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Abstract
The human brain is thought to optimise the encoding of incoming sensory information through
two principal mechanisms: prediction uses stored information to guide the interpretation of
forthcoming sensory events, and atfention prioritizes these events according to their
behavioural relevance. Despite the ubiquitous contributions of attention and prediction to
various aspects of perception and cognition, it remains unknown how they interact to modulate
information processing in the brain. A recent extension of predictive coding theory suggests
that attention optimises the expected precision of predictions by modulating the synaptic gain
of prediction error units. Since prediction errors code for the difference between predictions
and sensory signals, this model would suggest that attention increases the selectivity for
mismatch information in the neural response to a surprising stimulus. Alternative predictive
coding models proposes that attention increases the activity of prediction (or ‘representation’)
neurons, and would therefore suggest that attention and prediction synergistically modulate
selectivity for feature information in the brain. Here we applied multivariate forward encoding
techniques to neural activity recorded via electroencephalography (EEG) as human observers
performed a simple visual task, to test for the effect of attention on both mismatch and feature
information in the neural response to surprising stimuli. Participants attended or ignored a
periodic stream of gratings, the orientations of which could be either predictable, surprising, or
unpredictable. We found that surprising stimuli evoked neural responses that were encoded
according to the difference between predicted and observed stimulus features, and that
attention facilitated the encoding of this type of information in the brain. These findings
advance our understanding of how attention and prediction modulate information processing
in the brain, and support the theory that attention optimises precision expectations during

hierarchical inference by increasing the gain of prediction errors.
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Introduction
Perception is believed to arise from a process of active inference [1], during which the brain
retrieves information from past experiences to build predictive models of likely future
occurrences and compares these predictions with incoming sensory evidence [2,3]. In support
of the idea that prediction increases the efficiency of neural encoding, previous studies have
demonstrated that predicted visual events typically evoke smaller neural responses than
surprising events (e.g. evoked activity measured in terms of changes in electrical potential or
blood oxygen level dependent (BOLD) response; for a review, see [4]). Interestingly, recent
studies have shown that selective attention can increase [5] or reverse [6] the suppressive effect
of prediction on neural activity, suggesting that attention and prediction facilitate perception
[7] via synergistic modulation of bottom-up sensory signals [8—11]. It remains unclear,
however, what type of information is modulated in the interaction between attention and
prediction. This question is important because different predictive coding models make distinct
predictions about how information is transmitted through the cortical hierarchy [3,8,12,13].
Here, we used multivariate forward encoding analyses to assess selectivity for two distinct
types of information in the neural response to surprising stimuli — feature and mismatch

information - and to test the effect of attention on these two informational codes.

A prominent version of predictive coding theory claims that top-down prediction signals
‘cancel out’ bottom-up sensory signals that match the predicted content, leaving only the
remaining prediction error to propagate forward and update a model of the sensory
environment [2,8,9]. Since error propagation is thought to be associated with superficial
pyramidal cells [9], and these cells are thought to be primarily responsible for generating EEG
signals [14,15], this theory predicts that surprising events will increase the selectivity of EEG
responses to the difference between predicted and observed stimulus features, i.e. mismatch

information. Furthermore, a recent extension of this theory suggests that selective attention
3
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optimises the expected precision of predictions by modulating the synaptic gain (post-synaptic
responsiveness) of prediction error units [8] — that is, neurons coding for behaviourally relevant
prediction errors should be more responsive than those coding for irrelevant prediction errors.
On this account, attention should further increase selectivity for mismatch information in the
neural response to surprising stimuli relative to unsurprising stimuli. Here we call this account

the mismatch information model.

Alternative predictive coding models [12,13,16] propose that predictions — as opposed to
prediction errors — are propagated forward through the visual hierarchy, and it is these
prediction signals that are modulated by attention. For example, the model proposed by
Spratling [12] simulates the common physiological finding that attention to a stimulus
enhances the firing rate of neurons tuned to specific stimulus features (e.g., orientation or
colour for visual neurons), and has been shown to be mathematically equivalent to the biased
competition model of attention [17-20]. In line with these alternative models, we investigated
a second hypothesis — here termed the feature information model — which proposes that the
interaction between attention and prediction at the level of neural responses is driven by

changes in feature-specific information in the brain.

Here we tested whether the feature information model or the mismatch information model
provides a better account of the neural coding of surprising stimuli in the human brain, and
examined the influence of selective attention on each of these two neural codes. Participants
attended to, or ignored, periodic streams of visual gratings, the orientations of which were
either predictable, surprising, or unpredictable. We applied forward encoding models to whole-
brain neural activity measured using EEG to quantify the neural selectivity for information
related to the grating orientation and the mismatch between the predicted and observed grating

orientations. We show that surprising stimuli evoke neural responses that contain information

4
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91 related to the difference between predicted and observed stimulus features, consistent with the
92 mismatch information model. Crucially, we also find that attention increases the selectivity for
93  mismatch information in the neural response to surprising stimuli, supporting the hypothesis

94  that attention increases the gain of prediction errors [8].

95 Results

96  We recorded brain activity using EEG as human observers (N = 24) undertook a rare-target

97  detection task (see Methods; Fig I). Participants fixated centrally and were presented with a

98  periodic stream of gratings (100 ms duration, 500 ms ISI, 415 gratings per block) in one of two

99  conditions (randomised across blocks). In roving standard blocks [21] (see Fig 1A), grating
100  orientation was repeated between 4 and 11 times (standards) before changing to a new
101  orientation (deviants, pseudo-randomly selected from one of nine orientations, spanning 0 -
102 160° in 20° steps). Grating orientation was thus ‘predictable’ for standards and ‘surprising’ for
103 deviants. In equiprobable blocks [22] (see Fig IB), gratings changed orientation on every
104  presentation and thus could not be predicted (‘unpredictable’ controls). Attention was
105 manipulated by having participants either monitor the grating stimuli for rare targets with a
106  different spatial frequency (‘grating task’, attended), or ignore the gratings and instead monitor

107  for rare fixation-dot targets with decreased contrast (‘dot task’, gratings ignored).
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109  Fig 1. Example stimuli in each of the two block types used in the study. (A) Roving oddball sequence.
110 In this sequence, the orientation of gratings was repeated over short sequences of stimuli (standards),
111 before changing to a different orientation (deviant). During the grating or dot task, participants

112 responded to rare gratings with high spatial frequency (grating target) or to rare decreases in fixation-
113 dot contrast (dot target), respectively. (B) Equiprobable sequence. In this sequence, the orientation of
114  control gratings changed with each successive presentation.

