bioRxiv preprint doi: https://doi.org/10.1101/521559; this version posted January 15, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY 4.0 International license.

Computational design of improved standardized
chemotherapy protocols for grade II oligodendrogliomas

Victor M. Pérez-Garcia'”, Luis E. Ayala-Hernandez 2, Juan Belmonte-Beitial,
Philippe Schucht?, Michael Murek®, Andreas Raabe3, Juan Septlveda?,

1 Department of Mathematics, Mathematical Oncology Laboratory (MOLAB),
Universidad de Castilla-La Mancha, Avda. Camilo José Cela, 3, 13071 Ciudad Real,
Spain.

2 Departamento de Ciencias Exactas y Tecnologia Centro Universitario de los Lagos,
Universidad de Guadalajara, Lagos de Moreno, Mexico.

3 Universitatsklinik fiir Neurochirurgie, Bern University Hospital, CH-3010 Bern,
Switzerland.

4 Oncology Unit, Hospital 12 de Octubre, Avda. de Cérdoba s/n, 28041 Madrid,
Spain.

* victor.perezgarciaQuclm.es

Abstract

The use of mathematical models for personalization of cancer therapies and raising
hypothesis of potential clinical impact is an emerging topic in the interface between
mathematics and oncology. Here we put forward a mathematical model describing the
response of low-grade (WHO grade II) oligodendrogliomas (LGO) to temozolomide
(TMZ). The model described the longitudinal volumetric dynamics of tumor response
to TMZ of a cohort of 11 LGO patients treated with TMZ. After finding
patient-specific parameters, different therapeutical strategies were tried
computationally on the ‘in-silico twins’ of those patients. Chemotherapy schedules
with larger-than-standard rest periods between consecutive cycles had either the same
or better long-term efficacy than the standard 28-day cycles. The results were
confirmed in a large virtual clinical trial including 2000 patients. These long-cycle
schemes would also have reduced toxicity and defer the appearance of resistances.

On the basis of those results, a combination scheme consisting of five induction
TMZ cycles given monthly plus 12 maintenance cycles given every three months was
found to provide substantial survival benefits for the in-silico twins of the 11 LGO
patients (median 5.69 years, range: 0.67 to 68.45 years) and in a large virtual trial
including 2000 patients. This scheme could be useful for defining a standardized TMZ
treatment for LGO patients with survival benefits.

Author summary

A mathematical model described the longitudinal volumetric growth data of grade II
oligodendrogliomas patients and their response to temozolomide. The model was used
to explore alternative therapeutical protocols for the in-silico twins of the patients and
in virtual clinical trials. The simulations show that enlarging the time interval
between chemotherapy cycles would maintain the therapeutical efficacy, while limiting
toxicity and defering the development of resistances. This may allow for improved
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drug-exposure by administering a larger number of cycles for longer treatment periods.

A scheme based on this idea consisting of an induction phase (5 consecutive cycles, 1
per month) and a maintenance phase (12 cycles given in three-months intervals) led to
substantial survival benefits in-silico.

Introduction

Oligodendrogliomas (ODGs) are low-incidence glial tumors, affecting mostly young
adults. They are slowly growing, infiltrative tumors with isocitrate dehydrogenase 1 or
2 mutations and codeletion of chromosomal arms 1p and 19q. Grade II ODGs (LGO)
are well differentiated tumors with a low mitotic index [1]. In spite of the long median
patient survival, they are incurable currently [2].

Many ODG patients present few neurological symptoms for extended periods of
time. The decision on the specific combination of therapies to be used on each patient
is based on the qualitative consideration of different variables including age, tumor
grade, performance status and tumor location [3]. Radiation therapy (RT) is beneficial
for patients in terms of survival, but its timing has been the subject of debate [4].
Regarding chemotherapy (CT), temozolomide (TMZ), an oral alkylating agent, has
a favourable toxicity profile [5] and can contribute to reduction in seizure frequency in
low-grade glioma (LGG) patients [6]. Phase II trials have demonstrated its effectivity
against LGGs [7-9]. Also, neoadjuvant CT given to surgically unresectable tumors has
allowed subsequent gross total resection in some cases [10], which is of relevance when
the tumour is highly infiltrative or located in eloquent areas. Thus, prolonged
TMZ treatment is a relevant option either as up-front or as adjuvant treatment.

