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Abstract 18 

The human brain is thought to optimise the encoding of incoming sensory information through 19 

two principal mechanisms: prediction uses stored information to guide the interpretation of 20 

forthcoming sensory events, and attention prioritizes these events according to their 21 

behavioural relevance. Despite the ubiquitous contributions of attention and prediction to 22 

various aspects of perception and cognition, it remains unknown how they interact to modulate 23 

information processing in the brain. A recent extension of predictive coding theory suggests 24 

that attention optimises the expected precision of predictions by modulating the synaptic gain 25 

of prediction error units. Since prediction errors code for the difference between predictions 26 

and sensory signals, this model would suggest that attention increases the selectivity for 27 

mismatch information in the neural response to a surprising stimulus. Alternative predictive 28 

coding models proposes that attention increases the activity of prediction (or ‘representation’) 29 

neurons, and would therefore suggest that attention and prediction synergistically modulate 30 

selectivity for feature information in the brain. Here we applied multivariate forward encoding 31 

techniques to neural activity recorded via electroencephalography (EEG) as human observers 32 

performed a simple visual task, to test for the effect of attention on both mismatch and feature 33 

information in the neural response to surprising stimuli. Participants attended or ignored a 34 

periodic stream of gratings, the orientations of which could be either predictable, surprising, or 35 

unpredictable. We found that surprising stimuli evoked neural responses that were encoded 36 

according to the difference between predicted and observed stimulus features, and that 37 

attention facilitated the encoding of this type of information in the brain. These findings 38 

advance our understanding of how attention and prediction modulate information processing 39 

in the brain, and support the theory that attention optimises precision expectations during 40 

hierarchical inference by increasing the gain of prediction errors.  41 
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Introduction  42 

Perception is believed to arise from a process of active inference [1], during which the brain 43 

retrieves information from past experiences to build predictive models of likely future 44 

occurrences and compares these predictions with incoming sensory evidence [2,3]. In support 45 

of the idea that prediction increases the efficiency of neural encoding, previous studies have 46 

demonstrated that predicted visual events typically evoke smaller neural responses than 47 

surprising events (e.g. evoked activity measured in terms of changes in electrical potential or 48 

blood oxygen level dependent (BOLD) response; for a review, see [4]). Interestingly, recent 49 

studies have shown that selective attention can increase [5] or reverse [6] the suppressive effect 50 

of prediction on neural activity, suggesting that attention and prediction facilitate perception 51 

[7] via synergistic modulation of bottom-up sensory signals [8–11]. It remains unclear, 52 

however, what type of information is modulated in the interaction between attention and 53 

prediction. This question is important because different predictive coding models make distinct 54 

predictions about how information is transmitted through the cortical hierarchy [3,8,12,13]. 55 

Here, we used multivariate forward encoding analyses to assess selectivity for two distinct 56 

types of information in the neural response to surprising stimuli – feature and mismatch 57 

information - and to test the effect of attention on these two informational codes.  58 

A prominent version of predictive coding theory claims that top-down prediction signals 59 

‘cancel out’ bottom-up sensory signals that match the predicted content, leaving only the 60 

remaining prediction error to propagate forward and update a model of the sensory 61 

environment [2,8,9]. Since error propagation is thought to be associated with superficial 62 

pyramidal cells [9], and these cells are thought to be primarily responsible for generating EEG 63 

signals [14,15], this theory predicts that surprising events will increase the selectivity of EEG 64 

responses to the difference between predicted and observed stimulus features, i.e. mismatch 65 

information. Furthermore, a recent extension of this theory suggests that selective attention 66 
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optimises the expected precision of predictions by modulating the synaptic gain (post-synaptic 67 

responsiveness) of prediction error units [8] – that is, neurons coding for behaviourally relevant 68 

prediction errors should be more responsive than those coding for irrelevant prediction errors. 69 

On this account, attention should further increase selectivity for mismatch information in the 70 

neural response to surprising stimuli relative to unsurprising stimuli. Here we call this account 71 

the mismatch information model.   72 

Alternative predictive coding models [12,13,16] propose that predictions – as opposed to 73 

prediction errors – are propagated forward through the visual hierarchy, and it is these 74 

prediction signals that are modulated by attention. For example, the model proposed by 75 

Spratling [12] simulates the common physiological finding that attention to a stimulus 76 

enhances the firing rate of neurons tuned to specific stimulus features (e.g., orientation or 77 

colour for visual neurons), and has been shown to be mathematically equivalent to the biased 78 

competition model of attention [17–20]. In line with these alternative models, we investigated 79 

a second hypothesis – here termed the feature information model – which proposes that the 80 

interaction between attention and prediction at the level of neural responses is driven by 81 

changes in feature-specific information in the brain. 82 

Here we tested whether the feature information model or the mismatch information model 83 

provides a better account of the neural coding of surprising stimuli in the human brain, and 84 

examined the influence of selective attention on each of these two neural codes. Participants 85 

attended to, or ignored, periodic streams of visual gratings, the orientations of which were 86 

either predictable, surprising, or unpredictable. We applied forward encoding models to whole-87 

brain neural activity measured using EEG to quantify the neural selectivity for information 88 

related to the grating orientation and the mismatch between the predicted and observed grating 89 

orientations. We show that surprising stimuli evoke neural responses that contain information 90 
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related to the difference between predicted and observed stimulus features, consistent with the 91 

mismatch information model. Crucially, we also find that attention increases the selectivity for 92 

mismatch information in the neural response to surprising stimuli, supporting the hypothesis 93 

that attention increases the gain of prediction errors [8].  94 

Results 95 

We recorded brain activity using EEG as human observers (N = 24) undertook a rare-target 96 

detection task (see Methods; Fig 1). Participants fixated centrally and were presented with a 97 

periodic stream of gratings (100 ms duration, 500 ms ISI, 415 gratings per block) in one of two 98 

conditions (randomised across blocks). In roving standard blocks [21] (see Fig 1A), grating 99 

orientation was repeated between 4 and 11 times (standards) before changing to a new 100 

orientation (deviants, pseudo-randomly selected from one of nine orientations, spanning 0 - 101 

160o in 20o steps). Grating orientation was thus ‘predictable’ for standards and ‘surprising’ for 102 

deviants. In equiprobable blocks [22] (see Fig 1B), gratings changed orientation on every 103 

presentation and thus could not be predicted (‘unpredictable’ controls). Attention was 104 

manipulated by having participants either monitor the grating stimuli for rare targets with a 105 

different spatial frequency (‘grating task’, attended), or ignore the gratings and instead monitor 106 

for rare fixation-dot targets with decreased contrast (‘dot task’, gratings ignored).  107 
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 108 
Fig 1.  Example stimuli in each of the two block types used in the study. (A) Roving oddball sequence. 109 
In this sequence, the orientation of gratings was repeated over short sequences of stimuli (standards), 110 
before changing to a different orientation (deviant). During the grating or dot task, participants 111 
responded to rare gratings with high spatial frequency (grating target) or to rare decreases in fixation-112 
dot contrast (dot target), respectively. (B) Equiprobable sequence. In this sequence, the orientation of 113 
control gratings changed with each successive presentation.  114 

Participants completed the grating task and dot task in separate sessions, approximately one 115 

week apart (session order counterbalanced). At the beginning of each session, participants 116 

completed three practice blocks of the specified task, during which target salience levels were 117 

titrated to approximate a target detection rate of 75% (see Methods). Participants were then 118 

fitted with a 64-electrode EEG cap before completing 21 test blocks. One participant detected 119 

fewer than 50% of targets in both tasks and was therefore excluded from all further analyses. 120 

