

1 **Endogenous pioneer neutrophils release NETs during the swarming response in**
2 **zebrafish**

3

4 Hannah M. Isles^{1,2}, Catherine A. Loynes^{1,2}, Noémie Hamilton^{1,2}, Clare F. Muir^{1,2}, Anastasia
5 Kadochnikova³, Katherine M. Henry^{1,2}, Visakan Kadirkamanathan³, Stephen A. Renshaw ^{1,2*}
6 Philip M. Elks^{1,2*}

7 ¹ The Bateson Centre, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN,
8 UK.

9 ² Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield
10 Medical School, Beech Hill Road, Sheffield S10 2RX, UK.

11 ³ Department of Automatic Control and Systems Engineering, University of Sheffield, Mappin
12 Street, Sheffield, S1 3JD, UK.

13 *joint corresponding authors

14

15

16

17

18

19 ***Corresponding Authors:**

20 Philip M. Elks (p.elks@sheffield.ac.uk)

21 Stephen A. Renshaw (s.a.renshaw@sheffield.ac.uk)

22

23

24 **Abstract**
25 Neutrophils are rapidly recruited to inflammatory sites where they coordinate their migration
26 to form clusters, a process termed neutrophil swarming. The factors which modulate neutrophil
27 swarming during its early stages are not fully understood, requiring the development of new
28 *in vivo* models. Using transgenic zebrafish larvae to study endogenous neutrophil migration in
29 a tissue damage model, we demonstrate that neutrophil swarming is a conserved process in
30 zebrafish immunity, sharing essential features with mammalian systems. We show that
31 neutrophil swarms initially develop around a pioneer neutrophil, in a three-phase sequence of
32 events. By adopting a high-resolution confocal microscopy approach, we observed the release
33 of cell fragments by early swarming neutrophils. We developed a neutrophil specific histone
34 H2A transgenic reporter line *TgBAC(mpx:GFP)i114;Tg(lyz:H2A-mCherry)sh530* to study
35 neutrophil extracellular traps (NETs), and found that endogenous neutrophils recruited to sites
36 of tissue damage released NETs at the start of the swarming process. The optical
37 transparency achieved using the zebrafish model has provided some of the highest resolution
38 imaging of NET release *in vivo* to date. Using a combination of transgenic reporter lines and
39 DNA intercalating agents, we demonstrate that pioneer neutrophils release extracellular traps
40 during the swarming response, suggesting that cell death signalling via NETosis might be
41 important in driving the swarming response.

42
43

44 Introduction

45 A robust inflammatory response against invading pathogens or endogenous danger signals
46 requires the coordination of multiple cellular and humoral components. Neutrophils are one of
47 the first responders to tissue inflammation and rapidly home to inflamed tissue within hours of
48 injury. Within inflamed tissue, neutrophils destroy pathogens ¹ and clear wound debris ²,
49 ultimately leading to the restoration of tissue homeostasis. The anti-microbial repertoire of
50 neutrophils can cause substantial secondary tissue damage, thus neutrophil recruitment to,
51 and removal from, inflammatory sites must be tightly controlled.

52 Neutrophils are recruited to sites of inflammation through a series of well-defined molecular
53 events ³⁻⁵. During their recruitment, neutrophils are primed by pro-inflammatory signals
54 including growth factors, inflammatory cytokines and chemoattractants. Neutrophils are
55 capable of integrating host- and pathogen-derived environmental signals, resulting in their
56 polarisation and migration towards the initiating inflammatory stimulus ⁶. Within the
57 interstitium, neutrophils coordinate their migration patterns to form clusters in several models
58 of sterile-inflammation and infection ⁷⁻¹³. The parallels between these cellular behaviours and
59 migration patterns seen in insects has led to use of the term “swarming”.

60 A series of sequential phases leading to neutrophil swarming have been described in murine
61 models; the initial migration of ‘pioneer’ or neutrophils proximal to the wound site (scouting) is
62 followed by large scale synchronised migration of neutrophils from distant regions
63 (amplification) leading to neutrophil clustering (stabilisation) and eventual resolution ⁷⁻¹⁰. The
64 initial arrest and death of early recruited pioneer neutrophils correlates with the onset of
65 neutrophil swarming ^{8,9,13}, which is mediated by many chemoattractants including lipid and
66 protein mediators, with a dominant role for the lipid leukotriene B4 (LTB4) identified *in vivo* ^{7,8}.
67 It is likely that swarming neutrophils respond to an amplified signal initiated by pioneer
68 neutrophils, however the precise nature of these signals and mode of cell death which pioneer
69 neutrophils undergo remains to be determined.

70 At sites of inflammation neutrophil death can be modulated by extracellular stimuli such as
71 proinflammatory cytokines, pathogens, toxic tissue constituents, and platelets ¹⁴. Depending
72 on the inducing stimulus, neutrophils ultimately die through different modes of cell death which
73 manifest with unique macroscopic morphological changes ¹⁵. Controlled cell death including
74 autophagy and apoptosis involve a clean and non-inflammatory mode of cellular destruction,
75 whilst accidental cell death such as necrosis results in the spilling of cellular contents and
76 release of pro-inflammatory signals ¹⁶. Neutrophils can also die following their production of
77 extracellular traps (NETosis) composed of DNA and histones embedded with granular and

78 cytoplasmic proteins, which are able to capture and kill pathogens extracellularly ¹⁷.
79 Neutrophils release NETs following a series of intracellular changes resulting in chromatin
80 decondensation, breakdown of the nuclear envelope and mixing of DNA with granular and
81 cytoplasmic proteins ¹⁸. The uptake of DNA intercalating agent propidium iodide and the
82 expulsion of vesicles from pioneer neutrophils precedes the onset of swarming in murine
83 models ¹³, suggesting that accidental cell death by necrosis or extracellular DNA release
84 during NETosis are likely pioneer cell death mechanisms and represent interesting avenues
85 for exploration.

86 The zebrafish (*Danio rerio*) is a powerful model organism in which to study neutrophil function
87 that has been used extensively to study neutrophil migration towards and away from sites of
88 sterile inflammation ^{19–21}. The optical transparency of zebrafish embryos allows for the tracking
89 of endogenous neutrophils at wound sites within minutes following injury in transgenic reporter
90 lines ²². In this study, we use zebrafish larvae to study pioneer neutrophil behaviour prior to
91 the onset of swarming. We use both inflammation and infection assays to demonstrate that
92 neutrophil swarming is conserved in zebrafish immunity, indicating importance of this
93 neutrophil behaviour across evolution. We define a three-stage sequence of migration events
94 which leads to the swarming of endogenous neutrophils within the inflamed tissue and verify
95 that the neutrophil relay signal, LTB4, is required for amplification of neutrophil recruitment.
96 Importantly, we show that a single pioneer neutrophil is sufficient to induce a swarming
97 response and that this neutrophil adopts a rounded, non-motile morphology distinct from other
98 neutrophils within the inflamed tissue. We develop a transgenic reporter for NETs and perform
99 live imaging of neutrophil extracellular trap release. We study pioneer neutrophil cell death
100 using cell viability assays and transgenic reporters for cell death, and identify that pioneer
101 neutrophils are viable prior to the onset of swarming, but die following the release extracellular
102 traps from within the swarm centre.

103

104

105 **Results**

106 **Neutrophil swarming is conserved in zebrafish immunity**

107 Neutrophil swarming is characterised by the highly directed and coordinated movement of
108 neutrophils to sites of infection or injury followed by accumulation and clustering ²³. To
109 determine whether neutrophil swarming is conserved in zebrafish immunity neutrophil
110 mobilisation to both inflammatory and infectious stimuli was studied. Neutrophil responses to
111 inflammatory stimuli were assessed by tail fin transection of 3 days post fertilisation (dpf)
112 *mpx*:GFP larvae, and tracking neutrophil migration using fluorescence microscopy during
113 recruitment (0-6 hours post injury, Supplementary Figure 1). Analysis of migration patterns of
114 neutrophils recruited to the wound site identified three outcomes: 1) persistent neutrophil
115 swarming reminiscent of neutrophil swarming reported in mammalian systems ⁷⁻¹⁰ (Figure 1A-
116 C, Supplemental Movie 1); 2) shorter lived transient neutrophil swarms which dissipated and
117 reformed multiple times within the imaging period (Supplemental Figure 2, Supplemental
118 Movie 2); 3) no coordinated migration and no swarm formation (Supplemental Movie 3).
119 Persistent swarming was defined as the formation of clusters which grew by the coordinated
120 migration of individual neutrophils (Figure 1C). Persistent swarms were observed from 40
121 minutes post injury (Supplemental Figure 3A) and remained stable for, on average, 2.17 hours
122 \pm 0.32 (Supplemental Figure 3B). Persistent neutrophil swarms were observed in 50% of
123 larvae, transient swarms (persisting for <1 hour) were seen in 14% of larvae, and 36% of
124 larvae showed no evidence of swarming behaviour within the imaging period (Figure 1D).

125 In mammalian neutrophil swarming, biphasic neutrophil responses are modulated by the lipid
126 LTB4 ⁸. During the imaging period, two waves of neutrophil recruitment were observed: the
127 early migration of neutrophils proximal to the wound site between 0.5-2hpi, followed by a later
128 influx of neutrophils from more distant sites (Figure 1E). We investigated the requirement for
129 LTB4 in neutrophil chemotaxis towards the wound site in zebrafish using the CRISPR/Cas9
130 system. Biosynthesis of LTB4 in zebrafish occurs through fatty acid metabolism of arachidonic
131 acid via common intermediates, resulting in the production of LTB4 by the enzyme leukotriene
132 A4 hydrolase (*lta4h*), encoded by the gene *lta4h* ^{24,25}. Zebrafish have three LTB4 receptors;
133 the high affinity *blt1* receptor and two low affinity receptors *blt2a* and *blt2b*, of which zebrafish
134 neutrophils predominantly express *blt1* (Supplemental Figure 4A-B). Using Cas9 protein with
135 guide RNAs (crRNAs) to target the *lta4h* and *blt1* genes, early neutrophil recruitment (3hpi)
136 and late neutrophil responses (6hpi) to tail fin injury were assessed. Early neutrophil
137 recruitment to the wound site at 3hpi was similar between control (*tyrosinase*) ^{26,27}, *blt1* and
138 *lta4h* crRNA injected larvae (Figure 1F), suggesting that LTB4 signalling is not required for
139 early neutrophil responses. At 6hpi, neutrophil recruitment in *blt1* and *lta4h* crRNA injected

140 larvae was significantly lower than control (*tyr*) crRNA injected larvae (Figure 1F). These
141 results are in agreement with data from mouse ⁸ and human neutrophils ⁷, supporting a
142 requirement for LTB4 signalling in neutrophil recruitment at the later stages.

143 After determining that swarming was a conserved component of the tissue damage response
144 in zebrafish, neutrophil responses to infectious stimuli were assessed. Otic vesicle injection of
145 *Staphylococcus aureus*, a gram positive bacteria which induces a robust neutrophil swarming
146 response in mammalian neutrophils ²⁸, induced robust neutrophil recruitment (21 ± 2
147 neutrophils), which was not seen in larvae injected with a PBS control (1 ± 0.3 neutrophils)
148 (Figure 2A-B). Neutrophils within otic vesicles infected with *S. aureus*, but not PBS,
149 coordinated their migration to form swarms in tissue regions containing bacteria, which at 6hpi
150 had an average volume of 48.1mm^3 (Figure 2C-D, Supplemental Movie 4). The identification
151 of neutrophil swarming in response to inflammatory and infectious stimuli demonstrates that
152 neutrophil swarming is a conserved component of zebrafish immunity. We therefore used the
153 zebrafish model to understand how endogenous swarms are initiated *in vivo*.

154 **Neutrophil swarms develop around a pioneer neutrophil in three sequential stages**

155 Neutrophil swarms in mammalian models of inflammation grow by large-scale migration of
156 neutrophils towards early recruited ‘pioneers’, which likely release additional signals to initiate
157 the swarming response ⁸⁻¹⁰. To assess whether a similar process was relevant to endogenous
158 neutrophils, we analysed the migration patterns of neutrophils in the time period leading to
159 swarm formation, where the presence of one individual neutrophil was identified in the tissue
160 region which became the swarm centre in 100% of swarming events examined (Figure 3A).
161 Because a single neutrophil always initiated a swarm, we termed it the pioneer neutrophil by
162 analogy to mammalian descriptions. In 100% of swarm initiation events examined, the pioneer
163 neutrophil was the focal point of migration for early swarming neutrophils. Early swarming
164 neutrophils directed their migration towards the pioneer neutrophil, whilst non-swarming
165 neutrophils migrated with no apparent pattern within the wound region (Figure 3B-C,
166 Supplemental Movie 5). Pioneer neutrophils were rounded and non-motile, which is illustrated
167 by their higher circularity index and lower displacement compared to scouting neutrophils at
168 the wound site in the same time period (Figure 4A-C). To investigate whether the round, non-
169 motile morphology was distinct to pioneers, or common to all neutrophils upon arrival at the
170 wound site, neutrophils migrating to the wound site were tracked during the scouting and the
171 initiation phases. The speed, displacement and meandering index of pioneer neutrophils were
172 significantly reduced in the initiation phase when compared to the scouting phase, whilst
173 neutrophils migrating to the wound site within the same tissue region did not undergo this
174 behavioural change (Figure 4D-F). These data demonstrate that pioneer neutrophils display

175 a distinct morphology at the wound site prior to swarm formation, which is not seen in scouting
176 neutrophils responding to chemoattractants produced at the wound edge.

177
178 A series of sequential phases leading to neutrophil swarming has been described in
179 mammalian systems ^{8,9}, so we next determined the stages leading to swarming in zebrafish.
180 Although there was temporal variation from fish-to-fish, all swarms formed by: 1) the early
181 recruitment of neutrophils to the inflammatory site (scouting), 2) the arrival of a pioneer
182 neutrophil to the wound site (initiation), followed by 3) the directed migration of neutrophils
183 towards the pioneer to form swarms (aggregation) (Figure 5, Supplemental Movie 6). Within
184 minutes of injury, neutrophils began directed migration to the wound site (Figure 5A). This
185 early scouting of neutrophils lasted on average 88 ± 24 minutes (data not shown) and is
186 consistent with reports in zebrafish and mammalian systems which describe the recruitment
187 of neutrophils close to the inflammatory site in response to chemoattractant gradients ^{9,22}.
188 Swarm initiation began when the pioneer neutrophil arrived at the wound site and changed
189 behaviour during the scouting phase (Figure 5B), and ended when the first neutrophil joined
190 the swarm (on average 36 ± 7 minutes, data not shown). During the aggregation phase,
191 swarms developed by the directed migration of neutrophils, which lasted on average 183 ± 25
192 minutes, or until the end of the imaging period (Figure 5C). These stages are consistent
193 between larvae and are comparable to the swarm stages reported in mammals ^{7,9}. Taken
194 together, these observations suggest that within the complexity of the inflamed tail fin, specific
195 guidance cues are produced from a single pioneer neutrophil which promotes neutrophil
196 swarming within the damaged tissue.

