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Abstract

Motivation: Rapid advances in single cell RNA sequencing have produced more granular subtypes
of cells in multiple tissues from different species. There exists a need to develop rigorous methods
that can i) model multiple datasets with ambiguous labels across species and studies and ii) remove
systematic biases across datasets and species.

Results: We developed a species- and dataset-independent transfer learning framework (LAmbDA)
to train models on multiple datasets and applied our framework on scRNA-seq experiments. These
models mapped corresponding cell types between datasets with inconsistent labels while simultane-
ously reducing batch effects. We achieved high accuracy in labeling cellular subtypes (weighted ac-
curacy pancreas: 91%, brain: 78%) using LAmbDA Random Forest. LAmMbDA Feedforward 1 Layer
Neural Network achieved higher weighted accuracy in labeling cellular subtypes than CaSTLe or
MetaNeighbor in brain (48%, 32%, 20% respectively). Furthermore, LAmMbDA Feedforward 1 Layer
Neural Network was the only method to correctly predict ambiguous cellular subtype labels in both
pancreas and brain compared to CaSTLe and MetaNeighbor. LAmMbDA is model- and dataset- inde-
pendent and generalizable to diverse data types representing an advance in biocomputing.
Availability: github.com/tsteelejohnson91/LAmbDA

Contact: kunhuang@iu.edu, jizhan@iu.edu

Supplementary information: Supplementary data are available at XXXXXXXXXXXX online.

tions of cells; researchers are now turning to the single cell level to dis-

1 Introduction cern new cellular subtypes (Baron, et al., 2016; Darmanis, et al., 2015),

Amidst trillions of cells and hundreds of distinct cell types in the hu-

which are often spatially indistinct in their tissue of origin (Kumar, et al.,

1999). For these reasons, there is a critical need to differentiate cells

man body, understanding tissue heterogeneity and the resulting pheno- from complex tissues during sequencing

typic consequences is a mammoth task with far-reaching impact. For The rapid advance of single cell RNA sequencing (scRNA-seq) ena-

example, the brain consists of diverse co-localized neural, glial, immune, bles researchers to study cell differentiation and tissue heterogeneity in

and vascular cell types that work in concert to form complex nervous various, tissues, diseases and physiological states. Studies have analyzed

tissues. Complex tissues and their constituent cell types have already scRNA-seq data from different species, such as mouse (Chen, et al.

been studied at the tissue level of granularity (Dorrell, et al., 2008; 2017; Li, et al., 2016; Zeisel, et al., 2015) and human (Darmanis, et al.
Dorrell, et al., 2011; Erlandsen, et al., 1976; Gomori, 1939; Zhang, et al.,

2014). Fundamentally, these tissues are composed of intricate popula-

2015; Lake, et al., 2016). Tissue studies have conducted mouse-human
comparisons (Baron, et al., 2016) and normal-diabetes comparisons
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(Segerstolpe, et al., 2016). Some studies have directly compared human
and mouse cell types from the same brain region (Johnson, et al., 2016;
La Manno, et al., 2016). These studies are especially important if data
from mouse tissues can be used to identify or fill in the missing human
tissues of counterpart cell types into “in silico chimeric” datasets. These
integrative datasets could prove especially useful when human data is
scarce or technically infeasible to generate. However, the increased
number of scRNA-seq experiments has produced unforeseen challenges.

One such challenge arises in that each scRNA-seq dataset generates its
own subtype labels, which are often identified based on unsupervised
approaches, such as clustering, and carry intrinsic systemic biases (i.e.
batch effects). These labels are often not consistent enough to be directly
used across datasets/studies/species without first identifying their corre-
spondence to each other. There have been efforts to i) identify the corre-
spondence of subtypes across datasets using gene set correlations (Crow,
et al., 2018), ii) to combine datasets for integrative clustering (Butler, et
al., 2018), and iii) predict labels in one dataset with another (Lieberman,
et al., 2018). These represent three of the major tasks in combining
scRNA-seq datasets for analysis. The second task is significant in that it
can remove batch effects when clustering single cells from multiple
experiments (Butler, et al., 2018; Lin, et al., 2018; Risso, et al., 2018;
Zappia, et al., 2018). However, these methods often require labels to
have a precise match between datasets and none of these methods ad-
dress all three tasks simultaneously. The third methodology leverages
transfer learning, a subset of machine learning, but cannot simultaneous-
ly train on more than two datasets.