The remaining participants detected an equivalent percentage of targets in the grating task 121 

(75.64 ± 1.76%, mean ± SEM) and dot task (72.73 ± 2.54%; t(22) = 1.57, p = 0.13, BF10 = 122 

0.12), and also produced similar numbers of false alarms in each (20.43 ± 3.79 and 22.57 ± 123 

5.47, respectively; t(22) = -0.41, p = .684, BF10 = 0.18), suggesting that difficulty was well 124 

matched between attention conditions. 125 
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EEG data were pre-processed offline using EEGlab [23] and epoched according to the onset of 126 

each grating (see Methods for details). Statistical analyses were conducted using cluster-based 127 

permutation tests in Fieldtrip [24]. S1 Fig shows the main effects and interactions for the factors 128 

of attention and prediction on event related potentials (ERPs). Briefly, ERPs were modulated 129 

by both attention (86 - 434 ms, cluster-corrected p < .001; S1A and S1C Figs) and prediction 130 

(39 - 550 ms, cluster-corrected p < .001, S1A Fig). Follow-up analyses of the simple effects of 131 

prediction revealed that deviants elicited larger responses than both standards (39 - 550 ms, 132 

cluster-corrected p < .001; S1A and S1D Figs) and controls (324 - 550 ms, cluster-corrected p 133 

= .002; S1A and S1E Figs). The difference between deviants and controls emerged later and 134 

was smaller than the difference between deviants and standards, consistent with the notion that 135 

the former comparison reflects the pure effects of prediction (“genuine” mismatch response 136 

(MMR), [22]), whereas the latter comparison confounds the effects of prediction with those of 137 

adaptation to the standard (‘classic’ MMR, see [4] for a review).  138 

We also observed an interaction between attention and prediction (180 - 484 ms, cluster-139 

corrected p < .001; S1A Fig). Follow-up analyses revealed that attention increased both the 140 

classic MMR (176 - 469 ms, cluster-corrected p < .001; S1F and S1G Figs) and the genuine 141 

MMR (176 - 550 ms, cluster-corrected p < .001; S1H and S1I Figs). In the attended condition, 142 

both the classic and the genuine MMRs emerged approximately 200 ms after stimulus onset 143 

over posterior-lateral (PO7, PO8) electrodes (S1B Fig, solid green and yellow lines, 144 

respectively). Whereas the onset of the genuine MMR is consistent with previous literature 145 

[22], the classic MMR we report here emerged slightly later than what has typically been 146 

reported previously (~150 ms; for a review see [4]). We note, however, that at least one 147 

previous study reported a visual MMR beginning as late as 250 ms [25], highlighting the 148 

variable nature of this component.  149 
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In the ignored condition, we observed classic and genuine MMRs (S1B Fig, dotted green and 150 

yellow lines, respectively) with positive polarities over posterior (PO7, PO8) and frontal (Fz) 151 

electrodes, respectively. In contrast, previous studies have typically (but not always; see [5]) 152 

reported mismatch negativities, even in the absence of attention [4]. A number of differences 153 

between previous studies and our own could explain this discrepancy (e.g. stimuli, 154 

interstimulus interval, presentation duration, task etc).  In particular, we used large sinusoidal 155 

gratings (11º of visual angle) to optimise orientation decoding, in contrast to previous studies 156 

that presented much smaller oriented bars (~3-4º of visual angle, e.g. [22,26]). Thus, the stimuli 157 

in the current study likely activated a larger area of visual cortex than those used in previous 158 

studies, which produced a different dipole (or combination of multiple dipoles) and associated 159 

projection to scalp electrodes (due to the complex folding structure of the cortex, [4]) than has 160 

previously been observed. Indeed, close inspection of the ERPs seems to indicate the presence 161 

of a single dipole projecting to frontal and posterior electrodes (note the highly similar pattern 162 

of activity between electrodes Fz and Pz, but with opposite sign, S1A Fig), which has not 163 

typically been observed in previous studies (e.g., note the relatively uniform responses across 164 

the scalp in [22,27,28]).  165 

Orientation information is enhanced with attention but not surprise 166 

The feature information model predicts that the orientation-selective neural response to 167 

surprising stimuli (deviants) will be different to that of control stimuli. To investigate this 168 

hypothesis, we used a forward encoding model to estimate orientation selectivity from neural 169 

activity measured with EEG (see Methods for details). Briefly, we used multivariate regression 170 

to transform activity in electrode space into an orientation-selective ‘feature space’ [29–32], 171 

comprised of nine hypothetical ‘orientation channels’ matching those presented in the 172 

experiment (0 - 160o, in 20o steps). For each orientation channel, we modelled the expected 173 

activation across trials by convolving the presented orientation with a canonical orientation-174 
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selective tuning function. We then regressed this pattern of expected activity against the EEG 175 

data, separately for each time point (-100 - 550 ms after stimulus onset), to produce a weight 176 

matrix that converted multivariate activity in electrode space into activity in the specified 177 

orientation channel. The spatial weights for each orientation channel were then inverted to 178 

reconstruct the forward model and applied to an independent set of test trials (using a cross-179 

validation procedure) to estimate activity across all orientation channels. As shown in Fig 2A, 180 

using the forward encoding approach we reconstructed distinct response profiles for each of 181 

the nine grating orientations presented to participants. Orientation channels were then realigned 182 

for each trial such that the presented orientation channel was centred on 0o, and activation 183 

patterns were averaged across trials in each condition. The forward encoding model revealed 184 

an orientation-tuned response throughout the epoch (Fig 2B and 2C). This response emerged 185 

soon after stimulus onset, peaked at ~130 ms, and declined gradually until the end of the epoch. 186 
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 187 
Fig 2. Stimulus-evoked orientation channel response profiles. (A) Reconstructed orientation channels, 188 
corresponding to each of the nine grating orientations presented to participants (0 - 160o, in 20o 189 
steps). Coloured dots indicate the modelled orientation channel activity across trials in which the 190 
labelled orientation was presented. Curved lines show functions fitted to the grand average data for 191 
illustrative purposes. Note that each coloured line is approximately centred on the presented 192 
orientation. (B) Time-resolved orientation response profile, centred on the presented orientation in 193 
each trial and averaged across participants and conditions. Orientation response profiles emerged 194 
shortly after stimulus onset and lasted until the end of the epoch. (C) Orientation response profiles, 195 
averaged across all participants and conditions in each of three successive 100 ms time windows. 196 
Dots show activation in each of the nine modelled orientation channels (mean-centred). Curved lines 197 
show functions fitted to the grand average data for illustrative purposes. Orientation information 198 
(response profile amplitude) was strongest from 100 – 200 ms and decreased throughout the epoch. 199 
Data are available at https://doi.org/10.17605/osf.io/a3pfq. a.u. = arbitrary units. 200 

To quantify the effects of attention and prediction on orientation response profiles, we fitted 201 

the condition-averaged orientation channel responses with an exponentiated cosine function 202 

[33,34] using least squares regression: 203 

y(x) =  Ae ҡ (cos 2(x - μ)﹣1) + B 204 
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where y is the predicted orientation channel activity in response to a grating with orientation x; 205 

A is the peak response amplitude, ҡ is the concentration (i.e. inverse dispersion; a larger value 206 

corresponds to a “tighter” function), μ is the centre of the function, and B is the baseline offset 207 

