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ABSTRACT

Microbial interactions are major drivers of microbial community dynamics and functions. However,
microbial interactions are challenging to decipher due to limitations in parallel culturing of sub-
communities across many environments and accurate absolute abundance quantification of
constituent members of the consortium. To this end, we developed Microbial Interaction Network
Inference in microdroplets (MINI-Drop), a high-throughput method to rapidly infer microbial
interactions in microbial consortia in microfluidic droplets. Fluorescence microscopy coupled to
automated computational droplet and cell detection was used to rapidly determine the absolute
abundance of each strain in hundreds to thousands of droplets per experiment. We show that
MINI-Drop can accurately infer pairwise as well as higher-order interactions using a microbial
interaction toolbox of defined microbial interactions mediated by distinct molecular mechanisms.
MINI-Drop was used to investigate how the molecular composition of the environment alters the
interaction network of a three-member consortium. To provide insight into the variation in
community states across droplets, we developed a probabilistic model of cell growth modified by
microbial interactions. In sum, we demonstrate a robust and generalizable method to probe
cellular interaction networks by random encapsulation of sub-communities into microfluidic
droplets.

INTRODUCTION

Microbial communities have a tremendous impact on diverse environments ranging from the
human body to the plant rhizosphere (Berendsen et al., 2012; Clemente et al., 2012). Microbe-
microbe and environment-microbe interactions are major determinants of microbial communities
and microbiomes (Cao et al., 2018; Venturelli et al., 2016). Deciphering interaction networks in
high-dimensional microbial communities is challenging due to the need to rapidly and accurately
determine the absolute abundance of each community member across many sub-communities
and environments (Cao et al., 2017; Harcombe et al., 2016).

The population sizes of microbial consortia can range from less than ten cells in mixed
species biofilm aggregates to 10" cells mL™" in the human colon (Connell et al., 2014; Sender et
al., 2016; Stoodley et al., 2001). Cellular growth history, the temporal order of strain colonization
or the initial phase of microbial competition can impact community assembly (von Bronk et al.,
2017; Kong et al., 2018; Vega and Gore, 2017; Venturelli et al., 2018; Zhou et al., 2013). Our
understanding of microbial consortia in small populations is limited due to technical challenges in
the manipulation and analysis of small populations of cells (Connell et al., 2014). Therefore, high-
throughput methods that can rapidly resolve microbial interaction networks across different initial
community states, population sizes and environments would enable a better understanding of the
key parameters shaping the structure and function of microbial communities and how to harness
these systems for diverse biotechnological applications.

Microbial interaction network inference requires accurate measurements of the absolute
abundance of each member of the community (Fisher and Mehta, 2014). Recent experimental
efforts have used models trained on measurements of 1-3 member communities to predict
community composition or function of up to 12 members to varying degrees of accuracy
(Friedman et al., 2017; Guo and Boedicker, 2016; Kong et al., 2018; Mounier et al., 2008;
Venturelli et al., 2018). Absolute abundance quantification of each member of a microbial
community has ranged from low-throughput selective plating to count colony forming units (tens
of samples per experiment) (Mounier et al., 2008) to optical density multiplied by relative
abundance based on next-generation sequencing of samples generated through robotic high-
throughput culturing (hundreds of samples per experiment) (Venturelli et al., 2018).
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Encapsulation of microbial communities into microdroplets has been used to study
ecological and evolutionary processes of microbial communities (Bachmann et al., 2013; Park et
al., 2011). Water-in-oil droplets can be generated at kilohertz (kHz) rates using microfluidics,
wherein cells from a mixed culture are randomly encapsulated into droplets yielding diverse sub-
communities that can be studied in parallel (millions of samples per experiment). Each droplet is
a miniaturized compartment that can be used to study interactions between community members
in small populations. Microfluidic technologies enable the generation of well-controlled droplet
environments of ~1% size variation (Guo et al., 2012). However, previous studies have not fully
leveraged the capabilities of this technology to quantitatively investigate microbial communities.
Further, we lack a systematic method to rapidly infer microbial interactions using droplet
microfluidics in different environmental contexts.

To address this challenge, we developed Microbial Interaction Network Inference in
Droplets (MINI-Drop). To determine the absolute abundance of each strain across hundreds to
thousands of samples, we developed an automated computational method coupled to
fluorescence microscopy to rapidly segment droplet images and accurately count fluorescently
labeled cells within each droplet. We tested the capability of MINI-Drop to accurately infer
microbial interactions using a microbial interaction toolbox composed of positive and negative
interactions mediated by distinct molecular mechanisms. Our results demonstrate that MINI-Drop
can accurately decipher pairwise as well as higher-order interactions by analyzing droplets
containing 1-3 strains. We investigated how the molecular composition of the environment shapes
the ecological network of a three-member consortium. A probabilistic model of cell growth
modified by microbial interactions and cell death described the variability in community states
across droplets containing the same initial strain composition, providing insight into the forces
shaping community assembly in small populations.

RESULTS

Inferring microbial interactions in microfluidic droplets

Microbial interactions represent the net impact (positive, negative or negligible) of an organism
on the growth of another over a specified time interval (Cao et al., 2018). Microbial interactions
can be quantified by evaluating the difference in phenotype (e.g. growth response or metabolic
activity) of an organism in the absence and presence of another strain (partner strain).
Encapsulation of cells in a microbial community into droplets using techniques from droplet-
microfluidics enables parallel culturing of many sub-communities (Fig. 1a). To infer microbial
interactions, we needed a scalable method to determine the absolute abundance of each strain
within each droplet. The average fluorescence in each droplet was not proportional to the number
of cells due to variability in cellular growth rates, which dictates the rate of dilution of the
fluorescent reporter (Fig. S1a). Therefore, we developed an automated procedure using
techniques from computer vision to rapidly identify droplets (Fig. S1b) and count the number of
fluorescently labeled cells in each droplet (Fig. S1¢). The droplets were binned according to strain
composition (Fig. S1d) and the cell counts were used to infer interaction type (positive, negative
or negligible), strength and directionality (see Materials and Methods).