115  Participants completed the grating task and dot task in separate sessions, approximately one
116  week apart (session order counterbalanced). At the beginning of each session, participants
117  completed three practice blocks of the specified task, during which target salience levels were
118 titrated to approximate a target detection rate of 75% (see Methods). Participants were then
119 fitted with a 64-electrode EEG cap before completing 21 test blocks. One participant detected
120 fewer than 50% of targets in both tasks and was therefore excluded from all further analyses.
121  The remaining participants detected an equivalent percentage of targets in the grating task
122 (75.64 £ 1.76%, mean = SEM) and dot task (72.73 + 2.54%; #(22) = 1.57, p = 0.13, BFjo =
123 0.12), and also produced similar numbers of false alarms in each (20.43 + 3.79 and 22.57 +
124 5.47, respectively; #(22) = -0.41, p = .684, BF ;9 = 0.18), suggesting that difficulty was well

125  matched between attention conditions.
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126  EEG data were pre-processed offline using EEGlab [23] and epoched according to the onset of
127  each grating (see Methods for details). Statistical analyses were conducted using cluster-based
128  permutation tests in Fieldtrip [24]. S Fig shows the main effects and interactions for the factors
129  of attention and prediction on event related potentials (ERPs). Briefly, ERPs were modulated
130 by both attention (86 - 434 ms, cluster-corrected p < .001; S/4 and S1C Figs) and prediction
131 (39 - 550 ms, cluster-corrected p <.001, S14 Fig). Follow-up analyses of the simple effects of
132 prediction revealed that deviants elicited larger responses than both standards (39 - 550 ms,
133 cluster-corrected p < .001; S14 and S1D Figs) and controls (324 - 550 ms, cluster-corrected p
134 =.002; S14 and SIE Figs). The difference between deviants and controls emerged later and
135  was smaller than the difference between deviants and standards, consistent with the notion that
136  the former comparison reflects the pure effects of prediction (“genuine” mismatch response
137  (MMR), [22]), whereas the latter comparison confounds the effects of prediction with those of

138  adaptation to the standard (‘classic’ MMR, see [4] for a review).

139  We also observed an interaction between attention and prediction (180 - 484 ms, cluster-
140  corrected p < .001; S/4 Fig). Follow-up analyses revealed that attention increased both the
141  classic MMR (176 - 469 ms, cluster-corrected p < .001; SIF and S1G Figs) and the genuine
142 MMR (176 - 550 ms, cluster-corrected p < .001; S1H and S1I Figs). In the attended condition,
143 both the classic and the genuine MMRs emerged approximately 200 ms after stimulus onset
144  over posterior-lateral (PO7, POS) electrodes (S/B Fig, solid green and yellow lines,
145  respectively). Whereas the onset of the genuine MMR is consistent with previous literature
146  [22], the classic MMR we report here emerged slightly later than what has typically been
147  reported previously (~150 ms; for a review see [4]). We note, however, that at least one
148  previous study reported a visual MMR beginning as late as 250 ms [25], highlighting the

149  variable nature of this component.
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150  In the ignored condition, we observed classic and genuine MMRs (S/B Fig, dotted green and
151  yellow lines, respectively) with positive polarities over posterior (PO7, POS8) and frontal (Fz)
152 electrodes, respectively. In contrast, previous studies have typically (but not always; see [5])
153  reported mismatch negativities, even in the absence of attention [4]. A number of differences
154  between previous studies and our own could explain this discrepancy (e.g. stimuli,
155 interstimulus interval, presentation duration, task etc). In particular, we used large sinusoidal
156  gratings (11° of visual angle) to optimise orientation decoding, in contrast to previous studies
157  that presented much smaller oriented bars (~3-4° of visual angle, e.g. [22,26]). Thus, the stimuli
158  in the current study likely activated a larger area of visual cortex than those used in previous
159  studies, which produced a different dipole (or combination of multiple dipoles) and associated
160  projection to scalp electrodes (due to the complex folding structure of the cortex, [4]) than has
161  previously been observed. Indeed, close inspection of the ERPs seems to indicate the presence
162  of a single dipole projecting to frontal and posterior electrodes (note the highly similar pattern
163 of activity between electrodes Fz and Pz, but with opposite sign, S/4 Fig), which has not
164  typically been observed in previous studies (e.g., note the relatively uniform responses across

165  the scalp in [22,27,28]).

166  Orientation information is enhanced with attention but not surprise

167  The feature information model predicts that the orientation-selective neural response to
168  surprising stimuli (deviants) will be different to that of control stimuli. To investigate this
169  hypothesis, we used a forward encoding model to estimate orientation selectivity from neural
170  activity measured with EEG (see Methods for details). Briefly, we used multivariate regression
171  to transform activity in electrode space into an orientation-selective ‘feature space’ [29-32],
172 comprised of nine hypothetical ‘orientation channels’ matching those presented in the
173 experiment (0 - 160°, in 20° steps). For each orientation channel, we modelled the expected

174  activation across trials by convolving the presented orientation with a canonical orientation-
8
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175  selective tuning function. We then regressed this pattern of expected activity against the EEG
176  data, separately for each time point (-100 - 550 ms after stimulus onset), to produce a weight
177  matrix that converted multivariate activity in electrode space into activity in the specified
178  orientation channel. The spatial weights for each orientation channel were then inverted to
179  reconstruct the forward model and applied to an independent set of test trials (using a cross-
180  validation procedure) to estimate activity across all orientation channels. As shown in Fig 24,
181  using the forward encoding approach we reconstructed distinct response profiles for each of
182  the nine grating orientations presented to participants. Orientation channels were then realigned
183  for each trial such that the presented orientation channel was centred on 0°, and activation
184  patterns were averaged across trials in each condition. The forward encoding model revealed
185 an orientation-tuned response throughout the epoch (Fig 2B and 2C). This response emerged

186  soon after stimulus onset, peaked at ~130 ms, and declined gradually until the end of the epoch.
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188 Fig 2. Stimulus-evoked orientation channel response profiles. (A) Reconstructed orientation channels,
189  corresponding to each of the nine grating orientations presented to participants (0 - 160°, in 20°

190  steps). Coloured dots indicate the modelled orientation channel activity across trials in which the

191 Ilabelled orientation was presented. Curved lines show functions fitted to the grand average data for
192 illustrative purposes. Note that each coloured line is approximately centred on the presented

193 orientation. (B) Time-resolved orientation response profile, centred on the presented orientation in
194  each trial and averaged across participants and conditions. Orientation response profiles emerged
195  shortly after stimulus onset and lasted until the end of the epoch. (C) Orientation response profiles,
196 averaged across all participants and conditions in each of three successive 100 ms time windows.
197 Dots show activation in each of the nine modelled orientation channels (mean-centred). Curved lines
198 show functions fitted to the grand average data for illustrative purposes. Orientation information

199 (response profile amplitude) was strongest from 100 — 200 ms and decreased throughout the epoch.
200  Data are available at https://doi.org/10.17605/0sf.io/a3pfq. a.u. = arbitrary units.

201  To quantify the effects of attention and prediction on orientation response profiles, we fitted
202  the condition-averaged orientation channel responses with an exponentiated cosine function

203 [33,34] using least squares regression:

204 y(x) = de™ (oS 2= + p
10
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205  where y is the predicted orientation channel activity in response to a grating with orientation x;

206 A is the peak response amplitude, K is the concentration (i.e. inverse dispersion; a larger value

207  corresponds to a “tighter” function), i is the centre of the function, and B is the baseline offset

208  (see Methods).