(see Methods).  208 

Attention increased the amplitude of orientation response profiles (219 - 550 ms, cluster-209 

corrected p < .001; Fig 3A and 3B) but did not modulate the tuning concentration (all clusters 210 

p > .104). There was a significant main effect of prediction on the amplitude of orientation 211 

response profiles late in the epoch (324 – 550 ms, cluster-corrected p < .001; S2C and S2D 212 

Figs), as well as a non-significant but trending cluster early in the epoch (94 - 145 ms, cluster-213 

corrected p = .154; S2C Fig, cluster not shown). Follow-up analyses revealed that orientation 214 

response profiles evoked by standards (0.11 ± 0.01 a.u.) were smaller than those of both 215 

deviants (0.25 ± 0.03 a.u.; t(22) = -4.32, p < 0.001, BF10 = 1469.10) and controls (0.22 ± 0.03 216 

a.u.; t(22) = -3.79, p < 0.001, BF10 = 156.16; S2C and S2D Figs). Crucially, the amplitudes of 217 

orientation response profiles evoked by deviants and controls were equivalent (t(22) = 0.78, p 218 

= 0.443, BF10 = 0.19; Fig 3A, S2C and S2D Figs). Finally, there was no effect of prediction on 219 

the concentration of orientation response profiles (all clusters p > .403), and no interaction 220 

between attention and prediction on either the amplitude (cluster-corrected p = .093, S2E and 221 

S2F Figs) or concentration (no clusters found) of orientation response profiles. 222 
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 223 
Fig 3. Effects of attention and prediction error on orientation and mismatch response profiles. (A-C) 224 
Orientation response profiles. (A) Orientation selectivity (response profile amplitude) for each 225 
condition over time. Shading indicates the SEM. Thin black lines indicate differences between 226 
deviants and controls, separately for attended and ignored stimuli. The dark grey bar along the x-axis 227 
indicates the main effect of attention (cluster-corrected). (B) Orientation response profiles, averaged 228 
across the significant effect of attention shown in A (219 - 550 ms). Dots show activation in each of 229 
the nine modelled mismatch channels. Curved lines show functions fitted to channel responses (fitted 230 
to grand average data for illustrative purposes). (C) Univariate sensitivity for stimulus orientation 231 
across all conditions (see Methods). Topography shows the permutation-corrected z-scores, 232 
averaged across the significant effect of attention shown in A (219 - 550 ms). Posterior electrodes 233 
were the most sensitive to orientation information. (D-F) Mismatch response profiles (observed minus 234 
predicted orientation). (D) Mismatch selectivity (response profile amplitude) for each condition over 235 
time. The grey, solid black, and dotted black bars along the x-axis indicate the main effect of attention, 236 
main effect of prediction, and the interaction, respectively (cluster-corrected). Attention enhanced the 237 
mismatch response profile in response to deviants but not controls. (E) Mismatch response profiles, 238 
collapsed across the significant interaction shown in D (332 – 480 ms). (F) Univariate sensitivity for 239 
mismatch response profiles evoked by attended deviants (see Methods), averaged across 332 – 480 240 
ms. Posterior electrodes were the most sensitive to mismatch information. Note that C and F use 241 
different scales. Data are available at https://doi.org/10.17605/osf.io/a3pfq. a.u. = arbitrary units. 242 

To determine the scalp topography that was most informative for orientation encoding, we 243 

calculated univariate sensitivity separately for each electrode across all trials, and averaged 244 

across time points in the significant main effect of attention (see Methods). As revealed in Fig 245 

3C, posterior electrodes were the most sensitive to orientation information, as would be 246 

expected for a source in visual cortex. 247 

Attention facilitates the neural encoding of mismatch information 248 

The mismatch information model proposes that prediction errors are represented in populations 249 

of neurons tuned to the difference between predicted and observed stimulus features. 250 
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According to this model, therefore, surprising stimuli (deviants) should produce a more 251 

mismatch-selective neural response than control stimuli. Furthermore, if attention enhances the 252 

gain of prediction errors [8], we should expect an interaction between attention and prediction, 253 

such that attention enhances the amplitude of mismatch response profiles evoked by deviants 254 

more than that of controls, because deviants should evoke a larger prediction error [2]. To 255 

investigate these hypotheses, we trained a separate forward encoding model, as described 256 

above, on the angular difference between gratings (deviants or controls) and the preceding 257 

stimuli. That is, deviants were coded according to the difference between the deviant 258 

orientation and the preceding standard orientation, and controls were coded according to the 259 

difference between successive control orientations. For example, if a horizontally oriented 260 

deviant (0°) was preceded by a standard that was oriented at 40° (clockwise of horizontal), it 261 

would be coded as a mismatch of -40° (0 - 40°).  262 

As shown in Fig 3D and 3E, we were able to reconstruct mismatch response profiles for 263 

attended deviants. By contrast, mismatch response profiles were clearly weaker in response to 264 

controls and ignored deviants. There was a significant main effect of attention on the amplitude 265 

of mismatch response profiles (attended > ignored, 188 – 550 ms, cluster-corrected p = .002; 266 

Fig 3D, grey bar along x-axis). There was also a significant main effect of prediction (deviant 267 

> control, 113 – 550 ms, cluster-corrected p < .001; Fig 3D, solid black bar along x-axis), 268 

suggesting that prediction error is encoded according to the mismatch between predicted and 269 

observed features. Crucially, attention and prediction interacted to influence the amplitude of 270 

mismatch response profiles (332 – 480 ms, cluster-corrected p = .031; Fig 3D, dotted black bar 271 

along x-axis). As can be seen in Fig 3D and 3E, attention enhanced the amplitude of deviant 272 

mismatch response profiles but had little effect on those evoked by controls, supporting the 273 

hypothesis that attention boosts prediction errors [8].  274 
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The concentration of mismatch response profiles was not modulated by attention (all clusters 275 

p > .888) or the interaction between attention and prediction (all clusters p > .615), although 276 

we did find a significant main effect of prediction on the concentration of mismatch response 277 

profile fits (controls > deviants, 344 - 422 ms, cluster-corrected p < .001). Since controls 278 

seemed to produce negligible mismatch response profiles during this time period (yellow lines, 279 

Fig 3D), however, we followed up this result by averaging mismatch response amplitudes 280 

across the significant timepoints and comparing these values to zero with a t-test and Bayes 281 

Factor analysis (uniform prior, lower bound: 0, upper bound = 0.3). We found that control 282 

mismatch response profile amplitudes (.005 ± .023 a.u.) were equivalent to zero (t(22) = 0.19, 283 

p = .848, BF10 = 0.11), suggesting that the observed effect on concentration was more likely 284 

an artefact of the fitting procedure than a true effect of prediction on mismatch response 285 

profiles.  286 

We calculated the sensitivity of each electrode to mismatch information in trials that contained 287 

attended deviants, and collapsed across the significant interaction between 332 and 480 ms. As 288 

revealed in Fig 3F, posterior electrodes were again the most informative, but the topography 289 

of mismatch sensitivity was weaker and more sparsely distributed than that of orientation 290 

decoding (Fig 3C). 291 

Mismatch information increases with the strength of predictions  292 

Next, we investigated whether the number of preceding standards was related to the amplitude 293 

of prediction error response profiles. Repeated presentations of the standard are thought to 294 

increase the strength of the memory trace, resulting in larger prediction errors to a subsequent 295 

surprising stimulus [35]. Mismatch response profiles evoked by attended deviants were 296 

grouped according to the number of preceding standards (4-7 repetitions vs 8-11 repetitions) 297 

and fitted with exponentiated cosine functions (see Methods). As can be seen in Fig 4A and 298 
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4B, increasing the number of standard repetitions also increased the amplitude of mismatch 299 

response profiles (387 - 520 ms, cluster-corrected p = .050). This finding is consistent with the 300 

notion that successive standards allow a more precise prediction to be generated, which results 301 

in enhanced prediction errors when violated. Finally, there was no effect of the number of 302 

standard repetitions on the concentration of mismatch response profiles (cluster-corrected p = 303 