In transfer learning, neural networks (NNs) can be trained more effi-
ciently and effectively on a target task when first trained on source ex-
amples (Pratt, 1993). Training on multiple datasets drawn from different
distributions can reduce the amount of sample selection bias, a potential
cause of batch effects, in the resulting model (Huang, et al., 2006). Fur-
thermore, unknown labels can be derived through domain adaptive train-
ing, resulting in a target task with labels (Ganin, et al., 2016). In comput-
er vision, there have been multiple studies aiming at training convolu-
tional NNs with label ambiguity (Cour, et al., 2011; Geng, 2017,
Hullermeier and Beringer, 2005; Jie and Orabona, 2010).

Fortunately, recent developments in deep learning have allowed NNs
to accomplish classification and identification tasks in scRNA-seq. For
example, (Chu, et al., 2016) leveraged the large amount of scRNA-seq
data to train NN classifiers and identified the tissues of origin in circulat-
ing cells. However, these NN models, while important for feature reduc-
tion and identifying tissue of origin, were not optimally trained to be
accurate across species in a single tissue type (Lin, et al., 2017) and did
not carry out dataset integration with other tissues despite the data rich
environment of single cell transcriptomics (Andrews and Hemberg,
2018). To take advantage of single-cell data from different sources and
species, effective machine learning algorithms are needed for across-
species cell type mapping and gene feature reduction.

In this paper, we present a novel integrative transfer learning frame-
work called LAmbDA (Label Ambiguous Domain Adaption), which
reduces inter-dataset distances and learns the label for ambiguously
labeled cells. We tested multiple machine learning algorithms including
logistic regression (LR), Feedforward 1 Layer NN (FF1), Feedforward 3
Layer NN (FF3), Recurrent Neural Network (RNN1), and Random For-
est (RF) to optimize LAmbDA, and applied it to both human pancreas
and human/mouse brain scRNA-seq datasets for subtype identification
and matching. Subtypes of cells shared across datasets are considered
replicable and robust (Crow, et al., 2018). We refer to these robust clas-
ses of cellular subtypes as “conserved” since they are consistent regard-

less of dataset, species, and condition. These biologically relevant con-
served subtypes were discovered by LAmbDA.

To summarize, we demonstrate that LAmbDA-based models are ca-
pable of simultaneously matching unstandardized labels with varying
degrees of overlap, combining disparate datasets from different spe-
cies/platforms using training and testing set, and predicting conserved
subtypes of cells learned during training with high accuracy. LAmbDA
can serve as the framework to accommodate other models beyond these
biological applications to suit a variety of data types and analyses.

2 Methods

2.1 Datasets

Six scRNA-seq datasets were used to test LAmbDA in two different
tissue types consisting of three pancreatic and three brain scRNA-seq
datasets. We intentionally chose a heterogeneous mix of datasets to study
the robustness of our method.

The pancreatic datasets included (Fig. 1A): one human dataset with 15
cell types (Seg, 1980 cells) (Segerstolpe, et al., 2016), one human dataset
with 10 cell types (Mur, 2126 cells) (Muraro, et al., 2016), and one hu-
man dataset with 14 cell types (Bar, 8569 cells) (Baron, et al., 2016). The
brain datasets included (Fig. 1B): one human dataset with only neurons
and 16 subtype level labels (HumN, 3086 cells) (Lake, et al., 2016), one
human dataset with neurons and glia and six major cell type level labels
(HumNG, 285 cells) (Darmanis, et al., 2015), and one mouse dataset
with neurons and glia and 48 subtype level labels (MusNG, 3005 cells)
(Zeisel, et al., 2015).

Brain

«| Pancreas ,ﬁ} ]

tSNE2
tSNE2

Dataset 1 Dataset 2

Transfer Learning

Conserved Subtypes

Dataset 3

Fig. 1. t-SNE plot of scRNAs-seq data after feature selection step. A) Pancreatic datasets. Colors
indicate different datasets: Seg (red), Mur (green), Bar (red). B) Brain datasets: MusNG (red),
HumN (green), HumNG (blue). C) A scheme of conserved subtype identification using transfer
learning approach (a three-dataset example).