197
198 **Pioneer neutrophils are viable prior to the onset of swarming**
199 Cell death signals released from early-recruited pioneer neutrophils drive neutrophil swarming
200 in mammals ^{8,9,13}, although the precise signals and mode of cell death remain to be
201 determined. We next used our zebrafish model to study cell death in pioneer neutrophils. DNA
202 intercalating agent propidium iodide was used to determine pioneer neutrophil viability during
203 the swarm initiation phase. Pioneer neutrophils excluded propidium iodide (Figure 6A-D),
204 demonstrating that the plasma membrane of these cells remained intact prior to swarming and
205 that these cells were viable. Interestingly, the tissue surrounding pioneer neutrophils was
206 dense with extracellular DNA and cellular debris (Supplemental Movie 7). Apoptotic
207 neutrophils would also exclude propidium iodide, therefore a FRET-based reporter for
208 neutrophil apoptosis ²⁹ was used to determine whether pioneer neutrophils were apoptotic.
209 Analysis of pioneer neutrophils prior to swarming in *Tg(mpx:CFP-DEVD-YFP)sh237* larvae
210 identified that despite the rounded, non-motile morphology, a FRET signal was present during
211 both the scouting and initiation phases in all imaging runs where swarming was observed

212 (Figure 6E, Supplemental Movie 8, n=6 neutrophils from 5 experimental repeats),
213 demonstrating that pioneer neutrophils were not apoptotic. Neutrophil apoptosis at this early
214 time point is rare, however when an apoptotic event was detected in neutrophils (n=2
215 independent observations), it was not followed by a neutrophil swarming response (Figure 6F,
216 Supplemental Movie 9, n=2 neutrophils). These data demonstrate that pioneer neutrophil
217 plasma membranes are intact prior to swarming, and that they are also not undergoing
218 apoptosis. Together these findings suggest that pioneer neutrophils are viable prior to the
219 onset of swarming.

220

221 **Pioneer neutrophils release extracellular traps during swarming**

222 Pioneer neutrophil cell death is accompanied by the appearance of cell fragments around
223 aggregating neutrophils in mammals ^{8,13}. During the aggregation phase of the swarming
224 response in zebrafish, neutrophil fragments appeared around developing clusters (Figure 7A).
225 To study these cell fragments, a high-resolution confocal microscopy approach was adopted
226 (Supplemental figure 6). Strikingly, analysis of swarming neutrophils identified that large
227 cytoplasmic vesicles, as well as smaller fragments of neutrophil debris, were released from
228 swarms (Figure 7B-C, Supplemental Movie 10). This violent release of neutrophil fragments
229 accompanied by large cytoplasmic structures, has been described associated with
230 extracellular trap release in mammalian neutrophils ^{30,31}. We therefore hypothesised that
231 pioneer neutrophil cell death could be NETosis.

232

233 Neutrophil extracellular traps (NETs) are composed of a chromatin backbone embedded with
234 antimicrobial proteins, which are able to capture and kill pathogens extracellularly ¹⁷. NETs
235 were studied NETs in zebrafish using two approaches; neutrophil chromatin was labelled by
236 making a transgenic zebrafish reporter for histone H2A under the neutrophil specific lyz
237 promoter ³², and extracellular DNA was measured using DNA intercalating agent propidium
238 iodide. High magnification confocal imaging was performed to study the cytoplasmic vesicle
239 structures produced by swarming neutrophils. Propidium iodide labelled dead cells and
240 extracellular DNA at sites of tissue injury (Figure 7D). Strikingly, the cytoplasmic structures
241 produced alongside cellular debris became positive for propidium iodide, suggesting
242 extracellular DNA is released by swarming neutrophils (Figure 7E-H, Supplemental Figure 8C,
243 Supplemental Movie 11). These cytoplasmic structures were produced from an individual
244 neutrophil following the stretching of neutrophil cytoplasm and violent release from neutrophils
245 resulting in the production of small fragments of cellular debris and a large cytoplasmic
246 structure which became propidium iodide positive (Figure 7I, Supplemental Figure 8A-B).

247

248 To confirm these structures contained histones, a transgenic reporter line for neutrophil
249 histone H2A was generated to provide a cell-autonomous, intrinsically-expressed reporter of
250 NET release *in vivo*. A genetic construct containing histone H2A with a C-terminal fusion of
251 the fluorescent protein mCherry (H2A-mCherry), driven by the neutrophil specific *lyz* promoter
252^{32,33} was generated using gateway cloning (Figure 8A). The construct was introduced into the
253 genome of *mpx*:GFP larvae by Tol2 mediated transgenesis, and a stable line was generated:
254 *TgBAC*(*mpx*:GFP)*i114*; *Tg*(*lyz*:H2A-mCherry)*sh530* (referred to as H2A-mCherry) (Figure 8B).
255 The H2A transgene was expressed by neutrophils (Figure 8C), colocalising with the DNA stain
256 DAPI within neutrophil nuclei (Figure 8D). The construct did not affect neutrophil migration to
257 sites of inflammation (Figure 8E-F) demonstrating that the H2A-mCherry reporter was suitable
258 for the study of neutrophil migration at sites of tissue injury. Analysis of swarming neutrophils
259 in 3dpf H2A-mCherry larvae identified that NET-like structures were released by swarming
260 neutrophils following the protrusion and stretching of the neutrophil cytoplasm, accompanied
261 by the catapult-like release of histones from the nucleus resulting in the budding off of histone
262 material from the releasing neutrophil (Figure 9). Together, these data demonstrate that the
263 cell death associated with swarming is in part, NETosis, and provide novel insight into the
264 moment of NET release *in vivo*.

265
266 After determining that NETs were released by early swarming neutrophils, we next determined
267 whether pioneer neutrophils were amongst the NET releasing cells. The fate of pioneer
268 neutrophils was studied within developing swarms using a photo conversion approach.
269 Neutrophils were studied in a zebrafish reporter line which expresses the photoconvertible
270 protein kaede specifically in neutrophils *Tg*(UAS:Kaede); *TgBAC*(*mpx*:GAL4-VP16)*i222*
271 (referred to as *mpx*:kaede)^{19,34,35}. 3dpf *mpx*:kaede larvae were injured and the first neutrophil
272 to the wound site was converted from green to red fluorescence. In larvae where
273 photoconverted neutrophils became pioneers and swarms developed, pioneer neutrophils
274 were studied within developing swarms (Figure 10A). Analysis of these neutrophils identified
275 that photoconverted pioneer neutrophils underwent the morphological changes associated
276 with NET release, with the production of a large cytoplasmic vesicles and neutrophil debris
277 being observed from within the cluster (Figure 10B-C, Supplemental Movie 12). These data
278 suggest that cell death by NETosis could be central to the swarming response, providing
279 evidence of a role for NETosis in regulation of inflammation, aside from any direct role in host-
280 defence.

281
282 **Discussion**
283 In this study we investigated the migration patterns of neutrophils in the context of
284 inflammation and infection and identified that neutrophil swarming behaviour is conserved in

285 zebrafish immunity. We focused on neutrophil swarming in injury-induced inflammation, where
286 the zebrafish model allowed us to track endogenous neutrophils in a physiologically-relevant
287 tissue damage model *in vivo*. Utilising the optical transparency of zebrafish larvae and a
288 combination of transgenic reporter lines and fluorescent DNA intercalating agents, we
289 identified that swarm initiating pioneer neutrophils release extracellular traps from within
290 swarms, building on a growing body of work that implicates a role for pioneer neutrophil death
291 by NETosis in the swarming response^{8,9,13,36}.

292

293 We utilised the zebrafish model to precisely track neutrophils over time, providing some of the
294 first *in vivo* characterisation of endogenous neutrophil migration patterns in the context of
295 swarming at sites of tissue injury. Within the inflamed tail fin, we found that neutrophil swarms
296 developed around an individual pioneer neutrophil which was sufficient to initiate swarming in
297 zebrafish larvae. The pioneer neutrophils in our model share function with the pioneer
298 neutrophils essential for swarm initiation in mice^{8,13,37}. Due to the relatively few number of
299 neutrophils present in zebrafish larvae (~300) in comparison with the thousands (2–5x10⁴)⁹
300 injected into the mouse ear, we propose that just one pioneer neutrophil is sufficient to drive
301 a swarming response in our model.

302

303 The single-cell resolution achieved in our study enabled us to study pioneer neutrophils with
304 optical clarity prior to the onset of swarming. Other groups have found that within inflamed or
305 infected interstitial tissue, the initial arrest of a small number of 'pioneer' or 'scouting'
306 neutrophils precedes a later influx of neutrophil migration^{8,10,13}. Based on our observations,
307 we distinguished the pioneer neutrophil from other scouting neutrophils and propose that
308 pioneer neutrophils have specialised functions required for swarm initiation, whilst scouting
309 neutrophils are simply early responders to chemoattractants produced by damaged cells or
310 pathogens at the inflammatory site.

311 Based on the morphology of pioneer neutrophils we investigated cell death signalling using
312 transgenic reporter lines and cell viability dyes. Murine pioneer neutrophils are propidium
313 iodide positive prior to the onset of swarming^{8,13}. Our data build on this observation, identifying
314 that the propidium iodide signal comes from the cytoplasmic vesicle containing the neutrophil
315 extracellular DNA. Interestingly, pioneer neutrophils themselves in our study were viable prior
316 to swarming, as indicated by their exclusion of DNA intercalating agents, suggesting that lysis
317 and release of cellular contents into the tissue is not an initiating factor in this model. We
318 identify that pioneer neutrophils are surrounded by extracellular DNA, therefore it is tempting
319 to speculate that initiating NETosis as the last effort of the neutrophil to capture and kill
320 pathogens extracellularly would be an appropriate decision for a pioneer neutrophil. Perhaps
321 the signals involved in initiating NETosis overlap with swarm initiation signals, whereby

322 neutrophils call to other neutrophils for help as well as capturing pathogens by NETosis.
323 Interestingly caspase-3 was intact during the swarm initiation phase, indicating that swarm
324 initiating pioneer neutrophils were not undergoing neutrophil apoptosis prior to swarming. Due
325 to the requirement for live imaging to study pioneer neutrophils prior to swarming, it was not
326 technically possible to confirm our apoptosis results using staining assays such as TUNEL.
327 However, other studies have found that results using the *mpx*:FRET transgenic line
328 recapitulate TUNEL staining ²⁹, demonstrating this is a reliable way to read out neutrophil
329 apoptosis. These observations suggest that signals actively released from pioneer neutrophils
330 initiate swarming, rather than the bursting of neutrophils and release of DAMPs into the tissue.

331 *In vivo* live imaging of NETs is achieved by labelling histones, neutrophils and extracellular
332 DNA ³⁸. Whilst imaging of NETs *in vivo* is advancing, our understanding of the kinetics of DNA
333 release from neutrophils is still limited. There is growing evidence to suggest that NET release
334 is conserved in zebrafish neutrophils, hence the zebrafish is a good model to investigate NET
335 release ^{39,40}. We developed an *in vivo* zebrafish reporter for NETs using histone H2A. Imaging
336 data from other groups corroborate our identification that NET releasing neutrophils undergo
337 distinct morphological changes involving the stretching of neutrophil cytoplasm and production
338 of large extracellular DNA containing vesicles and cellular debris ^{30,41}. In human neutrophils
339 infected with *Staphylococcus aureus*, vesicles containing DNA are released into the
340 extracellular space where they lyse and release their contents to form NETs, consistent with
341 our observation that cytoplasmic vacuoles containing extracellular DNA are released by
342 neutrophils ⁴¹. Furthermore, following LPS stimulation, murine neutrophils expel extracellular
343 DNA in large cytoplasmic vesicles ³⁰. We build on *in vitro* findings which suggests that DNA
344 expelled from neutrophils diffuses around the releasing neutrophil, creating an extracellular
345 trap with a large surface area ³¹. Furthermore, the catapult-like release of DNA and histones
346 by neutrophils observed in our experiments is consistent with *in vitro* evidence that DNA
347 release by eosinophils is catapult-like and explosive ⁴². Our experiments enable the
348 morphology of the NET releasing neutrophil to be observed *in vivo*, in real time, providing new
349 insight into the morphological changes associated with NET release. These findings contribute
350 *in vivo* data to the growing evidence that NETs facilitate neutrophil aggregation; neutrophil
351 extracellular trap release is observed at sites of alum injection associated with neutrophil
352 swarming in mice ⁴³, and NET formation facilitates neutrophil aggregation at sites of fungal
353 infection ³⁶.

354 Neutrophil responses to tissue injury in murine systems are bi-phasic, and modulated in part
355 by the lipid LTB4 which acts as a signal-relay molecule to amplify initial signals produced at
356 inflammatory sites including formyl peptides ⁴⁴. We demonstrate in our model that neutrophil

357 recruitment to tail fin inflammation is bi-phasic; neutrophils proximal to the wound edge are
358 recruited within minutes following injury, whilst neutrophils from further away recruited
359 between 2-6 hours following injury. Using CRISPR/Cas9 to knock down *Ita4h* and *blt1*, we
360 found that neutrophil responses were impaired only in the later stages of recruitment (3-6hpi).
361 These findings are in keeping with data from human and murine neutrophils ^{7,8}. Neutrophil
362 migration to form swarms can be further categorised into three phases: the early recruitment
363 of neutrophils (referred to as ‘scouting’), followed by the large scale synchronised migration of
364 neutrophils from distant regions (amplification), resulting in large scale tissue infiltration from
365 the bloodstream (aggregation) ⁷⁻⁹. Consistent with these findings, neutrophil swarming at the
366 wound site in our system occurred in three distinct stages, which are comparable to the
367 sequential phases described in the swarming of neutrophils in intravenous/ intradermal
368 transfer models in mice ^{9,37}.

369 Our findings in this study implicate a role for pioneer neutrophil death by NETosis in swarm
370 initiation. Understanding why swarms are initiated will be important for understanding the
371 signals which control the coordination of neutrophil migration within interstitial tissue, which
372 ultimately could lead to the identification of novel therapeutic targets for the treatment of
373 chronic inflammatory disease.