.314). 304 

 305 
Fig 4. Mismatch response profiles (putative prediction error) evoked by attended deviants. (A) Effect 306 
of standard repetition on mismatch selectivity (response profile amplitude). Mismatch response 307 
profiles evoked by attended deviants were larger following long standard sequences (8 - 11 308 
repetitions) than short standard sequences (4 - 7 repetitions). The black bar along the x-axis denotes 309 
significant differences (cluster-corrected). (B) Mismatch response profiles, collapsed across 310 
significant time points in A (387 - 520 ms). Dots show activation in each of the nine modelled 311 
mismatch channels. Curved lines show functions fitted to channel responses (fitted to grand average 312 
data for illustrative purposes). (C) Effect of deviation angle on mismatch selectivity. Mismatch 313 
response profile amplitude increased with the magnitude of deviation (±80° > ±20°). (D) Mismatch 314 
response profiles for each deviation angle, collapsed across the earlier cluster shown in C (215 - 410 315 
ms). Curved lines show functions fitted with a variable centre (fitted to grand average data for 316 
illustrative purposes). Data are available at https://doi.org/10.17605/osf.io/a3pfq. a.u. = arbitrary units. 317 

Mismatch information increases with the magnitude of violation 318 

We also tested whether larger deviations from the prediction increased selectivity for mismatch 319 

information. Mismatch response profiles of attended deviants were grouped according to the 320 

angular difference between the deviant and preceding standard (i.e., the original mismatch 321 

values entered into the encoding model) and fitted with exponentiated cosine functions 322 
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(variable centre, see Methods). There was a significant main effect of deviation magnitude on 323 

mismatch response profile amplitude (215 - 410 ms, cluster-corrected p = .004). As shown in 324 

Fig 4C, the amplitude of mismatch response profiles increased with the absolute deviation 325 

angle (±80° > ±60° > ±40° > ±20°), supporting the notion that larger angular deviations (from 326 

the predicted orientation) produce more prediction error. A second cluster emerged later in the 327 

epoch (465 - 550 ms, cluster-corrected p = .031), which followed a similar pattern but with the 328 

amplitude of the ±40° and ±60° responses reversed. Intriguingly, individual mismatch response 329 

profiles were typically centred on the orthogonal deviation angle (90°, Fig 4D). This pattern of 330 

results differs from the individual orientation response profiles (Fig 2A), which were 331 

(approximately) centred on the presented orientation.  332 

Attention produces temporally stable mismatch response profiles 333 

In a final step, we investigated whether the spatial maps that produce mismatch response 334 

profiles are stable or evolve dynamically over time. We used the same forward encoding 335 

analysis as above, with the exception that the trained weights at each time point were tested on 336 

all time points in the epoch [30,36] (see Methods). This produced a train time x test time 337 

generalisation matrix of mismatch channel responses, to which we fitted exponentiated cosine 338 

functions. Fig 5 shows the mismatch selectivity (response profile amplitude) for attended and 339 

ignored deviants, generalised across time. As revealed in Fig 5A, the mismatch response profile 340 

evoked by attended deviants generalised across the latter part of the epoch (black outline 341 

surrounding large red patch in upper right quadrant between ~200 - 550 ms, cluster-corrected 342 

p = .010), indicating that the spatial map associated with mismatch information was relatively 343 

consistent throughout this period. Note also that this pattern of generalisation was asymmetrical 344 

(triangular-shaped, rather than square-shaped). Specifically, the spatial map trained at ~450 ms 345 

generalised to the (test) time point at ~250 ms, but training at ~250 ms did not generalise to 346 

testing at ~450 ms. Since asymmetrical generalisation can indicate differences in signal-to-347 
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noise ratios between time points [36], this finding suggests that the strength of prediction error 348 

signals may have increased toward the end of the epoch. It is also worth noting that the apparent 349 

generalisation of spatial maps trained at stimulus onset (ttrain = 0) to later times in the epoch 350 

(~200 – 550 ms, red patch along the x-axis) was not significantly different from zero (no 351 

clusters found in this region) and produced high residuals in the function fits (see S3 Fig), 352 

suggesting that this pattern represents noise. Finally, the mismatch response profile evoked by 353 

ignored stimuli (Fig 5B) did not generalise across time points (all clusters p  > .935) and was 354 

significantly smaller than that of attended stimuli (significant difference denoted by the opaque 355 

patch in Fig 5C; p = .026).  356 

 357 
Fig 5. Generalised mismatch response profiles in response to (A) attended deviants and (B) ignored 358 
deviants. The dashed diagonal line indicates on-axis encoding (equivalent to the time-series plot in 359 
Fig 4A). The black outline shows mismatch response profiles significantly larger than zero (cluster-360 
corrected). (C) Difference map (attended minus ignored), thresholded to show the significant effect of 361 
attention on mismatch response profiles (cluster-corrected). Data are available at 362 
https://doi.org/10.17605/osf.io/a3pfq. a.u. = arbitrary units. 363 

Discussion 364 

Here we set out to determine what type of information is modulated in the interaction between 365 

attention and prediction [8]. To achieve this, we used forward encoding models of EEG data 366 

to quantify the selectivity for orientation and mismatch information in the neural responses to 367 

surprising and unpredictable stimuli in the well-established roving oddball paradigm [21,37]. 368 

Relative to unpredictable stimuli (controls), we found that EEG responses to surprising stimuli 369 

(deviants) were equally selective for orientation information, but more selective for 370 
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information related to the difference between predicted and observed stimulus features. These 371 

results are consistent with the mismatch information model, and support the idea that top-down 372 

prediction signals ‘cancel out’ matching bottom-up sensory signals and leave only the 373 

remaining prediction error to propagate forward [2,3,8,9]. Crucially, we also found that 374 

attention increased the selectivity for mismatch information in neural responses to surprising 375 

but not control stimuli. This finding demonstrates that attention boosts mismatch information 376 

evoked by surprising stimuli (putative prediction errors), and is consistent with a recent version 377 

of predictive coding theory that proposes attention optimises the expected precision of 378 

predictions by increasing the gain of prediction errors [8]. 379 

We found no difference between orientation response profiles evoked by surprising and 380 

unpredictable stimuli (a prediction of the feature information model), suggesting that the 381 

increase in EEG activity that is typically observed with surprise is not coded according to 382 

stimulus features. This finding contradicts predictive coding models in which predictions (or 383 