209  Attention increased the amplitude of orientation response profiles (219 - 550 ms, cluster-
210  corrected p < .001; Fig 34 and 3B) but did not modulate the tuning concentration (all clusters
211  p > .104). There was a significant main effect of prediction on the amplitude of orientation
212 response profiles late in the epoch (324 — 550 ms, cluster-corrected p < .001; S2C and S2D
213 Figs), as well as a non-significant but trending cluster early in the epoch (94 - 145 ms, cluster-
214 corrected p = .154; S2C Fig, cluster not shown). Follow-up analyses revealed that orientation
215  response profiles evoked by standards (0.11 + 0.01 a.u.) were smaller than those of both
216  deviants (0.25 + 0.03 a.u.; #(22) =-4.32, p < 0.001, BF;90 = 1469.10) and controls (0.22 + 0.03
217  awu.; 1(22)=-3.79, p <0.001, BF ;9= 156.16; S2C and S2D Figs). Crucially, the amplitudes of
218  orientation response profiles evoked by deviants and controls were equivalent (#(22) = 0.78, p
219  =0.443, BF10=0.19; Fig 34, S2C and S2D Figs). Finally, there was no effect of prediction on
220  the concentration of orientation response profiles (all clusters p > .403), and no interaction
221  between attention and prediction on either the amplitude (cluster-corrected p = .093, S2E and

222 S2F Figs) or concentration (no clusters found) of orientation response profiles.

11
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224 Fig 3. Effects of attention and prediction error on orientation and mismatch response profiles. (A-C)
225 Orientation response profiles. (A) Orientation selectivity (response profile amplitude) for each

226  condition over time. Shading indicates the SEM. Thin black lines indicate differences between

227  deviants and controls, separately for attended and ignored stimuli. The dark grey bar along the x-axis
228 indicates the main effect of attention (cluster-corrected). (B) Orientation response profiles, averaged
229  across the significant effect of attention shown in A (219 - 550 ms). Dots show activation in each of
230  the nine modelled mismatch channels. Curved lines show functions fitted to channel responses (fitted
231 to grand average data for illustrative purposes). (C) Univariate sensitivity for stimulus orientation

232 across all conditions (see Methods). Topography shows the permutation-corrected z-scores,

233 averaged across the significant effect of attention shown in A (219 - 550 ms). Posterior electrodes
234 were the most sensitive to orientation information. (D-F) Mismatch response profiles (observed minus
235 predicted orientation). (D) Mismatch selectivity (response profile amplitude) for each condition over
236  time. The grey, solid black, and dotted black bars along the x-axis indicate the main effect of attention,
237 main effect of prediction, and the interaction, respectively (cluster-corrected). Attention enhanced the
238 mismatch response profile in response to deviants but not controls. (E) Mismatch response profiles,
239  collapsed across the significant interaction shown in D (332 — 480 ms). (F) Univariate sensitivity for
240 mismatch response profiles evoked by attended deviants (see Methods), averaged across 332 — 480
241 ms. Posterior electrodes were the most sensitive to mismatch information. Note that C and F use
242 different scales. Data are available at https://doi.org/10.17605/osf.io/a3pfq. a.u. = arbitrary units.

243 To determine the scalp topography that was most informative for orientation encoding, we
244  calculated univariate sensitivity separately for each electrode across all trials, and averaged
245  across time points in the significant main effect of attention (see Methods). As revealed in Fig
246  3C, posterior electrodes were the most sensitive to orientation information, as would be

247  expected for a source in visual cortex.

248  Attention facilitates the neural encoding of mismatch information
249  The mismatch information model proposes that prediction errors are represented in populations

250  of neurons tuned to the difference between predicted and observed stimulus features.
12
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251  According to this model, therefore, surprising stimuli (deviants) should produce a more
252  mismatch-selective neural response than control stimuli. Furthermore, if attention enhances the
253 gain of prediction errors [8], we should expect an interaction between attention and prediction,
254  such that attention enhances the amplitude of mismatch response profiles evoked by deviants
255 more than that of controls, because deviants should evoke a larger prediction error [2]. To
256  investigate these hypotheses, we trained a separate forward encoding model, as described
257  above, on the angular difference between gratings (deviants or controls) and the preceding
258  stimuli. That is, deviants were coded according to the difference between the deviant
259  orientation and the preceding standard orientation, and controls were coded according to the
260 difference between successive control orientations. For example, if a horizontally oriented
261  deviant (0°) was preceded by a standard that was oriented at 40° (clockwise of horizontal), it

262  would be coded as a mismatch of -40° (0 - 40°).

263  As shown in Fig 3D and 3E, we were able to reconstruct mismatch response profiles for
264  attended deviants. By contrast, mismatch response profiles were clearly weaker in response to
265  controls and ignored deviants. There was a significant main effect of attention on the amplitude
266  of mismatch response profiles (attended > ignored, 188 — 550 ms, cluster-corrected p = .002;
267  Fig 3D, grey bar along x-axis). There was also a significant main effect of prediction (deviant
268 > control, 113 — 550 ms, cluster-corrected p < .001; Fig 3D, solid black bar along x-axis),
269  suggesting that prediction error is encoded according to the mismatch between predicted and
270  observed features. Crucially, attention and prediction interacted to influence the amplitude of
271  mismatch response profiles (332 — 480 ms, cluster-corrected p =.031; Fig 3D, dotted black bar
272  along x-axis). As can be seen in Fig 3D and 3E, attention enhanced the amplitude of deviant
273  mismatch response profiles but had little effect on those evoked by controls, supporting the

274  hypothesis that attention boosts prediction errors [8].

13
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275  The concentration of mismatch response profiles was not modulated by attention (all clusters
276  p > .888) or the interaction between attention and prediction (all clusters p > .615), although
277  we did find a significant main effect of prediction on the concentration of mismatch response
278  profile fits (controls > deviants, 344 - 422 ms, cluster-corrected p < .001). Since controls
279  seemed to produce negligible mismatch response profiles during this time period (yellow lines,
280  Fig 3D), however, we followed up this result by averaging mismatch response amplitudes
281  across the significant timepoints and comparing these values to zero with a z-test and Bayes
282  Factor analysis (uniform prior, lower bound: 0, upper bound = 0.3). We found that control
283  mismatch response profile amplitudes (.005 £ .023 a.u.) were equivalent to zero (#(22) = 0.19,
284  p = .848, BF19=0.11), suggesting that the observed effect on concentration was more likely
285 an artefact of the fitting procedure than a true effect of prediction on mismatch response

286  profiles.

287  We calculated the sensitivity of each electrode to mismatch information in trials that contained
288 attended deviants, and collapsed across the significant interaction between 332 and 480 ms. As
289  revealed in Fig 3F, posterior electrodes were again the most informative, but the topography
290  of mismatch sensitivity was weaker and more sparsely distributed than that of orientation

291  decoding (Fig 30).

