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24  Abstract: Cultivated passion fruit is a fruit tree widely cultivated in southern China,
25  but little is known about its genomics, which seriously restricts the molecular genetics
26  research of passion fruit. In this study, we analyzed the 165.7Mb representative
27  genome sequences. The results showed that the passion fruit genome contained alarge
28 number of simple sequence repeats (SSR). Compared to the cassava and peach
29 genomes, the passion fruit genome has 23,053 predicted genes. These genes can be
30 aligned to 282 plant genomes. GO annotation indicated that these genesareinvolved in
31  metabolic pathways of carbohydrates, organic acids, lipids and other molecules. KEGG
32 pathway enrichment assigned these genes into five major categories and 19 secondary
33 functions. Cluster analysis of gene families showed that 12,767 genes could be
34  clustered into 9,868 gene families and 291 unique gene families. On the evolutionary
35 relationship, the passion fruit is closely related to Populus trichocarpa and Ricinus
36  communis, but the rate of evolution isslower. In summary, this genomic analysis result
37 isinformative, and will facilitate the future studies on gene functions of passion fruit.
38 Keywords: cultivated passion fruit (Passiflora edulis L.); genome; gene annotation;
39  phylogenetic evolution; bioinformatics

40 1. Introduction

41 There are more than 530 species of passion fruit, and the most widely cultivated
42  gpeciesis Passiflora edulis, which belongs to the Theoideae suborder, Passifloraceae
43  family, and Passiflora L. genus [1]. Passion fruit has really high contents of nutrition,
44 including sugar, fat, protein, vitamins and mineral elements [2,3].

45 In eukaryotes, the genome is the entire genetic material of a single set of
46  chromosomes in the species. Each cell of a plant contains three distinct genomes:
47  nuclear genome, mitochondrial genome, and plastid genome. Currently, studies are
48 mainly focused on the nuclear genome. Chromosomes are gene carriers, and the gene
49 functions are closely related to the structural components on chromosomes. Genome
50 sequencing can help us better understand the functions and evolution of plant

51 genes.Currently, the genome sequencing study on passion fruit is still focused on the
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52  development of molecular markers. Cerqueira-silvaet al. [4] developed 69 pairs of SSR
53  primers using two passion fruit genome microsatellite-enriched libraries. Santos et al.
54  [5] used BAC end sequencing method to obtain 6,194,248 bp of passion fruit genome
55  data, in which 669 microsatellite sequences were found, with an average of one SSR per
56  9.25 kb genome sequence. Later, Arayaet al. [6] developed 816 pairs of SSR primersin
57  thestructura and functional regions using parts of the passion fruit genome sequence.
58  Theresults showed that 53.2% of SSR primers were polymorphic. Recently, Costaet al.
59  [7] sequenced the cDNA of Xanthomonas infected passion fruit, and developed the

60 functional SSR and SNP markers.
61 With the rapid development of High-throughput sequencing, nearly 200 plants

62 have been sequenced. In May 2017, the Beltsville Agricultural Research Center
63 performed genome-wide sequencing on passion fruit CGPA1 using Illumina GAll
64  sequencing technology, and assembled the sequencing results to the Scaffold level.
65 However, they did not conduct genome analysis on these results. In this study, we
66 performed genome annotation and comparative genomic analysis on passion fruit
67 genome. Our results will facilitate the further studies on molecular mechanisms of
68 passion fruit, and also provide references for the scientific development and efficient

69 utilization of passion fruit.

70 2. Materialsand Methods

71 2.1. Genomic Sequence of Passion Fruit

72 The passion fruit genome was uploaded to NCBI
73 (https://www.ncbi.nlm.nih.gov/assembly/GCA_002156105.1/#/st) by the Beltsville

