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Abstract
The use of mathematical models for personalization of cancer therapies and raising
hypothesis of potential clinical impact is an emerging topic in the interface between
mathematics and oncology. Here we put forward a mathematical model describing the
response of low-grade (WHO grade II) oligodendrogliomas (LGO) to temozolomide
(TMZ). The model described the longitudinal volumetric dynamics of tumor response
to TMZ of a cohort of 11 LGO patients treated with TMZ. After finding
patient-specific parameters, different therapeutical strategies were tried
computationally on the ‘in-silico twins’ of those patients. Chemotherapy schedules
with larger-than-standard rest periods between consecutive cycles had either the same
or better long-term efficacy than the standard 28-day cycles. The results were
confirmed in a large virtual clinical trial including 2000 patients. These long-cycle
schemes would also have reduced toxicity and defer the appearance of resistances.

On the basis of those results, a combination scheme consisting of five induction
TMZ cycles given monthly plus 12 maintenance cycles given every three months was
found to provide substantial survival benefits for the in-silico twins of the 11 LGO
patients (median 5.69 years, range: 0.67 to 68.45 years) and in a large virtual trial
including 2000 patients. This scheme could be useful for defining a standardized TMZ
treatment for LGO patients with survival benefits.

Author summary
A mathematical model described the longitudinal volumetric growth data of grade II
oligodendrogliomas patients and their response to temozolomide. The model was used
to explore alternative therapeutical protocols for the in-silico twins of the patients and
in virtual clinical trials. The simulations show that enlarging the time interval
between chemotherapy cycles would maintain the therapeutical efficacy, while limiting
toxicity and defering the development of resistances. This may allow for improved
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drug-exposure by administering a larger number of cycles for longer treatment periods.
A scheme based on this idea consisting of an induction phase (5 consecutive cycles, 1
per month) and a maintenance phase (12 cycles given in three-months intervals) led to
substantial survival benefits in-silico.

Introduction 1

Oligodendrogliomas (ODGs) are low-incidence glial tumors, affecting mostly young 2

adults. They are slowly growing, infiltrative tumors with isocitrate dehydrogenase 1 or 3

2 mutations and codeletion of chromosomal arms 1p and 19q. Grade II ODGs (LGO) 4

are well differentiated tumors with a low mitotic index [1]. In spite of the long median 5

patient survival, they are incurable currently [2]. 6

Many ODG patients present few neurological symptoms for extended periods of 7

time. The decision on the specific combination of therapies to be used on each patient 8

is based on the qualitative consideration of different variables including age, tumor 9

grade, performance status and tumor location [3]. Radiation therapy (RT) is beneficial 10

for patients in terms of survival, but its timing has been the subject of debate [4]. 11

Regarding chemotherapy (CT), temozolomide (TMZ), an oral alkylating agent, has 12

a favourable toxicity profile [5] and can contribute to reduction in seizure frequency in 13

low-grade glioma (LGG) patients [6]. Phase II trials have demonstrated its effectivity 14

against LGGs [7–9]. Also, neoadjuvant CT given to surgically unresectable tumors has 15

allowed subsequent gross total resection in some cases [10], which is of relevance when 16

the tumour is highly infiltrative or located in eloquent areas. Thus, prolonged 17

TMZ treatment is a relevant option either as up-front or as adjuvant treatment. 18

Clinical trials have shown a similar efficacy of TMZ vs RT for 1p/19q-codeleted 19

tumors [11,12]. Also, RT is associated with late neurocognitive toxicity. Thus CT is 20

frequently used as first-line treatment for ODG patients. In that context, relevant 21

questions arise such choice of the chemotherapy regimen and the optimal number of 22

cycles to be prescribed. 23

Mathematical models have potential to help in finding optimized treatment 24

schedules/combinations improving survival and/or reducing toxicity [13,14]. Once the 25

base mathematical model is set, patient-specific parameters can be obtained from data. 26

That provides an ‘in-silico twin’ [15] allowing computational studies that could be 27

beneficial for real patients. 28

Materials and methods 29

Patients 30

82 patients diagnosed of LGG (biopsy/surgery confirmed astrocytoma, 31

oligoastrocytoma or oligodendroglioma according to the WHO 2007 classification) and 32

followed at the Bern University Hospital between 1990 and 2013 were initially 33

included in the study. The study was approved by Kantonale Ethikkommission Bern 34