292 Mismatch information increases with the strength of predictions

293  Next, we investigated whether the number of preceding standards was related to the amplitude
294  of prediction error response profiles. Repeated presentations of the standard are thought to
295  increase the strength of the memory trace, resulting in larger prediction errors to a subsequent
296  surprising stimulus [35]. Mismatch response profiles evoked by attended deviants were
297  grouped according to the number of preceding standards (4-7 repetitions vs 8-11 repetitions)

298  and fitted with exponentiated cosine functions (see Methods). As can be seen in Fig 44 and
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4B, increasing the number of standard repetitions also increased the amplitude of mismatch
response profiles (387 - 520 ms, cluster-corrected p = .050). This finding is consistent with the
notion that successive standards allow a more precise prediction to be generated, which results
in enhanced prediction errors when violated. Finally, there was no effect of the number of
standard repetitions on the concentration of mismatch response profiles (cluster-corrected p =

314).
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Fig 4. Mismatch response profiles (putative prediction error) evoked by attended deviants. (A) Effect
of standard repetition on mismatch selectivity (response profile amplitude). Mismatch response
profiles evoked by attended deviants were larger following long standard sequences (8 - 11
repetitions) than short standard sequences (4 - 7 repetitions). The black bar along the x-axis denotes
significant differences (cluster-corrected). (B) Mismatch response profiles, collapsed across
significant time points in A (387 - 520 ms). Dots show activation in each of the nine modelled
mismatch channels. Curved lines show functions fitted to channel responses (fitted to grand average
data for illustrative purposes). (C) Effect of deviation angle on mismatch selectivity. Mismatch
response profile amplitude increased with the magnitude of deviation (£80° > +20°). (D) Mismatch
response profiles for each deviation angle, collapsed across the earlier cluster shown in C (215 - 410
ms). Curved lines show functions fitted with a variable centre (fitted to grand average data for
illustrative purposes). Data are available at https://doi.org/10.17605/osf.io/a3pfq. a.u. = arbitrary units.

Mismatch information increases with the magnitude of violation

We also tested whether larger deviations from the prediction increased selectivity for mismatch
information. Mismatch response profiles of attended deviants were grouped according to the
angular difference between the deviant and preceding standard (i.e., the original mismatch

values entered into the encoding model) and fitted with exponentiated cosine functions

15
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323 (variable centre, see Methods). There was a significant main effect of deviation magnitude on
324  mismatch response profile amplitude (215 - 410 ms, cluster-corrected p = .004). As shown in
325  Fig 4C, the amplitude of mismatch response profiles increased with the absolute deviation
326  angle (£80° > +60° > +40° > £20°), supporting the notion that larger angular deviations (from
327  the predicted orientation) produce more prediction error. A second cluster emerged later in the
328  epoch (465 - 550 ms, cluster-corrected p = .031), which followed a similar pattern but with the
329  amplitude of the £40° and £60° responses reversed. Intriguingly, individual mismatch response
330  profiles were typically centred on the orthogonal deviation angle (90°, Fig 4D). This pattern of
331 results differs from the individual orientation response profiles (Fig 24), which were

332 (approximately) centred on the presented orientation.

333 Attention produces temporally stable mismatch response profiles

334  In a final step, we investigated whether the spatial maps that produce mismatch response
335 profiles are stable or evolve dynamically over time. We used the same forward encoding
336  analysis as above, with the exception that the trained weights at each time point were tested on
337  all time points in the epoch [30,36] (see Methods). This produced a train time X test time
338  generalisation matrix of mismatch channel responses, to which we fitted exponentiated cosine
339  functions. Fig 5 shows the mismatch selectivity (response profile amplitude) for attended and
340  ignored deviants, generalised across time. As revealed in Fig 54, the mismatch response profile
341 evoked by attended deviants generalised across the latter part of the epoch (black outline
342 surrounding large red patch in upper right quadrant between ~200 - 550 ms, cluster-corrected
343  p=.010), indicating that the spatial map associated with mismatch information was relatively
344  consistent throughout this period. Note also that this pattern of generalisation was asymmetrical
345  (triangular-shaped, rather than square-shaped). Specifically, the spatial map trained at ~450 ms
346  generalised to the (test) time point at ~250 ms, but training at ~250 ms did not generalise to

347  testing at ~450 ms. Since asymmetrical generalisation can indicate differences in signal-to-
16
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348  noise ratios between time points [36], this finding suggests that the strength of prediction error
349  signals may have increased toward the end of the epoch. It is also worth noting that the apparent
350  generalisation of spatial maps trained at stimulus onset (twin = 0) to later times in the epoch
351  (~200 — 550 ms, red patch along the x-axis) was not significantly different from zero (no
352  clusters found in this region) and produced high residuals in the function fits (see S3 Fig),
353  suggesting that this pattern represents noise. Finally, the mismatch response profile evoked by
354  ignored stimuli (Fig 5B) did not generalise across time points (all clusters p > .935) and was
355  significantly smaller than that of attended stimuli (significant difference denoted by the opaque

356  patchin Fig 5C; p =.026).

Train Time (ms)

100 200 300 400 500 -100

357 Test Time (ms)

358  Fig 5. Generalised mismatch response profiles in response to (A) attended deviants and (B) ignored
359  deviants. The dashed diagonal line indicates on-axis encoding (equivalent to the time-series plot in
360 Fig 4A). The black outline shows mismatch response profiles significantly larger than zero (cluster-
361  corrected). (C) Difference map (attended minus ignored), thresholded to show the significant effect of
362  attention on mismatch response profiles (cluster-corrected). Data are available at

363  https://doi.org/10.17605/0sf.io/a3pfq. a.u. = arbitrary units.

364 Discussion

365  Here we set out to determine what type of information is modulated in the interaction between
366  attention and prediction [8]. To achieve this, we used forward encoding models of EEG data
367  to quantify the selectivity for orientation and mismatch information in the neural responses to
368  surprising and unpredictable stimuli in the well-established roving oddball paradigm [21,37].
369  Relative to unpredictable stimuli (controls), we found that EEG responses to surprising stimuli

370  (deviants) were equally selective for orientation information, but more selective for

17


https://doi.org/10.1101/522185
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/522185; this version posted February 7, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

371  information related to the difference between predicted and observed stimulus features. These
372 results are consistent with the mismatch information model, and support the idea that top-down
373  prediction signals ‘cancel out’ matching bottom-up sensory signals and leave only the
374  remaining prediction error to propagate forward [2,3,8,9]. Crucially, we also found that
375  attention increased the selectivity for mismatch information in neural responses to surprising
376  but not control stimuli. This finding demonstrates that attention boosts mismatch information
377  evoked by surprising stimuli (putative prediction errors), and is consistent with a recent version
378  of predictive coding theory that proposes attention optimises the expected precision of

379  predictions by increasing the gain of prediction errors [8].