Clinical trials have shown a similar efficacy of TMZ vs RT for 1p/19g-codeleted
tumors [11,12]. Also, RT is associated with late neurocognitive toxicity. Thus CT is
frequently used as first-line treatment for ODG patients. In that context, relevant
questions arise such choice of the chemotherapy regimen and the optimal number of
cycles to be prescribed.

Mathematical models have potential to help in finding optimized treatment
schedules/combinations improving survival and/or reducing toxicity [13,14]. Once the

base mathematical model is set, patient-specific parameters can be obtained from data.

That provides an ‘in-silico twin’ [15] allowing computational studies that could be
beneficial for real patients.

Materials and methods

Patients

82 patients diagnosed of LGG (biopsy/surgery confirmed astrocytoma,
oligoastrocytoma or oligodendroglioma according to the WHO 2007 classification) and
followed at the Bern University Hospital between 1990 and 2013 were initially
included in the study. The study was approved by Kantonale Ethikkommission Bern
(Bern, Switzerland), with approval number: 07.09.72.

Of that patient population, we selected 1p/19g-codeleted tumors (thus LGOs
according to the 2016 WHO classification) treated with at least three cycles of TMZ,
having no previous RT treatment and no other treatment given in the period of study.
Only 16 patients satisfied these criteria. Of them 3 (19%) did not respond to TMZ
and 2 (12%) responded initially but progressed during treatment to anaplastic forms.
Thus 11 (69%) oligodendroglioma patients responded to the therapy, did not display
any signs of malignant transformation and were used for this study.
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Image acquisition and analysis

Radiological glioma growth was quantified by manual measurements of tumour
diameters on successive MRIs (T2/FLAIR sequences). Since some of the older
patients were available only as jpeg images we computed the volume using the
ellipsoidal approximation. The three largest tumour diameters (D;,D2,D3) along the
axial, coronal and sagittal planes were measured and tumour volumes estimated using
the equation V = (D; - Dy - D3)/2, following the standard practice [16]. To estimate
the error of the methodology we took a different set of glioma patients from another
study [17] and compared their volumes computed accurately using a semi-automatic
segmentation approach with those computed using the ellipsoidal approximation.
Mean differences were 18%, that was the reference level used for the error in the
volume computations.

Mathematical model

In this paper we considered LGOs in a simplified way as composed of two tumor cell
compartment. The first one was the tumor cell population P(t), assumed to grow
logistically. The second one was lethally damaged tumor cells because of the action of
the therapy D(t). Temozolomide effect on proliferative cells is a complex one, leading
to death through different ‘programmes’ [18-20]. We put together the different
processes into two groups, each described by a term in our equations. The first one
was early death accounting for necrosis, autophagy and drug-induced apoptosis with
rate ;. The second one was delayed death through mitotic catastrophe with rate as.
In radiotherapy, the second process is the leading one [21], but not in cytotoxic
chemotherapy treatments [19,20]. The drug concentration in tissue was described by
the function C(t) having a characteristic cleanup time 1/\.

Figure 1 shows a schematic description of the model. The equations were:

o M«1P+D>mpcwpa (1a)
dD 0 P+D

= - —HD<1— >+ad%l (1b)
ac

a - _ 1
= AC, (1c)

Chemotherapy was described by a sequence of doses d1,ds, ...,dy given at times
t1 < ts < ... < ty. The initial time corresponding to the first volumetric observation
was denoted as to. Initial conditions for Eqs. (1) were taken to be
Py = P(to), D(to) = C(to) = 0. Drug administration was described as impulses for the
times ¢; so that P(t;) = P(t; ), D(t;) = D(t;), C(t;) = C(t; ) + C; where
ft;) = limtﬁtj_ f(t) and Cj is the fraction of the dose d; reaching brain tumor tissue.

Parameter estimation

We chose the parameter k, corresponding to the averaged number of cell divisions
before death by mitotic catastrophe to be equal to 1. The carrying capacity parameter
K is the one with a less defined value but could be expected to be in a range between
300 and 550 cm?. The later number is in line with the maximal volumes observed in

LGG patients [22]. However, many patients die when the tumor volume is smaller [15].