2.2 General Framework

Dataset Integration

We illustrate the LAmbDA framework using an example with three
different datasets. In our annotation, bold uppercase denotes matrix (X),

bold lowercase denotes vector (x), lowercase letter denotes numeric
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value (x), and uppercase denotes a set (e.g. gene set or sample set, X).
Given three scRNA-seq expression matrices (X4, X,, X3) with ny, n,, n;
cells (samples) and Ty, T,, T; transcripts (feature) sets, the number of
transcripts are first reduced to the intersection of all three datasets (T).
The subtype labels of each cell across all three datasets are denoted by
Y,,Y,, Y5 each containing [, [,, 5 labels, respectively, shown below:
t= |T|whereT=T,NT,NT,
X € RW¥|i=1,2,3
Y € 24| i=1,2,3
The labels are one-hot encoded such that each row of ¥ ;) contains a

single value of one indicating the label of the specific cell. Each row will
have a single value of one in the column corresponding to that subtype
label. To pool all of the datasets together for a single model, we combine
the expression matrix (X) and label matrix (¥) described below:

X1 Y, Onlxlz Onlxl3
X = [X;| € R™, Y = [0p,xi, Y, 0y, %1, | € R
3 0n3><ll 0n3xl2 Y3

3
nzz M
i=1

Using this encoding, it would be straightforward to train a logistic re-

3
I= z L.
i=1

gression, random forest, or NN model (f (X)) on the data using one of

the multiple optimization algorithms to minimize the following objective

function:
2
min (mean (Z(Y - f(X)) ))
A Dataset X; Otmj"
Dataset X2 . Hidden fx) Y6

Layer Neursl =
tworl
letwor y-

Dataset X1 Neural N R o
Network = | onehot(f(X)®YG) = ¥
/A =

/- — M1

E
Objective function:
minimize {msan (z (7- f(x))z) +allelE mean(E ® M2)
+ 2;mean(E®My) + A;mean(E@MZ)
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Fig. 2. LAmbDA framework: A) The LAmbDA framework including the simplified label
mapping (17, Eq S8) and batch effect removal (E @ M,, E ® M,, Eq S10-12). B) The distance
ratios used to evaluate batch effect reduction where letter indicates dataset and number indicates
subtype. The cells are in a reduced feature space in the NN last hidden layer where the distance
between subtypes of cells can be measured. The first and second ratio should be less than one and
the third ratio should be 1.

However, all the labels (L) in the three datasets are not identical nor
mutually exclusive. For example, in the brain study, all interneuron
subtypes in dataset 2 could potentially match any of the interneuron
subtypes in dataset 1. This label overlap between datasets means a subset
of the more refined conserved subtypes (L) exists in L such that all sub-

types in L can be assigned to a subtype in L (Fig. 1C). A new and more
refined label matrix (V) is generated using L:
L={k€eZll<k<l}
aLcLl =i
av e 7,
As a result, we propose that it is possible to train a model (f(x)) on
the more refined subtypes (L and ¥) using an optimization algorithm on
the following optimization problem:

S 2
min | mean (Z (Y - f(X)) ) .
The above optimization problem is solved using the two following
algorithms. Algorithm 1 corresponds to the more general version of
LAmbDA used for LR and RF. Algorithm 2 corresponds to the NN

implementation that actively removes batch effects in the hidden layer.
Algorithms

To train the LAmbDA models, we used the Adam Optimizer (Kingma
and Ba, 2014) with step size of 0.01 and random mini-batches of size
Doaten (a percentage of i, see Eq S3) that were changed every 50 itera-
tions to prevent overfitting of unambiguous labels. We ran each model
for 2000 iterations except for the RF model, which was run for 100 itera-
tions. The code was written for GPU-enabled TensorFlow Python3 pack-
age. The input matrices (X, ¥) were preprocessed into X, ¥ and the pos-
sible inter-dataset label mappings were preprocessed into an adjacency
matrix (G) before running the algorithms. For details on the prepro-
cessing and individual equations used, please see Supplementary Mate-
rial Sec. 2.1.

Algorithm 1 Label Ambig Domain Adaption (LAmbDA)
Input: preprocessed expression matrix X, preprocessed labels ¥, and label mask G, Eq S1-3
Output: a trained classifier f(x) with mapped ambiguous labels and batch effects removed
Random initialization
1. Train on unambiguous labels
Using the subset of samples that have only one possible label
For the first half of total iterations:
i. Forward propagate predicted labels
ii. Back propagate gradient from label error (i.e. update model)
2. Train on ambiguous labels
Using all samples regardless of number of possible labels
For the second half of total iterations:
i. Forward propagate predicted labels (i.e. calculate £(X), Eq S13,17)
Assign labels to ambiguously labeled cells (i.e. calculate ¥, Eq S8)
Calculate label error using ¥ and f(X)
vi. Back propagate gradient from label error (i.e. update model, Eq S18,19)
3. Assigning labels to test set
Using test set
i. Assign cells to conserved subtypes
ii. Identify ambiguous label mappings using cell assignments