To evaluate the accuracy and dynamic range of the method, CFP-labeled E. coli, RFP-
labeled E. coli and YFP-labeled S. typhimurium were mixed in equal volumetric ratios and serially
diluted to generate a broad range of cell densities (Fig. 1b). Each dilution of the mixed culture
was encapsulated into 34 picoliter (pL) droplets (40 ym diameter), imaged using fluorescence
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92  microscopy, and analyzed using a computational workflow (see Materials and Methods). The
93  number of cells of each fluorescently labeled strain decreased linearly with each dilution, with the
94  exception of the highest density droplets (Fig. 1¢, Fig. S2a). These data demonstrate at least a
95 64-fold linear range of the cell counting method of each fluorescent reporter. In a separate
96 experiment involving growth of fluorescently labeled strains in droplets described below (Table 1,
97 EB), droplet size did not correlate with the number of cells labeled with CFP, YFP or RFP,
98 indicating that variation in droplet size did not contribute to variability in cell growth (Fig. S2b,c,d).
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101 Fig. 1. Overview and characterization of microbial interaction network inference in microdroplets
102  (MINI-Drop). (a) Overview schematic of the MINI-Drop method. A mixed microbial culture and oil are loaded
103 into a droplet-forming microfluidic device. Cells are randomly encapsulated into droplets based on a Poisson
104  distribution. The droplets are incubated for a period of time to allow cell growth and division and then imaged
105 using fluorescent microscopy. A computer vision workflow rapidly identifies droplets and determines the
106  number of each fluorescently labeled strain within each droplet (Fig. S1). A microbial interaction network is
107 inferred based on the difference in the mean number of cells in the absence and presence of a partner
108 strain. (b) Representative fluorescent microscopy images of droplets containing three bacterial strains
109 labeled with YFP (ST Lac*), RFP (EC WT) or CFP (EC Met-) (see Table 2). (c) Scatter plot of the dilution
110  factor of the mixed culture vs. the logz transform of the mean number of cells per drop (Fig. S2a). Each
111  data point represents the mean of 400-600 droplets and lines denote linear regression fits to the data. Red,
112 yellow and blue data points correspond to EC WT, ST Lac* and EC Met-, respectively.

113

114  Investigating microbial interaction networks two-member consortia

115  To determine whether MINI-Drop could illuminate microbial interactions in microbial consortia, we
116  investigated two-member consortia engineered to display defined interactions. A microbial
117  interaction was defined as a statistically significant difference in the average number of cells of a
118  given strain in the presence of a second strain (partner) compared to the absence of the partner
119 at a specific time point. To investigate positive interaction networks with MINI-Drop, we
120  constructed a consortium composed of an RFP-labeled E. coli methionine auxotroph (EC Met-)
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121  and a GFP-labeled B. subtilis tryptophan auxotroph (BS Trp-, Table 1, E1). In the absence of
122 supplemented amino acids, the growth of B. subtilis requires secretion of tryptophan from E. coli
123 and the growth of E. coli requires secretion of methionine from B. subtilis, which together
124  generates a bidirectional positive interaction network (Fig. 2a). The two species were mixed in
125  equal proportions based on OD600 measurements, encapsulated into droplets such that each
126  droplet had 1-2 cells on average according to a Poisson distribution and the droplets were
127  incubated at 37°C for 18 hours. The fluorescence microscopy images demonstrated that single
128  species droplets exhibited a low number of total cells, whereas droplets containing both species
129  exhibited significantly higher number of cells of each strain (Fig. 2b). Specifically, the average
130 number of EC Met- cells was 3.3-fold (p = 3.8e-26) higher in the presence of BS Trp- compared
131  to the average number of EC Met- in single-species droplets (Fig. 2¢). Similarly, the average
132 number of BS Trp- cells was 4.2-fold (p = 1.5e-6) higher in the presence of EC Met- compared to
133 the average number of BS Trp- cells in single-species droplets (Fig. 2c). The inferred interaction
134  network exhibited bidirectional positive interactions, mirroring the topology of the expected
135 interaction network (Fig. 2a,d), demonstrating that MINI-Drop could deduce positive interactions.
136  Corroborating this result, the cell counts for BS Trp- and EC Met- were positively correlated (Fig.
137  S3a).