‘representations’) of stimulus features are passed up the visual hierarchy [12,16,17]. Because 384 

feedforward connections largely originate primarily from superficial pyramidal cells and it is 385 

this activity that is measured with EEG [9,14,15], these models would predict that surprise 386 

changes the feature-selectivity of EEG responses: a finding we do not observe here. This 387 

finding might also seem to contradict a recent study that demonstrated greater selectivity for 388 

orientation information in early visual cortex BOLD activity following presentation of a 389 

predicted grating, relative to a surprising grating [38]. Since BOLD activity indirectly measures 390 

the activity patterns of heterogenous populations of neurons, however, this change in feature-391 

selectivity could have reflected a change in either of the two neuronal populations proposed to 392 

underlie predictive coding - predictions or prediction errors. The latter interpretation is 393 

inconsistent with the results of the present study, which suggests that prediction errors are 394 

encoded according to the mismatch between predicted and observed stimulus features, and not 395 
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the features themselves. The former interpretation (i.e. that predictions are coded according to 396 

the stimulus features) fits well with a recent study that showed prediction induces feature-397 

specific templates immediately prior to stimulus onset [31]. Thus, a parsimonious account of 398 

the literature to date suggests that predictions and prediction errors are represented in the brain 399 

via distinct neural codes: whereas predictions are represented according to stimulus features, 400 

prediction errors are represented according to the mismatch between predicted and observed 401 

stimulus features.  402 

In a recent study by our group [39], we observed a decrease in orientation selectivity in the 403 

neural response to predicted stimuli, relative to surprising stimuli, shortly after stimulus onset 404 

(79 – 185 ms). Here we observed a similar (but non-significant) trend in the same direction 405 

(standards < deviants) at approximately the same time (94 - 145 ms, S2C Fig, cluster not 406 

shown). Close inspection of the present results, however, suggests that some orientation 407 

information evoked by the previous standard was still present in the brain at the onset of the 408 

subsequent standard (indicated by the above-zero amplitude of the orientation response to 409 

standards at stimulus onset, t = 0 ms, S2C Fig), which may have obscured detection of the early 410 

effect reported in Tang et al. [39]. Interestingly, the present results revealed a late effect of 411 

prediction (standards < deviants, 324 -550 ms, S2C and S2D Figs) that was not observed in our 412 

previous work [39]. Since a critical difference between the two studies was the number of times 413 

identical stimuli could be presented consecutively (no more than twice in the previous study), 414 

we speculate that the late effect observed here might reflect the minimal amount of model-415 

updating required after the presentation of a precisely predicted stimulus.  416 

We also found that attention increased the amplitude of orientation response profiles (Fig 3A 417 

and 3B), consistent with previous studies that applied forward encoding models to human fMRI 418 

[34,40] and time-frequency-resolved EEG data [29]. The present study replicates and extends 419 
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these studies with the application of forward encoding models to time-resolved EEG recordings 420 

(resulting in <30 ms temporal resolution after smoothing), demonstrating that attention 421 

increases feature selectivity in the human brain from approximately 200 ms after stimulus 422 

onset. 423 

Crucially, we also tested the interactive effects of attention and prediction on information 424 

processing in the brain. There was a large and significant effect of attention on mismatch 425 

response profiles in response to surprising but not unpredictable stimuli (beginning around 150 426 

ms after stimulus onset and reaching significance from ~350 ms). This finding demonstrates 427 

that attention boosts prediction errors evoked by surprising stimuli, and is consistent with a 428 

recent iteration of predictive coding theory according to which attention optimises the expected 429 

precision of prediction errors [8]. Previous studies have found evidence for an interaction 430 

between attention and prediction in both the auditory [5] and visual [6,41] modalities. 431 

Importantly, these studies used activation-based analyses to compare differences between 432 

predicted and unpredicted stimuli at the level of overall neural activity, but did not investigate 433 

what type of information is modulated in the interaction between attention and prediction. In 434 

contrast, the present study used information-based analyses [42] to identify specific patterns of 435 

neural activity that are associated with orientation-mismatch information in the brain, and 436 

showed that selectivity for this type of information (but not feature information) is increased 437 

with attention. Thus, the present study provides clear support for the hypothesis that attention 438 

boosts the gain of prediction errors [8]. It will be important for future research to investigate 439 

whether the interactive effects of attention and prediction on mismatch information is 440 

contingent on the type of attention (e.g., feature-based versus spatial attention) or prediction 441 

(e.g., rule-based versus multimodal cue-stimulus predictions; [31,43]).  442 
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Interestingly, we found that the magnitude of mismatch response profiles correlated with the 443 

number of preceding standards (Fig 4A and 4B). Previous work in the auditory domain 444 

demonstrated that successive repetitions of the standard evoke progressively increased 445 

responses to a subsequent attended deviant [35]. Here we find a corollary for this effect in the 446 

visual domain and demonstrate that the neural activity modulated by the number of preceding 447 

standards is likely encoded as mismatch information. This finding is also consistent with the 448 

notion that repeating the standard allows a more precise prediction to be generated, which 449 

results in a larger prediction error to a subsequent surprising stimulus [44].  450 

We also found that mismatch response profiles increased with the magnitude of the mismatch 451 

between predicted and observed stimulus features (Fig 4C). Previous work in the auditory 452 

domain has demonstrated a correlation between deviation magnitude and the amplitude of the 453 

neural response to deviants (i.e. the mismatch negativity) [45]. Here we demonstrate a 454 

relationship between deviation magnitude and selectivity for mismatch information (as 455 

opposed to activation levels) in the visual domain, suggesting that the magnitude of mismatch 456 

information might be used by the brain to guide updating of the predictive model. Since the 457 

present study investigated mismatch signals with respect to a continuous and circular feature 458 

dimension (i.e. orientation), it will be important for future research to extend the current line 459 

of research to non-circular (e.g. luminance, auditory frequency) and categorical (e.g. facial 460 

emotions) feature dimensions. 461 

Somewhat surprisingly, there was a lateral shift in the response profile of individual mismatch 462 

channels toward the orthogonal (90°) channel (Fig 4D). The extent of this effect depended on 463 

the deviation magnitude, with large deviations (±40-80°) being predominantly stacked over the 464 

90° channel and smaller deviations (±20°) being more closely aligned with their veridical 465 

mismatch angle (Fig 4D). We speculate that this might indicate a qualitative difference in the 466 
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way that small and large prediction errors were treated by the brain in the present study. Small 467 

deviations may have resulted in updating and retention of the current model (via a near-468 

veridical mismatch signal), whereas large deviations may have resulted in the wholesale 469 

rejection of the current model (via a generic mismatch signal) in favour of an alternative model 470 

that represents the deviant stimulus. In the latter case, the magnitude of the (orthogonal) 471 

mismatch channel response might represent an efficient code that the brain utilises to select 472 

from a number of likely alternative models.  473 

Intriguingly, a number of recent studies failed to find an interaction between the effects of 474 

attention and prediction on stimulus information in the brain [31,38,46]. If predictions are 475 

encoded according to stimulus features, as we argue above, these null findings contradict the 476 

theory that attention boosts predictions [47]. In contrast, we show that prediction errors, 477 

represented according to the mismatch between predicted and observed stimulus features, are 478 

enhanced with attention. Although the present study cannot speak to the activity of single 479 

neurons, we note that the emerging picture is consistent with the notion that predictions and 480 

prediction errors are represented in distinct populations of neurons [2] that encode two distinct 481 

types of information and are differentially influenced by attention. Under this framework, 482 

feature information encoded by prediction units would be immune to attention, whereas 483 

mismatch information encoded by prediction error units would be enhanced by attention. 484 