The most typical chemotherapy schedule consists of cycles of 28 days with five
TMZ oral doses on days 1 to 5 and then a rest period of 23 days. Typical dose per day
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Fig 1. Schematic description of the model defined by Egs. (1). Tumor cell population
P(t) grows at a rate p and saturates at a maximum size K. These cells are killed by
the drug C(¢) (and removed) through direct mechanisms «s. Another fraction ag
moves into a different compartment of lethally damaged cells D(t). These cells die at a
rate p/k because of mitotic catastrophe.

is d; = d = 150 mg per m? of patient body surface. To calculate the rate of drug decay
A we followed the same methodology as in Ref. [34], using values of TMZ half-life
clearance time t; /o for doses of 150 mg/m?2. From the definition of t1/2 and since Eq.
(1c) has exponentially decaying solutions 1/2 = exp (f)\tl /2) . To account also for the
drug loss during transport to the brain we computed the value C; = Cy of the dose
getting to the tumour as C; = - d - b, where j is the fraction of TMZ getting to 1 ml
of brain interstitial fluid (from a unit dose) and b is the patient’s body surface. Then
Cy can be interpreted as an effective dose per fraction. The parameter 5 can be
calculated using the value of maximal TMZ concentration Cy,,x for a dose of 150
mg/m? taken from the literature [23]. Since time to reach peak drug concentration in
brain is smaller than two hours and thus negligible in comparison with the other time
scales in the model, we chose to set the initial drug concentration Cy to the value
Chax = 0.6 pg/ml as in Ref. [34].

The parameters oy, as and p are expected to depend strongly on the tumor growth
rate and sensitity to the therapy and will be considered to be adjustable parameters.
These parameters, together with the initial population value P(0) were fit for each
patient longitudinal volumetric data using the library fmincon in the scientific
software package Matlab (R2017b, The MathWorks, Inc., Natick, MA, USA). Table 1
summarizes the main characteristics and parameter values found for patients included
in the study. Since Egs. (1) are a system of nonlinear ordinary differential equations,
it is not possible to find their solutions in closed, explicit, form. Numerical simulations
of Egs. (1) were performed using the Matlab library ode45. To test for potential
overfitting in the parameter values found, the results for several patients were
compared with the results of a brute force approach analyzing a broad parameter
range. Both approaches were found to be in excellent agreement. Results for the
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ID | #CT | P(0) P a Qo
cycles (day™") | ml/(pg day) | ml/(pg day)

6 11 46.0 | 1.01 x 1073 0.32 0.1
10 15 45.4 | 7.06 x 10~% 0.27 0.21
25 4 31.7 [ 1.84 x 1073 0.76 0.75
57 9 46.8 | 8.74 x 10~% 0.23 0.21
105 20 145.0 | 2.05 x 1073 0.1 0.14
108 5 139 [ 1.73 x 1073 0.92 0.18
151 11 346 | 7.41 x 1071 0.52 0.05
159 11 64.7 | 5.33x 1071 0.57 0.6
170 17 6.4 |228x1073 0.01 0.28
203 9 29.8 | 3.31 x 10~ ¢ 1.99 0.1
213 18 23.9 | 6.08x 1071 0.3 0.3

Table 1. Parameter values best describing the longitudinal volumetric data for the
patients included in the study. Values for the other parameters were fixed to K =
523.6 cm®, A = 8.3184 day~'.

parameters are listed in Table 1.

Virtual clinical trials

To study the effect of the different treatment schedules on patient survival we designed
virtual trials. A number of patients was generated by a random choice of the
parameters. Uniform distributions were taken for the parameters in the most
representative region of the parameter space obtained from Table 1:
p€0.5x1073,2.5 x 1073] day™*, oy € [0.01,1.0] ml/ug day, ay €

[0.1,0.75] ml/ug day, P(0) € [20,200], K € [300,550] cm?. Virtual trials were run using
Matlab 2017b parallel computing toolbox using a parallel algorithm on a 64 GB
memory 2.7 GHz 12-core Mac pro workstation under OS X 10.14.