138 We next investigated whether MINI-Drop could decipher negative interactions. A synthetic
139  community was constructed wherein a GFP-labeled E. coli strain (sender strain) was engineered
140 to express Luxl, a synthetase for the quorum-sensing signal C6 acyl homoserine lactone (AHL).
141  AHL diffuses into the RFP-labeled E. coli strain (receiver strain), binds and activates the receptor
142 LuxR, which regulates the expression of the MazF toxin (Fig. 2e, Table 1, E2). High expression
143  levels of the endoribonuclease MazF inhibits cell growth by inducing mRNA decay (Venturelli et
144  al., 2017), generating a strong negative interaction from the sender to the receiver. To
145  characterize this community using MINI-Drop, the sender and receiver strains were mixed in equal
146  proportions based on OD600, encapsulated into droplets and incubated at 37°C for 18 hr.
147  Computational analysis of the fluorescent microscopy images showed that the number of receiver
148  cells was significantly lower in droplets containing both the sender and receiver strains compared
149  to the average number of receiver cells in single-strain droplets (Fig. 2f). The average number of
150 receiver cells in the presence of the sender was 2.6-fold lower (p = 3.7e-14) compared to the
151 average number of receiver cells in droplets containing the receiver strain alone (Fig. 2g). In
152  addition, the average number of sender cells was 1.25-fold lower (p = 2.2e-4) in the presence of
153  the receiver compared to in its absence (Fig. 2g). The average number of sender cells in droplets
154  containing the sender strain alone was 16.7-fold higher than the average number of receiver cells
155  in droplets containing only the receiver strain, presumably due to leakiness of mazF from the pLux
156  promoter in the absence of AHL. Based on these data, the inferred interaction network exhibited
157  a strong negative interaction from the sender to the receiver and a weak negative interaction from
158 the receiver to the sender (Fig. 2h). The cell counts of the sender and receiver were negatively
159  correlated across droplets, corroborating the presence of negative interactions (Fig. S3b). In sum,
160 these data demonstrate that MINI-Drop can decipher negative interactions in microbial consortia.

161
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163 Fig. 2. Investigating positive and negative microbial interaction networks using MINI-Drop. (a)
164  Schematic of the expected network for a synthetic consortium composed of an RFP-labeled E. coli
165  methionine auxotroph (EC Met-) and a GFP-labeled B. subtilis tryptophan auxotroph (BS Trp-) (Table 1,
166  E1). (b) Fluorescence microscopy image of representative single-species (EC Met- or BS Trp-) or two-
167 member droplets. (c) Categorical scatter plot showing the number of BS Trp- or EC Met- cells in each
168 droplet. The black horizontal line represents the mean and the error bars denote bootstrapped 95%
169 confidence intervals for the mean. Gray lines denote statistically significant difference in means based on
170  the Mann-Whitney U test (n=87, p=1.5e-6, left and n=372, p=3.8e-26, right). (d) The inferred interaction
171  network for the EC Met-, BS Trp- consortium. The edge width is proportional to the log: ratio of the average
172 cell count in the presence of a partner to the average cell count in single strain droplets. Node size is
173  proportional to the average cell count of each strain in single strain droplets. (e) Schematic of the expected
174  network of an E. coli community that exhibits a strong unidirectional negative interaction. A GFP-labeled
175  strain (sender) expresses Luxl, a synthetase for the quorum-sensing signal C6 acyl homoserine lactone
176  (AHL). AHL binds to the receptor LuxR in an RFP-labeled strain (receiver) and activates the expression of
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177  atoxin MazF, generating a strong negative interaction (Table 1, E2). (f) Fluorescence microscopy image
178  of representative droplets containing the sender strain, receiver strain or community. (g) Categorical scatter
179 plot of the number of sender or receiver cells in each droplet in the presence or absence of a partner. The
180  black line represents the mean and the error bars denote bootstrapped 95% confidence intervals for the
181 mean. Gray lines denote statistically significant differences in the means (n=1512, p=2.2e-4, left, n=421,
182  p=3.8e-14, right). (h) The inferred interaction network for the mazF inhibition consortium.

183

184  The molecular composition of the environment shapes a microbial interaction network

185 The molecular composition of the environment influences the energetic costs and benefits of
186  microbial interactions in microbial communities (Cao et al., 2018; Harcombe et al., 2016; Liu et
187 al., 2017). A key challenge is predicting how the microbial interaction network is modulated by
188 environmental parameters. To investigate this question, we constructed a three-member
189  community consisting of two strains interacting via bidirectional positive interactions and a third
190 strain that promoted growth of constituent members of the community but did not receive a benefit
191  from the community. Specifically, the strains included RFP-labeled E. coli (EC WT), CFP-labeled
192 E. coli methionine auxotroph (EC Met-), and YFP-labeled S. typhimurium (ST Lac-). This
193  consortium was characterized in four conditions that varied the carbon source (lactose or glucose)
194  and the presence or absence of supplemented methionine. In lactose minimal media, E. coli can
195 consume lactose and secrete carbon byproducts that can be utilized as substrates by ST Lac*
196 (Table 1, E3-6) (Harcombe, 2010). In the absence of supplemented methionine, the growth of EC
197 Met- is dependent on methionine provided by constituent community members.

