). 

Assignment of Ambiguous Labels 

The label mask (𝑮, Supplementary Eq S1) used in the pancreas da-
tasets had ambiguity added to the label mapping to determine if LAmb-
DA-FF1 could assign cell types to the correct label. Specifically, possi-
ble incorrect label mappings were added to the training mask (𝑮, Sup-
plementary Eq S1). In the brain datasets, we could infer similar map-
pings between the MusNG and HumN cortical pyramidal cells from past 
research so we knew the most likely mapping between them (Lake, et al., 
2016). These inferred high likelihood mappings were used as further 
validation. A Wilcoxon rank-sum test was used to measure if LAmbDA-
FF1 correctly assigned ambiguous labels to the correct labels in brain or 
pancreas. Specifically, the number of cells in correct mappings was 

compared to the number of cells in incorrect mappings using the Wil-
coxon rank-sum test. We highlighted the ambiguous label mappings 
Areas of Interest (AOI) in red, numbered rectangles in the resulting 
confusion matrices produced by these analyses. 

Comparison with current methods 

We compared LAmbDA-FF1 to CaSTLe and MetaNeighbor. Since 
CaSTLe could only use two datasets at a time, we used the largest pan-
creas dataset Bar (8569 cells, 14 labels) to predict the smallest but most 
diverse dataset Seg (1980 cells, 15 labels). In brain, MusNG (3005 cells, 
48 labels) was used to predict HumN (2086 cells, 16 labels). Meta-
Neighbor predicts the cell label using all of the labels from all datasets. 
In pancreas this meant 12675 cells across 38 labels and in brain 6376 
cells across 70 labels. The unambiguous accuracy was defined as the 
accuracy during cross validation on the source dataset. The Wilcoxon 
rank-sum tests were calculated for the same cross dataset comparisons as 
LAmbDA using weighted accuracy (W-Acc) and area under the curve 
(AUC)(Bradley, 1997). 

3 Results 
We chose the pancreas datasets to test the feasibility and performanc-

es of our methods after introducing ambiguity into the cell type labels, 
since the pancreas datasets were (i) mostly unambiguous – the labels 
contained all major cell types with high overlap among all three datasets; 
(ii) all cells were from the same species and was thus a good testing bed 
for the label mapping without the added complexity across species. The 
brain datasets were chosen to test the LAmbDA method capability to 
deal with issues such as the cross-species complexity, sample imbalance, 
granularity of labels, and diversity of major cell types. The major cell 
type classes (e.g. neuron, glial) were labeled in brain too. Therefore we 
knew the possible subtype mappings in the brain, which served as the 
ground truth when the performance was evaluated. To evaluate the per-
formance, the batch effects on the unprocessed data had to be analyzed. 

The pancreas and brain datasets showed high batch effects, which can 
be observed from t-SNE diagram (Fig. 1A,B). In this study, LAmbDA 
aimed at removing the batch effects and revealing conserved subtypes 
(Fig. 1C) while still maintaining high accuracy in predicting labels of 
unambiguous cells. 

3.1 LAmbDA Methods Achieve high accuracy 

We compared each of the five LAmbDA-based methods on the pan-
creas and brain datasets separately. The LAmbDA framework is shown 
in Fig. 2. All LAmbDA models performed more accurately than random 
chance (Supplementary Fig. S3A, Table 1). The lowest unambiguous 
accuracy was from LAmbDA-LR in both pancreas data (weighted accu-
racy: 17%, binomial probability: <1×10-10) and brain data (weighted 
accuracy: 18% binomial probability: <1×10-10). The best performing 
algorithm on unambiguous labels was LAmbDA-RF on both pancreas 
(weighted accuracy: 91%, binomial probability: <1×10-10) and brain data 
(weighted accuracy: 78%, binomial probability: <1×10-10). For mapping 
ambiguous labels, LAmbDA-FF1 produced the most desirable results 
(Fig. 3A,C, Fig. 4C,D). LAmbDA-FF1 also maintained high unambigu-
ous accuracy in pancreas data (weighted accuracy: 61% binomial proba-
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bility: <1×10-10) and in brain data (weighted accuracy: 48%, binomial 
probability: <1×10-10, Supplemenatary Fig. S3A, Table 1). The 
LAmbDA-FF1 unambiguous weighted accuracy was similar to that of 
the more complex LAmbDA-FF3 model (48% vs 49% for pancreas, and 
61% vs 67% for brain data). With high unambiguous accuracy, these 
models were evaluated for their ability to remove batch effects in the 
data. 