374 **Materials and methods**

375 Zebrafish husbandry and ethics

376 To study neutrophils during inflammation *TgBAC(mpx:EGFP)i114*,
377 *Tg(UAS:Kaede);TgBAC(mpx:GAL4-VP16)i222*, *Tg(mpx:CFP-DEVD-YFP)sh237*, and
378 *TgBAC(mpx:GFP)i114;Tg(lyz:H2A-mCherry)sh530* zebrafish larvae were in-crossed. All
379 zebrafish were raised in the Bateson Centre at the University of Sheffield in UK Home Office
380 approved aquaria and maintained following standard protocols ⁴⁵. Tanks were maintained at
381 28°C with a continuous re-circulating water supply and a daily light/dark cycle of 14/10 hours.
382 All procedures were performed on embryos less than 5.2 dpf which were therefore outside of
383 the Animals (Scientific Procedures) Act, to standards set by the UK Home Office.

384 Tail fin transection assay

385 To induce an inflammatory response, zebrafish larvae at 2 or 3dpf were anaesthetised in
386 Tricaine (0.168 mg/ml; Sigma-Aldrich) in E3 media and visualised under a dissecting
387 microscope. For linear tail fin injury, tail fins were transected consistently using a scalpel blade
388 (5mm depth, WPI) by slicing immediately posterior to the circulatory loop, ensuring the

389 circulatory loop remained intact as previously described ²². For high resolution imaging, tail
390 fins were nicked by placing the tip of the scalpel blade directly below the end of the caudal
391 vein and slicing through the ventral fin, such that the entire wound site could be observed
392 using a 40x objective.

393 Widefield microscopy of transgenic larvae

394 For neutrophil tracking experiments, injured 3dpf *mpx*:GFP larvae were mounted in a 1% low
395 melting point agarose solution (Sigma-Aldrich) containing 0.168 mg/ml tricaine immediately
396 following tail fin transection. Agarose was covered with 500 μ l of a clear E3 solution containing
397 0.168 mg/ml tricaine to prevent dehydration. Time lapse imaging was performed from 0.5-5
398 hours post injury with acquisition every 30 seconds using 10 z-planes were captured per larvae
399 over a focal range of 100 μ m using an Andor Zyla 5 camera (Nikon) and a GFP specific filter
400 with excitation at 488nm. Maximum intensity projections were generated by NIS elements
401 (Nikon) to visualise all 10 z-planes.

402 Confocal microscopy of transgenic larvae

403 For visualising neutrophil swarming at high magnification, larvae were mounted in a 1% low
404 melting point agarose solution (Sigma-Aldrich) containing 0.168 mg/ml tricaine for imaging
405 immediately after tail fin transection. Agarose was covered with 2000 μ l of clear E3 solution
406 containing 0.168 mg/ml tricaine to prevent dehydration. Imaging was performed from 30
407 minutes post injury using a 20x or 40x objective on an UltraVIEWVoX spinning disc confocal
408 laser imaging system (Perkin Elmer), as indicated in figure legends. Fluorescence for GFP
409 was acquired using an excitation wavelength of 488nm and emission was detected at 510nm,
410 fluorescence for DAPI was acquired using an excitation wavelength of 405nm and emission
411 was detected at 440nm and fluorescence for mCherry was acquired using 525nm emission
412 and detected at 640nm. Images were processed using Volocity™ software.

413 Tracking assays

414 Tracking of GFP labelled neutrophils was performed using NIS Elements (Version 4.3) with
415 an additional NIS elements tracking module. A binary layer was added to maximum intensity
416 projections to detect objects. Objects were smoothed, cleaned and separated to improve
417 accuracy. A size restriction was applied where necessary to exclude small and large objects
418 which did not correspond to individual neutrophils.

419 Distance-time plots

420 For wound plots the distances from the wound were obtained by processing neutrophil tracks
421 under the assumption that the tail fin wound is a straight line parallel to the x-axis of the
422 greyscale image. Neutrophil tracking data was extracted from NIS elements and imported into
423 MatLab software. For distance to pioneer plots the pioneer centre was set as a reference point
424 and tracking was performed to determine neutrophil distance to the reference point. Tracks
425 were extracted from NIS elements and plotted manually using GraphPad Prism version 7.0.

426 Neutrophil specific expression of zebrafish genes

427 Gene expression was assessed using an RNA sequencing database from FACS sorted GFP
428 positive cells from 5dpf zebrafish ⁴⁶ (data deposited on GEO under accession number
429 GSE78954). RPKM values for genes of interest were extracted. For single cell analysis gene
430 expression values were extracted from the BASiCz (Blood atlas of single cells in zebrafish)
431 cloud repository ⁴⁷. Cells of the neutrophil lineage were analysed for expression of LTB4
432 signalling components.

433 CRISPR/Cas9 reagents

434 Synthetic SygRNA® (crRNA and tracrRNA) (Merck) in combination with cas9 nuclease protein
435 (Merck) was used for gene editing. Transactivating RNAs (tracrRNA) and gene specific
436 CRISPR RNAs (crRNA) were resuspended to a concentration of 20μM in nuclease free water
437 containing 10mM Tris-hcl ph8. SygRNA® complexes were assembled on ice immediately
438 before use using a 1:1:1 ratio of crRNA:tracrRNA:Cas9 protein. Gene-specific crRNAs to
439 target the ATG region of *blt1* and *lta4h* were designed using the online tool CHOPCHOP
440 (<http://chopchop.cbu.uib.no/>). We used the following crRNA sequences targeting the ATG
441 region of both genes, where the PAM site is indicated in brackets: *lta4h*:
442 AGGGTCTGAACTGGAGTC(TGG), *blt1*: CAATGCCAATCTGATGGGAC(AGG).

443 Microinjection of SygRNA® into embryos

444 A 1nl drop of SygRNA®:Cas9 protein complex was injected into *mpx*:GFP embryos at the one-
445 cell stage. Embryos were collected at the one cell stage and injected using non-filament glass
446 capillary needles (Kwik-Fil™ Borosilicate Glass Capillaries, World Precision Instruments
447 (WPI), Herts, UK). RNA was prepared in sterile Eppendorf tubes. A graticule was used to
448 measure 0.5nl droplet sizes to allow for consistency of injections. Injections were performed
449 under a dissecting microscope attached to a microinjection rig (WPI) and a final volume of 1nl
450 was injected.

451 Genotyping and melting curve analysis

452 Site-specific mutations were detected using High Resolution Melting (HRM) Analysis which
453 can reliably detect CRISPR/Cas9 induced indels in embryos ^{48,49}. Genomic DNA extraction
454 was performed on larvae at 2dpf. Larvae were placed individually in 0.2ml PCR tubes in 90µl
455 50mM NaOH and boiled at 95° for 20 minutes. 10µl Tris-HCL ph8 was added as a reaction
456 buffer and mixed thoroughly. Gene specific primers were designed using the Primer 3 web
457 tool (<http://primer3.ut.ee/>). Sequences were as follows *Ita4h*_fw:
458 CGTGTAGGTTAAAATCCATTGCA *Ita4h*_rev: GAGAGCGAGGAGAAGGAGCT *blt1*_fw:
459 GTCTTCTCTGGACCACCTGC *blt1*_rev: ACACAAAAGCGATAACCAGGA. HRM analysis
460 (Bio-Rad) PCR reactions were made with 5µl Sybr™ Green master mix (Thermo Fisher), 0.5µl
461 of each primer (10µM), 1µl gDNA and 3µl water to make a final reaction volume of 10µl. PCR
462 reactions were performed in a LightCycler instrument (Bio-Rad) using 96-well plates. The two-
463 step reaction protocol was as follows: 95 °C for 2 min, followed by 35 cycles of 95 °C for 10
464 seconds, 58° for 30 seconds, 72° for 20 seconds. The second stage of the protocol was 95 °C
465 for 30 seconds, 60 °C for 60 seconds, 65 °C for 10 seconds. The temperature then increased
466 by 0.02 °C/s until 95 °C for 10 seconds. Melt curves were analysed using Bio-Rad software
467 version 1.2. Successful detection of CRISPR/Cas9 induced indels is illustrated in supplemental
468 figure 6. Mutagenesis frequencies of 91% and 88% were detected for *Ita4h* and *blt1*
469 respectively.

470 *Staphylococcus aureus* preparation

471 *Staphylococcus aureus* strain SH1000 pMV158mCherry was used for all experiments⁵⁰. An
472 overnight bacterial culture was prepared by growing 1cfu of SH1000 pMV158mCherry in
473 10mLs of bovine heart medium (BHI) (Sigma Aldrich lot number 53286) and 10µLs of 5mg/mL
474 tetracycline (Sigma-Aldrich) for 16-18 hours at 37°C. 500µLs of this overnight culture was then
475 aliquoted into 50mLs of BHI (Sigma Aldrich, 53286) infused with 50µLs of 5mg/mL tetracycline
476 (Sigma Aldrich) and grown until an optical density at 600nm of 0.5 was obtained. This culture
477 was pelleted and resuspended in PBS (pH 7.4) (Fisher Scientific lot number 1282 1680) to a
478 concentration of 2500cfu per nL.

479 Otic vesicle injection

480 2500cfu of Sh1000 pMV158mCherry was injected into the left otic vesicle of 2dpf
481 *Tg(mpx:GFP)i114* larvae. Injections were performed under a dissecting microscope attached
482 to a microinjection rig (WPI) and a final volume of 1nl was injected. For analysis of swarm

483 volumes larvae were fixed in 4% paraformaldehyde in PBS and imaged using a spinning disk
484 confocal microscope.

485 Staining and colocalization experiments

486 To study the plasma membrane integrity of neutrophils, 3dpf *mpx*:GFP larvae were incubated
487 in 1% LMP agarose solution containing 0.1% propidium iodide (Sigma-aldrich) immediately
488 following tail fin transection. Pearsons colocalisation analysis was performed by drawing a
489 region of interest around neutrophil cytoplasmic vesicles using Volocity™ software. For DAPI
490 staining of sh530 larvae, 2dpf larvae were fixed in 1ml of 4% paraformaldehyde (PFA) at room
491 temperature for 30 minutes, washed in PBST and transferred to 100% MeOH overnight at -
492 20. Samples were washed in PBST twice before permeabilization using proteinase K (10
493 µg/ml) for 20 minutes at room temperature. Samples were fixed for 20 minutes in 4% PFA at
494 room temperature and washed twice in PBST. Samples were stained in a 0.1% DAPI (Sigma
495 Aldrich) solution in 1X PBS for 20 minutes and kept in the dark. Samples were washed in
496 PBST and imaging was performed.

497 Förster resonance energy transfer imaging of neutrophil apoptosis

498 Neutrophil apoptosis was studied using our transgenic *Tg(mpx:CFP-DEVD-YFP)sh237*²⁹
499 zebrafish line which expresses a genetically encoded Förster resonance energy transfer
500 (FRET) biosensor consisting of a caspase-3 cleavable DEVD sequence flanked by a CFP YFP
501 pair⁵¹, under the neutrophil specific *mpx* promoter. A loss of FRET signal in this system
502 provides a read out of apoptosis specifically in neutrophils *in vivo* in real time. To visualise
503 apoptotic events in the context of neutrophil swarming, 3dpf *Tg(mpx:CFP-DEVD-YFP)sh237*
504 larvae were injured and mounted in a 1% agarose solution containing 0.168 mg/ml tricaine
505 and covered with 500µl of a clear E3 solution containing tricaine to prevent dehydration. FRET
506 imaging was performed from 30 minutes post injury for 5 hours using a 20x objective lens on
507 an UltraVIEWVoX spinning disc confocal laser imaging system (Perkin Elmer) with acquisition
508 every 2 minutes. 10 z-planes were captured per larvae over a focal range of 100µm using the
509 following filters: a donor CFP channel (440nm for excitation, 485nm for detection), an acceptor
510 YFP channel (514nm for excitation and 587nm for detection), and a FRET channel (440nm
511 for excitation and 587nm for detection). An Ultraview dichroic mirror passes 405,440,515,640
512 was used to increase imaging speed using these filter blocks. Volocity™ software was used
513 to calculate normalised FRET values (nFRET). To compensate for the bleed through of the
514 CFP and YFP fluorophores into the FRET channel, FRET bleed through constants were
515 calculated. Control samples containing HeLa cells transfected with CFP alone or YFP alone
516 were imaged using the same settings used for data acquisition of the *mpx*:FRET zebrafish

517 reporter line. ROIs were drawn around a population of cells in the frame and Volocity™
518 software calculated FRET bleed through values as the mean intensity of the recipient channel
519 (FRET) divided by the mean intensity of the source (CFP or YFP). These FRET constants
520 were then used by Volocity™ to calculate a normalised FRET value. Neutrophil apoptosis was
521 observed by overlaying the YFP and nFRET channels.

522 Generation of histone H2A transgenic reporter line

523 A genetic construct containing histone H2A with a C-terminal fusion of the fluorescent protein
524 mCherry, driven by the neutrophil specific *lyz* promoter was generated using gateway cloning
525 ⁵². The final construct (pDestTol2CG2 *lyz*:H2A-mCherry cmlc2:EGFP) was assembled from
526 the following gateway vectors: a 5' vector p5E-MCS *lyz* containing 6.6kb of the lysozyme C
527 promoter ³², a middle entry vector pME-H2AmCherry containing zebrafish histone H2A fused
528 to mCherry, and a 3' vector containing a polyadenylation site p3E-polyA. The final construct
529 containing the Tol2 arms and green heart marker for easy recognition of successful
530 transgenesis was created by an LR reaction combining the three vectors with the destination
531 vector pDestTol2CG2. The construct was injected into transgenic *TgBAC(mpx:GFP)i114*
532 larvae using Tol2 mediated transgenesis and a stable f2 line
533 *TgBAC(mpx:GFP)i114;Tg(lyz:H2A-mCherry)sh530* was generated.