380 We found no difference between orientation response profiles evoked by surprising and
381 unpredictable stimuli (a prediction of the feature information model), suggesting that the
382 increase in EEG activity that is typically observed with surprise is not coded according to
383  stimulus features. This finding contradicts predictive coding models in which predictions (or
384  ‘representations’) of stimulus features are passed up the visual hierarchy [12,16,17]. Because
385  feedforward connections largely originate primarily from superficial pyramidal cells and it is
386  this activity that is measured with EEG [9,14,15], these models would predict that surprise
387  changes the feature-selectivity of EEG responses: a finding we do not observe here. This
388  finding might also seem to contradict a recent study that demonstrated greater selectivity for
389  orientation information in early visual cortex BOLD activity following presentation of a
390  predicted grating, relative to a surprising grating [38]. Since BOLD activity indirectly measures
391 the activity patterns of heterogenous populations of neurons, however, this change in feature-
392 selectivity could have reflected a change in either of the two neuronal populations proposed to
393  underlie predictive coding - predictions or prediction errors. The latter interpretation is
394  inconsistent with the results of the present study, which suggests that prediction errors are

395  encoded according to the mismatch between predicted and observed stimulus features, and not
18
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396  the features themselves. The former interpretation (i.e. that predictions are coded according to
397  the stimulus features) fits well with a recent study that showed prediction induces feature-
398  specific templates immediately prior to stimulus onset [31]. Thus, a parsimonious account of
399 the literature to date suggests that predictions and prediction errors are represented in the brain
400  via distinct neural codes: whereas predictions are represented according to stimulus features,
401  prediction errors are represented according to the mismatch between predicted and observed

402  stimulus features.

403  In a recent study by our group [39], we observed a decrease in orientation selectivity in the
404  neural response to predicted stimuli, relative to surprising stimuli, shortly after stimulus onset
405 (79 — 185 ms). Here we observed a similar (but non-significant) trend in the same direction
406  (standards < deviants) at approximately the same time (94 - 145 ms, S2C Fig, cluster not
407  shown). Close inspection of the present results, however, suggests that some orientation
408 information evoked by the previous standard was still present in the brain at the onset of the
409  subsequent standard (indicated by the above-zero amplitude of the orientation response to
410  standards at stimulus onset, t = 0 ms, S2C Fig), which may have obscured detection of the early
411  effect reported in Tang et al. [39]. Interestingly, the present results revealed a late effect of
412  prediction (standards < deviants, 324 -550 ms, S2C and S2D Figs) that was not observed in our
413  previous work [39]. Since a critical difference between the two studies was the number of times
414  identical stimuli could be presented consecutively (no more than twice in the previous study),
415  we speculate that the late effect observed here might reflect the minimal amount of model-

416  updating required after the presentation of a precisely predicted stimulus.

417  We also found that attention increased the amplitude of orientation response profiles (Fig 34
418  and 3B), consistent with previous studies that applied forward encoding models to human fMRI

419  [34,40] and time-frequency-resolved EEG data [29]. The present study replicates and extends
19
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420  these studies with the application of forward encoding models to time-resolved EEG recordings
421  (resulting in <30 ms temporal resolution after smoothing), demonstrating that attention
422  increases feature selectivity in the human brain from approximately 200 ms after stimulus

423 onset.

424 Crucially, we also tested the interactive effects of attention and prediction on information
425  processing in the brain. There was a large and significant effect of attention on mismatch
426  response profiles in response to surprising but not unpredictable stimuli (beginning around 150
427  ms after stimulus onset and reaching significance from ~350 ms). This finding demonstrates
428  that attention boosts prediction errors evoked by surprising stimuli, and is consistent with a
429  recent iteration of predictive coding theory according to which attention optimises the expected
430  precision of prediction errors [8]. Previous studies have found evidence for an interaction
431  between attention and prediction in both the auditory [5] and visual [6,41] modalities.
432  Importantly, these studies used activation-based analyses to compare differences between
433 predicted and unpredicted stimuli at the level of overall neural activity, but did not investigate
434  what type of information is modulated in the interaction between attention and prediction. In
435  contrast, the present study used information-based analyses [42] to identify specific patterns of
436  neural activity that are associated with orientation-mismatch information in the brain, and
437  showed that selectivity for this type of information (but not feature information) is increased
438  with attention. Thus, the present study provides clear support for the hypothesis that attention
439  boosts the gain of prediction errors [8]. It will be important for future research to investigate
440  whether the interactive effects of attention and prediction on mismatch information is
441  contingent on the type of attention (e.g., feature-based versus spatial attention) or prediction

442  (e.g., rule-based versus multimodal cue-stimulus predictions; [31,43]).
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443  Interestingly, we found that the magnitude of mismatch response profiles correlated with the
444  number of preceding standards (Fig 44 and 4B). Previous work in the auditory domain
445  demonstrated that successive repetitions of the standard evoke progressively increased
446  responses to a subsequent attended deviant [35]. Here we find a corollary for this effect in the
447  visual domain and demonstrate that the neural activity modulated by the number of preceding
448  standards is likely encoded as mismatch information. This finding is also consistent with the
449  notion that repeating the standard allows a more precise prediction to be generated, which

450  results in a larger prediction error to a subsequent surprising stimulus [44].

451  We also found that mismatch response profiles increased with the magnitude of the mismatch
452  between predicted and observed stimulus features (Fig 4C). Previous work in the auditory
453  domain has demonstrated a correlation between deviation magnitude and the amplitude of the
454  neural response to deviants (i.e. the mismatch negativity) [45]. Here we demonstrate a
455  relationship between deviation magnitude and selectivity for mismatch information (as
456  opposed to activation levels) in the visual domain, suggesting that the magnitude of mismatch
457  information might be used by the brain to guide updating of the predictive model. Since the
458  present study investigated mismatch signals with respect to a continuous and circular feature
459  dimension (i.e. orientation), it will be important for future research to extend the current line
460  of research to non-circular (e.g. luminance, auditory frequency) and categorical (e.g. facial

461  emotions) feature dimensions.

462  Somewhat surprisingly, there was a lateral shift in the response profile of individual mismatch
463  channels toward the orthogonal (90°) channel (Fig 4D). The extent of this effect depended on
464  the deviation magnitude, with large deviations (+40-80°) being predominantly stacked over the
465  90° channel and smaller deviations (+20°) being more closely aligned with their veridical

466  mismatch angle (Fig 4D). We speculate that this might indicate a qualitative difference in the
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467  way that small and large prediction errors were treated by the brain in the present study. Small
468  deviations may have resulted in updating and retention of the current model (via a near-
469  veridical mismatch signal), whereas large deviations may have resulted in the wholesale
470  rejection of the current model (via a generic mismatch signal) in favour of an alternative model
471  that represents the deviant stimulus. In the latter case, the magnitude of the (orthogonal)
472  mismatch channel response might represent an efficient code that the brain utilises to select

473  from a number of likely alternative models.