Algorithm 2 Label Ambig Domain Adaption (LAmbDA) Neural Network
Input: preprocessed expression matrix X, preprocessed labels ¥, and label mask G, Eq S1-3
Output: a trained classifier f(x) with mapped ambiguous labels and batch effects removed
Random initialization
1. Train on unambiguous labels
Using the subset of samples that have only one possible label
For the first half of total iterations:
i. Forward propagate predicted labels
ii. Back propagate gradient from label error (i.e. update network)
2. Train on ambiguous labels
Using all samples regardless of number of possible labels
For the second half of total iterations:
i. Forward propagate predicted labels (i.e. calculate f(X) Eq S14-16)
Assign labels to dmblguously labeled cells (i.e. calculate ¥, Eq S8)
Calcul between subtypes (i.e. calculate E, Eq $9,10)
iv. Calculate label error using Y and f(X)
v. Calculate batch effects error using M;, M, and E (Eq S10-12)
vi. Back propagate gradient from error terms (i.e. update network, Eq S20)
3. Assigning labels to test set
Using test set
i. Assign cells to conserved subtypes
ii. Identify ambiguous label mappings using cell assignments
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2.3 LAmbDA Model Performance

We applied the LAmbDA framework with five different algorithms
(LR, FF1, FF3, RNN1, RF) to determine the performance of the LAmb-
DA-based methods in cell type classification. We measured the follow-
ing metrics: i) test accuracy of unambiguous labels and corresponding
binomial probability of correctly mapping the unambiguous cells (poor
mapping = 1.0, accurate mapping = 0.0); ii) cluster-wise distance ratios;
iii) Wilcoxon rank sum p-values for comparisons between labels where
label ambiguity was added (in the case of pancreas data) and where the
true mapping can be inferred in the original publications (in the case of
brain data); and iv) a comparison with the MetaNeighbor (Crow, et al.,
2018) and CaSTLe packages (Lieberman, et al., 2018).

Unambiguous Label Accuracy and Binomial Probability

The test set accuracy of unambiguous labels was generated from the
difference between the unambiguous labels and the one-hot predicted
labels averaged across each round of cross validation. The weighted
accuracy was generated from the mean of each of the individual label
accuracies so that each output label was equally weighted. The binomial
probability measure was used to calculate the probability of seeing the
number of cells correctly assigned to a subtype. Specifically, the binomi-
al probability was the sum of the probabilities that the number of the
correctly mapped cells or more would be seen by chance.

Distance Ratios to Measure Batch Effects

Three cluster-wise median distance ratios were calculated based on
relevant combinations of labels (subtypes) and datasets. The data in these
combinations consisted of the Euclidean distances between subtypes of
cells in the last hidden layer of the NN implementations of LAmbDA.
These combinations were: same dataset-same subtype (Dat*Sub™),
which was not used because they were a trivial case that had Euclidean
distance = 0.0; same dataset-different subtype (Dat*Sub™); different
dataset-same subtype (Dat~Sub*); and different dataset-different sub-
type (Dat~Sub~). For each of the combinations, the median Euclidean
distance was calculated from the distances in that group. These median
distance values were used to generate 3 ratios for comparison, i)
Dat~Sub*/Dat*Sub~ (theoretically<l); ii) Dat~Sub*/Dat~Sub~
(theoretically<1); and iii) Dat*Sub~/Dat~Sub™ (theoretically=1, i.e.
control). These ratios measured the reduction of dataset batch effects (i),
inter-dataset subtype differences (ii), as well as the level of noise intro-
duction by LAmbDA (iii).

Assignment of Ambiguous Labels

The label mask (G, Supplementary Eq S1) used in the pancreas da-
tasets had ambiguity added to the label mapping to determine if LAmb-
DA-FF1 could assign cell types to the correct label. Specifically, possi-
ble incorrect label mappings were added to the training mask (G, Sup-
plementary Eq S1). In the brain datasets, we could infer similar map-
pings between the MusNG and HumN cortical pyramidal cells from past
research so we knew the most likely mapping between them (Lake, et al.,
2016). These inferred high likelihood mappings were used as further
validation. A Wilcoxon rank-sum test was used to measure if LAmbDA-
FF1 correctly assigned ambiguous labels to the correct labels in brain or

pancreas. Specifically, the number of cells in correct mappings was

compared to the number of cells in incorrect mappings using the Wil-
coxon rank-sum test. We highlighted the ambiguous label mappings
Areas of Interest (AOI) in red, numbered rectangles in the resulting
confusion matrices produced by these analyses.