(Bern, Switzerland), with approval number: 07.09.72. 35

Of that patient population, we selected 1p/19q-codeleted tumors (thus LGOs 36

according to the 2016 WHO classification) treated with at least three cycles of TMZ, 37

having no previous RT treatment and no other treatment given in the period of study. 38

Only 16 patients satisfied these criteria. Of them 3 (19%) did not respond to TMZ 39

and 2 (12%) responded initially but progressed during treatment to anaplastic forms. 40

Thus 11 (69%) oligodendroglioma patients responded to the therapy, did not display 41

any signs of malignant transformation and were used for this study. 42
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Image acquisition and analysis 43

Radiological glioma growth was quantified by manual measurements of tumour 44

diameters on successive MRIs (T2/FLAIR sequences). Since some of the older 45

patients were available only as jpeg images we computed the volume using the 46

ellipsoidal approximation. The three largest tumour diameters (D1,D2,D3) along the 47

axial, coronal and sagittal planes were measured and tumour volumes estimated using 48

the equation V = (D1 ·D2 ·D3)/2, following the standard practice [16]. To estimate 49

the error of the methodology we took a different set of glioma patients from another 50

study [17] and compared their volumes computed accurately using a semi-automatic 51

segmentation approach with those computed using the ellipsoidal approximation. 52

Mean differences were 18%, that was the reference level used for the error in the 53

volume computations. 54

Mathematical model 55

In this paper we considered LGOs in a simplified way as composed of two tumor cell 56

compartment. The first one was the tumor cell population P (t), assumed to grow 57

logistically. The second one was lethally damaged tumor cells because of the action of 58

the therapy D(t). Temozolomide effect on proliferative cells is a complex one, leading 59

to death through different ‘programmes’ [18–20]. We put together the different 60

processes into two groups, each described by a term in our equations. The first one 61

was early death accounting for necrosis, autophagy and drug-induced apoptosis with 62

rate α1. The second one was delayed death through mitotic catastrophe with rate α2. 63

In radiotherapy, the second process is the leading one [21], but not in cytotoxic 64

chemotherapy treatments [19,20]. The drug concentration in tissue was described by 65

the function C(t) having a characteristic cleanup time 1/λ. 66

Figure 1 shows a schematic description of the model. The equations were: 67

dP

dt
= ρP

(
1− P +D

K

)
− α1PC − α2PC, (1a)

dD

dt
= −ρ

κ
D

(
1− P +D

K

)
+ α1PC, (1b)

dC

dt
= −λC, (1c)

Chemotherapy was described by a sequence of doses d1, d2, ..., dN given at times 68

t1 < t2 < ... < tN . The initial time corresponding to the first volumetric observation 69

was denoted as t0. Initial conditions for Eqs. (1) were taken to be 70

P0 = P (t0), D(t0) = C(t0) = 0. Drug administration was described as impulses for the 71

times tj so that P (tj) = P (t−j ), D(tj) = D(t−j ), C(tj) = C(t−j ) + Cj where 72

f(t−j ) = limt→t−j
f(t) and Cj is the fraction of the dose dj reaching brain tumor tissue. 73

Parameter estimation 74

We chose the parameter κ, corresponding to the averaged number of cell divisions 75

before death by mitotic catastrophe to be equal to 1. The carrying capacity parameter 76

K is the one with a less defined value but could be expected to be in a range between 77

300 and 550 cm3. The later number is in line with the maximal volumes observed in 78

LGG patients [22]. However, many patients die when the tumor volume is smaller [15]. 79

The most typical chemotherapy schedule consists of cycles of 28 days with five 80

TMZ oral doses on days 1 to 5 and then a rest period of 23 days. Typical dose per day 81
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Fig 1. Schematic description of the model defined by Eqs. (1). Tumor cell population
P (t) grows at a rate ρ and saturates at a maximum size K. These cells are killed by
the drug C(t) (and removed) through direct mechanisms α2. Another fraction α1

moves into a different compartment of lethally damaged cells D(t). These cells die at a
rate ρ/κ because of mitotic catastrophe.

is dj = d = 150 mg per m2 of patient body surface. To calculate the rate of drug decay 82