Future research could test these hypotheses at the single-cell level, for example by using single-485 

unit electrode recordings or 2-photon calcium imaging to assess whether different neurons 486 

within a given cortical area satisfy these constraints.  487 
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Methods 488 

Ethics Statement 489 

The study was approved by The University of Queensland Human Research Ethics Committee 490 

(approval number: 2015001576) and was conducted in accordance with the Declaration of 491 

Helsinki. Participants provided informed written consent prior to commencement of the study. 492 

Participants 493 

Twenty-four healthy participants (11 female, 13 male, mean = 23.25 years, SD = 9.01 years, 494 

range: 18 to 64 years) with normal or corrected-to-normal vision were recruited via an online 495 

research participation scheme at The University of Queensland. 496 

Stimuli  497 

Stimuli were presented on a 61 cm LED monitor (Asus, VG248QE) with a 1920 x 1080 pixel 498 

resolution and refresh rate of 120 Hz, using the PsychToolbox presentation software [48] for 499 

Matlab (v.15b) running under Windows 7 with a NVidia Quadro K4000 graphics card. 500 

Participants were seated in a comfortable armchair in an electrically shielded laboratory, with 501 

the head supported by a chin rest at a viewing distance of 57 cm.  502 

During each block, 415 gratings with Gaussian edges (outer diameter: 11º, inner mask 503 

diameter: 0.83º, spatial frequency: 2.73 c/º, 100% contrast) were presented centrally for 100 504 

ms with a 500 ms ISI. Grating orientations were evenly spaced between 0º (horizontal) and 505 

160º (in 20º steps). Eighteen (18) gratings in each block (2 per orientation) were presented with 506 

a higher spatial frequency (range: 2.73 - 4.55 c/º, as per staircase procedure, below), with a gap 507 

of at least 1.5 s between any two such gratings. We used a modified de Bruijn sequence to 508 

balance the order of grating orientations across conditions, sessions, and participants. 509 

Specifically, we generated two 9-character (orientation) sequences without successive 510 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 7, 2019. ; https://doi.org/10.1101/522185doi: bioRxiv preprint 

https://doi.org/10.1101/522185
http://creativecommons.org/licenses/by/4.0/


24 
 

repetitions (e.g. ABCA, not ABCC) - one with a 3-character sub-sequence (504 characters 511 

long) and another with a 2-character sub-sequence (72 characters long) - and appended two 512 

copies of the former sequence to three copies of the latter sequence (1224 characters in total). 513 

This master sequence was used to allocate the order of both deviants and controls in each 514 

session (using different, random start-points), and ensured that each orientation was preceded 515 

by equal numbers of all other orientations (up to 2+ preceding stimuli) so that decoding of any 516 

specific orientation could not be biased by the orientation of preceding stimuli.  517 

In roving oddball sequences, the number of Gabor repetitions (i.e., standards) was balanced 518 

across orientations within each session, such that each orientation repeated between 4 and 11 519 

times according to the following distribution: (31, 31, 31, 23, 5, 5, 5, 5), respectively. During 520 

each block, the fixation dot (diameter: 0.3º, 100% contrast) decreased in contrast 18 times 521 

(contrast range: 53-98% as per staircase procedure, below) for 0.5 s (0.25 s linear ramp on and 522 

off). Contrast decrement onsets were randomised separately for each block, with a gap of at 523 

least 1.5 s between any two decrement onsets. 524 

Procedure 525 

Participants attended two testing sessions of 60 minutes duration, approximately one week 526 

apart, and completed one of two tasks in each session (Fig 1, session order counterbalanced 527 

across participants). For the grating task, participants were informed that approximately 1/20 528 

of the gratings would be a target grating with a higher spatial frequency than non-targets, and 529 

were asked to press a mouse button as quickly as possible when they detected a target grating; 530 

all other gratings were to be ignored. For the dot task, participants were informed that the 531 

fixation dot would occasionally decrease in contrast, and were asked to press a mouse button 532 

as quickly as possible when they detected such a change. Participants initially completed three 533 

practice blocks (3.5 min per block) with auditory feedback (high or low tones) indicating 534 
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missed targets and the accuracy of their responses. During practice blocks in the first testing 535 

session, target salience (spatial frequency or dot contrast change, depending on the task) was 536 

adjusted dynamically using a Quest staircase procedure [49] to approximate 75% target 537 

detection. During practice blocks in the second testing session, target salience was adjusted to 538 

approximate the same level of target detection observed in the first testing session. Participants 539 

were requested to minimise their number of false alarms. After the practice blocks, participants 540 

were fitted with an EEG cap (see EEG Data Acquisition) before completing a total of 21 test 541 

blocks (3 equiprobable, 18 roving standard, block order randomised) without auditory 542 

feedback. After each block participants were shown the percentage of targets correctly 543 

detected, the speed of these responses, and how many non-targets were responded to (false 544 

alarms).  545 

Behavioural Data Analysis 546 

Participant responses were scored as hits if they occurred within one second of the onset of a 547 

target grating in the grating task, or within one second of the peak contrast decrement in the 548 

dot task. Target detection was then expressed as a percentage of the total number of targets 549 

presented in each testing session. One participant detected less than 50% of targets in both 550 

sessions and was removed from further analysis. Target detections and false alarms across the 551 

two sessions were compared with paired-samples t-tests and Bayes Factors. Bayes factors 552 

allow for quantification of evidence in favour of either the null or alternative hypothesis, with 553 

B01 > 3 indicating substantial support for the alternative hypothesis and B01 < 0.33 indicating 554 

substantial support for the null hypothesis [50]. Bayes factors were computed using the Dienes 555 

[50,51] calculator in Matlab, with uniform priors for target detection (lower bound: -25%, 556 

upper bound: 25%) and false alarms (lower bound: -50, upper bound: 50).   557 
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EEG Data Acquisition 558 

Participants were fitted with a 64 Ag-AgCl electrode EEG system (BioSemi Active Two: 559 

Amsterdam, Netherlands). Continuous data were recorded using BioSemi ActiView software 560 

(http://www.biosemi.com), and were digitized at a sample rate of 1024 Hz with 24-bit A/D 561 

conversion and a .01 – 208 Hz amplifier band pass. All scalp electrode offsets were adjusted 562 

to below 20μV prior to beginning the recording. Pairs of flat Ag-AgCl electro-oculographic 563 

electrodes were placed on the outside of both eyes, and above and below the left eye, to record 564 

horizontal and vertical eye movements, respectively.  565 

EEG Data Preprocessing 566 

EEG recordings were processed offline using the EEGlab toolbox in Matlab [23]. Data were 567 

resampled to 256 Hz and high-pass filtered with a passband edge at 0.5 Hz (1691-point 568 

Hamming window, cut-off frequency: 0.25 Hz, -6 db). Raw data were inspected for the 569 

presence of faulty scalp electrodes (2 electrodes, across 2 sessions), which were interpolated 570 

using the average of the neighbouring activations (neighbours defined according to the EEGlab 571 