Comparison with current methods

We compared LAmbDA-FF1 to CaSTLe and MetaNeighbor. Since
CaSTLe could only use two datasets at a time, we used the largest pan-
creas dataset Bar (8569 cells, 14 labels) to predict the smallest but most
diverse dataset Seg (1980 cells, 15 labels). In brain, MusNG (3005 cells,
48 labels) was used to predict HumN (2086 cells, 16 labels). Meta-
Neighbor predicts the cell label using all of the labels from all datasets.
In pancreas this meant 12675 cells across 38 labels and in brain 6376
cells across 70 labels. The unambiguous accuracy was defined as the
accuracy during cross validation on the source dataset. The Wilcoxon
rank-sum tests were calculated for the same cross dataset comparisons as
LAmbDA using weighted accuracy (W-Acc) and area under the curve
(AUC)(Bradley, 1997).

3 Results

We chose the pancreas datasets to test the feasibility and performanc-
es of our methods after introducing ambiguity into the cell type labels,
since the pancreas datasets were (i) mostly unambiguous — the labels
contained all major cell types with high overlap among all three datasets;
(ii) all cells were from the same species and was thus a good testing bed
for the label mapping without the added complexity across species. The
brain datasets were chosen to test the LAmbDA method capability to
deal with issues such as the cross-species complexity, sample imbalance,
granularity of labels, and diversity of major cell types. The major cell
type classes (e.g. neuron, glial) were labeled in brain too. Therefore we
knew the possible subtype mappings in the brain, which served as the
ground truth when the performance was evaluated. To evaluate the per-
formance, the batch effects on the unprocessed data had to be analyzed.

The pancreas and brain datasets showed high batch effects, which can
be observed from t-SNE diagram (Fig. 1A,B). In this study, LAmbDA
aimed at removing the batch effects and revealing conserved subtypes
(Fig. 1C) while still maintaining high accuracy in predicting labels of
unambiguous cells.

3.1 LAmbDA Methods Achieve high accuracy

We compared each of the five LAmbDA-based methods on the pan-
creas and brain datasets separately. The LAmbDA framework is shown
in Fig. 2. All LAmbDA models performed more accurately than random
chance (Supplementary Fig. S3A, Table 1). The lowest unambiguous
accuracy was from LAmbDA-LR in both pancreas data (weighted accu-
racy: 17%, binomial probability: <Ix10') and brain data (weighted
accuracy: 18% binomial probability: <1x10"'). The best performing
algorithm on unambiguous labels was LAmbDA-RF on both pancreas
(weighted accuracy: 91%, binomial probability: <1x107%) and brain data
(weighted accuracy: 78%, binomial probability: <1x10™'%). For mapping
ambiguous labels, LAmbDA-FF1 produced the most desirable results
(Fig. 3A,C, Fig. 4C,D). LAmbDA-FF1 also maintained high unambigu-

ous accuracy in pancreas data (weighted accuracy: 61% binomial proba-
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bility: <1x10™’) and in brain data (weighted accuracy: 48%, binomial
probability: <I1x10"’, Supplemenatary Fig. S3A, Table 1). The
LAmbDA-FF1 unambiguous weighted accuracy was similar to that of
the more complex LAmbDA-FF3 model (48% vs 49% for pancreas, and
61% vs 67% for brain data). With high unambiguous accuracy, these
models were evaluated for their ability to remove batch effects in the
data.

Table 1. Predictive accuracy and dataset batch effect reduction by LAmbDA model. Full: the full
gene set features (i.e. no feature reduction). * indicate that both LR and RF use the full gene set
features as input. The cluster distance ratios for LR and RF can be regarded as the full gene set
features cluster distance ratios. The LR and RF accuracy can be regarded as the full gene set
features accuracy. Distance ratios: i) Dat~Sub*/Dat*Sub~, as it approaches 0, subtype in-
creased similarity across datasets. ii) Dat~Sub™ /Dat*Sub~, as it approaches 0, similar subtypes

are closer than dissimilar subtypes. iii) Dat*Sub~/Dat~Sub~, as it remains near 1, noise is not
introduced.