λ we followed the same methodology as in Ref. [34], using values of TMZ half-life 83

clearance time t1/2 for doses of 150 mg/m2. From the definition of t1/2 and since Eq. 84

(1c) has exponentially decaying solutions 1/2 = exp
(
−λt1/2

)
. To account also for the 85

drug loss during transport to the brain we computed the value Cj = C0 of the dose 86

getting to the tumour as Cj = β · d · b, where β is the fraction of TMZ getting to 1 ml 87

of brain interstitial fluid (from a unit dose) and b is the patient’s body surface. Then 88

C0 can be interpreted as an effective dose per fraction. The parameter β can be 89

calculated using the value of maximal TMZ concentration Cmax for a dose of 150 90

mg/m2 taken from the literature [23]. Since time to reach peak drug concentration in 91

brain is smaller than two hours and thus negligible in comparison with the other time 92

scales in the model, we chose to set the initial drug concentration C0 to the value 93

Cmax = 0.6 µg/ml as in Ref. [34]. 94

The parameters α1, α2 and ρ are expected to depend strongly on the tumor growth 95

rate and sensitity to the therapy and will be considered to be adjustable parameters. 96

These parameters, together with the initial population value P (0) were fit for each 97

patient longitudinal volumetric data using the library fmincon in the scientific 98

software package Matlab (R2017b, The MathWorks, Inc., Natick, MA, USA). Table 1 99

summarizes the main characteristics and parameter values found for patients included 100

in the study. Since Eqs. (1) are a system of nonlinear ordinary differential equations, 101

it is not possible to find their solutions in closed, explicit, form. Numerical simulations 102

of Eqs. (1) were performed using the Matlab library ode45. To test for potential 103

overfitting in the parameter values found, the results for several patients were 104

compared with the results of a brute force approach analyzing a broad parameter 105

range. Both approaches were found to be in excellent agreement. Results for the 106
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ID # CT P (0) ρ α1 α2

cycles (day−1) ml/(µg day) ml/(µg day)
6 11 46.0 1.01× 10−3 0.32 0.1
10 15 45.4 7.06× 10−4 0.27 0.21
25 4 31.7 1.84× 10−3 0.76 0.75
57 9 46.8 8.74× 10−4 0.23 0.21
105 20 145.0 2.05× 10−3 0.1 0.14
108 5 13.9 1.73× 10−3 0.92 0.18
151 11 34.6 7.41× 10−4 0.52 0.05
159 11 64.7 5.33× 10−4 0.57 0.6
170 17 6.4 2.28× 10−3 0.01 0.28
203 9 29.8 3.31× 10−4 1.99 0.1
213 18 23.9 6.08× 10−4 0.3 0.3

Table 1. Parameter values best describing the longitudinal volumetric data for the
patients included in the study. Values for the other parameters were fixed to K =
523.6 cm3, λ = 8.3184 day−1.

parameters are listed in Table 1. 107

Virtual clinical trials 108

To study the effect of the different treatment schedules on patient survival we designed 109

virtual trials. A number of patients was generated by a random choice of the 110

parameters. Uniform distributions were taken for the parameters in the most 111

representative region of the parameter space obtained from Table 1: 112

ρ ∈ [0.5× 10−3, 2.5× 10−3] day-1, α1 ∈ [0.01, 1.0] ml/µg day, α2 ∈ 113

[0.1, 0.75] ml/µg day, P (0) ∈ [20, 200],K ∈ [300, 550] cm3. Virtual trials were run using 114

Matlab 2017b parallel computing toolbox using a parallel algorithm on a 64 GB 115

memory 2.7 GHz 12-core Mac pro workstation under OS X 10.14. 116

Results 117

The mathematical model describes the general features of LGO 118

response to temozolomide 119

Typical LGG longitudinal growth and response to therapy consists of four stages (see 120

Fig. 2). First, without treatment tumor grows slowly but steadily [24]. Next, there is 121

an early ‘fast’ tumor volume reduction associated to the start of treatment with TMZ. 122

Finally, after treatment cesation, there is a long-term response. For the patient shown 123

in Fig. 2, the tumor volume reduction lasted for 14 months after the end of the 124

treatment course. Finally, the tumor regrew leading to a clinical relapse. All of those 125

stages were correctly described by the mathematical model. Each stage was associated 126

to one of the biological phenomena reflected as terms in the model equations. 127