198 We used MINI-Drop to infer the pairwise microbial interaction network based on the
199  patterns in the number of cells of each community member in single strain and two-member
200 droplets. In lactose minimal media lacking supplemented methionine, the inferred network
201 recapitulated the expected network, exhibiting bidirectional positive interactions between ST Lac*
202 and EC Met- and unidirectional positive interactions from EC WT to ST Lac* to EC Met- (Fig.
203  3a,e,i, Table 1, E3, Table S1). In lactose minimal media supplemented with methionine, the
204  positive outgoing interactions from EC WT or ST Lac* to EC Met- were absent in the network and
205 bidirectional negative interactions linked EC Met- and EC WT (Fig. 3b,f,j, Table 1, E4). In glucose
206  minimal media lacking supplemented methionine, the positive interactions from EC WT or EC
207  Met- to ST Lac* were absent and instead EC WT and ST Lac* were coupled by bidirectional
208  negative interactions (Fig. 3c,g,k, Table 1, E5). By contrast to the expected network, bidirectional
209 negative interactions were inferred between all pairs of strains in glucose minimal media
210  supplemented with methionine (Fig. 3d,h,l, Table 1, E6). Across all conditions, the sign of the
211  Pearson correlation coefficient clustered according to the pairwise network topology, wherein
212  positive or negative correlation coefficients were associated with positive or negative interactions,
213 respectively (Fig. S3, Fig. S4). These data show that correlations in the absolute abundance of
214  strains across droplets can be used to classify specific topologies of two-member microbial
215  interaction networks. Media containing lactose as a primary carbon source promoted strain co-
216  existence in three-member droplets, suggesting that positive interactions from EC Met- or EC WT
217  to ST Lac* are critical interactions that promote community stability across different environments
218  (Fig. S5a). In sum, our results demonstrate that the microbial interaction network is highly context-
219  dependent and the network topology changes as a function of the molecular composition of the
220  environment.
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222 Fig. 3. The molecular composition of the environment shapes the interaction network of a three-
223  member consortium. (a) Schematic of the expected microbial interaction network of a three-member
224 consortium consisting of RFP-labeled E. coli (EC WT), CFP-labeled E. coli methionine auxotroph (EC Met-
225 ), and YFP-labeled S. Typhimurium deficient in lactose metabolism (ST Lac*) in lactose minimal media
226  lacking supplemented methionine (Table 1, E3). Secreted carbon byproducts (acetate) and methionine are
227  represented by a triangle and rectangle, respectively. Node colors and green arrows denote the type of
228  fluorescent reporter and positive interactions, respectively. (b) Schematic of the expected microbial
229  interaction network in lactose minimal media supplemented with methionine (Table 1, E4). (c) Schematic
230  of the expected microbial interaction network in glucose minimal media lacking supplemented methionine
231  (Table 1, E5). (d) Schematic of the expected microbial interaction network in glucose minimal media
232 supplemented with methionine (Table 1, E6). (e) Cell count distributions in lactose minimal media for EC
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233 WT (top), ST Lac* (middle) or EC Met- (bottom). The black line represents the mean and the error bars
234  denote the bootstrapped 95% confidence intervals for the mean. The gray horizontal bars indicate a
235  statistically significant difference (p < 0.05, Table S1) based on the Mann-Whitney U test. (f) Cell count
236  distributions in lactose minimal media supplemented with methionine for EC WT (top), ST Lac* (middle) or
237  EC Met- (bottom). (g) Cell count distributions in glucose minimal media for EC WT (top), ST Lac* (middle)
238  or EC Met- (bottom). (h) Cell count distributions of EC WT (top), ST Lac* (middle) or EC Met- (bottom) in
239  glucose minimal media supplemented with methionine. (i) Inferred interaction network in lactose minimal
240  media lacking supplemented methionine. The edge width is proportional to the log: ratio of the average cell
241 count in the presence of a partner to the average cell count in the absence of the partner. Node size is
242 proportional to the average cell count of each strain grown in isolation. (j) Inferred network in lactose minimal
243 media supplemented with methionine. (k) Inferred interaction network in glucose minimal media lacking
244  supplemented methionine. (l) Inferred interaction network in glucose minimal media supplemented with
245  methionine.

246

247  Investigating higher-order interactions using MINI-Drop

248  Higher-order interactions occur when a pairwise interaction is modified in the presence of a third
249  community member (Bairey et al., 2016; Society, 2015) and these interactions are challenging to
250 identify in microbial communities. In MINI-Drop, a higher-order interaction was defined as a
251  difference in the presence and sign (positive or negative) of an interaction in a three-member
252 community compared to the presence and sign of the interaction in each two-member sub-
253  community (Fig. 4a). We tested whether MINI-Drop could identify higher-order interactions by
254  analyzing the cell count distributions of each strain in three-member droplets in addition to single-
255  strain and two-member droplets. To do so, a community consisting of an RFP-labeled E. coli
256  methionine auxotroph that is also deficient in lactose metabolism (EC Met- Lac*, Table 1, E7),
257  EC Met- (CFP) and ST Lac* was constructed. In lactose minimal media lacking supplemented
258  methionine, EC Met- and ST Lac* can secrete carbon byproducts and methionine, respectively
259  and thus together enable the growth of EC Met- Lac*. Our results showed that the number of EC
260 Met- Lac* cells was higher in the presence of both EC Met- and ST Lac* but not in the presence
261  of either single strain, demonstrating that MINI-Drop could identify higher-order interactions (Fig.
262  4b, p=0.0012). The strains EC Met- (CFP) and ST Lac* interacted via bidirectional positive
263 interactions, recapitulating the expected network topology (Fig. 3a, Fig. S5b,c). In addition, the
264  cell counts of EC Met- and ST Lac* displayed a strong positive correlation (Fig. S3d).

265 To investigate other higher-order interactions that were present in our data, we analyzed
266  droplets containing three-member consortium (EC WT, EC Met- and ST Lac), two-member sub-
267 communities and single strains across four different environments (Fig. 3, Table 1, E3-E7). Our
268  results illuminated a higher-order interaction in lactose minimal media (Table 1, E3), where EC
269  WT was significantly inhibited in the presence of both EC Met- and ST Lac*, while no negative
270 interaction was observed in the pairwise interaction networks of EC WT co-cultured with EC Met-
271 or ST Lac* (Fig. 3a, 4d,e). Unexpected higher-order interactions occurred in one of twelve
272 possible cases (3 community members times 4 environments) in the EC Met-, EC WT, ST Lac*
273 consortium (Table 1, E3-6), In sum, our results show that MINI-Drop can rapidly elucidate higher-
274  order interactions based on the absolute abundance patterns in droplets containing 1-3 strains.
275 demonstrating that higher-order interactions were infrequent in this community across different
276  environmental conditions.