534

535 Photoconversion of pioneer neutrophils

536

537 Photoconversion assays were performed using larvae expressing the photoconvertible protein
538 kaede under the neutrophil specific *mpx* promoter: *TgBAC(mpx:GAL4-VP16)*;
539 *Tg(UAS:Kaede)i222* ³⁴. At 3dpf larvae were anaesthetised and injured using the minor tail fin
540 nick, and mounted immediately in a 1% LMP agarose solution containing tricaine. At ten
541 minutes post injury, a region of interest was drawn around the neutrophil nearest to the injury
542 site for photoconversion from green to red fluorescence. Photoconversion of kaede labelled
543 neutrophils at the wound site was performed using an UltraVIEWPhotoKinesis™ device
544 (Perkin Elmer and Analytical Sciences) on an UltraVIEWVoX spinning disc confocal laser
545 imaging system (Perkin Elmer). The photokinesis device was calibrated using a coverslip
546 covered in photobleachable substrate (Stabilo Boss™, Berks UK). Photoconversion was
547 performed using a 405nm laser at 40% using 120 cycles, 250 pk cyles and 100ms as previously
548 published ³⁴. Successful photoconversion was detected through loss of emission detected
549 following excitation at 488nm, and gain of emission following 561nm excitation. Following
550 photoconversion, timelapse imaging was performed from 20 minutes post injury for 4 hours.

551 Photoconverted neutrophils which became swarm initiating pioneer neutrophils were
552 analysed.

553 Statistical analysis

554 Data were analysed using GraphPad Prism version 7.0. Paired *t* tests were used for
555 comparisons between two groups and one-way ANOVA with appropriate post-test adjustment
556 was used for comparisons of three or more groups.

557 **Acknowledgements**

558 The authors would like to thank The Bateson Centre Aquarium Team at the University of
559 Sheffield for their assistance with zebrafish husbandry. Imaging work was performed at the
560 Wolfson Light Microscopy Facility, microscopy studies were supported by an MRC grant
561 (G0700091) and a Wellcome Trust grant (GR077544AIA). We are extremely grateful to Dr.
562 Tomasz Prajsnar for providing *S. aureus* strains.

563

564 **Competing Interests**

565 The authors declare no conflict of interest.

566

567 **Funding Information**

568 This work was supported by a Medical Research Council (MRC) Senior Clinical Fellowship
569 with Fellowship-Partnership Award and MRC Programme Grants to S.A.R (G0701932 and
570 MR/M004864/1) and an MRC Centre Grant (G0700091). P.M.E is funded by a Sir Henry Dale
571 Fellowship jointly funded by the Wellcome Trust and the Royal Society (Grant Number
572 105570/Z/14/Z).

573

574 **References**

- 575 1. Urban, C. F., Reichard, U., Brinkmann, V. & Zychlinsky, A. Neutrophil extracellular
576 traps capture and kill *Candida albicans* and hyphal forms. *Cell. Microbiol.* **8**, 668–676
577 (2006).
- 578 2. Wang, J. Neutrophils in tissue injury and repair. *Cell and Tissue Research* **371**, 531–
579 539 (2018).
- 580 3. Ley, K., Laudanna, C., Cybulsky, M. I. & Nourshargh, S. Getting to the site of
581 inflammation: the leukocyte adhesion cascade updated. *Nat. Rev. Immunol.* **7**, 678–
582 689 (2007).
- 583 4. Woodfin, A., Voisin, M.-B. & Nourshargh, S. Recent developments and complexities in
584 neutrophil transmigration. *Curr. Opin. Hematol.* **17**, 9–17 (2010).

585 5. Nourshargh, S. & Alon, R. Leukocyte Migration into Inflamed Tissues. *Immunity* **41**,
586 694–707 (2014).

587 6. McDonald, B. & Kubes, P. Chemokines: Sirens of Neutrophil Recruitment—but Is It
588 Just One Song? *Immunity* **33**, 148–149 (2010).

589 7. Reátegui, E. *et al.* Microscale arrays for the profiling of start and stop signals
590 coordinating human-neutrophil swarming. *Nat. Biomed. Eng.* **1**, 0094 (2017).

591 8. Lämmermann, T. *et al.* Neutrophil swarms require LTB4 and integrins at sites of cell
592 death in vivo. (2013). doi:10.1038/nature12175

593 9. Ng, L. G. *et al.* Visualizing the neutrophil response to sterile tissue injury in mouse
594 dermis reveals a three-phase cascade of events. *J. Invest. Dermatol.* **131**, 2058–2068
595 (2011).

596 10. Chtanova, T. *et al.* Dynamics of Neutrophil Migration in Lymph Nodes during Infection.
597 *Immunity* **29**, 487–496 (2008).

598 11. Peters, N. C. *et al.* In vivo imaging reveals an essential role for neutrophils in
599 leishmaniasis transmitted by sand flies. *Science* **321**, 970–4 (2008).

600 12. Sun, D. & Shi, M. Neutrophil swarming toward *Cryptococcus neoformans* is mediated
601 by complement and leukotriene B4. *Biochem. Biophys. Res. Commun.* **477**, 945–951
602 (2016).

603 13. Uderhardt, S., Martins, A. J., Tsang, J. S., Lämmermann, T. & Germain, R. N.
604 Resident Macrophages Cloak Tissue Microlesions to Prevent Neutrophil-Driven
605 Inflammatory Damage. *Cell* **177**, 541-555.e17 (2019).

606 14. Iba, T., Hashiguchi, N., Nagaoka, I., Tabe, Y. & Murai, M. Neutrophil cell death in
607 response to infection and its relation to coagulation. *J. intensive care* **1**, 13 (2013).

608 15. Galluzzi, L. *et al.* Molecular mechanisms of cell death: recommendations of the
609 Nomenclature Committee on Cell Death 2018. *Cell Death Differ.* **25**, 486–541 (2018).

610 16. Labb  , K. & Saleh, M. Cell death in the host response to infection. *Cell Death Differ.*
611 **15**, 1339 (2008).

612 17. Brinkmann, V. *et al.* Neutrophil Extracellular Traps Kill Bacteria. *Science (80-.)* **303**,
613 1532–1535 (2004).

614 18. Remijsen, T. V. Q. *et al.* Neutrophil extracellular trap cell death requires both
615 autophagy and superoxide generation. *Cell Res.* **21**, 290–304 (2011).

616 19. Robertson, A. L. *et al.* A zebrafish compound screen reveals modulation of neutrophil
617 reverse migration as an anti-inflammatory mechanism. *Sci. Transl. Med.* **6**, 225ra29
618 (2014).

619 20. Loynes, C. A. *et al.* PGE₂ production at sites of tissue injury promotes an anti-
620 inflammatory neutrophil phenotype and determines the outcome of inflammation
621 resolution in vivo. *Sci. Adv.* **4**, eaar8320 (2018).

622 21. Niethammer, P., Grabher, C., Look, A. T. & Mitchison, T. J. A tissue-scale gradient of
623 hydrogen peroxide mediates rapid wound detection in zebrafish. *Nature* **459**, 996–999
624 (2009).

625 22. Renshaw, S. & Loynes, C. A transgenic zebrafish model of neutrophilic inflammation.
626 *Blood*... **108**, 3976–3978 (2006).

627 23. Kienle, K. & Lämmermann, T. Neutrophil swarming: an essential process of the
628 neutrophil tissue response. *Immunol. Rev.* **273**, 76–93 (2016).

629 24. Tobin, D. M. *et al.* The Ita4h locus modulates susceptibility to mycobacterial infection
630 in zebrafish and humans. *Cell* **140**, 717–30 (2010).

631 25. Chatzopoulou, A. *et al.* Glucocorticoid-Induced Attenuation of the Inflammatory
632 Response in Zebrafish. *Endocrinology* **157**, 2772–2784 (2016).

633 26. Isles, H. M. *et al.* The CXCL12/CXCR4 signalling axis retains neutrophils at
634 inflammatory sites in zebrafish. *bioRxiv* 626978 (2019). doi:10.1101/626978

635 27. Jao, L.-E., Wente, S. R. & Chen, W. Efficient multiplex biallelic zebrafish genome
636 editing using a CRISPR nuclease system. *Proc. Natl. Acad. Sci.* **110**, 13904–13909
637 (2013).

638 28. Kamenyeva, O. *et al.* Neutrophil Recruitment to Lymph Nodes Limits Local Humoral
639 Response to *Staphylococcus aureus*. *PLOS Pathog.* **11**, e1004827 (2015).

640 29. Robertson, A. L. *et al.* Identification of benzopyrone as a common structural feature in
641 compounds with anti-inflammatory activity in a zebrafish phenotypic screen. *Dis.*
642 *Model. Mech.* **9**, 621–32 (2016).

643 30. Tanaka, K. *et al.* In vivo characterization of neutrophil extracellular traps in various
644 organs of a murine sepsis model. *PLoS One* **9**, e111888 (2014).

645 31. van der Linden, M., Westerlaken, G. H. A., van der Vlist, M., van Montfrans, J. &
646 Meyaard, L. Differential Signalling and Kinetics of Neutrophil Extracellular Trap
647 Release Revealed by Quantitative Live Imaging. *Sci. Rep.* **7**, 6529 (2017).

648 32. Hall, C., Flores, M. V., Storm, T., Crosier, K. & Crosier, P. The zebrafish lysozyme C
649 promoter drives myeloid-specific expression in transgenic fish. *BMC Dev. Biol.* **7**, 42
650 (2007).

651 33. Buchan, K. D. *et al.* A transgenic zebrafish line for in vivo visualisation of neutrophil
652 myeloperoxidase. *PLoS One* **14**, e0215592 (2019).

653 34. Elks, P. M. *et al.* Activation of hypoxia-inducible factor-1?? (hif-1??) delays
654 inflammation resolution by reducing neutrophil apoptosis and reverse migration in a
655 zebrafish inflammation model. *Blood* **118**, 712–722 (2011).

656 35. Ellett, F., Elks, P. M., Robertson, A. L., Ogryzko, N. V. & Renshaw, S. a. Defining the
657 phenotype of neutrophils following reverse migration in zebrafish. *J. Leukoc. Biol.* **98**,
658 1–7 (2015).

659 36. Byrd, A. S., O'Brien, X. M., Johnson, C. M., Lavigne, L. M. & Reichner, J. S. An
660 extracellular matrix-based mechanism of rapid neutrophil extracellular trap formation
661 in response to *Candida albicans*. *J. Immunol.* **190**, 4136–4148 (2013).

662 37. Lämmermann, T. In the eye of the neutrophil swarm--navigation signals that bring
663 neutrophils together in inflamed and infected tissues. *J. Leukoc. Biol.* **100**, (2015).

664 38. Yipp, B. G. *et al.* Infection-induced NETosis is a dynamic process involving neutrophil
665 multitasking in vivo. *Nat. Med.* **18**, 1386–1393 (2012).

666 39. Palić, D., Andreasen, C. B., Ostojić, J., Tell, R. M. & Roth, J. A. Zebrafish (*Danio*
667 *rerio*) whole kidney assays to measure neutrophil extracellular trap release and
668 degranulation of primary granules. *J. Immunol. Methods* **319**, 87–97 (2007).

669 40. Johnson, C. J., Davis, J. M., Huttenlocher, A., Kernien, J. F. & Nett, J. E. Emerging
670 Fungal Pathogen *Candida auris* Evades Neutrophil Attack. *MBio* **9**, e01403-18 (2018).

671 41. Pilsczek, F. H. *et al.* A novel mechanism of rapid nuclear neutrophil extracellular trap
672 formation in response to *Staphylococcus aureus*. *J. Immunol.* **185**, 7413–7425 (2010).

673 42. Yousefi, S. *et al.* Catapult-like release of mitochondrial DNA by eosinophils
674 contributes to antibacterial defense. *Nat. Med.* **14**, 949–953 (2008).

675 43. Stephen, J. *et al.* Neutrophil swarming and extracellular trap formation play a
676 significant role in Alum adjuvant activity. *npj Vaccines* **2**, 1 (2017).

677 44. Afonso, P. V. *et al.* LTB4 Is a Signal-Relay Molecule during Neutrophil Chemotaxis.
678 *Dev. Cell* **22**, 1079–1091 (2012).

679 45. Nüsslein-Volhard, C. & Dahm, R. *Zebrafish: a practical approach*. (Oxford University
680 Press, 2002).

681 46. Rougeot, J. *et al.* RNAseq profiling of leukocyte populations in zebrafish larvae
682 reveals a cxcl11 chemokine gene as a marker of macrophage polarization during
683 mycobacterial infection. *Front. Immunol.* **10**, 832 (2019).

684 47. Athanasiadis, E. I. *et al.* Single-cell RNA-sequencing uncovers transcriptional states
685 and fate decisions in haematopoiesis. *Nat. Commun.* **8**, 2045 (2017).

686 48. Samarut, É., Lissouba, A. & Drapeau, P. A simplified method for identifying early
687 CRISPR-induced indels in zebrafish embryos using High Resolution Melting analysis.
688 *BMC Genomics* **17**, 547 (2016).

689 49. Parant, J. M., George, S. A., Pryor, R., Wittwer, C. T. & Yost, H. J. A rapid and
690 efficient method of genotyping zebrafish mutants. *Dev. Dyn.* **238**, 3168–74 (2009).

691 50. Pollitt, E. J. G., Szkuta, P. T., Burns, N. & Foster, S. J. *Staphylococcus aureus*
692 infection dynamics. *PLOS Pathog.* **14**, e1007112 (2018).

693 51. Tyas, L., Brophy, V. A., Pope, A., Rivett, A. J. & Tavaré, J. M. Rapid caspase-3
694 activation during apoptosis revealed using fluorescence-resonance energy transfer.
695 *EMBO Rep.* **1**, 266–270 (2000).

696 52. Kwan, K. M. *et al.* The Tol2kit: A multisite gateway-based construction kit for Tol2
697 transposon transgenesis constructs. *Dev. Dyn.* **236**, 3088–3099 (2007).

698

699 **Figure Legends**

700 **Figure 1. Neutrophil swarming is conserved in the zebrafish tissue damage response**
701 **A-C** Zebrafish neutrophils swarm at sites of tissue damage. **A** Representative image
702 illustrating neutrophils swarming at the wound site following tail fin transection in 3dpf
703 *mpx*:GFP larvae. Image was taken using 20x magnification on a TE2000U inverted
704 microscope (Nikon). Time stamp shown is relative to the start of the imaging period at 30
705 minutes post injury and is h:mm:ss. **B** 3D reconstruction time course illustrating neutrophils
706 swarming at the wound site (swarm centre is highlighted by white asterix). Imaging was
707 performed using a 40X objective spinning disk confocal microscope (Perkin Elmer). Time
708 stamps shown are relative to time post injury and are in hh:mm:ss. **C**. Area of neutrophil
709 swarms measured at hourly intervals during the 5 hour imaging period. Error bars shown are
710 mean \pm SEM, n=7. **D** Frequency of neutrophil swarming behaviour observed at the wound site
711 within 5 hours following injury, n=14. **E-F** Relay signalling through LTB4 is required for
712 neutrophil recruitment. **E** Distance time plot demonstrating the early recruitment of neutrophils
713 proximal to the wound site (<350 μ m) followed by the later recruitment of more distant
714 neutrophils. Tracks are colour coded based on their average speed (μ m/minute). **F**
715 CRISPR/Cas9-mediated knockdown of LTB4 signalling reduces late neutrophil recruitment.
716 Neutrophil counts at the wound site in control *tyr* crRNA injected larvae (black line), *Ita4h*
717 crRNA injected larvae (grey dotted line), and *blt1* crRNA injected larvae (black dotted line) at
718 3 and 6hpi. Error bars shown are mean \pm SEM. Groups were analysed using an ordinary one-
719 way ANOVA and adjusted using Tukeys multi comparison test. **p>0.008 n=45 from 3
720 independent repeats.