Biosemi 64 template). Data were re-referenced to the average of all scalp electrodes, and line 572 

noise at 50 and 100 Hz was removed using the Cleanline plugin for EEGlab 573 

(https://www.nitrc.org/projects/cleanline). Continuous data were visually inspected and 574 

periods of noise (e.g., muscle activity) were removed (1.4% of data removed in this way, across 575 

sessions).  576 

For artefact identification, the cleaned data were segmented into 500 ms epochs surrounding 577 

grating onsets (100 ms pre- and 400 ms post-stimulus). Improbable epochs were removed using 578 

a probability test (6SD for individual electrode channels, 2SD for all electrode channels, 6.5% 579 

of trials across sessions), and the remaining data were subjected to independent components 580 

analyses (ICA) with a reduced rank in cases of a missing EOG electrode (2 sessions) or an 581 
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interpolated scalp electrode (2 sessions). Components representing blinks, saccades, and 582 

muscle artefacts were identified using the SASICA plugin for EEGlab [52].  583 

For further analysis, the cleaned data (i.e., prior to the ICA analysis) were segmented into 800 584 

ms epochs surrounding grating onsets (150 ms pre- and 650 ms post-stimulus). Independent 585 

component weights from the artefact identification process were applied to this new data set, 586 

and previously identified artefactual components were removed. Baseline activity in the 100 587 

ms prior to each stimulus was removed from each epoch. Grating epochs were then separated 588 

into their respective attention and prediction conditions. Epochs in the grating task were 589 

labelled as ‘Attended’ and epochs in the dot task were labelled as ‘Ignored’. Epochs in the 590 

roving oddball sequence were labelled as ‘Deviants’ when they contained the first stimulus in 591 

a repeated train of gratings, and ‘Standards’ when they contained a grating that had been 592 

repeated between five and seven times. Epochs in the equiprobable sequence were labelled as 593 

‘Controls’. 594 

Event-Related Potential Analyses 595 

Trials in each attention and prediction condition were averaged within participants to produce 596 

event-related potentials (ERPs) for each individual. The effect of attention was assessed using 597 

a two-tailed cluster-based permutation test across participant ERPs (Monte-Carlo distribution 598 

with 5000 permutations, pcluster<0.05; sample statistic: dependent samples t-statistic, 599 

aggregated using the maximum sum of significant adjacent samples, psample<.05). Because there 600 

were three, rather than two, levels of prediction, we tested the effect of prediction with a cluster-601 

based permutation test that used f-statistics at the sample level and a one-sided distribution to 602 

account for the positive range of f-statistics (Monte-Carlo distribution with 5000 permutations, 603 

pcluster<0.05; sample statistic: dependent samples f-statistic, aggregated using the maximum 604 

sum of significant adjacent samples, psample<.05). Simple contrasts between prediction 605 
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conditions (deviants vs standards, and deviants vs controls) were tested using two-tailed 606 

cluster-based permutation tests (with the same settings as used to investigate attention). The 607 

interaction between attention and prediction was assessed by subtracting the ignored ERP from 608 

the attended ERP within each prediction condition and subjecting the resulting difference 609 

waves to a one-tailed cluster-based permutation test across participant ERPs (Monte-Carlo 610 

distribution with 5000 permutations, pcluster<0.05; sample statistic: dependent samples f-611 

statistic, aggregated using the maximum sum of significant adjacent samples, psample<.05). The 612 

interaction effect was followed-up by comparing difference waves (attended - ignored) 613 

between deviants and standards, and between deviants and controls (two-tailed cluster-based 614 

permutation tests, same settings as above). 615 

Forward Encoding Models 616 

To investigate the informational content of orientation signals, we used a forward encoding 617 

model [29,53] designed to control for noise covariance in highly correlated data [31,54; 618 

https://github.com/Pim-Mostert/decoding-toolbox], such as EEG. We modelled an idealised 619 

basis set of the nine orientations of interest (0-160° in 20° steps) with nine half-wave rectified 620 

cosine functions raised to the 8th power, such that the response profile associated with any 621 

particular orientation in the 180° space could be equally expressed as a weighted sum of the 622 

nine modelled orientation channels [29]. We created a matrix of nine regressors that 623 

represented the grating orientation presented on each trial in the training set (1 = the presented 624 

orientation, 0 = otherwise) and convolved this regressor matrix with the basis set to produce a 625 

design matrix, C (9 orientation channels x n trials). The EEG data could thus be described by 626 

the linear model: 627 

B = WC + N, 628 
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where B represents the data (64 electrodes x n trials), W represents a spatial weight matrix that 629 

converts activity in channel space to activity in electrode space (64 electrodes x 9 orientation 630 

channels) and N represents the residuals (i.e., noise).  631 

To train and test the forward encoding model, we used a three-fold cross-validation procedure 632 

that was iterated 100 times to increase reliability of the results. Within each cross-validation 633 

iteration, the experimental blocks were folded into thirds: one third of trials served as the test 634 

set and the remaining two-thirds served as the training set, and folds were looped through until 635 

each fold had served as a test set. Across successive iterations of the cross-validation procedure, 636 

the number of trials in each condition was balanced within folds by random selection (on the 637 

first iteration) or by selecting the trials that had been utilised the least across previous folds 638 

(subsequent iterations).  639 

Prior to estimating the forward encoding model, each electrode in the training data was de-640 

meaned across trials, and each time point was averaged across a 27.3 ms window centred on 641 

the time point of interest (corresponding to an a priori window of 30 ms, rounded down to an 642 

odd number of samples to prevent asymmetric centring). Separately for each time point and 643 

orientation channel of interest, i, we solved the linear equation using least square regression: 644 

wi = Btrain ctrain,iT (ctrain,i ctrain,iT)-1, 645 

  646 
where wi represents the spatial weights for channel i, Btrain represents the training data (64 647 

electrodes x ntrain trials), and ctrain,i represents the hypothetical response of channel i across the 648 

training trials (1 x ntrain trials). Following Mostert et al. [54], we then derived the optimal spatial 649 

filter vi to recover the activity of the ith orientation channel:  650 

𝐯" =
∑%&
'(	𝐰&

𝐰𝒊
,	∑% &

'(	𝐰&
 , 651 
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where Σi is the regularized covariance matrix for channel i, estimated as follows: 652 

∑%" = 	
1

𝑛/01"2 − 	1
	ε"	ε"5 653 

ε" = 𝐁/01"2 −	𝐰"𝐜/01"2,", 654 

where ntrain is the number of training trials. The covariance matrix ∑%" was regularized by using 655 

the analytically determined shrinkage parameter [31]. Combining the spatial filters across each 656 

of the nine orientation channels produced a channel filter matrix V (64 electrodes x 9 channels). 657 

Ctest = VT Btest , 658 

where Btest represents the test data at the time point of interest (64 electrodes x ntest trials), 659 

averaged over a 27.3 ms window (as per the training data). Finally, the orientation channel 660 

responses for each trial were circularly shifted to centre the presented orientation on 0o, and the 661 

zero-centred responses were averaged across trials within each condition to produce the 662 

condition-average orientation channel response (Fig 3B). 663 

To assess information related to the mismatch between predicted and observed stimulus 664 

features (Fig 3D and 3E), we computed a second forward encoding model as above, with the 665 

exception that now the regression matrix represented the difference between the current grating 666 

orientation (deviant or control) and the previous grating orientation (standard or control, 667 

respectively). That is, a grating at 60° orientation that followed a grating at 20° orientation 668 

would be coded as 40° (current minus previous orientation). 669 

To assess the dynamic nature of mismatch response profiles (Fig 5), we trained the weight 670 

matrix, W, at a single time point in the training set, B1 (using a 30 ms sliding window), and 671 
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then applied the weights to every third time point in the test set, B2 (using a 30 ms sliding 672 

window). This process was repeated for every third time point in the training set, resulting in a 673 