277 To evaluate the sensitivity of the method, we next investigated the number of droplets
278  containing the same initial strain composition (replicates) required to infer microbial interactions
279  of different strengths across all datasets. Specifically, we analyzed the relationship between
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280 interaction strength magnitude, number of replicates, and interaction significance (p<0.05) in all
281 datasets (Fig. S6). Our results showed that the significance of each interaction increased
282  exponentially as a function of the number of droplets (Fig. S6a). The strength of the interaction
283 was inversely related to the number of droplets required for statistical significance of the
284  interaction. For example, strong interactions required as few as 15 replicates whereas weak
285 interactions required more than 50 replicates (Fig. S6b).
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289  Fig. 4. Investigating higher-order interactions using MINI-Drop. (a) Schematic showing an example of
290 a higher-order interaction. Droplets containing two strains X and Z or Y and Z do not exhibit interactions. In
291  three-member droplets, a negative or positive interaction from X and Y to Z is present and is defined as a
292  higher-order interaction. (b) Categorical scatter plots of the number of EC Met- Lac* cells in droplets
293  containing the single strain EC Met- Lac* (self), pairs of strains including EC Met- Lac* and EC Met- or ST
294  Lac* or all three strains (EC Met- Lac*, EC Met- and ST Lac*). Black horizontal bars denote the mean
295 number of cells per droplet and error bars represent the bootstrapped 95% confidence interval for the mean.
296  The horizontal bar (gray) represents a statistically significant difference in means based on the Mann-
297  Whitney U test (p = 1.2e-3, n = 703). (c) Schematic showing the higher-order inferred network for the data
298  shownin panel (b). The line width represents the inferred strength of the higher-order interaction. Node size
299 s proportional to the average cell count of each strain grown in isolation. (d) Categorical scatter plots of the
300 number of EC WT cells in droplets containing the single strain EC WT, two strains including EC WT and ST
301 Lac* or EC Met- or all three strains (EC WT, ST Lac* and EC Met-) in lactose minimal media. The horizontal
302 bar (gray) represents a statistically significant difference in means based on the Mann-Whitney U test (p =
303 2.9e-10, n = 296). (e) Schematic showing a higher-order interaction inferred using the data shown in (d).
304 The line width represents the strength of the inferred higher-order interaction. Node size is proportional to
305 the average cell count of each strain grown in isolation.

306

307  Discrete-time Markov model of community assembly

308 In small microbial populations, stochastic variation in intracellular molecular concentrations,
309 growth and death can impact community assembly and functions (Boedicker et al., 2009; Connell
310 etal., 2014; Hansen et al., 2016). To model community assembly in small populations, microbial
311  growth can be represented as a probabilistic event, such that two communities seeded with the
312  same initial strain composition exhibit different steady-state community compositions (Fig. 5a)
313  (Horowitz et al., 2010). We constructed a discrete-time Markov model of cell growth modified by
314  microbial interactions to investigate the variability in community composition across droplets
315  containing the same initial strain composition.

316 In the model, communities are initially seeded with a single cell of each type. At each time
317  step, strain i can undergo cell division, death or remain static according to the probabilities Py, ;,
318  Pgeqeni» and Pseqeici, respectively (Fig. Sb). The probabilities Py;;,; and Pgyqeic; are a function of
319 the number of cells of each strain with parameters specific to each strain and the probability
320  Pgeqen; is afixed parameter. Negative interactions with self or non-self are represented by inverted
321  sigmoidal logistic functions, such that the probability of cell division is inversely related to the cell
322 number. Positive interactions are represented as sigmoidal logistic functions, such that the
323  probability of cell division increases as a function of the number of partner cells (see Materials
324  and Methods).

325 We tested whether this modeling framework could recapitulate the experimental cell count
326  distributions, based on the assumption that the measurement time point maps to the steady-state
327  of the model. Models were constructed using the positive or negative interaction functions and
328 model parameters were identified to recapitulate the cell count distributions of each strain. We
329  constructed a model for the EC WT, ST Lac* community grown in glucose minimal media that
330 exhibited a bidirectional negative interaction network (Fig. 5c, left). Our results showed three
331 clusters representing distinct community states exhibiting high abundance of one strain (Fig. 5¢c,
332  center, clusters 1 and 2), co-existence of both strains (Fig. 5¢, center, cluster 4), or low cell counts
333  of both strains (Fig. 5¢, center, cluster 3). Representative images of droplets from each cluster
334 showed significant differences in community composition (Fig. 5c, right). A model of a
335  bidirectional negative interaction network displaying strong and weak negative interactions was
336  able to recapitulate the cell count distribution (Fig. 5¢, middle, Table S3).
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337 We next evaluated whether the model could recapitulate the cell count distributions of
338 networks that displayed positive interactions. Models constructed for the EC Met-, ST Lac*
339 consortium in two different environments exhibiting unidirectional or bidirectional positive
340 interactions (Table 1, E3-4) could recapitulate the cell count distributions (Fig. 5d,e). Next, a
341 model was developed for the mazF inhibition consortium (Table 1, E2) that displayed a
342  bidirectional negative interaction network. A model of strong and weak bidirectional negative
343 interactions represented the negative correlation in cell counts of the sender and receiver strains
344  (Fig. 5f). Our results demonstrate that bidirectional negative interaction networks can realize
345  distinct community state distributions (Fig. 5¢,f). In the model, the number of partner cells required
346  to impact the probability of cell division dictates the strength of an interaction (Fig. 5f, Fig. S7).
347  The toxin mediated negative interaction in the mazF inhibition consortium (Table 1, E2) exhibited
348  a higher sensitivity to partner cell number than the negative interaction from ST Lac* to EC WT in
349  glucose minimal media (Table 1, E5, Fig. S7). Therefore, the recipients of the strong negative
350 interactions displayed different sensitivities to variations in donor cell number, providing insight
351 into the qualitative dissimilarities in the cell count distributions. In sum, the model was able to
352  describe the cell count distributions for positive and negative interactions mediated by distinct
353  molecular mechanisms, illustrating that a probabilistic growth model can explain the variability in
354 community states in small populations.