Results

The mathematical model describes the general features of LGO
response to temozolomide

Typical LGG longitudinal growth and response to therapy consists of four stages (see
Fig. 2). First, without treatment tumor grows slowly but steadily [24]. Next, there is
an early ‘fast’ tumor volume reduction associated to the start of treatment with TMZ.
Finally, after treatment cesation, there is a long-term response. For the patient shown
in Fig. 2, the tumor volume reduction lasted for 14 months after the end of the
treatment course. Finally, the tumor regrew leading to a clinical relapse. All of those
stages were correctly described by the mathematical model. Each stage was associated
to one of the biological phenomena reflected as terms in the model equations.

The mathematical model describes patient response to
temozolomide

We studied the ability of our mathematical model to describe the tumor responses to
TMZ. To do so, we fitted the parameters in Egs. (1) using the longitudinal volumetric
data for each patient in our cohort. Figure 3 shows results for selected patients. The
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Fig 2. Tumor volumetric longitudinal evolution (solid blue circles) of a patient
receiving five chemotherapy cycles together with the best fit found using Eqgs. (1) (red
lines). Four stages are observed: Pretreatment growth, early response during CT
(light green background), post-treatment response (light blue background) and tumor
relapse. The model’s parameters modulating the dynamics in each of the stages are
also shown.

model described the longitudinal tumor volumetric data in all cases, what supports
the choice of biological mechanisms used to construct it.

Results shown in Fig. 3 were obtained for a fixed (i.e. non fitted) value of the
carrying capacity K = 523.6 cm®. This parameter provides an estimate of the tumor
size for which geometrical and other constraints have a substantial influence on the
tumor growth rate. Similar results were obtained for a broad range of values of K. As
an example, Fig. 3(g-i) shows results for selected patients using a smaller K = 261.8
cm?®. The shapes of the fitting curves and the best root mean square errors (RMSE)
were similar for the different K values.

Simulations show potential benefits of alternative treatment
schedules

The model was then used as a discovery platform to test alternative treatment regimes
in-silico for the patients included in the study. As a first test, we enlarged the time
interval between cycles. Five daily doses of the drug were given on days 1-5 of the
cycle and then the standard waiting period of 23 days was increased to variable times
of up to 6 months. In general, the long-term tumor evolution was similar for all the
schedules when the cycle’s length was in the range 1-4 months. Thus, from the
volumetric point of view, all schedules led to similar asymptotic dynamics for the
in-silico twins of the study patients. Results for selected patients are shown in Figure
4. The only drawback of the long-cycle treatment regimes was the smaller tumor
volume reduction observed due to the less intensive nature of the schemes.

In the case of large tumors, whose size was comparable to K and thus the
nonlinear term in Eq. (1) played a relevant role, differences between the schemes were
observed favoring long-cycle schemes (see e.g. Fig. 4(b)).
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Fig 3. Longitudinal volumetric tumor data (blue circles) and best fits obtained with
the model given by Eqgs. (1) (red lines). (a-f) Results for six randomly chosen patients
from out dataset for a carrying capacity K=523.6 cm®. (g-i) Results for three patients
for K = 261.8 cm®. The vertical dashed lines in each subplots mark the start and end
times of treatment with TMZ.
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Fig 4. Simulated tumor growth curves under alternative treatment schedules with
variable time spacing between consecutive cycles. Esq. (1) were solved for each patient
with the best fitted parameters under the different treatment treatment regimens.
Each subplot shows the reference (fitted to data) growth curve in red and the
simulated growth curves under three alternative schemes with spacing between doses
of: (a,c) 2, 4, and 6 months, and (b) 2, 2.5 and 3 months. Vertical dashed lines
indicate the end times of the different treatment regimes. The vertical solid blue lines
mark the time domain for which imaging follow-up data was available for the patient.

As a second series of tests, we explored alternative treatment regimes based on the
28-day cycle. A first regime consisted in 5 doses given following a 1-day on, 1-day off
scheme during the first 10 days of the cycle. A second alternative was distributing
doses evenly within the cycle duration, i.e. giving a single dose every 4 days. Both
treatment regimes led to tumor volumetric evolutions overlapping with the ones of the
standard treatment (e.g., those depicted in Figure 3).