The mathematical model describes patient response to 128

temozolomide 129

We studied the ability of our mathematical model to describe the tumor responses to 130

TMZ. To do so, we fitted the parameters in Eqs. (1) using the longitudinal volumetric 131

data for each patient in our cohort. Figure 3 shows results for selected patients. The 132
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Fig 2. Tumor volumetric longitudinal evolution (solid blue circles) of a patient
receiving five chemotherapy cycles together with the best fit found using Eqs. (1) (red
lines). Four stages are observed: Pretreatment growth, early response during CT
(light green background), post-treatment response (light blue background) and tumor
relapse. The model’s parameters modulating the dynamics in each of the stages are
also shown.

model described the longitudinal tumor volumetric data in all cases, what supports 133

the choice of biological mechanisms used to construct it. 134

Results shown in Fig. 3 were obtained for a fixed (i.e. non fitted) value of the 135

carrying capacity K = 523.6 cm3. This parameter provides an estimate of the tumor 136

size for which geometrical and other constraints have a substantial influence on the 137

tumor growth rate. Similar results were obtained for a broad range of values of K. As 138

an example, Fig. 3(g-i) shows results for selected patients using a smaller K = 261.8 139

cm3. The shapes of the fitting curves and the best root mean square errors (RMSE) 140

were similar for the different K values. 141

Simulations show potential benefits of alternative treatment 142

schedules 143

The model was then used as a discovery platform to test alternative treatment regimes 144

in-silico for the patients included in the study. As a first test, we enlarged the time 145

interval between cycles. Five daily doses of the drug were given on days 1-5 of the 146

cycle and then the standard waiting period of 23 days was increased to variable times 147

of up to 6 months. In general, the long-term tumor evolution was similar for all the 148

schedules when the cycle’s length was in the range 1-4 months. Thus, from the 149

volumetric point of view, all schedules led to similar asymptotic dynamics for the 150

in-silico twins of the study patients. Results for selected patients are shown in Figure 151

4. The only drawback of the long-cycle treatment regimes was the smaller tumor 152

volume reduction observed due to the less intensive nature of the schemes. 153

In the case of large tumors, whose size was comparable to K and thus the 154

nonlinear term in Eq. (1) played a relevant role, differences between the schemes were 155

observed favoring long-cycle schemes (see e.g. Fig. 4(b)). 156
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Fig 3. Longitudinal volumetric tumor data (blue circles) and best fits obtained with
the model given by Eqs. (1) (red lines). (a-f) Results for six randomly chosen patients
from out dataset for a carrying capacity K=523.6 cm3. (g-i) Results for three patients
for K = 261.8 cm3. The vertical dashed lines in each subplots mark the start and end
times of treatment with TMZ.
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Fig 4. Simulated tumor growth curves under alternative treatment schedules with
variable time spacing between consecutive cycles. Esq. (1) were solved for each patient
with the best fitted parameters under the different treatment treatment regimens.
Each subplot shows the reference (fitted to data) growth curve in red and the
simulated growth curves under three alternative schemes with spacing between doses
of: (a,c) 2, 4, and 6 months, and (b) 2, 2.5 and 3 months. Vertical dashed lines
indicate the end times of the different treatment regimes. The vertical solid blue lines
mark the time domain for which imaging follow-up data was available for the patient.

As a second series of tests, we explored alternative treatment regimes based on the 157

28-day cycle. A first regime consisted in 5 doses given following a 1-day on, 1-day off 158

scheme during the first 10 days of the cycle. A second alternative was distributing 159

doses evenly within the cycle duration, i.e. giving a single dose every 4 days. Both 160

treatment regimes led to tumor volumetric evolutions overlapping with the ones of the 161

standard treatment (e.g., those depicted in Figure 3). 162

Several virtual trials were conducted as described in the ‘Methods’ section. 163

Benefits in median survival were found for the long-cycle strategies that were 164

dependent on the parameter K. Long-cycle treatment schemes were never inferior in 165

terms of survival to the standard ones. Indeed, the differences found between survival 166

curves for long-cycle schedules versus the standard ones were never statistically 167