3-dimensional matrix that contained the population response profile at each cross-generalised 674 

time point (9 orientations x 66 training time points x 66 testing time points).  675 

Quantifying Channel Responses 676 

Previous studies have utilised a number of different methods to quantify the selectivity of 677 

neural response profiles [30,31]. Since we were interested in characterising the properties of 678 

neural response profiles, we opted to fit an exponentiated cosine function to the modelled data 679 

[33,34] using least square regression: 680 

y(x) =  Ae ҡ (cos 2(x - μ)﹣1) + B  681 

where y is the predicted orientation channel activity in response to a grating with orientation x; 682 

A is the peak response amplitude, ҡ is the concentration parameter, μ is the centre of the 683 

distribution, and B is the baseline offset. Fitting was performed using the non-linear least square 684 

method in MATLAB (trust region reflective algorithm). The free parameters A, ҡ, and B were 685 

constrained to the ranges (-0.5, 2), (1.5, 200), and (-1.0, 0.5), respectively, and initiated with 686 

the values 0.5, 2, and 0, respectively. The free parameter μ was constrained to be zero when 687 

quantifying mean-centred orientation or mismatch response profiles (which should be centred 688 

on zero, Figs 3, 4A and 4B). When quantifying individual (uncentred) mismatch channel 689 

response profiles (Fig 4C and 4D), the free parameter μ was allowed to vary between -90° and 690 

90°. To reduce the likelihood of spurious (inverted) fits, the parameter search was initiated with 691 

a μ value centred on the channel with the largest response.  692 
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The main effects of attention and prediction on orientation or mismatch response profiles were 693 

assessed with cluster-based permutation tests across participant parameters (amplitude, 694 

concentration). The interaction effects (between attention and prediction) on orientation and 695 

mismatch response profiles were assessed by first subtracting the ignored response from the 696 

attended response, and then subjecting the resulting difference maps to cluster-based 697 

permutation tests. In cases where two levels were compared (i.e. the main effect of attention 698 

on orientation response profiles, and all effects on mismatch response profiles), we used  two-699 

tailed cluster-based permutation tests across participant parameters (Monte-Carlo distribution 700 

with 5000 permutations, pcluster<0.05; sample statistic: dependent samples t-statistic, 701 

aggregated using the maximum sum of significant adjacent samples, psample<.05). In cases 702 

where three levels were compared (i.e. the main effect of prediction and the interaction effect 703 

on orientation response profiles), we used one-tailed cluster-based permutation tests across 704 

participant parameters (Monte-Carlo distribution with 5000 permutations, pcluster<0.05; sample 705 

statistic: dependent samples f-statistic, aggregated using the maximum sum of significant 706 

adjacent samples, psample<.05), and followed up any significant effects by collapsing across 707 

significant timepoints and comparing individual conditions with paired-samples t-tests and 708 

Bayes Factors (uniform prior, lower bound: -0.3 a.u., upper bound: 0.3 a.u.).  709 

Univariate Electrode Sensitivity  710 

To determine which electrodes were most informative for the forward encoding analyses, we 711 

tested the sensitivity of each electrode to both orientation and mismatch information (Fig 3C 712 

and 3F). The baseline-corrected signal at each electrode and time point in the epoch was 713 

regressed against a design matrix that consisted of the sine and cosine of the variable of interest 714 

(orientation or mismatch), and a constant regressor [30]. We calculated sensitivity, S, using the 715 

square of the sine (βSIN) and cosine (βCOS) regression coefficients: 716 
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S = √(βSIN2 + βCOS2). 717 

S was normalised against a null distribution of the values expected by chance. The null 718 

distribution was computed by shuffling the design matrix and repeating the analysis 1000 719 

times. The observed (unpermuted) sensitivity index was ranked within the null distribution (to 720 

produce a p-value) and z-normalised using the inverse of the cumulative Gaussian distribution 721 

(μ = 0, σ = 1). The topographies shown in Fig 3C and 3F reflect the group averaged z-scores, 722 

averaged across each time period of interest. 723 
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 866 
S1 Fig. Event-related potentials (ERPs) and mismatch responses (MMRs). (A) ERPs at selected 867 
electrodes, shown separately for each condition. Bars underneath each plot indicate time points at 868 
which there was a significant main effect of attention (solid grey bar), significant main effect of 869 
prediction (solid black bar), or a significant interaction between attention and prediction (dotted black 870 
bar) at the plotted electrode. (B) Classic MMR (deviants - standards) and genuine MMR (deviants – 871 
controls) at selected electrodes, plotted separately for each level of attention. Green and yellow lines 872 
denote the classic MMR and genuine MMR, respectively; solid and dashed lines denote attended and 873 
ignored stimuli, respectively. Bars underneath each plot indicate timepoints at which there was a 874 
significant MMR in the corresponding condition, at the plotted electrode. Attended deviants were 875 
significantly different from attended standards (39 – 504 ms, cluster-corrected p < .001) and attended 876 
controls (172 – 550 ms, cluster-corrected p < .001). Ignored deviants were significantly different from 877 
ignored standards (47 – 438 ms, cluster-corrected p < .001) and ignored controls (285  – 461 ms, 878 
cluster-corrected p = .001) (C-I) Topographies of effects collapsed across time points between 200 879 
and 300 ms. Asterisks and dots denote electrodes with larger, or smaller responses, respectively, in 880 
at least 25% of the displayed time points. (C) Main effect of attention (attended – ignored). (D) Classic 881 
MMR (deviants – standards). (E) Genuine MMR (deviants - controls). (F) Classic MMR during the 882 
grating task (attended deviants – attended standards). (G) Classic MMR during the dot task (ignored 883 
deviants – ignored standards). (H) Genuine MMR during the grating task (attended deviants – 884 
attended controls). (G) Genuine MMR during the dot task (ignored deviants – ignored standards).    885 
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 886 
S2 Fig. Independent main effects of attention and prediction on orientation response profiles, showing 887 
standards, deviants, and controls. (A) Main effect of attention on orientation response profiles. The 888 
amplitude of attended gratings was larger than that of ignored gratings (219 - 550 ms, cluster-889 
corrected p = .001). Shading denotes standard error of the mean. The black bar along the x-axis 890 
denotes significant time points. (B) Orientation response profiles, collapsed across significant time 891 
points in A. Dots show activation in each of the nine modelled orientation channels. Curved lines 892 
show the functions used to quantify the amplitude and concentration of orientation-tuned responses 893 
(fitted to grand average data for illustrative purposes). (C) Main effect of prediction on orientation 894 
response profiles (black bar along the x-axis denotes significant time points, 324 – 550 ms, cluster-895 
corrected p < .001). The amplitude of standards was reduced relative to both deviants and controls. 896 
(D) Orientation response profiles, collapsed across significant time points in C. (E) Interaction 897 
between attention and prediction on orientation response profile amplitude. Time-courses show the 898 
effect of attention (attended – ignored) on each stimulus type. (F) Orientation response profiles, 899 
collapsed across time points in the non-significant but trending cluster in E (414 - 481 ms, not 900 
displayed, cluster-corrected p = .093). 901 
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 902 
S3 Fig. Residual sum of squares (RSS) for exponentiated cosine functions fitted to generalised 903 
mismatch response profiles (Fig 5). Note the high RSS values along the x-axis beginning at 200 ms, 904 
indicating that the apparent generalisation of spatial maps trained at stimulus onset to later times in 905 
the epoch (Fig 5, red patch along the x-axis) was likely due to noise.  906 
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