74  Agricultural Research Center.

75  2.2. Genome Annotation of Passion Fruit

76 Identification of autonomous DNA transposon: The known autonomous DNA
77  transposons in plants, such as Arabidopsis, were collected from public databases
78  (Swiss-Prot and Repbase). Then, the transposons in passion fruit were identified by the
79  software detectMITE [8].
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80 Gene structure prediction: Homologous prediction was conducted by comparing
81 the protein coding sequence of a known homologous species with the genomic
82  sequence of a new species (the number of homologous species is no more than 5). The
83  gene structures of new species were predicted by softwares such as BLAST (http://
84  blast.nchi.nim.nih.gov/Blast.cgi), GeneWise [9], etc. De novo prediction used the
85 software depending on statistical characteristics of genomic sequence data to predict
86  gene structure. The commonly used software includes Augustus [10], Glimmer HMM
87 [11], SNAP (http://homepage. Mac.com/iankorf/), etc. After performing the gene
88  structure prediction, the results were combined with the transcriptome alignment data;
89 then, these data were integrated by the EVidenceModeler software
90 (http://evidencemodeler.sourceforge.net/) to generate a non-redundant, more complete
91 gene set. Finally, the EVM annotation results were corrected using PASA

92  (http://pasa.sourceforge.net/) and the transcriptome assembly data. The information

93  such as UTR and variable cutting sites was added to obtain the final gene set.

9 Gene function annotation: The gene set obtained by gene structure annotation was
95  compared with aknown protein database by comparison software, in order to obtain the
96 gene function information. The commonly used protein databases include SwissProt

97  (http://www.uniprot.org/), KEGG (http://www.genome.jp/keqa/), InterPro

98 (https://www.ebi.ac.uk/interpro), NR (ftp://ftp.nchi.nlm.nih.gov/blast/db/) and GO

99  (http://www.geneontology.org/).

100  2.3. Gene Family and Phylogenetic Tree

101 Gene family identification: The software OthoMCL[12] was used. The default e
102  value was le-5 and the expansion coefficient was 1.5.

103 Phylogenetic analysis: The software MUSCLE [13] was used to compare different
104  gene families. The sequence alignment results went through jModel Test/ProTest [14]

105 softwareto find the optimal sequence substitution model. Then, the phylogenetic tree of
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106 9 species was constructed by PhyML software [15] using the maximum likelihood
107  method.

108 3. Results

109 3.1. Assembly of Passion Fruit Genome

110 The research group at Beltsville Agricultural Research Center used Illumina GALll
111  technology to sequence the passion fruit CGPA1 genome. The average sequencing
112  depth was 4.5x, with 225,293,527 reads in total. Finally, 165,656,733 bp of passion
113  fruit genome sequence was obtained, with 235,883 Contig (Contig N50 was 1,303 bp,
114  Contig L50 was 30,212 bp) and 234,012 scaffolds (Scaffold NS5O was 1,311 bp,
115  Scaffold L50 was 30,081 bp). The GC content of the genome was 38.6%.

116  3.2. Repeated Sequence Annotation

117 The SSR Search software [16] and homologous annotation were used to annotate
118 the repeated sequences in passion fruit genome. The results showed that there were
119 428,294 full-type SSR and 1,544,549 incomplete- and composite-type SSR [6]. For
120 transposons, there were 59 Mutator transposons, 41 EnSpm transposons, 49 hAT
121  transposons, 221 PIF transposons, and 2 MLE transposons.

122 3.2. Gene Annotation and Functional Enrichment Analysis of Passion Fruit Genome
123 Genetic structure prediction was conducted using homologous prediction and De
124 novo prediction. Using BLAST, GeneWise, and other alignment softwares, the
125 genomic sequence of passion fruit was compared with the coding sequences of known
126  homologous species Manihot esculenta [17] and Prunus persica [18] to predict the
127  gene structures in passion fruit genome. These prediction results were then combined
128  with the transcriptome alignment data, and all the gene sets predicted by different
129  methods wereintegrated by the EvidenceM odeler software to generate a non-redundant
130 and more complete gene set. Finally, the EVM annotation results were corrected using
131 PASA and transcriptome assembly results. The information such as UTR and variable

132  cutting sites were added, and 23053 genes were eventually predicted.
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133 The gene set obtained by gene structure prediction was blasted in NR, SwissPort,
134 KEGG, InterPro, Pfam and GO databases, and the gene annotation information was
135 shown in Table 1. In KEGG database, the passion fruit genome had 16,835 genes
136  annotated. The gene length was 61-6994 bp, with an average of 670 bp. Thetotal length
137  of annotated genes was 11,784,169 bp, accounting for 7.1% of the whole genome. The
138 predicted passion fruit genes can be mapped to the genomes of 282 plant species.
139  Among these genes, 3,015 of them were aligned to the Populus trichocarpa genome,
140 2058 genes were mapped to the Jatropha curcas genome, 1,644 genes were aligned to
141  the Ricinus communis genome, 630 genes were mapped to the Theobroma cacao
142  genome[19], and 572 genes were aligned to the Vitis vinifera genome [20].