721

722 **Figure 2. Zebrafish neutrophils swarm at *S. aureus* infection**

723 **A-B** Neutrophils mobilised to the otic vesicle in response to *S. aureus*. Otic vesicles of 2dpf
724 *mpx*:GFP larvae injected with a PBS vehicle control or 2500 cfu *S. aureus* SH1000
725 pMV158mCherry. **A** Representative image illustrating neutrophil recruitment (green) to otic
726 vesicle infected with *S. aureus* (red). Otic vesicles are highlighted by white dashed area. Time
727 stamps shown are hh:mm relative to time post infection. **B** Number of neutrophils mobilised
728 to the otic vesicle at 6hpi. Error bars shown are mean \pm SEM (****p>0.0001 from an un-paired
729 t-test, n=32 from 3 independent repeats). **C** 3D reconstruction time course illustrating
730 neutrophils swarming within the otic vesicle of 2dpf *mpx*:GFP larvae injected with 2500 cfu *S.*
731 *aureus* SH1000 pMV158mCherry. Imaging was performed using a 20X objective spinning disk
732 confocal microscope. Time stamps shown are hh:mm:ss relative to time post injection. **D**
733 Volume of neutrophil swarms measured within otic vesicle at 6hpi. A volume of zero
734 corresponds to no swarm observed. Error bars shown are mean \pm SEM (****p>0.0001 from
735 an un-paired t-test, n=32 from 3 independent repeats).

736 **Figure 3. A pioneer neutrophil is the focal point of migration for swarming neutrophils**

737 **A.** Reverse chronological time lapse sequence of a persistent neutrophil swarm where one
738 individual neutrophil is visible in the swarm centre prior to neutrophil clustering (red arrows).
739 Time stamps shown are hh:mm:ss relative to injury time. **B.** Chronological time lapse
740 sequence of swarming neutrophil tracks. The migration of a pioneer neutrophil (red) to the
741 wound site is observed (frames 1-2) followed by the directed migration of swarming neutrophils
742 towards the pioneer, which is the focal point for migration (frames 3-5). The result of migration
743 is the aggregation of neutrophils to form large clusters (frame 6). Tracks are coloured by time
744 where red corresponds to early and yellow corresponds to late arriving neutrophils. **C.**

745 Distance-time plot (DTP) of individual cell migration paths of swarming neutrophils (black
746 tracks) and wound neutrophils at the wound site in the same time period (grey tracks). Tracks
747 are relative to pioneer neutrophil position; swarming neutrophils migrate to the pioneer
748 neutrophil whilst non-swarming neutrophils do not (n= 4 experimental repeats).

749 **Figure 4. Pioneer neutrophils adopt a distinct rounded, non-motile morphology at the**
750 **wound site**

751 **A** Representative image of pioneer and non-pioneer neutrophil morphology. Images were
752 taken using a 40X objective lens on a spinning disk confocal microscope (Perkin Elmer). Scale
753 bars are 20 μ m. **B-C** Quantification of pioneer neutrophil migration pattern in the frames
754 preceding swarming. The circularity index (roundness) and displacement (movement) of
755 pioneer neutrophils and wound neutrophils migrating at the wound site in the same time period
756 (n=5, unpaired t-test where * p<0.05 and ** p<0.01). **D-F** Neutrophils were tracked from 30
757 minutes post injury. Parameters to study the migration patterns of pioneer and wound
758 neutrophils were compared in the scouting and initiation phases. (D) Neutrophil displacement
759 (the linear distance each neutrophil travelled). (E) Neutrophil speed. (F) Neutrophil
760 meandering index (the displacement divided by the total length of the neutrophil track). (Error
761 bars are mean \pm SEM. Groups were analysed using a paired t-test *p<0.05 **p<0.01, n=5
762 independent repeats).

763 **Figure 5. Neutrophil swarming responses to tissue damage occur in three sequential**
764 **stages**

765 Representative time-lapse sequence showing coordination of neutrophils to form swarms
766 within the inflamed tail-fin. **A** Stage 1; scouting. The recruitment of neutrophils close to the
767 wound site within minutes following tail fin transection. **B** Stage 2; initiation. Pioneer
768 neutrophils migrate to the tissue region which becomes the swarm centre where they remain
769 non motile. **C** Stage 3; aggregation. Swarming neutrophils direct their migration towards the
770 pioneer neutrophil, resulting in swarm growth and neutrophil aggregation. Tracks are coloured
771 by time where red corresponds to early and yellow corresponds to late arriving neutrophils.
772 Time stamps are h:mm:ss relative to the start of imaging period at 30 minutes post injury.

773 **Figure 6. Pioneer neutrophils are viable prior to swarming**

774 **A-D** Pioneer neutrophils are not propidium iodide positive prior to swarming. **A** Single slice
775 image showing tail fin of injured *mpx*:GFP larva (bright field), stained with propidium iodide
776 (grey). Image shows representative example of pioneer neutrophil at the wound site prior to
777 the swarming response (green). **B** Representative 3D render of pioneer neutrophil during the
778 initiation phase. Left tile shows *mpx*:GFP pioneer neutrophil, middle tile shows propidium
779 iodide staining, right tile shows the two merged. **C** Representative colocalization analysis of
780 pioneer neutrophils, where neutrophil signal (GFP) is on the x axis and propidium iodide signal
781 (mCherry) is on the y axis. **D** Pearsons colocalisation coefficient for pioneer neutrophils (Data
782 shown are mean \pm SEM n=4 independent experiments). **E** Pioneer neutrophils are not
783 apoptotic prior to swarming. 3dpf *mpx*:FRET larvae were injured and time lapse imaging was
784 performed from 30 minutes post injury for 6 hours. Neutrophil signal from the acceptor (green)
785 and nFRET (magenta) are shown to illustrate neutrophil apoptosis. Representative example
786 of a pioneer neutrophil and its nearest neighbour in the frames preceding neutrophil swarming.
787 The initiation stage is observed 58 minutes prior to swarming (rounded pioneer neutrophil).
788 nFRET signal is in tact at all stages of migration prior to swarming in both the pioneer and
789 nearest-neighbour non-pioneer neutrophil. Time stamps are mm:ss relative to the swarm start
790 time. (representative example of n=6 neutrophils from 5 independent repeats). **F** Apoptotic
791 neutrophils do not initiate swarming. Example of neutrophil apoptosis at the wound site
792 demonstrated by loss of FRET signal around 4 hours post injury, followed by the absence of

793 neutrophil cluster formation in the same tissue region by the end of the imaging period. Time
794 stamp is relative to injury time and is hh:mm:ss.

795 **Figure 7. Catapult release of extracellular DNA by swarming neutrophils**

796 **A** Maximum intensity projection time lapse sequence showing the production of cell fragments
797 around swarming neutrophils (white arrows). Time stamps are h:mm:s relative to the start of
798 the imaging period at 30 minutes post injury. Images were taken using a 20X objective on a
799 Nikon widefield microscope using an andor zyla camera. **B** 3D rendered time lapse sequence
800 showing cell fragments around swarming neutrophils (swarm highlighted by white dashed
801 line). Time stamps are hh:mm:ss relative to injury time. Images were taken using a 40X
802 objective lens on a perkin elmer spinning disk confocal microscope. **C**. The area of cellular
803 debris and cytoplasmic vacuoles detected during swarm aggregation were measured
804 alongside 3 nearest neighbour neutrophils at the wound site. (Error bars are SEM. Groups
805 were analysed using an ordinary one way anova with Tukeys multiple comparison, p<0.0001.
806 N=5 independent experiments). **D** Single z-slice of tail fin injury site labelled with propidium
807 iodide (grey), illustrating neutrophil cytoplasmic vacuole (red arrow) released from a swarm. **E**
808 3D render showing propidium iodide positive neutrophil extracellular trap from swarming
809 neutrophils. Images were taken using a 40X objective lens on a perkin elmer spinning disk
810 confocal microscope. Time stamps are hh:mm:ss relative to injury time. **F-H** Colocalisation of
811 propidium iodide with neutrophil cytoplasmic fragments. **F**. Representative image illustrating
812 colocalization between the cell fragment and propidium iodide. **G** Representative Pearsons
813 colocalization analysis of neutrophil extracellular traps, where GFP is on the x axis and
814 mCherry is on the y. **H** Pearsons colocalisation coefficient for neutrophil extracellular traps
815 released from swarming neutrophils (n=4). **I** Catapult-like release of extracellular DNA by
816 individual neutrophil. Time course shows 3D render of a neutrophil at 00:46 stretching its
817 cytoplasm resulting in the release of a large cytoplasmic vesicle which becomes positive for
818 propidium iodide.

819 **Figure 8. A transgenic zebrafish H2A.mCherry reporter for neutrophil extracellular traps**

820 **A** Schematic of the *lyz:H2A.mCherry* construct made by Gateway cloning which includes the
821 neutrophil specific promoter (*lyz*), and the histone H2A gene fused to the fluorescent protein
822 mCherry flanked by Tol2 arms to aid transgenesis. **B-C** Representative image of the stable
823 *TgBAC(mpx:GFP)i114;Tg(lyz:h2a.mCherry)sh530* transgenic line. **B** Image shows the caudal
824 haematopoietic tissue of a 3dpf sh530 larvae, where the H2A mCherry transgene is expressed
825 in neutrophils. **C** 40X confocal image of the transgenic line, showing neutrophil histones
826 labelled by the transgene. **D** Dapi staining confirms that the H2A labels neutrophil DNA, image
827 shows single z-slice of a CHT neutrophil from a 3dpf larvae. **E** Neutrophils counted at the
828 wound site at the peak of recruitment (4 hours post injury, hpi) in H2A.mCherry negative and
829 positive larvae. n=12-16 larvae from 3 independent experiments, p=0.77 where groups were
830 analysed using an unpaired t-test. **F** Representative images of neutrophil recruitment to tissue
831 injury (wound edge illustrated by white dashed line) in H2A.mCherry positive larvae and
832 H2A.mCherry negative siblings. Images taken using a 20X spinning disk confocal microscope.

833 **Figure 9. Histone H2A release from swarming neutrophils**

834 Representative example of NET release from swarming neutrophils from 6 independent
835 observations. Time course of *Tg(mpx:GFP)i114;Tg(lyz:h2a.mCherry)sh530* larva showing a
836 single neutrophil and histone H2A (white arrows), undergoing NET-like morphological
837 changes whereby histones are released from the centre of swarms in cytoplasmic vesicles.
838 Time stamps are hh:mm:ss relative to time post injury.

839 **Figure 10. Pioneer neutrophils release NETs during the swarming response**

840 **A** Photoconversion approach to study pioneer neutrophils within developing clusters. 3dpf
841 *mpx:kaede* larvae were injured and the neutrophil closest to the wound site was
842 photoconverted from green to red at 10 minutes post injury. Larvae where the red neutrophil
843 was the swarm-initiating pioneer neutrophil were analysed. The large cytoplasmic structure
844 and cellular debris associated with NETosis can be seen by 58 minutes post injury (red
845 arrows). **B-C** Magnified region of interest highlighted by white dashed line. **B** Time course of
846 photoconverted red neutrophil. **C** Time course of green wildtype swarming neutrophils which
847 cluster around the red pioneer neutrophil. Images shown were taken using a 40X spinning
848 disk confocal microscope. Scale bars are 12 μ m. Time stamps are hh:mm relative to time post
849 injury.

850 **Supplemental Figure 1. Dynamics of the neutrophil response to tissue injury**

851 Following tail-fin transection of *mpx:GFP* transgenic larvae, the number of GFP neutrophils at
852 the site of injury were counted at 2, 4, 6, 8, 12 and 24 hours post injury. **A** Representative
853 images illustrating neutrophils in the tail fin region throughout the inflammatory time course. **B**
854 Quantification of neutrophil counts at the wound site throughout the time course. Data are
855 shown as mean \pm SEM, n= 53 larvae from 3 experimental repeats.

856 **Supplemental Figure 2. Transient neutrophil swarms are observed within the inflamed**
857 **tail fin**

858 Time course of *mpx:GFP* transgenic zebrafish larvae following tail-fin transection illustrating
859 short-lived (<1 hour) transient neutrophil swarming at the wound site. Phases of coordinated
860 migration resulting in cluster formation (red arrow) were observed within the imaging period,
861 followed by cluster dissipation and re-formation. Time stamps shown in white (h:mm:ss) are
862 relative to the start of imaging at 30 minutes post injury.