355

356

357
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360 Fig. 5. Discrete-time Markov model of cell growth modified by microbial interactions can recapitulate
361 cell count distributions in microfluidic droplets. (a) Schematic of variability in community assembly in
362  small populations. Stochasticity in intracellular molecular concentrations can alter the strength of microbial
363 interactions, generating different community states (high blue cells, low yellow cells or the reciprocal). (b)
364  Schematic of the discrete-time Markov model of cell growth modified by microbial interactions. At each time
365 step, each cell can undergo cell division, cell death or remain static according to the probabilities Paiv, Pdeatn
366  or Pstutic, respectively. (c) Inferred network topology using MINI-Drop (left) for the EC WT, ST Lac*
367  consortium in glucose minimal media (Table 1, E5). Node size and edge weight represent the average cell
368 count of each strain grown in isolation and the interaction strength, respectively. Scatter plot of
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369 experimentally measured cell counts (blue circles, n=257) of EC WT and ST Lac* or model steady-states
370 (red circles, n=200). This bidirectional negative interaction network generated qualitatively different
371  community compositions corresponding to (1) low and high EC WT and ST Lac*, respectively, (2) high EC
372  WT and ST Lac*, (3) low EC WT and ST Lac*, (4) high EC WT and low ST Lac*. Fluorescence microscopy
373  images (right) of a representative droplet in each community state 1-4 are shown (right). (d) Inferred network
374  for the EC Met-, ST Lac* consortium (top) in lactose minimal media supplemented with methionine (Table
375 1, E4). Scatter plot of experimentally measured cell counts (blue circles, n=118) of EC Met- and ST Lac* or
376  model steady-states (red circles, n=200). (e) Inferred interaction network for the EC Met-, ST Lac*
377  consortium in lactose minimal media (top, Table 1, E3). Scatter plot of experimentally measured cell counts
378  (blue circles, n=141) of EC Met- and ST Lac* or model steady-states (red circles, n=200). (f) Inferred
379 interaction network for the sender, receiver consortium (top, Table 1, E2). Scatter plot of experimentally
380 measured cell counts (blue circles, n=93) of the sender and receiver strains or model steady-states (red
381 circles, n=200).

382

383 Discussion

384  We showed that MINI-Drop can rapidly infer pairwise as well as higher-order microbial interactions
385 in 2- to 3-member consortia in different environmental conditions. This method can be scaled to
386 quantify interactions in higher-dimensional (>3 members) communities using compatible
387 fluorescent labels or combinatorial fluorescent imaging of multiple reporters within the same cell.
388  Combinatorial labeling via fluorescence in situ hybridization (Liu et al., 2011; Valm et al., 2012) or
389 fluorescent labeling of the bacterial outer membranes via biorthogonal click chemistry could be
390 used to measure the absolute abundance of organisms that are not genetically tractable (Geva-
391  Zatorsky et al., 2015).

392 In MINI-Drop, a single experiment generates hundreds to thousands of replicates of
393  unique sub-communities. The initial mean number of cells per drop can be manipulated to
394 investigate the contribution of initial cell density to microbial interactions or increase the proportion
395  of multi-strain droplets for interrogation of higher-order interactions. MINI-Drop does not require
396  coexistence of community members to determine interactions because fluorescently tagged
397  single cells encapsulated in a droplet can be accurately quantified.

398 Previous methods of microbial interaction inference using modeling frameworks such as
399 the generalized Lotka-Volterra (gLV) model are constrained by mathematical relationships
400 (Momenietal., 2017). For example, a gLV model of strong bidirectional positive interactions tends
401 to be unstable, leading to potential underrepresentation of bidirectional positive interactions.
402  Further, it is challenging to pinpoint if the failure of a pairwise gLV model to accurately fit
403  experimental data is attributed to the presence of higher-order interactions or to unmodeled
404 dynamics such as metabolites mediating the interactions. By contrast, MINI-Drop is not
405 constrained to a defined mathematical framework and thus can rapidly identify higher-order
406 interactions in the networks. We showed that MINI-Drop accurately inferred diverse interaction
407  topologies including unidirectional positive, bidirectional positive or bidirectional negative
408 networks. In addition to deciphering engineered interactions, MINI-Drop illuminated unexpected
409 negative pairwise interactions and higher-order interactions in the networks. The unexpected
410  higher-order interaction that inhibited EC WT in the presence of both EC Met- and ST Lac* could
411  be explained by robust growth of the mutualistic pair EC Met- and ST Lac*, which in turn
412  negatively impacted EC WT. Across all experiments, S. typhimurium exhibited the strongest
413  outgoing negative interactions as well as the highest carrying capacity, suggesting that the
414  negative interactions could arise from competition for limited resources or space or the production
415  of toxic compounds.
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416 The throughput of the MINI-Drop method was enabled by coupling two automated and
417  scalable technologies, droplet microfluidics and computational image analysis. The large number
418  of sub-community replicates provided by MINI-Drop allows investigation of the contribution of
419  initial conditions to community assembly in small populations. A probabilistic analysis of the
420 distribution of community states provides insight into the stochastic nature of microbial
421 interactions and impact of these parameters on community assembly. For example, we observed
422  that bidirectional positive networks displayed frequent co-occurrence (Fig. 5e, Fig. S3, Fig. S4)
423  whereas a bidirectional negative network can realize a set of distinct community states (Fig. 5¢c,e).
424 Our stochastic growth model can recapitulate the community states observed
425  experimentally a set of synthetic communities. This demonstrates that a simple probabilistic
426  representation of cell growth, death and microbial interactions can give rise to multiple community
427  steady-states from the same initial conditions. Our modeling framework could be used to predict
428  the probability of strain growth as a function of the initial strain proportions and cell density. These
429  parameters could be manipulated to maximize the likelihood of community member coexistence
430 in multi-species consortia. In sum, we developed a systematic procedure to elucidate microbial
431  interaction networks in microdroplets. Future work will apply MINI-Drop to study diverse cellular
432  interactions such as interkingdom or mammalian cell interactions.