143 GO analysis was used to classify the functions of annotated genes into categories
144  of Biological process, Cellular component and Molecular Function; then, these
145  functions were further refined into 41 secondary functions (Figure 1). In the Biological
146  process category, there were more genes involved in cellular process (GO: 0009987)
147 and metabolic process (GO: 0008152), accounting for 4,689 and 5,047 genes,
148  respectively; inthe Cellular component category, more genes wereinvolved in cell part
149 (GO:0044464) and cell (GO: 0005623), both of which included 1,542 genes; in the
150 Molecular Function category, the catalytic activity (GO: 0003824) and structural
151  molecule activity (GO: 0005198) included more genes, accounting for 5,018 and 5,595,
152  respectively. Since passion fruit has a pleasant aromatic odor and has high contents of
153  sugar, fat, protein, vitamins and minerals [2,3], we focused our study on the metabolic
154  processes of carbohydrates, organic acids, lipids, etc., and found that 1,356 genes were
155 involved in the metabolism of aromatic compounds.

156 In living organisms, different genes were coordinated to perform biological
157 functions. The same actions between different genes form a pathway, and the
158 pathway-based analysis is helpful for further interpreting the gene functions. KEGG

159 database was used to analyze the gene pathways, and the results showed that the gene
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160 pathwayswere divided into five categories according to the pathway type (Figure 2): A:
161 Cellular Processes; B: Environmental Information Processing; C: Genetic Information
162  Processing; D: Metabolism; E: Organismal Systems. These five categories can be
163  subdivided into 19 secondary functional classes. Among the 1,1325 genes, 61.6% were
164  associated with metabolic pathways, and the largest group was related to carbohydrate
165 metabolism. Glucose, sucrose, starch and cellulose are the main forms of carbohydrates.
166  Studieshave shown that passion fruitisrichin sugars and fats [2,3]. In the passion fruit
167  genome, there were only 570 genes involved in environmental adaptation, suggesting
168 that passion fruit may be less capable to resist biological or non-biological stresses.
169 3.3. Gene Family and Phylogenetic Analysis

170 Based on the passion fruit genome annotation results and the previous studies[1,5],
171  we performed gene family analysis using another nine species, which were Actinidia
172  chinensis[21], Theobroma cacao [19], Vitis vinifera [20], Arabidopsis thaliana

173 [22], Populus euphratica [23], Prunus persica [18], Ricinus communis [24], and Oryza
174  sativa L. ssp. japonica [25]. The number of aligned genes in each species is shown in
175 Table 2. Viacluster analysis of gene families, we found 12,767 genes of passion fruit
176  could be clustered into 9868 gene families, with an average of 1.29 genes per family.
177  Moreover, there were 291 gene families that were unique for passion fruit (Figure 3).
178 Referring to the study from Santos et al. [5], we selected the genomes from
179  Actinidia chinensis [21], Theobroma cacao [19], and Vitis vinifera [20] to perform
180 homologous analysis with the predicted genes of passion fruit (Figure 4). The results
181  showed that Theobroma cacao had the most homologous genes with passion fruit.
182  Using Oryza sativa L. ssp. japonica genome as the reference, we also did phylogenetic
183 analysis on the nine species with homologous genes (Figure 5). The cluster analysis
184  showed that the monocots were clearly separated from the dicots. Also, passion fruit
185 was evolutionarily closer to Populus trichocarpa and Ricinus communis, but the

186 evolution rate was slow.
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187  Discussion