863 **Supplemental Figure 3. Characterisation of persistent neutrophil swarms**

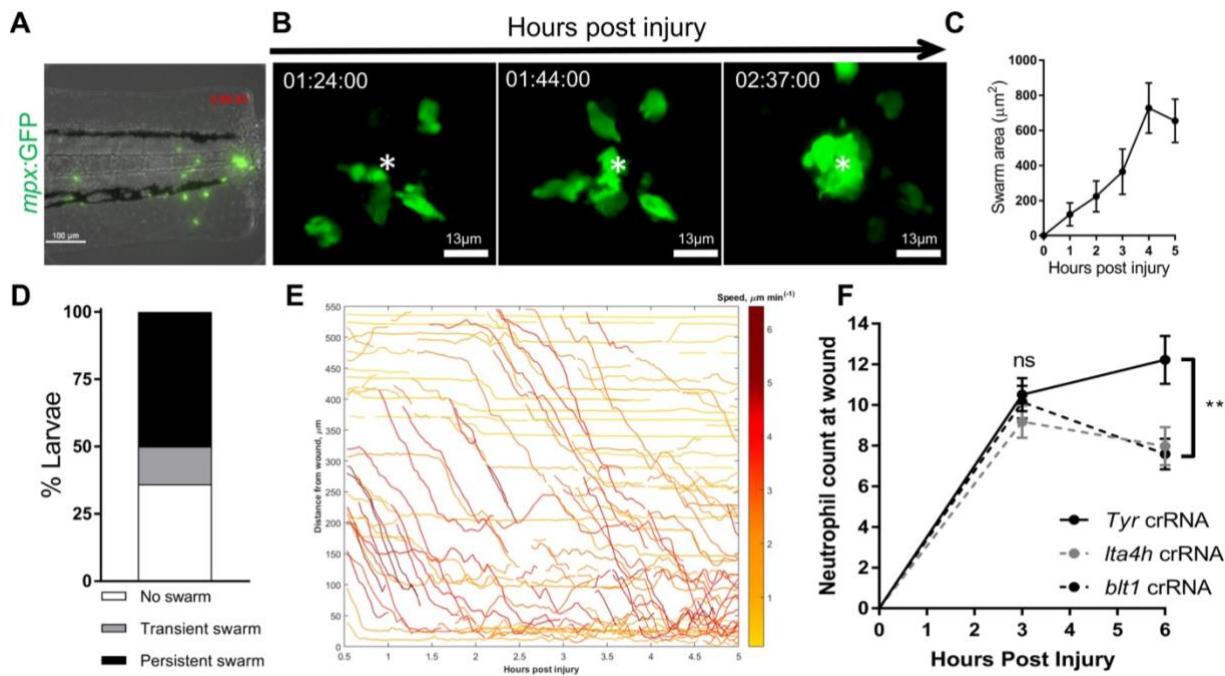
864 **A** Time (minutes post injury) in which persistent neutrophil swarms began to develop following
865 tail-fin transection in zebrafish larvae (n=5 experimental repeats). **B** Persistence time of
866 neutrophil swarms measured during 5 hour imaging period (n=5 experimental repeats).

867 **Supplemental Figure 4. Expression of LTB4 signalling components in zebrafish**
868 **neutrophils**

869 **A** RNA sequencing of FACS sorted GFP positive cells from 5dpf *mpx:GFP* zebrafish larvae.
870 RPKM values illustrate zebrafish neutrophil expression of *lta4h*, *blt1*, *blt2a* and *blt2b*. **B** Single-
871 cell gene expression profiles of LTB4 signalling components expressed in the zebrafish
872 neutrophil lineage, extracted from the Sanger BASiCz zebrafish blood atlas. Circles represent
873 individual cells colour coded where red is high expression and yellow is no expression.

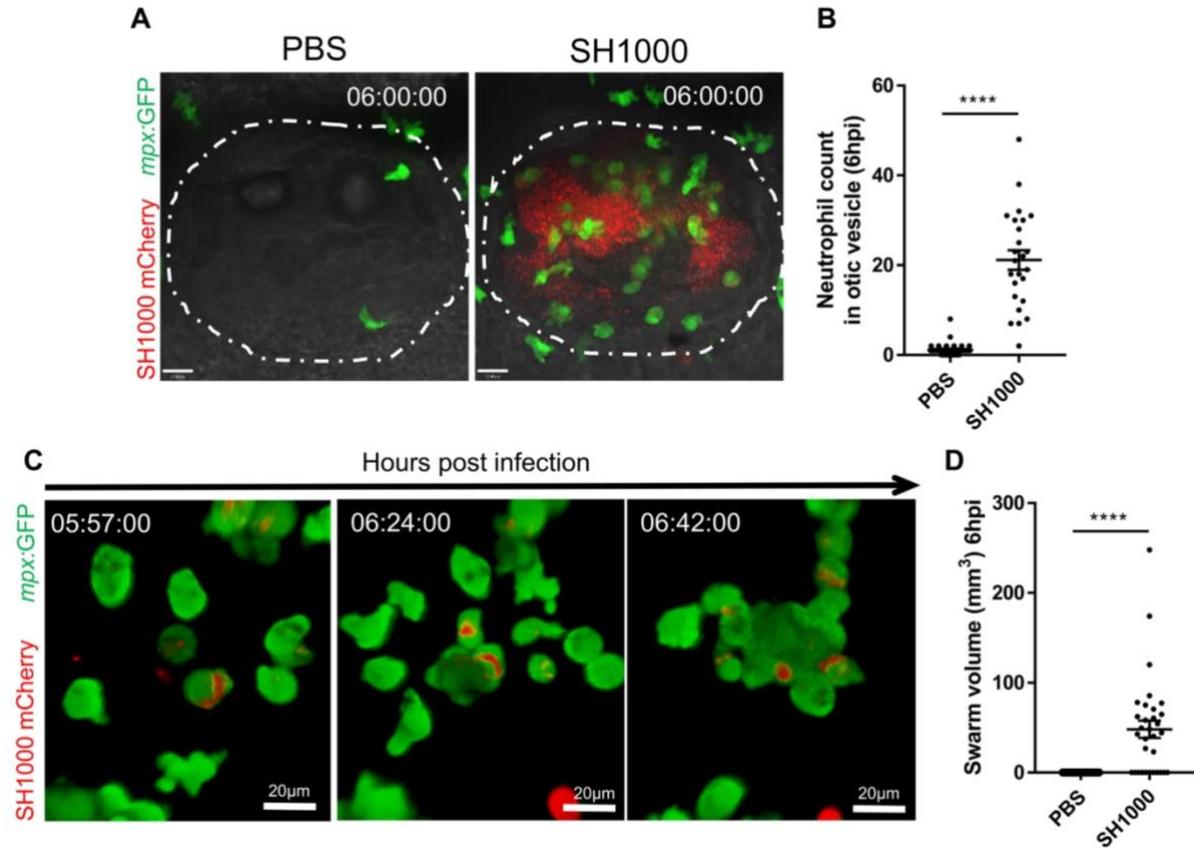
874 **Supplemental Figure 5. High resolution melt curve analysis for genotyping *blt1* and**
875 ***lta4h* Crisprants**

876 Genotyping example of successful CRISPR-induced indels by high resolution melt analysis
877 for *blt1* (**A**) and *lta4h* (**B**) injected larvae. Wild type curves (red) from three representative
878 control tyrosinase larvae and shifted, irregular melt curves (green) corresponding to mosaic
879 heteroduplex PCR fragments formed as a result of CRISPR/Cas9 mutations.

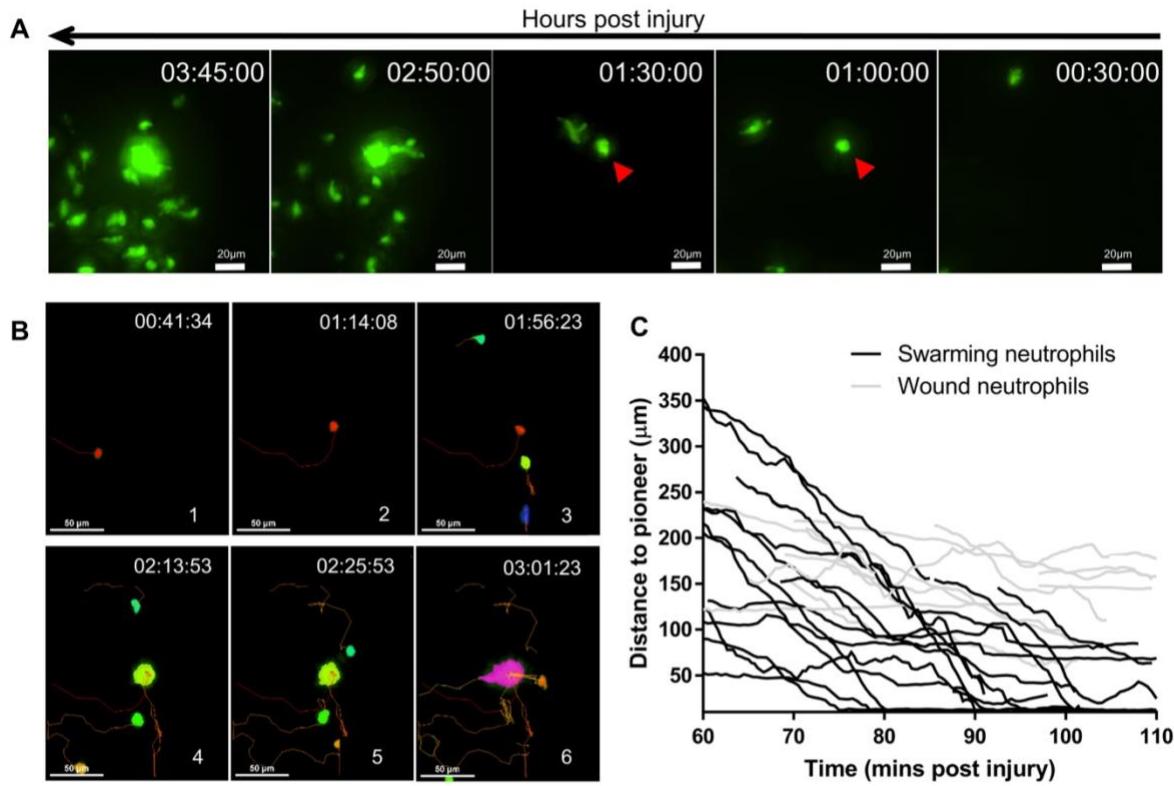

880 **Supplemental Figure 6. High magnification confocal microscopy tail fin injury model**

881 Tail fin nick was performed on 3dpf *mpx:GFP* larvae which were imaged using a 40X objective
882 lense on a perkin elmer spinning disk confocal microscope.

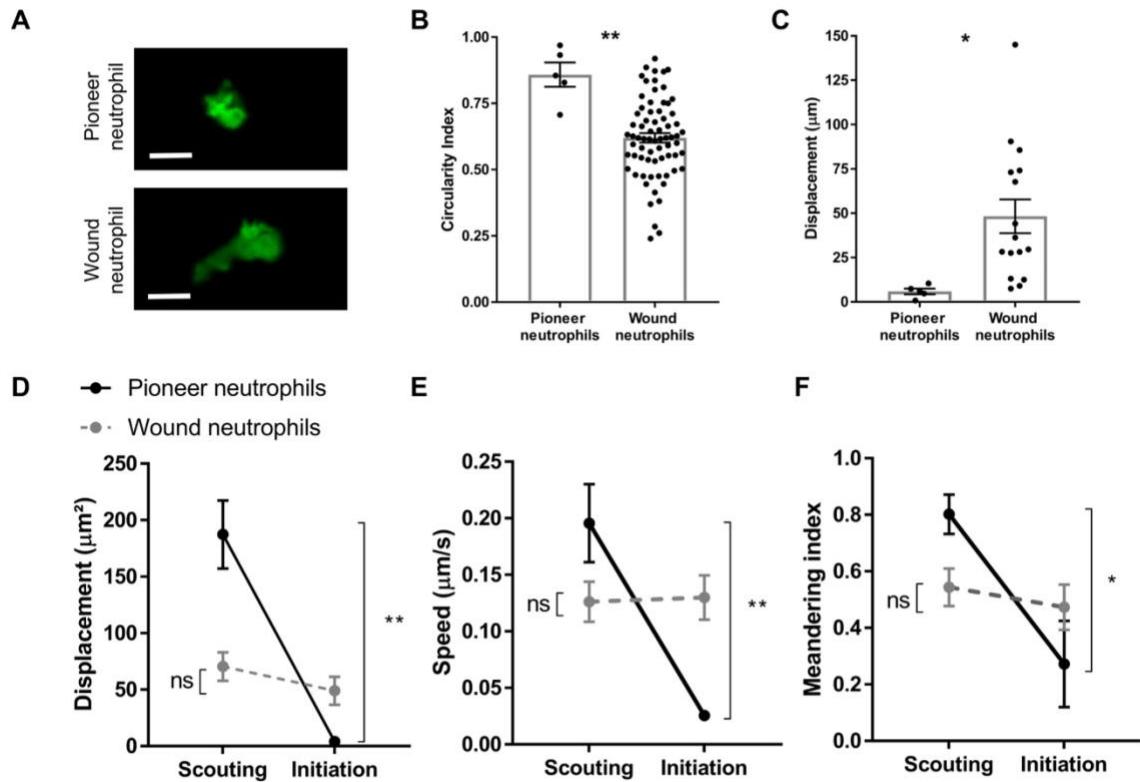
883 **Supplemental figure 8. Dynamic imaging of the moment of NET release**


884 **A** Time course of a neutrophil in a *TgBAC(mpx:GFP)i114* transgenic larva showing a single
885 neutrophil undergoing NET-like morphological changes at the wound site, as illustrated by the
886 production of cloud-like vesicle and cellular debris. **B** Time course of
887 *Tg(mpx:GFP)i114;Tg(lyz:h2a.mCherry)sh530* larva showing a single neutrophil and histone
888 H2a, undergoing NET-like morphological changes. **C** Time course of *TgBAC(mpx:GFP)i114*
889 transgenic larva stained with propidium iodide (red). **i.** NET-like cell death accompanied by
890 the release of cloud-like vesicle and cellular debris. **ii.** Single z-slice illustrating the cloud-like
891 vesicle becoming propidium iodide positive, demonstrating extracellular DNA release. Unless
892 stated, data shown are 3D reconstructions of image sequences taken using a 40X objective
893 lens on a spinning disk confocal microscope. Time stamps are hh:mm:ss relative to time post
894 injury.