433 MATERIALS AND METHODS
434

435  Dynamic range of cell counting

436  The bacterial strains EC Met- (CFP), EC WT (RFP), and ST Lac* (YFP) were grown in LB medium
437  to early stationary phase, centrifuged at 18,000xg for 1 min, decanted, and resuspended in M9
438  minimal medium without glucose. Next, the cells were centrifuged at 18,000xg for 1 min, decanted
439  and resuspended in a smaller volume of M9 minimal medium without glucose to concentrate the
440 cells. The OD600 values of the concentrated EC Met-, EC WT and ST Lac* cultures were 14.4,
441  19.6, and 6.4, respectively. Equal volumes of each culture were combined to generate the mixed
442  culture. The mixed culture was serially diluted by a factor of 2 until a dilution of 27 was reached.
443  The diluted cultures were encapsulated separately using the droplet maker device and the
444  resulting droplets were imaged and quantified using the computational image analysis pipeline.

445  Bacterial cell culturing

446  Strains were grown for approximately 12 hours at 37°C in LB, diluted 1:50 into fresh LB, and then
447  grown to an OD600 of 0.3-1. Next, the culture (3 mL) was centrifuged for 2 min at 3,500 x g and
448  supernatant was removed. The cells were washed 4X by resuspending the pellet in 0.5 mL of
449  minimal media and centrifuged as described above. The cell cultures containing different strains
450  were normalized to an OD600 of 0.15 and mixed in a 1:1 ratio. In the mutualism experiment (E2),
451  B. subtilis and E. coli were mixed in a 2:1 volumetric ratio to account for differences in the cell
452  number to OD ratios. In experiment E1, cells were cultured in M9 supplemented with glucose (1X
453 M9 salts, 2 mM MgSOs, 100 uM CaCly, 0.4% glucose) and 25 pg/mL chloramphenicol (Sigma).
454  In experiment E2, cells were cultured in LB media containing 50 ng/mL anhydrotetracycline (aTc,
455  Cayman Chemicals), 0.1% arabinose (Sigma) and 25 pg/mL chloramphenicol. In experiments E3-
456  E7, cells were cultured in M9 media (1X M9 salts, 2 mM MgSO4, 100 uM CaCl,) supplemented
457  with 0.4% glucose, 0.2% lactose and/or 200 uM methionine as indicated.

458

15


https://doi.org/10.1101/521823
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/521823; this version posted January 16, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Number | Strains Media Figure

E1 BS Trp- M9 Glucose 2a-d
EC Met- (RFP)

E2 EC Sender LB 2e-h
EC Receiver

E3 EC Met- (CFP) M9 Lactose 3a,e,i
ST Lac* 4d,e
ECWT

E4 EC Met- (CFP) M9 Lactose + Met 3b.f,j
ST Lac*
ECWT

E5 EC Met- (CFP) M9 Glucose 3c,g,k
ST Lac*
ECWT

E6 EC Met- (CFP) M9 Glucose + Met 3d,h,l
ST Lac*
ECWT

E7 EC Met- (CFP) M9 Lactose 4b,c
ST Lac*
EC Met- Lac* (RFP)

459  Table 1. Strains used in growth experiments.

460
Strain Genotype Plasmid Fluorescent Abbreviation Reference
reporter

B. subtilis B. subtilis 168, None GFP BS Trp- (Burkholder and
trpC2, cat, Giles, 1947)
amyE::Pveg-gfp-
spec

E. coli E. coli BW25113 | pOSV005 RFP EC Met- Lac* | (Babaetal,
pheA::Kan and EC Met- | 2006)

(RFP)
E. coli E. coli BW27783 | pOSV022 GFP Sender (Khlebnikov et
al., 2001)

E. coli E. coli pOSV151 RFP Receiver (Cox et al.,
MG 165521 2007)

E. coli E. coli K12 | None CFP EC Met- (CFP) (Adamowicz et
BW25113, al., 2018)
AmetB att::pLC2
80 [kan P_L'-cfp
oriR6K]

S. typhimurium LT2, None YFP ST Lac* (Adamowicz et
metA(P35L) met al., 2018;
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J(16:1S10) att::p Douglas et al.,
LC246 [kan 2016)
P_L'-yfp oriR6K]

E. coli E. coli BW25113 | pOSV006 RFP EC WT (Baba et al.,
metA::Kan 2006)

461  Table 2. Strains and media conditions for each experiment.
462

463  Fabrication of microfluidic devices

464  Photoresist masters of 25 um layer height were fabricated by spinning a layer of photoresist SU-
465 8 3025 (Microchem) onto a silicon wafer (University Wafer), then baked at 95°C for 10 minutes.
466  Following baking, photoresist master was patterned by UV photolithography over a photomask
467  (File S1, CADArt). The master was subjected to post-exposure bake at 95°C for 4 min and
468  developed in fresh SU-8 developer (Microchem) for 6 min, prior to rinsing with isopropyl alcohol
469  (Fischer Scientific) and baking at 150°C to remove the solvent. The microfluidic devices were
470  fabricated by pouring poly(dimethylsiloxane) at a 11:1 polymer-to-crosslinker ratio (Dow Corning
471  Sylgard 184) onto the master and curing at 65°C for 1 hr. The PDMS devices were excised with
472  a scalpel and cored with a 0.75 mm biopsy core (World Precision Instruments) to create inlets
473  and outlets. The device was then bonded to a microscope glass slide using O2 plasma cleaner
474  (Harrick Plasma), and channels were treated with Aquapel (PPG Industries) to render them
475  hydrophobic. Finally, the devices were baked at 65°C for 20 min to evaporate excess Aquapel
476  prior to use.