474  Intriguingly, a number of recent studies failed to find an interaction between the effects of
475  attention and prediction on stimulus information in the brain [31,38,46]. If predictions are
476  encoded according to stimulus features, as we argue above, these null findings contradict the
477  theory that attention boosts predictions [47]. In contrast, we show that prediction errors,
478  represented according to the mismatch between predicted and observed stimulus features, are
479  enhanced with attention. Although the present study cannot speak to the activity of single
480  neurons, we note that the emerging picture is consistent with the notion that predictions and
481  prediction errors are represented in distinct populations of neurons [2] that encode two distinct
482  types of information and are differentially influenced by attention. Under this framework,
483  feature information encoded by prediction units would be immune to attention, whereas
484  mismatch information encoded by prediction error units would be enhanced by attention.
485  Future research could test these hypotheses at the single-cell level, for example by using single-
486  unit electrode recordings or 2-photon calcium imaging to assess whether different neurons

487  within a given cortical area satisfy these constraints.
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488 Methods

489  Ethics Statement

490  The study was approved by The University of Queensland Human Research Ethics Committee
491  (approval number: 2015001576) and was conducted in accordance with the Declaration of

492  Helsinki. Participants provided informed written consent prior to commencement of the study.

493 Participants
494  Twenty-four healthy participants (11 female, 13 male, mean = 23.25 years, SD = 9.01 years,
495  range: 18 to 64 years) with normal or corrected-to-normal vision were recruited via an online

496  research participation scheme at The University of Queensland.

497  Stimuli

498  Stimuli were presented on a 61 cm LED monitor (Asus, VG248QE) with a 1920 x 1080 pixel
499  resolution and refresh rate of 120 Hz, using the PsychToolbox presentation software [48] for
500 Matlab (v.15b) running under Windows 7 with a NVidia Quadro K4000 graphics card.
501  Participants were seated in a comfortable armchair in an electrically shielded laboratory, with

502  the head supported by a chin rest at a viewing distance of 57 cm.

503  During each block, 415 gratings with Gaussian edges (outer diameter: 11°, inner mask
504  diameter: 0.83°, spatial frequency: 2.73 ¢/°, 100% contrast) were presented centrally for 100
505 ms with a 500 ms ISI. Grating orientations were evenly spaced between 0° (horizontal) and
506  160°(in 20° steps). Eighteen (18) gratings in each block (2 per orientation) were presented with
507  ahigher spatial frequency (range: 2.73 - 4.55 ¢/°, as per staircase procedure, below), with a gap
508 of at least 1.5 s between any two such gratings. We used a modified de Bruijn sequence to
509 balance the order of grating orientations across conditions, sessions, and participants.

510  Specifically, we generated two 9-character (orientation) sequences without successive
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511  repetitions (e.g. ABCA, not ABCC) - one with a 3-character sub-sequence (504 characters
512 long) and another with a 2-character sub-sequence (72 characters long) - and appended two
513 copies of the former sequence to three copies of the latter sequence (1224 characters in total).
514  This master sequence was used to allocate the order of both deviants and controls in each
515  session (using different, random start-points), and ensured that each orientation was preceded
516 by equal numbers of all other orientations (up to 2+ preceding stimuli) so that decoding of any

517  specific orientation could not be biased by the orientation of preceding stimuli.

518  In roving oddball sequences, the number of Gabor repetitions (i.e., standards) was balanced
519  across orientations within each session, such that each orientation repeated between 4 and 11
520  times according to the following distribution: (31, 31, 31, 23, 5, 5, 5, 5), respectively. During
521  each block, the fixation dot (diameter: 0.3°, 100% contrast) decreased in contrast 18 times
522  (contrast range: 53-98% as per staircase procedure, below) for 0.5 s (0.25 s linear ramp on and
523  off). Contrast decrement onsets were randomised separately for each block, with a gap of at

524  least 1.5 s between any two decrement onsets.

525  Procedure

526  Participants attended two testing sessions of 60 minutes duration, approximately one week
527  apart, and completed one of two tasks in each session (Fig /, session order counterbalanced
528  across participants). For the grating task, participants were informed that approximately 1/20
529  of the gratings would be a target grating with a higher spatial frequency than non-targets, and
530  were asked to press a mouse button as quickly as possible when they detected a target grating;
531  all other gratings were to be ignored. For the dot task, participants were informed that the
532  fixation dot would occasionally decrease in contrast, and were asked to press a mouse button
533  as quickly as possible when they detected such a change. Participants initially completed three

534  practice blocks (3.5 min per block) with auditory feedback (high or low tones) indicating
24
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535  missed targets and the accuracy of their responses. During practice blocks in the first testing
536  session, target salience (spatial frequency or dot contrast change, depending on the task) was
537  adjusted dynamically using a Quest staircase procedure [49] to approximate 75% target
538  detection. During practice blocks in the second testing session, target salience was adjusted to
539  approximate the same level of target detection observed in the first testing session. Participants
540  were requested to minimise their number of false alarms. After the practice blocks, participants
541  were fitted with an EEG cap (see EEG Data Acquisition) before completing a total of 21 test
542 blocks (3 equiprobable, 18 roving standard, block order randomised) without auditory
543  feedback. After each block participants were shown the percentage of targets correctly
544  detected, the speed of these responses, and how many non-targets were responded to (false

545  alarms).

546  Behavioural Data Analysis

547  Participant responses were scored as hits if they occurred within one second of the onset of a
548  target grating in the grating task, or within one second of the peak contrast decrement in the
549  dot task. Target detection was then expressed as a percentage of the total number of targets
550  presented in each testing session. One participant detected less than 50% of targets in both
551  sessions and was removed from further analysis. Target detections and false alarms across the
552 two sessions were compared with paired-samples #-tests and Bayes Factors. Bayes factors
553  allow for quantification of evidence in favour of either the null or alternative hypothesis, with
554 By; > 3 indicating substantial support for the alternative hypothesis and By; < 0.33 indicating
555  substantial support for the null hypothesis [50]. Bayes factors were computed using the Dienes
556  [50,51] calculator in Matlab, with uniform priors for target detection (lower bound: -25%,

557  upper bound: 25%) and false alarms (lower bound: -50, upper bound: 50).
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558  EEG Data Acquisition

559  Participants were fitted with a 64 Ag-AgCl electrode EEG system (BioSemi Active Two:
560  Amsterdam, Netherlands). Continuous data were recorded using BioSemi ActiView software
561  (http://www.biosemi.com), and were digitized at a sample rate of 1024 Hz with 24-bit A/D
562  conversion and a .01 — 208 Hz amplifier band pass. All scalp electrode offsets were adjusted
563  to below 20uV prior to beginning the recording. Pairs of flat Ag-AgCl electro-oculographic
564  electrodes were placed on the outside of both eyes, and above and below the left eye, to record

565  horizontal and vertical eye movements, respectively.

566  EEG Data Preprocessing

567  EEG recordings were processed offline using the EEGlab toolbox in Matlab [23]. Data were
568 resampled to 256 Hz and high-pass filtered with a passband edge at 0.5 Hz (1691-point
569 Hamming window, cut-off frequency: 0.25 Hz, -6 db). Raw data were inspected for the
570  presence of faulty scalp electrodes (2 electrodes, across 2 sessions), which were interpolated
571  using the average of the neighbouring activations (neighbours defined according to the EEGlab
572  Biosemi 64 template). Data were re-referenced to the average of all scalp electrodes, and line
573 noise at 50 and 100 Hz was removed using the Cleanline plugin for EEGlab
574 (https://www.nitrc.org/projects/cleanline). Continuous data were visually inspected and
575  periods of noise (e.g., muscle activity) were removed (1.4% of data removed in this way, across

576  sessions).