Pancreas Brain
Distance ratios weighted  Distance ratios Weighted
i il iii Aceuracy i il iii Aceuracy
LR NA*  NA*  NA* 17%  NA*  NA*  NA* 18%
FF1 0.79 0.71 0.92 61% 0.75 0.71 0.93 48%
FF3 0.89 0.78 0.89 67% 1.03 0.82 0.81 49%
RNN1 0.83 0.68 0.85 31% 1.32 0.71 0.55 11%
RF NA*  NA*  NA* 91% NA* NA*  NA* 78%
Full 1.12 1.04 0.95 NA* 0.88 0.82 0.93 NA*

3.2 LAmbDA Neural Networks Reduce Batch Effects Be-
tween Datasets

The neural network-based (NN-based) LAmbDA-FF1, -FF3, and -
RNNI1 each performed additional feature reduction (Table 1). During
training, the hidden layer improved cellular granularity and reduced
dataset batch effects as measured by cluster distance ratios (Table 1).
LAmbDA-FF1 generated the best reduction of dataset batch effects
while still maintaining high cell type signal (Table 1). LAmbDA-FF1
also achieved the best distance ratios overall by reducing the batch ef-
fects by 30-32% while introducing 3% noise in pancreas and reducing
batch effect distance ratios by 13-15% while only introducing 1% noise
in brain (Table 1, Supplementary Fig. S3B-D). In the pancreas dataset,
LAmbDA-FF1, -FF3, and -RNN1 were able to achieve better distance
ratios than the full gene set features (Table 1, Supplementary Fig. S3B-
D). The brain dataset contained greater batch effects and seemed de-
pendent on the subtype signal. Despite this, LAmbDA-FF1 still outper-
formed the full feature set across the distance metrics. The datasets
themselves showed differing levels of success in batch effect removal.

On relatively simple pancreas datasets, all NN-based models reduced
batch effects by 30-35% while only introducing 3-11% noise (Table 1).
In more complicated brain datasets, LAmbDA-FF1 was capable of re-
ducing batch effects without introducing noise (Table 1, Supplemen-
tary Fig. S3). Furthermore, LAmMbDA-FF1 correctly learned subtypes
that were ambiguously mapped between datasets (Fig. 3A,B AOI1-3,
Fig. 3C,D AOIN).

3.3 LAmbDA Models Correctly Predict Ambiguous Labels
Between Datasets
The LAmbDA-FF1 and LAmbDA-FF3 models correctly mapped pan-
creatic cells back to their correct label (Wilcoxon p-value: 0.0178 and
0.0346 respectively) when artificial ambiguity was introduced (Fig.

3A,B AOI1-3). LAmbDA-FF1 mapped pyramidal cells back to their
correct cortical layer (derived from the original papers) across species
(Wilcoxon p-value: 0.0181, Fig. 3C,D AOI2).

Overall, we found that the general LAmbDA method achieved high
accuracy for unambiguous labels regardless which of the five algorithm
types were used (LR, FF1, FF3, RNN1, RF). Specifically, if the labels
contained low ambiguity, LAmMbDA-RF performed most accurately. If
there was high ambiguity across datasets, LAmbDA-FF1 performed the
most accurately (Table 1). Furthermore the ability to correctly map

cortical pyramidal cells shows that cross species comparisons are possi-
ble.
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Fig. 3. Confusion matrices with their associated label masks used during LAmbDA-FF1 training.
Each numbered red box indicates an AOL A, C) Confusion matrix across three datasets where
rows are original cell types and the columns are the conserved cell types (i.e. LAmbDA output
labels) for pancreas (A) and brain (C). B, D) The label mask used during LAmbDA training.
Green indicates the mask used as input and yellow indicate the true labels, which were either
known or inferred from the literature. C) Yellow inside of AOII-3 indicate true labels from the
starting datasets. D) Yellow indicates the cortical layer specific mapping that was inferred from
each dataset’s publication.

3.4 High resolution neural subtypes are conserved across
species

We discovered that the mouse cortical pyramidal subtypes map to
human cortical pyramidal subtypes by their associated cortical layer (e.g.
L2 cortex pyramidal cells in mouse are associated with L2 cortex pyram-
idal cells in human, Fig. 3C AOI2, Fig. 3C AOI1, Fig. 4D). This indi-
cates that high granularity subtypes are conserved across species (in this
case, mouse and human) and the conservation aligns with cortical layer.
Because we were able to recreate known or inferred mappings, we ap-
plied the mapping from LAmbDA-FF1 interneurons to infer conserved
subtypes. These insights allowed us to hypothesize the label mapping of
interneurons between human and mouse (Fig. 3C AOI1, Fig. 4D). We
observed specific subsets of mouse subtypes mapped to the human sub-
types. With the biomarkers described in each of the primary sources of
the data (Darmanis, et al., 2015; Lake, et al., 2016; Zeisel, et al., 2015),
we showed relevant biomarkers for the conserved interneuron subtypes
(Supplementary Table S1) by intersecting the biomarker lists from the
two species. These cross-dataset and -species mappings provided inter-
esting discoveries so we further compared against the two label mapping
tools used for scRNA-seq datasets: CaSTLe (Lieberman, et al., 2018)
and MetaNeighbor (Butler, et al., 2018).
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3.5 LAmbDA Improves Upon Current Methods