Several virtual trials were conducted as described in the ‘Methods’ section.
Benefits in median survival were found for the long-cycle strategies that were
dependent on the parameter K. Long-cycle treatment schemes were never inferior in
terms of survival to the standard ones. Indeed, the differences found between survival
curves for long-cycle schedules versus the standard ones were never statistically
significant (p < 0.05) according to the log-rank test.

A combined treatment regime provided survival advantages
in-silico and may provide a standard for LGO patients

Patients in our retrospective dataset were treated with a variable number of TMZ
cycles (mean 12, range 4-20, see Table 1). Treatment was effective for all patients
included. However, since there is no standardized protocol for chemotherapy in ODG
patients, the decision to stop treatment was taken depending on toxicitity, physician
and patient preferences, etc.

On the basis of our previous results we explored the potential effectiveness of
standardizing treatment for all of the virtual patients consisting of an induction part
of five cycles given monthly to reduce substantially the tumor burden followed by a
consolidation of 12 cycles given every three months. This treatment scheme was based
on the idea that TMZ cycles given every three months should be well tolerated and
allow for this long schedule. Moreover, having a first induction part would result in an
initial larger tumor volume reduction than for the long-cycle schemes alone. Results
are summarized in Figure 5. Survival improvements, many of them substantial, were
obtained for the in-silico twins of the patients included in the study (Median 5.69
years, range: 0.67 to 68.45 years, see Fig. 5(a)). Virtual patients for which the number
of cycles was larger (patients 3, 6, 7, 8 and 10) than those received by the real one (see
Table 1) had larger survival benefits. Also for most patients there was a substantial
volumetric reduction in relation to the one achieved for the real patient under the
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number of cycles given by Table 1 (see Fig. 5(b)).

Fig 5. Benefits of the proposed combined treatment with 5 induction
cycles given monthly and 12 maintenance cycles given every three months.
(a) Predicted survival benefits for the virtual patients subjected to the proposed
scheme in comparison with survival of the real patients. (b) Maximum volume
reduction obtained by the proposed scheme in comparison with the maximum volume
reduction achieved for the real patient.

A virtual trial was run with 2000 virtual patients included in two arms. Results are
summarized in Figure 6. Differences between the curves were statistically significant
(p=1.65 x 1074, HR = 0.679 (0.614 - 0.75)), with a difference in median survival of
3.8 years between both treatment arms.

Discussion

Our mathematical model successfully reproduced the tumor size dynamics of LGO
patients treated with TMZ. That radiological dynamics cannot be described with
mathematical models based on instantaneous response to therapy. Thus, a key
ingredient in our model was the combination of two different types of death processes,
ones leading to ‘early’ cell death (treatment induced apoptosis and necrosis) and
others leading to ‘late’ cell death through mitotic catastrophe. This was incorporated
through three adjustable parameters. An additional parameter, the carrying capacity,
accounts for the limitation of growth due to geometrical constraints. Other parameters
were estimated from biological data.

Many authors have built mathematical models to understand and describe different
aspects of the natural history and response to treatments of LGGs [25-36], some of
them focusing on CT. Ribba et al. [27] developed a six-parameter model based on
proliferative, quiescent and damaged quiescent compartments. Some biological
assumptions in the model were debatable: there was no connection from the quiescent
cell’s compartment to the proliferative cell compartment other than through the
damaged quiescent cells, the drug was assumed to affect equally proliferative and
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Fig 6. Results of the virtual trial comparing a standard chemotherapeutic
approach for LGO versus the proposed scheme. Shownare the Kaplan-Meir
plots for both arms. In the first arm (blue), virtual patients received a random number
of cycles in the range spanned by the real patients (between 5 and 18 sequential cycles
with the standard 1 month spacing). The same virtual patients received the proposed
scheme (5 cycles induction given monthly + 12 cycles consolidation given every 3
months). Patients were assumed to die when tumors reached a volume of 280 cm? and
those alive after 25 years were considered as censored events.

quiescent cells, and the drug decay time in brain tissue was fitted to be of the order of
several months, a value out of the reasonable range. This is in striking contrast with
the value used here inferred from realistic data of a few hours. Bogdanska et al. [34]
used a minimal mathematical model incorporating death only through mitotic
catastrophe [32], what forced the parameter k to have values beyond the biologically
feasible range. Our approach achieved better quantitative fittings than those in

Ref. [32] while having all parameter values in meaningful ranges.