Table 1. Predictive accuracy and dataset batch effect reduction by LAmbDA model. Full: the full 
gene set features (i.e. no feature reduction). * indicate that both LR and RF use the full gene set 
features as input.  The cluster distance ratios for LR and RF can be regarded as the full gene set 
features cluster distance ratios. The LR and RF accuracy can be regarded as the full gene set 
features accuracy. Distance ratios: i) 𝐷𝑎𝑡!𝑆𝑢𝑏!/𝐷𝑎𝑡!𝑆𝑢𝑏!, as it approaches 0, subtype in-
creased similarity across datasets. ii) 𝐷𝑎𝑡!𝑆𝑢𝑏!/𝐷𝑎𝑡!𝑆𝑢𝑏!, as it approaches 0, similar subtypes 
are closer than dissimilar subtypes. iii) 𝐷𝑎𝑡!𝑆𝑢𝑏!/𝐷𝑎𝑡!𝑆𝑢𝑏!, as it remains near 1, noise is not 
introduced. 

 Pancreas Brain 
 Distance  ratios Weighted 

Accuracy 

Distance ratios Weighted 

Accuracy  i ii iii i ii iii 

LR NA* NA* NA* 17% NA* NA* NA* 18% 

FF1 0.79 0.71 0.92 61% 0.75 0.71 0.93 48% 

FF3 0.89 0.78 0.89 67% 1.03 0.82 0.81 49% 

RNN1 0.83 0.68 0.85 31% 1.32 0.71 0.55 11% 

RF NA* NA* NA* 91% NA* NA* NA* 78% 

Full 1.12 1.04 0.95 NA* 0.88 0.82 0.93 NA* 

3.2 LAmbDA Neural Networks Reduce Batch Effects Be-
tween Datasets 

The neural network-based (NN-based) LAmbDA-FF1, -FF3, and -
RNN1 each performed additional feature reduction (Table 1). During 
training, the hidden layer improved cellular granularity and reduced 
dataset batch effects as measured by cluster distance ratios (Table 1). 
LAmbDA-FF1 generated the best reduction of dataset batch effects 
while still maintaining high cell type signal (Table 1). LAmbDA-FF1 
also achieved the best distance ratios overall by reducing the batch ef-
fects by 30-32% while introducing 3% noise in pancreas and reducing 
batch effect distance ratios by 13-15% while only introducing 1% noise 
in brain (Table 1, Supplementary Fig. S3B-D). In the pancreas dataset, 
LAmbDA-FF1, -FF3, and -RNN1 were able to achieve better distance 
ratios than the full gene set features (Table 1, Supplementary Fig. S3B-
D). The brain dataset contained greater batch effects and seemed de-
pendent on the subtype signal. Despite this, LAmbDA-FF1 still outper-
formed the full feature set across the distance metrics. The datasets 
themselves showed differing levels of success in batch effect removal.  

On relatively simple pancreas datasets, all NN-based models reduced 
batch effects by 30-35% while only introducing 3-11% noise (Table 1). 
In more complicated brain datasets, LAmbDA-FF1 was capable of re-
ducing batch effects without introducing noise (Table 1, Supplemen-
tary Fig. S3). Furthermore, LAmbDA-FF1 correctly learned subtypes 
that were ambiguously mapped between datasets (Fig. 3A,B AOI1-3, 
Fig. 3C,D AOI1). 

3.3 LAmbDA Models Correctly Predict Ambiguous Labels 
Between Datasets 

The LAmbDA-FF1 and LAmbDA-FF3 models correctly mapped pan-
creatic cells back to their correct label (Wilcoxon p-value: 0.0178 and 
0.0346 respectively) when artificial ambiguity was introduced (Fig.  

3A,B AOI1-3). LAmbDA-FF1 mapped pyramidal cells back to their 
correct cortical layer (derived from the original papers) across species 
(Wilcoxon p-value: 0.0181, Fig. 3C,D AOI2).  

Overall, we found that the general LAmbDA method achieved high 
accuracy for unambiguous labels regardless which of the five algorithm 
types were used (LR, FF1, FF3, RNN1, RF). Specifically, if the labels 
contained low ambiguity, LAmbDA-RF performed most accurately. If 
there was high ambiguity across datasets, LAmbDA-FF1 performed the 
most accurately (Table 1). Furthermore the ability to correctly map 
cortical pyramidal cells shows that cross species comparisons are possi-
ble. 