Table 2 describes the performances of LAmbDA, CaSTLe, and
MetaNeighbor to predict unambiguous and ambiguous cell types. When
the ambiguous labels were tested across datasets, LAmbDA-FF1 had the
most significant Wilcoxon p-values indicative of correct mapping
(0.0178 and 0.0181). CaSTLe achieved the highest AUC in both pancre-
as (99%) and brain (94%) data, with LAmbDA-FF1 tied in brain AUC.
CaSTLe was also able to achieve the highest weighted accuracy in pan-
creas (75%). However, these accuracies and AUCs were calculated from
the source dataset and could have been caused by overfitting considering
the inter-dataset results. Furthermore, the AUC values for both CaSTLe
and MetaNeighbor were much closer than the weighted accuracies to
LAmbDA-FF1 in all tests. This suggests that CaSTLe and MetaNeighbor
are more useful in mapping labels between datasets but should not be

used over LAmbDA in classifying individual cells between datasets.

Table 2. Performance comparisons between LAmbDA-FF1, CaSTLe, and MetaNeighbor.
Pancreas/Brain Map columns contain Wilcoxon rank sum p-values for correct cell labels vs.
incorrect cell labels for the groups where artificial label ambiguity was added in LAmbDA.
Lower p-values indicate that the algorithm correctly assigned labels between datasets. The
Wilcoxon rank-sum p-values were calculated using both the weighted accuracy and AUC.
Pancreas/Brain Acc columns contain the weighted accuracy and the mean AUC across all unam-
biguous labels. The higher the value the better unambiguous labels are fit. In the case of CaSTLe
these values were from the source dataset. In MetaNeighbor, these values were from the same
dataset and same subtype.

Pancreas Map Brain Map Pancreas Acc Brain Acc

W-Ace AUC W-Ace AUC W-Ace AUC W-Ace  AUC
LAmbDA-FF1 0.0178 <0.0001 0.0181 0.0017 61% 94% 48% 94%
CaSTLe 0.0632 0.0012 0.3216 0.0038 75% 99% 32% 94%
MetaNeighbor 0.7446 <0.0001 NaN 0.0041 53% 86% 20% 86%

3.6 Major Cell Types Consistent Across Species and Dataset

Aside from the mapping of ambiguous labels across datasets, we
found consistent mapping patterns between subtypes within the same
major cell type. These mappings further validate our method. For exam-
ple, the MusNG oligodendrocyte subtypes showed high consistency with
other oligodendrocyte subtypes compared to other subtypes (Wilcoxon
p-value = 1.67x10™, Fig. 3C AOI4, Fig. 4D). The HumNG oligoden-
drocytes mapped to multiple MusNG oligodendrocytes compared to
other subtypes (Wilcoxon p-value = 1.51x107, Fig. 4D), and the
HumNG astrocytes mapped to multiple MusNG astrocyte subtypes com-
pared to other subtypes (Wilcoxon p-value = 1.62x107, Fig. 4D).

Cortical interneuron subtypes were highly consistent with other corti-
cal interneuron subtypes in HumN compared to other subtypes (Wilcox-
on p-value = 5.17x10™*, Fig. 3C AOIS5, Fig. 4D), and cortical pyramidal
subtypes were highly consistent with other cortical pyramidal subtypes
in HumN compared to other subtypes (Wilcoxon p-value = 3.94x107’,
Fig. 3C AOI6, Fig. 4D). Such relationships were observed in the pan-
creas data, where immune cells clustered with one another (Fig. 4C).
Furthermore, we found that models trained with MusNG and tested on
HumN and vice versa showed the same major cell type patterns (Sup-
plementary Fig. S2).