477  Encapsulation of cells into droplets and fluorescence microscopy

478  To encapsulate cells into droplets, 1 mL syringes (BD Luer Lok) were fitted with 27 gauge needles
479  and PE/2 tubing. 500 pL of the culture was loaded into a 1 mL syringe. Hydrofluoroether oil was
480  prepared with 2% Krytox as surfactant and loaded into a 1 mL syringe. The free end of the tubing
481 was primed and inserted into the droplet-making device. Droplets were generated using 600 pyL
482  hr' oil and 300 pL hr' cell mixture flow rates at a 30 um x 25 pm junction, which generated ~40
483  um diameter droplets at 4.8 kHz. Droplets were collected into a 1.5 mL microfuge tube for 15 min
484 and incubated for 18 hr at 37°C. Droplets were imaged using chamber microscopy slides
485  (Invitrogen C10228) and imaged with a 20X objective (Nikon, MRH10201) on a Ti-E Eclipse
486 inverted microscope (Nikon). Fluorescence was imaged using the following filters (Chroma): (1)
487  CFP:436nm/20nm (ex), 480nm/40nm (em); (2) GFP: 470nm/40nm (ex), 525/50nm (em); (3) RFP:
488  560nm/40nm (ex), 630/70nm (em); and (4) YFP: 500nm/40nm (ex), 535nm/30nm (em).

489  Fluorescence microscopy image analysis

490  Custom code in Python was used for automated cell counting in droplets and microbial interaction
491 network inference. Droplets were identified from the phase contrast image using the Hough
492  transformation algorithm (OpenCV 3). Droplets with a diameter 10% larger or smaller than 40 um
493  were removed from the dataset. Fluorescent cells were segmented by identifying connected
494  regions using the SimpleBlobDetector object (OpenCV 3). Droplets were binned by the presence
495  or absence of each fluorescently labeled strain. Interaction strength from strain j to strain i, where
496  droplet d contains dk cells of strain k, was defined according to Equation 1. Network schematics
497  were drawn with Cytoscape 3.5 (Shannon et al., 2003).

mean(d;vd|d;>0,d;>0)
498 log; (mean(din|di>O,d]-:O)> (1)
499
500
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501 Discrete-time Markov model of cell growth

502 A discrete-time Markov model was developed to recapitulate the experimentally measured cell
503  count distributions. At each time step, the propagation of each strain is determined by computing
504  the probability of cell division (P, ;), cell death (Pyeqeni), and remaining unchanged (Psiqeic,i)
505 (Equations 2-4).

506 Paivi = Taiio X Li(ny, s ki ai) % Iij(ng, sij, kij aij) (2)
507 Pdeath,i = Tdeath,io (3)
508 Pstatic,i =1- (Pdiv,i + Pdeath,i) (4)
509

510 The parameter ry;, ;, is the basal probability of cell division for strain i. The parameter r404¢h.i0
511  represents the probability of cell death of strain i (constant). n; denotes the number of cells of
512  strain / and s;; defines whether the outgoing interaction of strain j (donor) to strain i is positive
513  (s;; = 1) or negative (s;; = —1). The parameters k;; and a;; define the sigmoidal interaction
514  function I;;, representing the incoming interaction for strain i produced by strain j (Equation 5).

(1+ai]-)eki1'n1' i
rageo U=
515 IU = Y N (5)
(1+a;) , =1
— kn if sij=—
1+ai]-e 77

516  The negative interaction function approaches zero as a function of n; whereas the positive
517  interaction approaches (1 + a;;)/a;; as a function of n;. The values of a;; and ry;, ; are constrained
518  such that Py;,; < 1 (Equation 6). The self-interaction function I;;(n;, s;;, ki;, a;;) is less than one
519 (s; = —1) and approaches zero as a function of n;, leading to saturation of the number of cells of
520  strain i. The interaction function I;;, is equal to 1 when n; = 0, representing the absence of an
521 interaction between strain i and j. In the absence of an interaction between strain i and j, Py;,,; is
522  not dependent on strain j (si]- =—-1,k;j=0,a; = O). The outgoing interaction from the partner
523  strainj[;; (nj, Sij kij al-j) can be positive or negative depending on the value of the parameter s;;.
524  The parameters a;; and k;; determine the interaction sensitivity defined as the number of partner
525  cells at the half-maximum of the interaction function 7;. The parameters

526 A = —In (—+2) (6)

ki]' ai]-

kij(%"'z)

L I»f s:i:=1
.. 4(a;i+1 ’ 9]
527 iyl (@i*1) (7)
dnj A —ki]-(r'j+2)ai]' .
Ty Ssu=1

528 At each time step, the state transition of a cell is independent of all other cells and the cell’s prior
529 history. The state transitions were simulated by sampling from a trinomial distribution determined
530 by the probabilities Py;y, i, Pgeqtni> @nd Pgqrici- Communities were simulated for 100 time-steps
531  wherein each time-step corresponded to 10.8 minutes of experimental time. Variables were
532  constrained such that the cell populations reached a steady state within the simulation time. The
533 initial condition for all simulations was n;,n; = 1. Model parameters are listed in Table S$3.

534
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