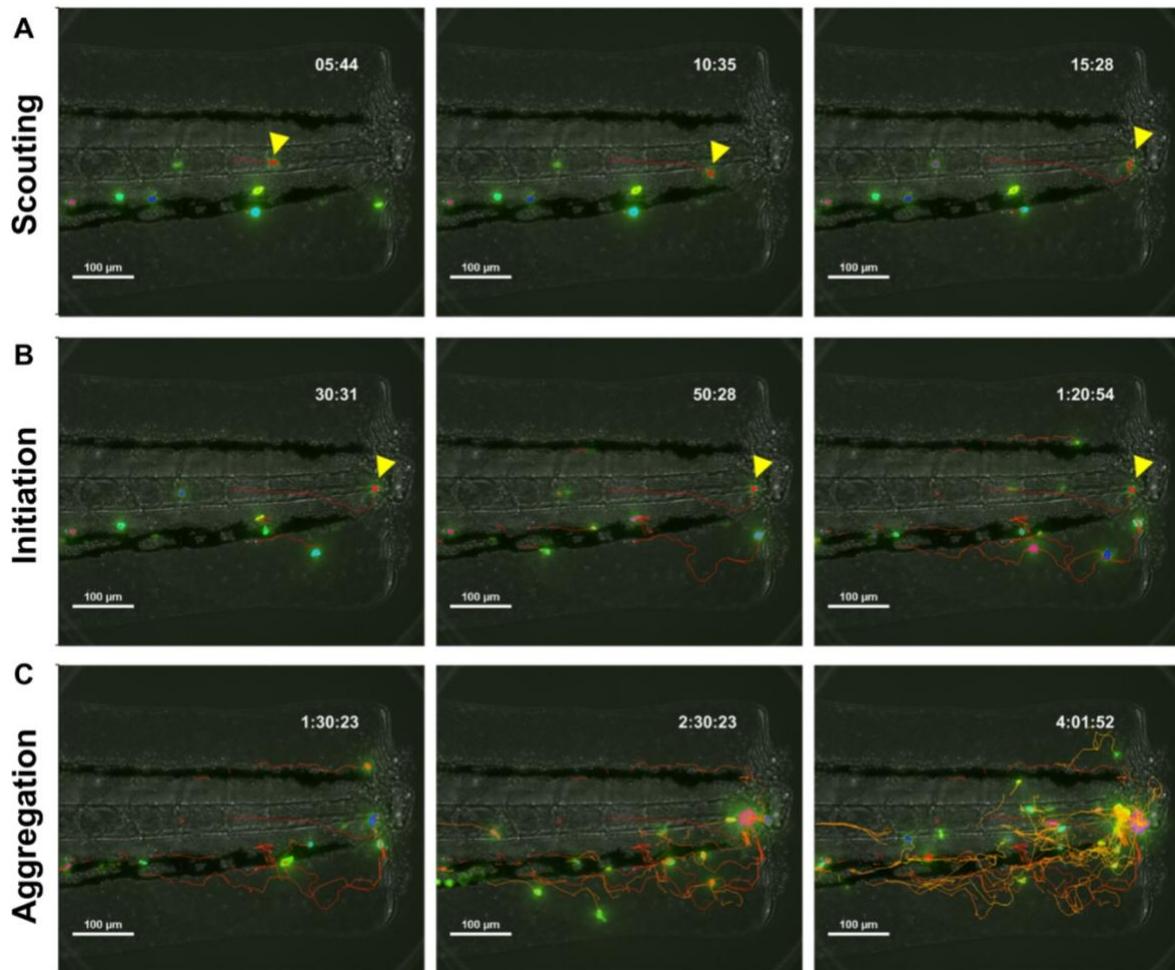
895 **Figures**


896 **Figure 1**

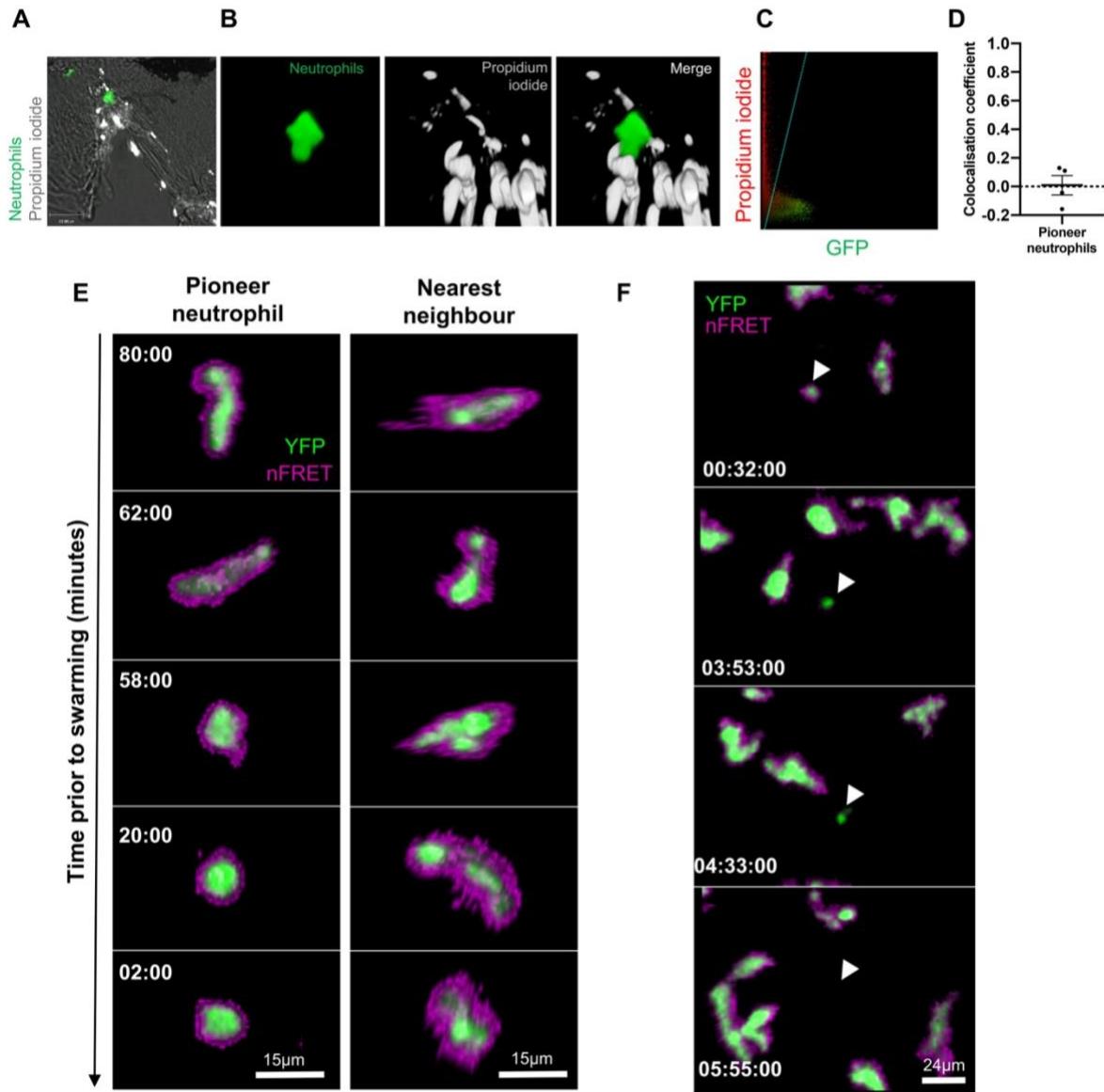
897


898 Figure 2

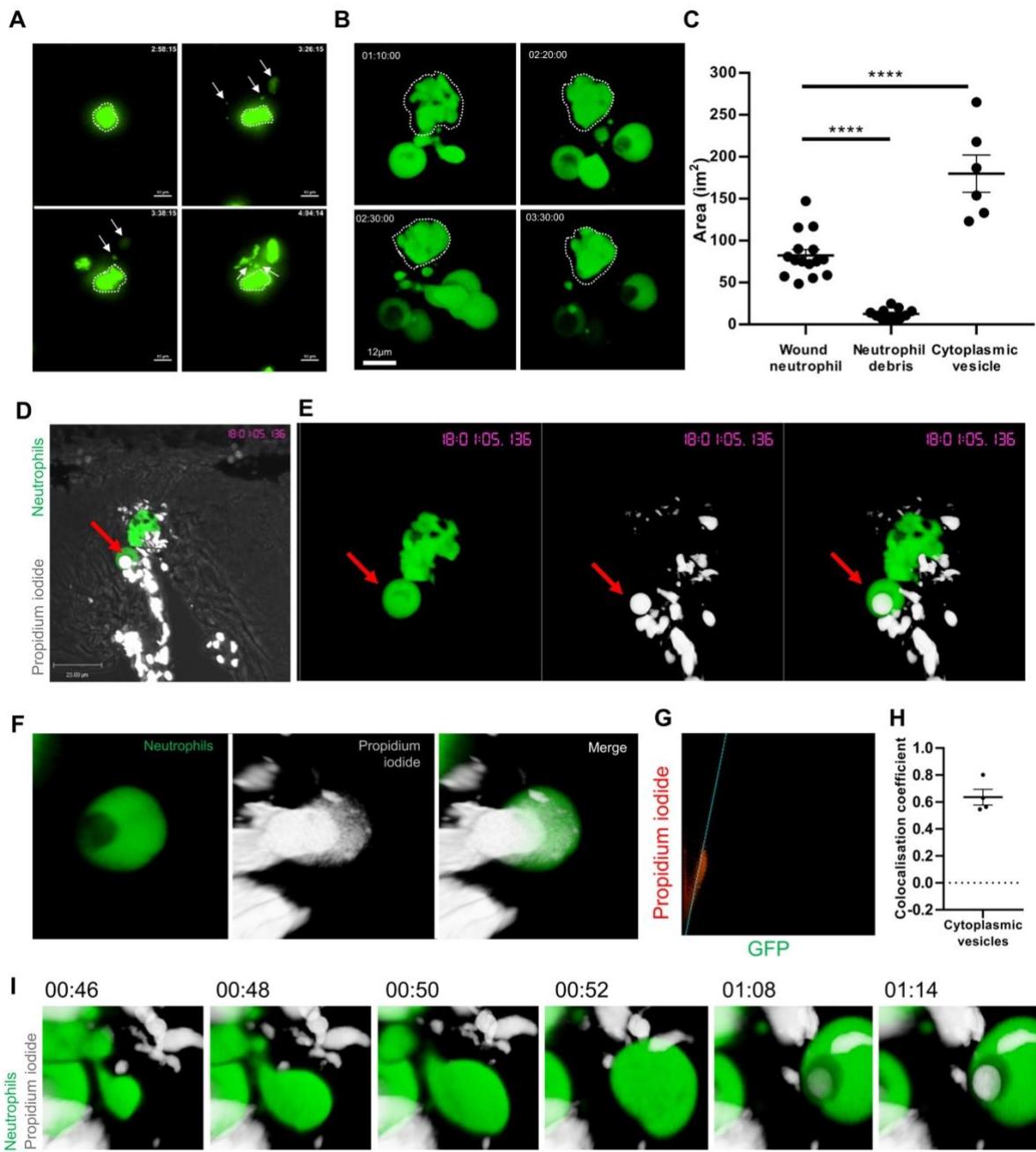
899


900

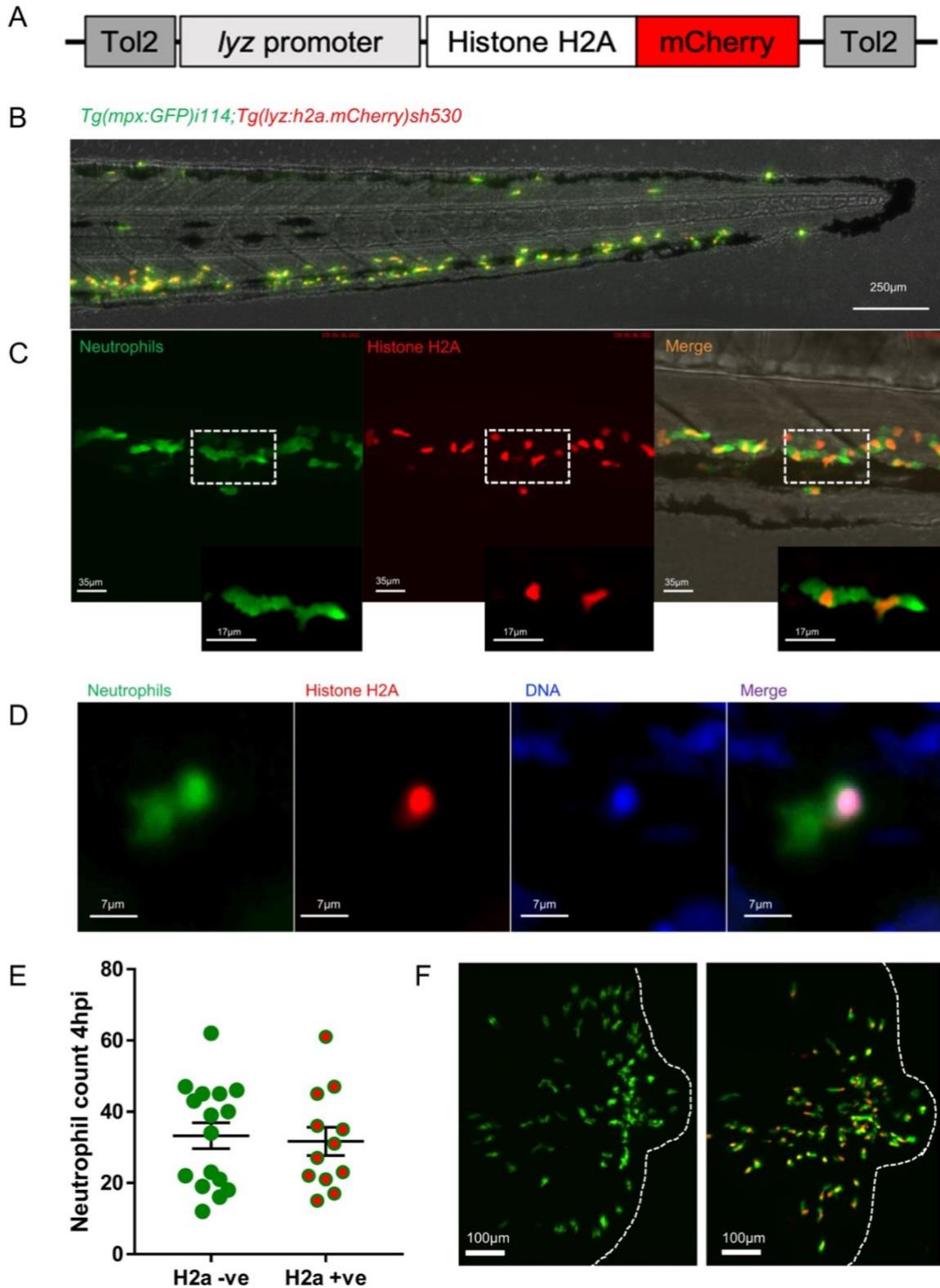
901 Figure 3

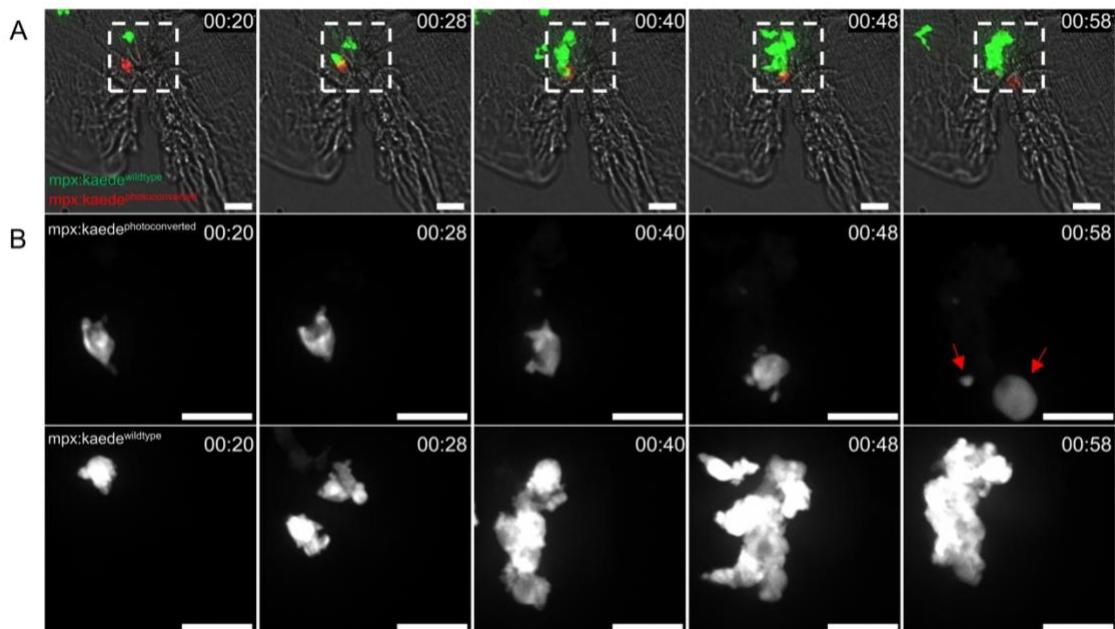
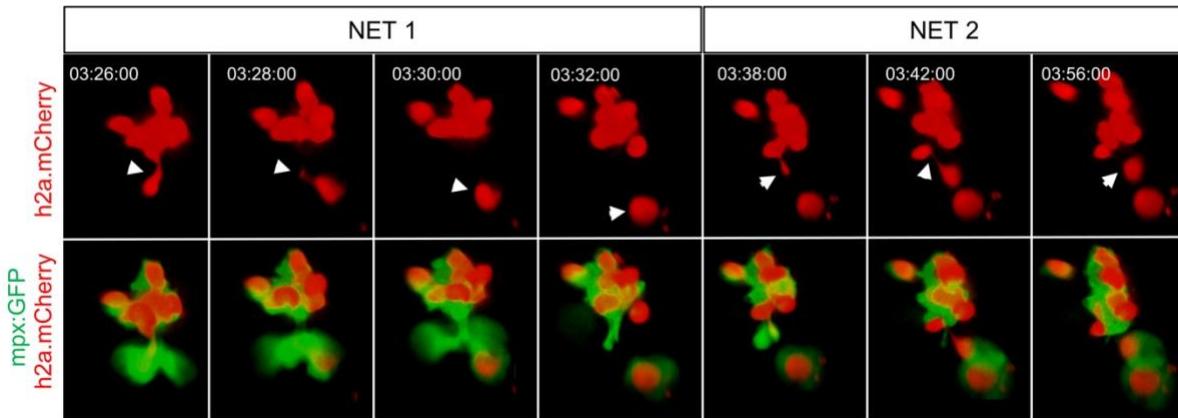

902

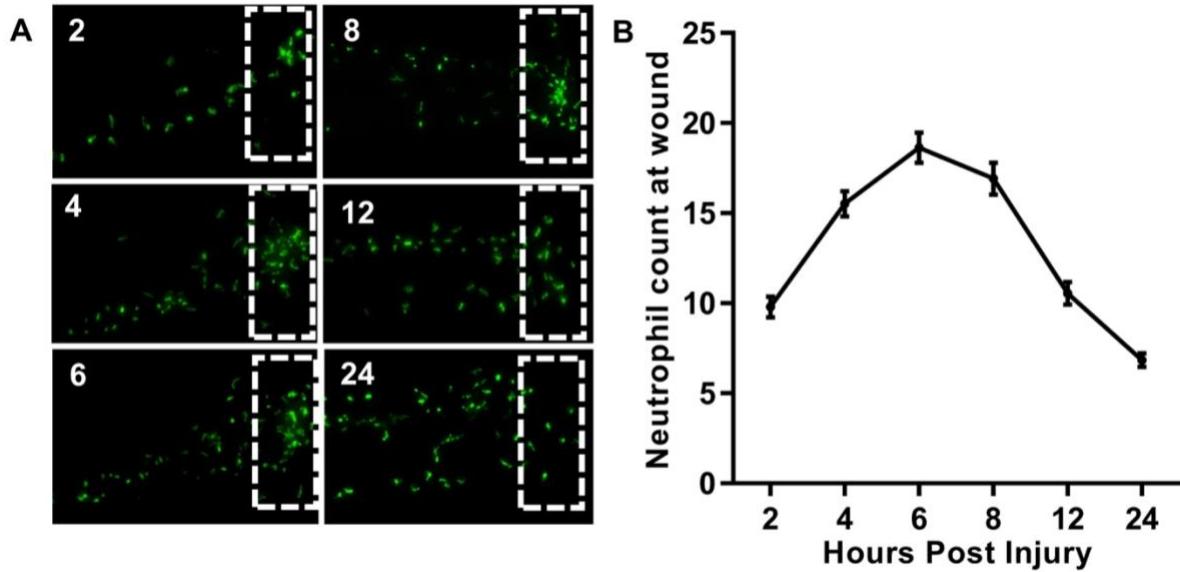
903 Figure 4


904

905 Figure 5

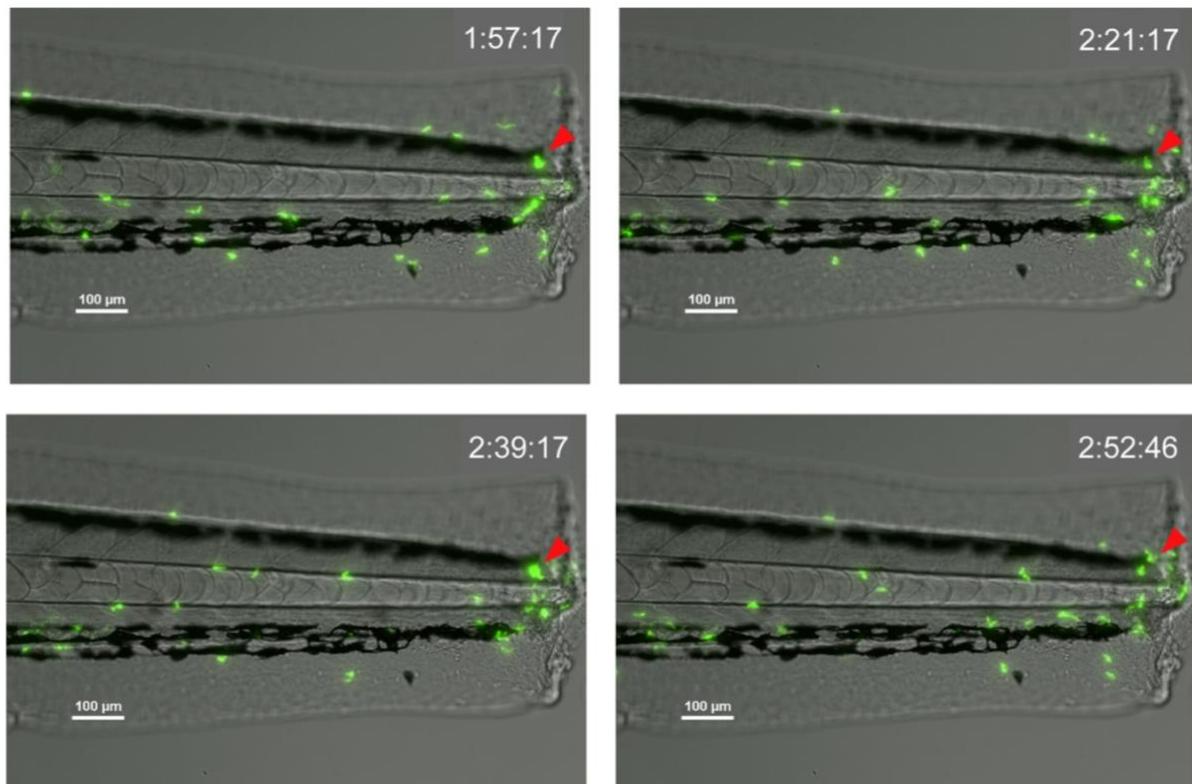

906



907 Figure 6



908

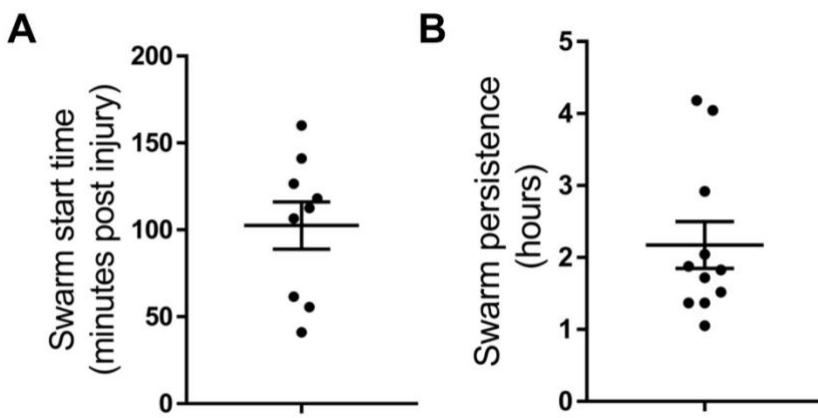