For all virtual patients the simulations showed interesting features: (i) Tumor
growth was found to be asymptotically similar for different treatment schedules. (ii)
There were patients for which a survival increase was observed under the alternative
treatment regimes. An obvious implication of (i) and (ii) is that the alternative
regimes would have no inferior performance in terms of survival. Our virtual clinical
trials also supported those findings.

Those ‘long-cycle’ regimes could have other advantages worth considering. The
first one is that they could have substantial benefits in terms of toxicity,
pharmacoeconomy and also improving the prognosis. In fact, extending the duration
of each cycle is a widely used way to treat toxicities caused by cytotoxics. Another
possible benefit of those schemes would be improving drug-exposure in LGOs, by
administering a larger number of cycles for longer treatment periods.

The only drawback of long-cycle regimes was a smaller tumor volume reduction
due to their less-intensive nature. Although this smaller reduction did not have effects
in terms of survival in-silico it would affect symptoms control in real patients. Thus,
we designed a mixed treatment scheme consisting of an intensive induction phase of 5
cycles given once per month together with a maintenance stage of 12 cycles given one
every three months. This strategy showed an impressive effect on survival. Only for
the two patients receiving longer more intensive treatments in real life, the volumetric
reductions obtained in-silico were smaller than the ones observed. In spite of that,
patients survived longer in the simulations. Indeed, three patients received in real life
the same or more CT cycles than in our proposed scheme, but our less toxic scheme
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resulted in longer survival in the computer simulations. The results were confirmed on
a virtual trial including 2000 patients and comparing ‘in-silico’ both treatment arms.

Interestingly, all long-cycle regimes studied were independent on the time point at
which the doses were given, i.e. the mathematical model predicts that five doses every
90 days (long-cycle scheduling) would be roughly equivalent to a single dose every 16
days. Thus, choosing one or other regime could be done in terms of toxicity reductions
or delaying the appearance of resistant clones. An increasing body of evidence
suggests that small subpopulations of cancer cells can evade strong selective drug
pressure by entering a ‘persister’ state of negligible growth [37]. This drug-tolerant
state has been hypothesized to be part of an initial strategy towards eventual
acquisition of bona fide drug-resistance. The induction of persisters in glioma cells has
been known to be partially reverted by ‘drug wash-out’ suggesting the contribution of
epigenetic mechanisms in drug resistance and supporting the possibility of TMZ
rechallenge in glioma patients after prior drug exposure [38], provided there is a
sufficiently long waiting time between treatments.

In our work, we assumed a direct proportionality between tumor cell number and
the observable tumor size on T2/FLAIR. An interesting extension of this work could
be to use partial differential equation-based mathematical models where both
quantities are independent. The inclusion of cell-motility processes as in works based
on reaction-diffusion models [26, 30,31, 35] could provide a computational platform to
study the delay of the tumor’s malignant transformation through alternative
treatment regimes. Further research is required to relate the signal obtained from
diffusion MRI sequences and/or ADC maps with local cellularity values.

Conclusion

We developed a mathematical model of LGOs response to CT describing the
longitudinal tumor volumetric dynamics. Once fitted for each patient, the model
provided in-silico twins of the real patients. When subjected to long-cycle treatment
regimes the ‘virtual twins’ showed similar or better performance in terms of survival.
In-silico clinical trials confirmed the results for broader parameter regimes. This
long-cycle temozolomide schedules could prove beneficial for LGO patients in terms of
toxicity. We studied ‘in-silico’ a treatment combining an induction phase of 5
consecutive cycles plus a maintenance phase (12 cycles given in three-months
intervals). The improved drug-exposure of this scheme led to substantial survival
improvements and a good tumor control in-silico. We hope this computational study
could provide a theoretical ground for the definition of standardized TMZ treatment
protocols for ODG patients with improved survival.
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