3.4 High resolution neural subtypes are conserved across 
species 

We discovered that the mouse cortical pyramidal subtypes map to 
human cortical pyramidal subtypes by their associated cortical layer (e.g. 
L2 cortex pyramidal cells in mouse are associated with L2 cortex pyram-
idal cells in human, Fig. 3C AOI2, Fig. 3C AOI1, Fig. 4D). This indi-
cates that high granularity subtypes are conserved across species (in this 
case, mouse and human) and the conservation aligns with cortical layer. 
Because we were able to recreate known or inferred mappings, we ap-
plied the mapping from LAmbDA-FF1 interneurons to infer conserved 
subtypes. These insights allowed us to hypothesize the label mapping of 
interneurons between human and mouse (Fig. 3C AOI1, Fig. 4D). We 
observed specific subsets of mouse subtypes mapped to the human sub-
types. With the biomarkers described in each of the primary sources of 
the data (Darmanis, et al., 2015; Lake, et al., 2016; Zeisel, et al., 2015), 
we showed relevant biomarkers for the conserved interneuron subtypes 
(Supplementary Table S1) by intersecting the biomarker lists from the 
two species. These cross-dataset and -species mappings provided inter-
esting discoveries so we further compared against the two label mapping 
tools used for scRNA-seq datasets: CaSTLe (Lieberman, et al., 2018) 
and MetaNeighbor (Butler, et al., 2018). 
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Fig. 3. Confusion matrices with their associated label masks used during LAmbDA-FF1 training. 
Each numbered red box indicates an AOI. A, C) Confusion matrix across three datasets where 
rows are original cell types and the columns are the conserved cell types (i.e. LAmbDA output 
labels) for pancreas (A) and brain (C). B, D) The label mask used during LAmbDA training. 
Green indicates the mask used as input and yellow indicate the true labels, which were either 
known or inferred from the literature. C) Yellow inside of AOI1-3 indicate true labels from the 
starting datasets. D) Yellow indicates the cortical layer specific mapping that was inferred from 
each dataset’s publication. 
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3.5 LAmbDA Improves Upon Current Methods 

Table 2 describes the performances of LAmbDA, CaSTLe, and 
MetaNeighbor to predict unambiguous and ambiguous cell types. When 
the ambiguous labels were tested across datasets, LAmbDA-FF1 had the 
most significant Wilcoxon p-values indicative of correct mapping 
(0.0178 and 0.0181). CaSTLe achieved the highest AUC in both pancre-
as (99%) and brain (94%) data, with LAmbDA-FF1 tied in brain AUC. 
CaSTLe was also able to achieve the highest weighted accuracy in pan-
creas (75%). However, these accuracies and AUCs were calculated from 
the source dataset and could have been caused by overfitting considering 
the inter-dataset results. Furthermore, the AUC values for both CaSTLe 
and MetaNeighbor were much closer than the weighted accuracies to 
LAmbDA-FF1 in all tests. This suggests that CaSTLe and MetaNeighbor 
are more useful in mapping labels between datasets but should not be 
used over LAmbDA in classifying individual cells between datasets. 

Table 2. Performance comparisons between LAmbDA-FF1, CaSTLe, and MetaNeighbor. 
Pancreas/Brain Map columns contain Wilcoxon rank sum p-values for correct cell labels vs. 
incorrect cell labels for the groups where artificial label ambiguity was added in LAmbDA. 
Lower p-values indicate that the algorithm correctly assigned labels between datasets. The 
Wilcoxon rank-sum p-values were calculated using both the weighted accuracy and AUC. 
Pancreas/Brain Acc columns contain the weighted accuracy and the mean AUC across all unam-
biguous labels. The higher the value the better unambiguous labels are fit. In the case of CaSTLe 
these values were from the source dataset. In MetaNeighbor, these values were from the  same 
dataset and same subtype. 
 Pancreas Map Brain Map Pancreas Acc Brain Acc 

 W-Acc AUC W-Acc AUC W-Acc AUC W-Acc AUC 

LAmbDA-FF1 0.0178 <0.0001 0.0181 0.0017 61% 94% 48% 94% 

CaSTLe 0.0632 0.0012 0.3216 0.0038 75% 99% 32% 94% 

MetaNeighbor 0.7446 <0.0001 NaN 0.0041 53% 86% 20% 86% 

3.6 Major Cell Types Consistent Across Species and Dataset 

Aside from the mapping of ambiguous labels across datasets, we 
found consistent mapping patterns between subtypes within the same 
major cell type. These mappings further validate our method. For exam-
ple, the MusNG oligodendrocyte subtypes showed high consistency with 
other oligodendrocyte subtypes compared to other subtypes (Wilcoxon  
p-value = 1.67×10-30, Fig. 3C AOI4, Fig. 4D). The HumNG oligoden-
drocytes mapped to multiple MusNG oligodendrocytes compared to 
other subtypes (Wilcoxon p-value = 1.51×10-3, Fig. 4D), and the 
HumNG astrocytes mapped to multiple MusNG astrocyte subtypes com-
pared to other subtypes (Wilcoxon p-value = 1.62×10-5, Fig. 4D).  