significant (p < 0.05) according to the log-rank test. 168

A combined treatment regime provided survival advantages 169

in-silico and may provide a standard for LGO patients 170

Patients in our retrospective dataset were treated with a variable number of TMZ 171

cycles (mean 12, range 4-20, see Table 1). Treatment was effective for all patients 172

included. However, since there is no standardized protocol for chemotherapy in ODG 173

patients, the decision to stop treatment was taken depending on toxicitity, physician 174

and patient preferences, etc. 175

On the basis of our previous results we explored the potential effectiveness of 176

standardizing treatment for all of the virtual patients consisting of an induction part 177

of five cycles given monthly to reduce substantially the tumor burden followed by a 178

consolidation of 12 cycles given every three months. This treatment scheme was based 179

on the idea that TMZ cycles given every three months should be well tolerated and 180

allow for this long schedule. Moreover, having a first induction part would result in an 181

initial larger tumor volume reduction than for the long-cycle schemes alone. Results 182

are summarized in Figure 5. Survival improvements, many of them substantial, were 183

obtained for the in-silico twins of the patients included in the study (Median 5.69 184

years, range: 0.67 to 68.45 years, see Fig. 5(a)). Virtual patients for which the number 185

of cycles was larger (patients 3, 6, 7, 8 and 10) than those received by the real one (see 186

Table 1) had larger survival benefits. Also for most patients there was a substantial 187

volumetric reduction in relation to the one achieved for the real patient under the 188
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number of cycles given by Table 1 (see Fig. 5(b)). 189

Fig 5. Benefits of the proposed combined treatment with 5 induction
cycles given monthly and 12 maintenance cycles given every three months.
(a) Predicted survival benefits for the virtual patients subjected to the proposed
scheme in comparison with survival of the real patients. (b) Maximum volume
reduction obtained by the proposed scheme in comparison with the maximum volume
reduction achieved for the real patient.

A virtual trial was run with 2000 virtual patients included in two arms. Results are 190

summarized in Figure 6. Differences between the curves were statistically significant 191

(p = 1.65× 10−14, HR = 0.679 (0.614 - 0.75)), with a difference in median survival of 192

3.8 years between both treatment arms. 193

Discussion 194

Our mathematical model successfully reproduced the tumor size dynamics of LGO 195

patients treated with TMZ. That radiological dynamics cannot be described with 196

mathematical models based on instantaneous response to therapy. Thus, a key 197

ingredient in our model was the combination of two different types of death processes, 198

ones leading to ‘early’ cell death (treatment induced apoptosis and necrosis) and 199

others leading to ‘late’ cell death through mitotic catastrophe. This was incorporated 200

through three adjustable parameters. An additional parameter, the carrying capacity, 201

accounts for the limitation of growth due to geometrical constraints. Other parameters 202

were estimated from biological data. 203

Many authors have built mathematical models to understand and describe different 204

aspects of the natural history and response to treatments of LGGs [25–36], some of 205

them focusing on CT. Ribba et al. [27] developed a six-parameter model based on 206

proliferative, quiescent and damaged quiescent compartments. Some biological 207

assumptions in the model were debatable: there was no connection from the quiescent 208

cell’s compartment to the proliferative cell compartment other than through the 209

damaged quiescent cells, the drug was assumed to affect equally proliferative and 210
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Fig 6. Results of the virtual trial comparing a standard chemotherapeutic
approach for LGO versus the proposed scheme. Shownare the Kaplan-Meir
plots for both arms. In the first arm (blue), virtual patients received a random number
of cycles in the range spanned by the real patients (between 5 and 18 sequential cycles
with the standard 1 month spacing). The same virtual patients received the proposed
scheme (5 cycles induction given monthly + 12 cycles consolidation given every 3
months). Patients were assumed to die when tumors reached a volume of 280 cm3 and
those alive after 25 years were considered as censored events.

quiescent cells, and the drug decay time in brain tissue was fitted to be of the order of 211

several months, a value out of the reasonable range. This is in striking contrast with 212

the value used here inferred from realistic data of a few hours. Bogdanska et al. [34] 213

used a minimal mathematical model incorporating death only through mitotic 214

catastrophe [32], what forced the parameter κ to have values beyond the biologically 215

feasible range. Our approach achieved better quantitative fittings than those in 216