577  For artefact identification, the cleaned data were segmented into 500 ms epochs surrounding
578  grating onsets (100 ms pre- and 400 ms post-stimulus). Improbable epochs were removed using
579  aprobability test (6SD for individual electrode channels, 2SD for all electrode channels, 6.5%
580  of trials across sessions), and the remaining data were subjected to independent components

581  analyses (ICA) with a reduced rank in cases of a missing EOG electrode (2 sessions) or an
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582  interpolated scalp electrode (2 sessions). Components representing blinks, saccades, and

583  muscle artefacts were identified using the SASICA plugin for EEGlab [52].

584  For further analysis, the cleaned data (i.e., prior to the ICA analysis) were segmented into 800
585  ms epochs surrounding grating onsets (150 ms pre- and 650 ms post-stimulus). Independent
586  component weights from the artefact identification process were applied to this new data set,
587  and previously identified artefactual components were removed. Baseline activity in the 100
588  ms prior to each stimulus was removed from each epoch. Grating epochs were then separated
589 into their respective attention and prediction conditions. Epochs in the grating task were
590 labelled as ‘Attended’ and epochs in the dot task were labelled as ‘Ignored’. Epochs in the
591  roving oddball sequence were labelled as ‘Deviants’ when they contained the first stimulus in
592  a repeated train of gratings, and ‘Standards’ when they contained a grating that had been
593  repeated between five and seven times. Epochs in the equiprobable sequence were labelled as

594  ‘Controls’.

595  Event-Related Potential Analyses

596  Trials in each attention and prediction condition were averaged within participants to produce
597  event-related potentials (ERPs) for each individual. The effect of attention was assessed using
598  atwo-tailed cluster-based permutation test across participant ERPs (Monte-Carlo distribution
599  with 5000 permutations, pcuse<0.05; sample statistic: dependent samples ¢-statistic,
600 aggregated using the maximum sum of significant adjacent samples, psumpie<.05). Because there
601  were three, rather than two, levels of prediction, we tested the effect of prediction with a cluster-
602  based permutation test that used f-statistics at the sample level and a one-sided distribution to
603  account for the positive range of f-statistics (Monte-Carlo distribution with 5000 permutations,
604  peusier<0.05; sample statistic: dependent samples f-statistic, aggregated using the maximum

605 sum of significant adjacent samples, psampie<.05). Simple contrasts between prediction
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606  conditions (deviants vs standards, and deviants vs controls) were tested using two-tailed
607  cluster-based permutation tests (with the same settings as used to investigate attention). The
608 interaction between attention and prediction was assessed by subtracting the ignored ERP from
609  the attended ERP within each prediction condition and subjecting the resulting difference
610  waves to a one-tailed cluster-based permutation test across participant ERPs (Monte-Carlo
611  distribution with 5000 permutations, peusr<0.05; sample statistic: dependent samples f-
612  statistic, aggregated using the maximum sum of significant adjacent samples, psumpie<-05). The
613  interaction effect was followed-up by comparing difference waves (attended - ignored)
614  between deviants and standards, and between deviants and controls (two-tailed cluster-based

615  permutation tests, same settings as above).

616  Forward Encoding Models

617  To investigate the informational content of orientation signals, we used a forward encoding
618  model [29,53] designed to control for noise covariance in highly correlated data [31,54;
619  https://github.com/Pim-Mostert/decoding-toolbox], such as EEG. We modelled an idealised
620  basis set of the nine orientations of interest (0-160° in 20° steps) with nine half-wave rectified
621  cosine functions raised to the 8" power, such that the response profile associated with any
622  particular orientation in the 180° space could be equally expressed as a weighted sum of the
623  nine modelled orientation channels [29]. We created a matrix of nine regressors that
624  represented the grating orientation presented on each trial in the training set (1 = the presented
625  orientation, 0 = otherwise) and convolved this regressor matrix with the basis set to produce a
626  design matrix, C (9 orientation channels x 7 trials). The EEG data could thus be described by

627  the linear model:

628 B=WC+N,
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629  where B represents the data (64 electrodes x # trials), W represents a spatial weight matrix that
630  converts activity in channel space to activity in electrode space (64 electrodes x 9 orientation

631  channels) and N represents the residuals (i.e., noise).

632  To train and test the forward encoding model, we used a three-fold cross-validation procedure
633  that was iterated 100 times to increase reliability of the results. Within each cross-validation
634 iteration, the experimental blocks were folded into thirds: one third of trials served as the test
635  set and the remaining two-thirds served as the training set, and folds were looped through until
636  each fold had served as a test set. Across successive iterations of the cross-validation procedure,
637  the number of trials in each condition was balanced within folds by random selection (on the
638  first iteration) or by selecting the trials that had been utilised the least across previous folds

639  (subsequent iterations).

640  Prior to estimating the forward encoding model, each electrode in the training data was de-
641  meaned across trials, and each time point was averaged across a 27.3 ms window centred on
642  the time point of interest (corresponding to an a priori window of 30 ms, rounded down to an
643  odd number of samples to prevent asymmetric centring). Separately for each time point and

644  orientation channel of interest, i, we solved the linear equation using least square regression:

645 Wi = Birain ctrain,iT (ctrain,i ctrain,iT)-l,

646
647  where w; represents the spatial weights for channel i, Byain represents the training data (64

648  electrodes X nyain trials), and ¢x4ini represents the hypothetical response of channel i across the
649  training trials (1 X nsuix trials). Following Mostert et al. [54], we then derived the optimal spatial
650 filter v; to recover the activity of the ith orientation channel:

—
651 v, = 2L

TTe-1 . >
wi YW
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652  where % is the regularized covariance matrix for channel 7, estimated as follows:

- 1 .
653 $.= —— g ¢

Nirain — 1

654 & = Btrain - Wictrain,i'

655  where nyqin is the number of training trials. The covariance matrix ¥,; was regularized by using
656  the analytically determined shrinkage parameter [31]. Combining the spatial filters across each

657  of'the nine orientation channels produced a channel filter matrix V (64 electrodes x 9 channels).

658 Clest = VT Bies: )

659  where By, represents the test data at the time point of interest (64 electrodes X ny trials),
660  averaged over a 27.3 ms window (as per the training data). Finally, the orientation channel
661  responses for each trial were circularly shifted to centre the presented orientation on 0°, and the
662  zero-centred responses were averaged across trials within each condition to produce the

663  condition-average orientation channel response (Fig 3B).

664  To assess information related to the mismatch between predicted and observed stimulus
665  features (Fig 3D and 3E), we computed a second forward encoding model as above, with the
666  exception that now the regression matrix represented the difference between the current grating
667  orientation (deviant or control) and the previous grating orientation (standard or control,
668  respectively). That is, a grating at 60° orientation that followed a grating at 20° orientation

669  would be coded as 40° (current minus previous orientation).

670  To assess the dynamic nature of mismatch response profiles (Fig 5), we trained the weight

671  matrix, W, at a single time point in the training set, B1 (using a 30 ms sliding window), and
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672  then applied the weights to every third time point in the test set, B> (using a 30 ms sliding
673  window). This process was repeated for every third time point in the training set, resulting in a
674  3-dimensional matrix that contained the population response profile at each cross-generalised

675  time point (9 orientations x 66 training time points x 66 testing time points).