4 Discussion

All LAmbDA-based methods improved the prediction of unambigu-
ous cell type accuracy between datasets, with each LAmbDA model
catering to different specific demands. For instance, LAmbDA-FF1

performs best at correctly removing batch effects. LAmbDA-RF is most
accurate at predicting unambiguous labels. LAmbDA-RNNI shows
desirable characteristics in integrating the datasets, but needs to be fur-
ther optimized. We suggest different LAmbDA models should be con-
sidered to suit different dataset ambiguity levels. These considerations
are especially important when studying the correct assignment of ambig-
uous labels.
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Fig. 4. tSNE dimensionality reduction of 20% of samples taken from data before applying
LAmbDA (A,B) and after applying LAmbDA (C,D). A) Pancreatic datasets. B) Brain datasets.
C) Pancreatic data from the hidden layer of LAmbDA. D) Brain data from the hidden layer of
LAmbDA. The colors indicate the dataset A,C) Seger (red), Mur (green), Bar (blue), and B,D)
MusNG (red), HumN (green), HumNG (blue). *Indicate cell types that are only present in one
dataset. **Indicated glial cells, which are not present in the HumN dataset.

We observed that when error is intentionally introduced into the la-
bels, LAmbDA models were still able to correctly identify the labels in
pancreas and brain tissue (artificial ambiguity 10 in 39 labels in pancreas
and 5 in 70 labels in brain). These errors were introduced when the label
mappings were known but were not included. LAmbDA can identify the
correct label in most cases (Fig. 3B AOI1-3, Fig. 3D AOI1). This is in
part due to the feature reduction step in the NN implementations which
rearrange the subtype clusters to reduce batch effects. Even after feature
reduction, we see interesting subtype mappings both within and between
datasets/species.

Similar subtypes within a species tend to cluster together. For in-
stance, in the brain, the oligodendrocyte cell types in MusNG formed a
consistent group. This implies that subtypes of cells are difficult to fur-
ther stratify and consist of a joint distribution of major cell types within
the brain layer. Mouse and human interneurons from the LAmbDA-FF1
model were mapped to each other. They can be considered conserved
subtypes, which are consistent across dataset and species. We used the
intersection of biomarkers from the previous publications to identify
these conserved subtypes.

An interesting cell mapping pattern was the HumNG subtypes tended
to map to the MusNG subtypes more often than HumN, especially before
batch effect removal in the full feature set. One possible reason is that
HumN was single nuclei sequencing as opposed to whole cell sequenc-
ing in HumNG and MusNG, so the gene expression profiling could be
quite different. This suggests that sequencing method may introduce
larger batch effects than species differences, and cross-species training of
models may be more feasible than once thought. Due to these considera-
tions we believe that the general LAmbDA framework has a great deal of
potential.
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These applications of LAmbDA-based models on brain and pancreas
data make compelling cases for the LAmbDA method. We postulate that
our method can also adopt other learning algorithms such as deep learn-
ing as well as other distance metrics for the hidden layer to improve its
dataset/species integration and prediction accuracy. We also believe that
the LAmbDA framework is model-independent because of the high
accuracy and batch effect removal achieved by multiple tested models,
thus making it ideal for incorporation with other machine learning mod-
els. Furthermore, even though scRNA-seq data was used in our study,
the LAmbDA framework is not fundamentally limited to any data type,
organism, or disease. For instance, disparate tumor datasets could be
combined to find conserved cell populations between patients, datasets,
and similar cancer types (e.g. grades of glioma).

The scalability of LAmbDA is immense. Since LAmbDA does not
compute any pairwise correlations between samples, it could be easily
scaled up to incorporate the increasing number of large Drop-seq da-
tasets for single-cell studies. It is also worth mentioning that the core of
the LAmMbDA framework is a set of cost functions in Python (Tensor-

Flow), making it ideal for others to integrate into their own workflows.

5 Conclusion

We developed a novel dataset integration and ambiguous subtype la-
beling framework, LAmbDA, to predict cellular subtypes. Our algorithm
addresses both label mapping and dataset batch effect issues simultane-
ously. We are able to perform these analyses without exact label corre-
spondence. Our method is ideal to scale to even larger datasets. LAmb-
DA proves to be accurate for subtype prediction across species and da-
tasets. It is model independent and capable of revealing hidden biologi-
cal relationships between subtypes in disparate datasets. This could
prove especially useful in identifying conserved cell populations across
tumors or stages. Furthermore, in theory, this method could be applied to
any scalar data, which contain multiple datasets and ambiguous label
mappings. LAmbDA can be integrated into existing machine learning
pipelines to identify conserved labels and improve the robustness of the
model to data systematic biases.
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