188 The passion fruit genome is rich in repetitive elements, which can be used to
189  develop molecular markers. In our previous study, We identified 13,104 perfect SSRs
190 inthe165.6 Mb of cultivated passion fruit genome. Then we developed 12,934 pairs of
191 SSR primers using a full-type SSR, and the SSR marker showed good polymorphism
192 [16]. According to the different transposon vectors, transposons can be divided into
193  two types: retrotransposons (Class 1) and DNA transposons (Class I1). The former is
194 mediated by RNA and the latter is mediated by DNA. MITEs (Miniature Inverted
195 Repeat Transposable Elements) are a special class of non-autonomous DNA
196 transposons that are distributed in high-copy form in the genome of plants. The
197 MITEs transposon marker developed by MITEs can only amplify two bands in
198 genera, and the PCR product can be efficiently isolate by conventional agarose gel
199 dectrophoresis, so the marker is highly efficient and co-dominant molecular marker.
200 We used softwares to identify the MITEs transposon of the cultivated passion fruit
201 genome, and obtained 372 transposons and their flanking sequences, which was
202  important for the development of MITES markers.

203 The 165.7Mb of passion fruit genome sequence was used to perform gene
204  annotation with homologous species Manihot esculenta [17] and Prunus persica [18],
205 and atotal of 23,053 genes were predicted. The passion fruit genome size is 1,230 Mb
206 [26], and the genome size involved in this study is approximately 13.5% of the total
207  genome length. Therefore, we need to assemble the passion fruit genome to a higher
208 level using high-throughput sequencing, especialy at the chromosoma level, is
209  particularly important.

210 By comparing the predicted protein sequences of passion fruit genome with the
211  known protein sequences, we found that there were more genes related to carbohydrate
212  metabolism, consistent with the fact that passion fruit is rich in sugar, fat, protein,

213 vitamins and mineral elements [2,3]. However, there were less genes involved in
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214  environmental adaption in passion fruit genome, indicating that passion fruit may have
215 poor capability to resist biological or non-biological stresses. At present, the main
216  diseases of passion fruit are viral diseases, bacterial diseases and fungal diseases,
217  among which fungal stem rot is particularly serious.

218 The comparison between passion fruit genome and the genomes of other eight
219  species showed that only afew geneswere uniquein passion fruit. The unique family
220 mainly contain genes of unkwnown functional proteins, retrovirus-related Pol
221  polyprotein, zinc finger domain (CH2H?2) proteins, and putative ribonuclease H protein.
222 A number of genes are associated with retrovirus, which may suggest an important
223  cause of the serious occurrence of viral disease in passion fruit. Specific regulatory
224 sequences on DNA can bind to the corresponding regulatory proteins (transcription
225 factors) and promote the initiation of transcription. In the unique family of passion
226  fruit, the transcription factor family contains many genes, which may indicate that
227  rich gene expression patterns are necessary for the continuous adaptation of passion
228  fruit to the environment and to adjust its growth and metabolism.Moreover, in the
229 evolutionary relationship, passion fruit is closer to Populus trichocarpa [23] and
230  Ricinus communis [24], but the evolution rate is slower.
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Table 1 The annotation cultivated passion fruit genome.
Database Annotated Num Annotated Percent(%)
NR 22062 95.7
Swiss-Prot 17974 78
KEGG 16835 73
InterPro 20786 90.2
Pfam 15341 66.5
GO 11108 48.2
Annotated 22200 96.3
Total 23053 -

Table 2 Genesused for gene family clustering in nine species.
Genes Genesin  Unclustered  Family Unique Average genes

ecies
P number families genes number  families per family
Arabidopsis
. 48321 44484 3837 15029 2081 2.96
thaliana

Theobroma 30854 29472 1382 15251 439 1.93
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cacao
Actinidia
S 33115 29260 3855 14583 629 2.01
chinensis
Populus
. 51717 49631 2086 15441 797 321
trichocarpa
Prunus
. 47089 42308 4781 15830 1115 2.67
persica
Vitisvinifera 29927 21929 7998 14789 729 1.48
Ricinus
) 28584 26580 2004 15009 329 1.77
communis
Oryza sativa 42132 28555 13577 13886 2587 2.06
Passiflora
. 23053 12767 10286 9868 291 1.29
eduis
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