676  Quantifying Channel Responses

677  Previous studies have utilised a number of different methods to quantify the selectivity of
678  neural response profiles [30,31]. Since we were interested in characterising the properties of
679  neural response profiles, we opted to fit an exponentiated cosine function to the modelled data

680  [33,34] using least square regression:

o y(x) = Ae*(cos2c-wl) + B

682  where y is the predicted orientation channel activity in response to a grating with orientation x;
683 A is the peak response amplitude, x is the concentration parameter, x4 is the centre of the
684  distribution, and B is the baseline offset. Fitting was performed using the non-linear least square
685  method in MATLAB (trust region reflective algorithm). The free parameters 4, x, and B were
686  constrained to the ranges (-0.5, 2), (1.5, 200), and (-1.0, 0.5), respectively, and initiated with
687  the values 0.5, 2, and 0, respectively. The free parameter  was constrained to be zero when
688  quantifying mean-centred orientation or mismatch response profiles (which should be centred
689  on zero, Figs 3, 44 and 4B). When quantifying individual (uncentred) mismatch channel
690  response profiles (Fig 4C and 4D), the free parameter ¢ was allowed to vary between -90° and
691  90°. To reduce the likelihood of spurious (inverted) fits, the parameter search was initiated with

692  au value centred on the channel with the largest response.
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693  The main effects of attention and prediction on orientation or mismatch response profiles were
694  assessed with cluster-based permutation tests across participant parameters (amplitude,
695  concentration). The interaction effects (between attention and prediction) on orientation and
696  mismatch response profiles were assessed by first subtracting the ignored response from the
697  attended response, and then subjecting the resulting difference maps to cluster-based
698  permutation tests. In cases where two levels were compared (i.e. the main effect of attention
699  on orientation response profiles, and all effects on mismatch response profiles), we used two-
700  tailed cluster-based permutation tests across participant parameters (Monte-Carlo distribution
701  with 5000 permutations, peuser<0.05; sample statistic: dependent samples ¢-statistic,
702  aggregated using the maximum sum of significant adjacent samples, psampie<.05). In cases
703  where three levels were compared (i.e. the main effect of prediction and the interaction effect
704  on orientation response profiles), we used one-tailed cluster-based permutation tests across
705  participant parameters (Monte-Carlo distribution with 5000 permutations, peuser<0.05; sample
706  statistic: dependent samples f-statistic, aggregated using the maximum sum of significant
707  adjacent samples, psumpie<.05), and followed up any significant effects by collapsing across
708  significant timepoints and comparing individual conditions with paired-samples z-tests and

709  Bayes Factors (uniform prior, lower bound: -0.3 a.u., upper bound: 0.3 a.u.).

710  Univariate Electrode Sensitivity

711  To determine which electrodes were most informative for the forward encoding analyses, we
712 tested the sensitivity of each electrode to both orientation and mismatch information (Fig 3C
713 and 3F). The baseline-corrected signal at each electrode and time point in the epoch was
714 regressed against a design matrix that consisted of the sine and cosine of the variable of interest
715  (orientation or mismatch), and a constant regressor [30]. We calculated sensitivity, S, using the

716  square of the sine (Bsiv) and cosine (Bcos) regression coefficients:
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S = UBsiv’ + Bcos’).

S was normalised against a null distribution of the values expected by chance. The null

distribution was computed by shuffling the design matrix and repeating the analysis 1000

times. The observed (unpermuted) sensitivity index was ranked within the null distribution (to

produce a p-value) and z-normalised using the inverse of the cumulative Gaussian distribution

(u =0, o =1). The topographies shown in Fig 3C and 3F reflect the group averaged z-scores,

averaged across each time period of interest.
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S1 Fig. Event-related potentials (ERPs) and mismatch responses (MMRs). (A) ERPs at selected
electrodes, shown separately for each condition. Bars underneath each plot indicate time points at
which there was a significant main effect of attention (solid grey bar), significant main effect of
prediction (solid black bar), or a significant interaction between attention and prediction (dotted black
bar) at the plotted electrode. (B) Classic MMR (deviants - standards) and genuine MMR (deviants —
controls) at selected electrodes, plotted separately for each level of attention. Green and yellow lines
denote the classic MMR and genuine MMR, respectively; solid and dashed lines denote attended and
ignored stimuli, respectively. Bars underneath each plot indicate timepoints at which there was a
significant MMR in the corresponding condition, at the plotted electrode. Attended deviants were
significantly different from attended standards (39 — 504 ms, cluster-corrected p < .001) and attended
controls (172 — 550 ms, cluster-corrected p < .001). Ignored deviants were significantly different from
ignored standards (47 — 438 ms, cluster-corrected p < .001) and ignored controls (285 — 461 ms,
cluster-corrected p = .001) (C-l) Topographies of effects collapsed across time points between 200
and 300 ms. Asterisks and dots denote electrodes with larger, or smaller responses, respectively, in
at least 25% of the displayed time points. (C) Main effect of attention (attended — ignored). (D) Classic
MMR (deviants — standards). (E) Genuine MMR (deviants - controls). (F) Classic MMR during the
grating task (attended deviants — attended standards). (G) Classic MMR during the dot task (ignored
deviants — ignored standards). (H) Genuine MMR during the grating task (attended deviants —
attended controls). (G) Genuine MMR during the dot task (ignored deviants — ignored standards).
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S2 Fig. Independent main effects of attention and prediction on orientation response profiles, showing
standards, deviants, and controls. (A) Main effect of attention on orientation response profiles. The
amplitude of attended gratings was larger than that of ignored gratings (219 - 550 ms, cluster-
corrected p = .001). Shading denotes standard error of the mean. The black bar along the x-axis
denotes significant time points. (B) Orientation response profiles, collapsed across significant time
points in A. Dots show activation in each of the nine modelled orientation channels. Curved lines
show the functions used to quantify the amplitude and concentration of orientation-tuned responses
(fitted to grand average data for illustrative purposes). (C) Main effect of prediction on orientation
response profiles (black bar along the x-axis denotes significant time points, 324 — 550 ms, cluster-
corrected p < .001). The amplitude of standards was reduced relative to both deviants and controls.
(D) Orientation response profiles, collapsed across significant time points in C. (E) Interaction
between attention and prediction on orientation response profile amplitude. Time-courses show the
effect of attention (attended — ignored) on each stimulus type. (F) Orientation response profiles,
collapsed across time points in the non-significant but trending cluster in E (414 - 481 ms, not
displayed, cluster-corrected p = .093).
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903 S3 Fig. Residual sum of squares (RSS) for exponentiated cosine functions fitted to generalised

904 mismatch response profiles (Fig 5). Note the high RSS values along the x-axis beginning at 200 ms,
905 indicating that the apparent generalisation of spatial maps trained at stimulus onset to later times in
906 the epoch (Fig 5, red patch along the x-axis) was likely due to noise.
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