Ref. [32] while having all parameter values in meaningful ranges. 217

For all virtual patients the simulations showed interesting features: (i) Tumor 218

growth was found to be asymptotically similar for different treatment schedules. (ii) 219

There were patients for which a survival increase was observed under the alternative 220

treatment regimes. An obvious implication of (i) and (ii) is that the alternative 221

regimes would have no inferior performance in terms of survival. Our virtual clinical 222

trials also supported those findings. 223

Those ‘long-cycle’ regimes could have other advantages worth considering. The 224

first one is that they could have substantial benefits in terms of toxicity, 225

pharmacoeconomy and also improving the prognosis. In fact, extending the duration 226

of each cycle is a widely used way to treat toxicities caused by cytotoxics. Another 227

possible benefit of those schemes would be improving drug-exposure in LGOs, by 228

administering a larger number of cycles for longer treatment periods. 229

The only drawback of long-cycle regimes was a smaller tumor volume reduction 230

due to their less-intensive nature. Although this smaller reduction did not have effects 231

in terms of survival in-silico it would affect symptoms control in real patients. Thus, 232

we designed a mixed treatment scheme consisting of an intensive induction phase of 5 233

cycles given once per month together with a maintenance stage of 12 cycles given one 234

every three months. This strategy showed an impressive effect on survival. Only for 235

the two patients receiving longer more intensive treatments in real life, the volumetric 236

reductions obtained in-silico were smaller than the ones observed. In spite of that, 237

patients survived longer in the simulations. Indeed, three patients received in real life 238

the same or more CT cycles than in our proposed scheme, but our less toxic scheme 239
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resulted in longer survival in the computer simulations. The results were confirmed on 240

a virtual trial including 2000 patients and comparing ‘in-silico’ both treatment arms. 241

Interestingly, all long-cycle regimes studied were independent on the time point at 242

which the doses were given, i.e. the mathematical model predicts that five doses every 243

90 days (long-cycle scheduling) would be roughly equivalent to a single dose every 16 244

days. Thus, choosing one or other regime could be done in terms of toxicity reductions 245

or delaying the appearance of resistant clones. An increasing body of evidence 246

suggests that small subpopulations of cancer cells can evade strong selective drug 247

pressure by entering a ‘persister’ state of negligible growth [37]. This drug-tolerant 248

state has been hypothesized to be part of an initial strategy towards eventual 249

acquisition of bona fide drug-resistance. The induction of persisters in glioma cells has 250

been known to be partially reverted by ‘drug wash-out’ suggesting the contribution of 251

epigenetic mechanisms in drug resistance and supporting the possibility of TMZ 252

rechallenge in glioma patients after prior drug exposure [38], provided there is a 253

sufficiently long waiting time between treatments. 254

In our work, we assumed a direct proportionality between tumor cell number and 255

the observable tumor size on T2/FLAIR. An interesting extension of this work could 256

be to use partial differential equation-based mathematical models where both 257

quantities are independent. The inclusion of cell-motility processes as in works based 258

on reaction-diffusion models [26,30,31,35] could provide a computational platform to 259

study the delay of the tumor’s malignant transformation through alternative 260

treatment regimes. Further research is required to relate the signal obtained from 261

diffusion MRI sequences and/or ADC maps with local cellularity values. 262

Conclusion 263

We developed a mathematical model of LGOs response to CT describing the 264

longitudinal tumor volumetric dynamics. Once fitted for each patient, the model 265

provided in-silico twins of the real patients. When subjected to long-cycle treatment 266

regimes the ‘virtual twins’ showed similar or better performance in terms of survival. 267

In-silico clinical trials confirmed the results for broader parameter regimes. This 268

long-cycle temozolomide schedules could prove beneficial for LGO patients in terms of 269

toxicity. We studied ‘in-silico’ a treatment combining an induction phase of 5 270

consecutive cycles plus a maintenance phase (12 cycles given in three-months 271

intervals). The improved drug-exposure of this scheme led to substantial survival 272

improvements and a good tumor control in-silico. We hope this computational study 273

could provide a theoretical ground for the definition of standardized TMZ treatment 274

protocols for ODG patients with improved survival. 275
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