Cortical interneuron subtypes were highly consistent with other corti-
cal interneuron subtypes in HumN compared to other subtypes (Wilcox-
on p-value = 5.17×10-48, Fig. 3C AOI5, Fig. 4D), and cortical pyramidal 
subtypes were highly consistent with other cortical pyramidal subtypes 
in HumN compared to other subtypes (Wilcoxon p-value = 3.94×10-35, 
Fig. 3C AOI6, Fig. 4D). Such relationships were observed in the pan-
creas data, where immune cells clustered with one another (Fig. 4C). 
Furthermore, we found that models trained with MusNG and tested on 
HumN and vice versa showed the same major cell type patterns (Sup-
plementary Fig. S2). 

4 Discussion 
All LAmbDA-based methods improved the prediction of unambigu-

ous cell type accuracy between datasets, with each LAmbDA model 
catering to different specific demands. For instance, LAmbDA-FF1 

performs best at correctly removing batch effects. LAmbDA-RF is most 
accurate at predicting unambiguous labels. LAmbDA-RNN1 shows 
desirable characteristics in integrating the datasets, but needs to be fur-
ther optimized. We suggest different LAmbDA models should be con-
sidered to suit different dataset ambiguity levels. These considerations 
are especially important when studying the correct assignment of ambig-
uous labels. 

We observed that when error is intentionally introduced into the la-
bels, LAmbDA models were still able to correctly identify the labels in 
pancreas and brain tissue (artificial ambiguity 10 in 39 labels in pancreas 
and 5 in 70 labels in brain). These errors were introduced when the label 
mappings were known but were not included. LAmbDA can identify the 
correct label in most cases (Fig. 3B AOI1-3, Fig. 3D AOI1). This is in 
part due to the feature reduction step in the NN implementations which 
rearrange the subtype clusters to reduce batch effects. Even after feature 
reduction, we see interesting subtype mappings both within and between 
datasets/species. 

Similar subtypes within a species tend to cluster together. For in-
stance, in the brain, the oligodendrocyte cell types in MusNG formed a 
consistent group. This implies that subtypes of cells are difficult to fur-
ther stratify and consist of a joint distribution of major cell types within 
the brain layer. Mouse and human interneurons from the LAmbDA-FF1 
model were mapped to each other. They can be considered conserved 
subtypes, which are consistent across dataset and species. We used the 
intersection of biomarkers from the previous publications to identify 
these conserved subtypes. 

An interesting cell mapping pattern was the HumNG subtypes tended 
to map to the MusNG subtypes more often than HumN, especially before 
batch effect removal in the full feature set. One possible reason is that 
HumN was single nuclei sequencing as opposed to whole cell sequenc-
ing in HumNG and MusNG, so the gene expression profiling could be 
quite different. This suggests that sequencing method may introduce 
larger batch effects than species differences, and cross-species training of 
models may be more feasible than once thought. Due to these considera-
tions we believe that the general LAmbDA framework has a great deal of 
potential. 
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These applications of LAmbDA-based models on brain and pancreas 
data make compelling cases for the LAmbDA method. We postulate that 
our method can also adopt other learning algorithms such as deep learn-
ing as well as other distance metrics for the hidden layer to improve its 
dataset/species integration and prediction accuracy. We also believe that 
the LAmbDA framework is model-independent because of the high 
accuracy and batch effect removal achieved by multiple tested models, 
thus making it ideal for incorporation with other machine learning mod-
els. Furthermore, even though scRNA-seq data was used in our study, 
the LAmbDA framework is not fundamentally limited to any data type, 
organism, or disease. For instance, disparate tumor datasets could be 
combined to find conserved cell populations between patients, datasets, 
and similar cancer types (e.g. grades of glioma).  

The scalability of LAmbDA is immense. Since LAmbDA does not 
compute any pairwise correlations between samples, it could be easily 
scaled up to incorporate the increasing number of large Drop-seq da-
tasets for single-cell studies. It is also worth mentioning that the core of 
the LAmbDA framework is a set of cost functions in Python (Tensor-
Flow), making it ideal for others to integrate into their own workflows. 

5 Conclusion 
We developed a novel dataset integration and ambiguous subtype la-

beling framework, LAmbDA, to predict cellular subtypes. Our algorithm 
addresses both label mapping and dataset batch effect issues simultane-
ously. We are able to perform these analyses without exact label corre-
spondence. Our method is ideal to scale to even larger datasets. LAmb-
DA proves to be accurate for subtype prediction across species and da-
tasets. It is model independent and capable of revealing hidden biologi-
cal relationships between subtypes in disparate datasets. This could 
prove especially useful in identifying conserved cell populations across 
tumors or stages. Furthermore, in theory, this method could be applied to 
any scalar data, which contain multiple datasets and ambiguous label 
mappings. LAmbDA can be integrated into existing machine learning 
pipelines to identify conserved labels and improve the robustness of the 
model to data systematic biases. 
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