909 Figure 7



918

919 Supplemental Figure 1

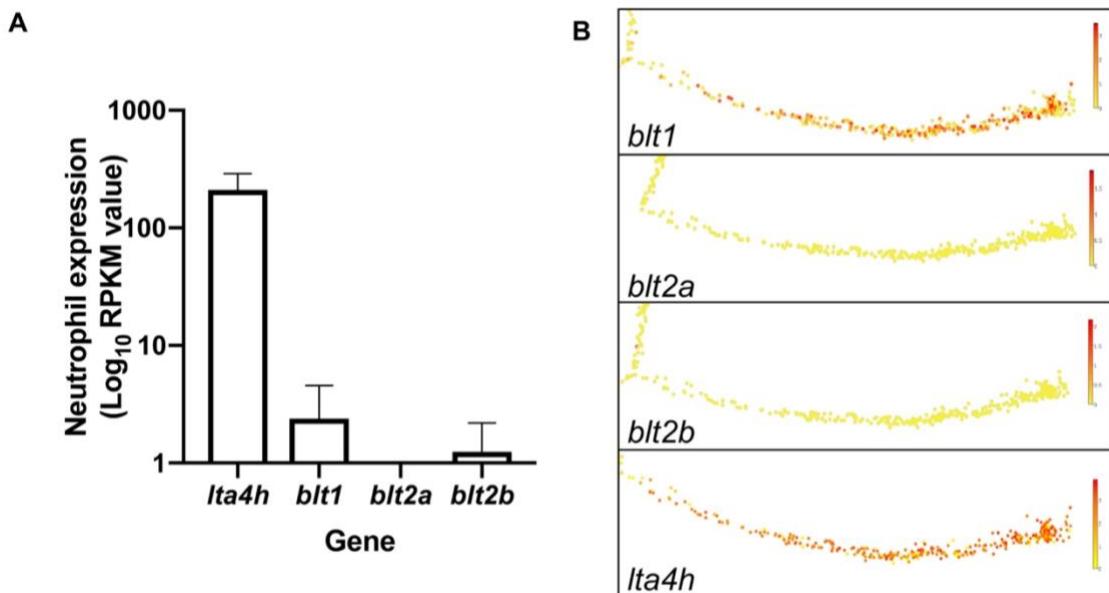
920


921

922

923 Supplemental Figure 2

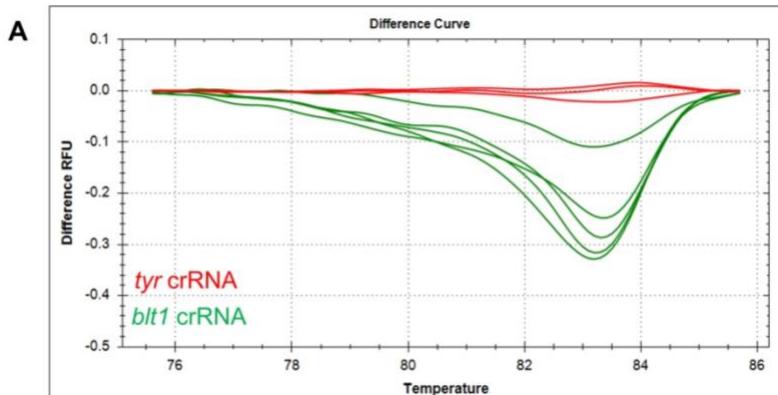
924
925
926



927 Supplemental Figure 3

928
929

930

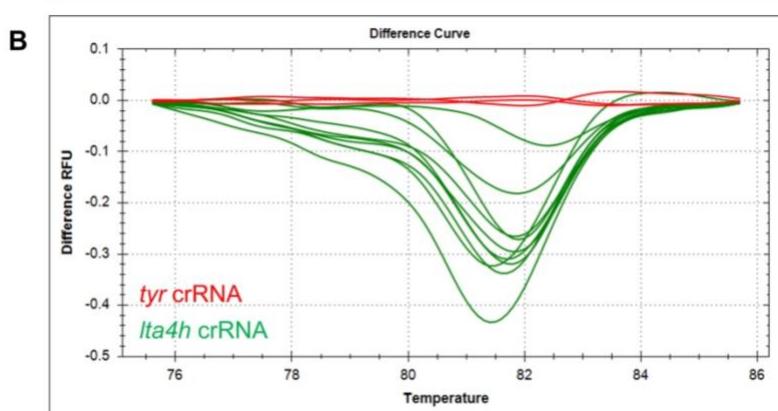

931

932

933 Supplemental Figure 4

934

935


936

937

938

939

940

941

942

943

944

945

946

947

948

949

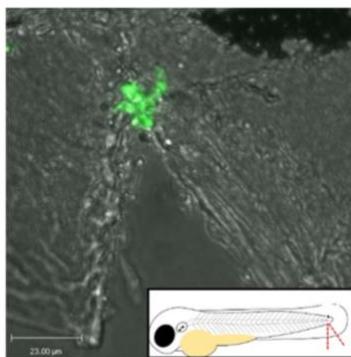
950

951 Supplemental Figure 5

952

953

954


955

956

957

958

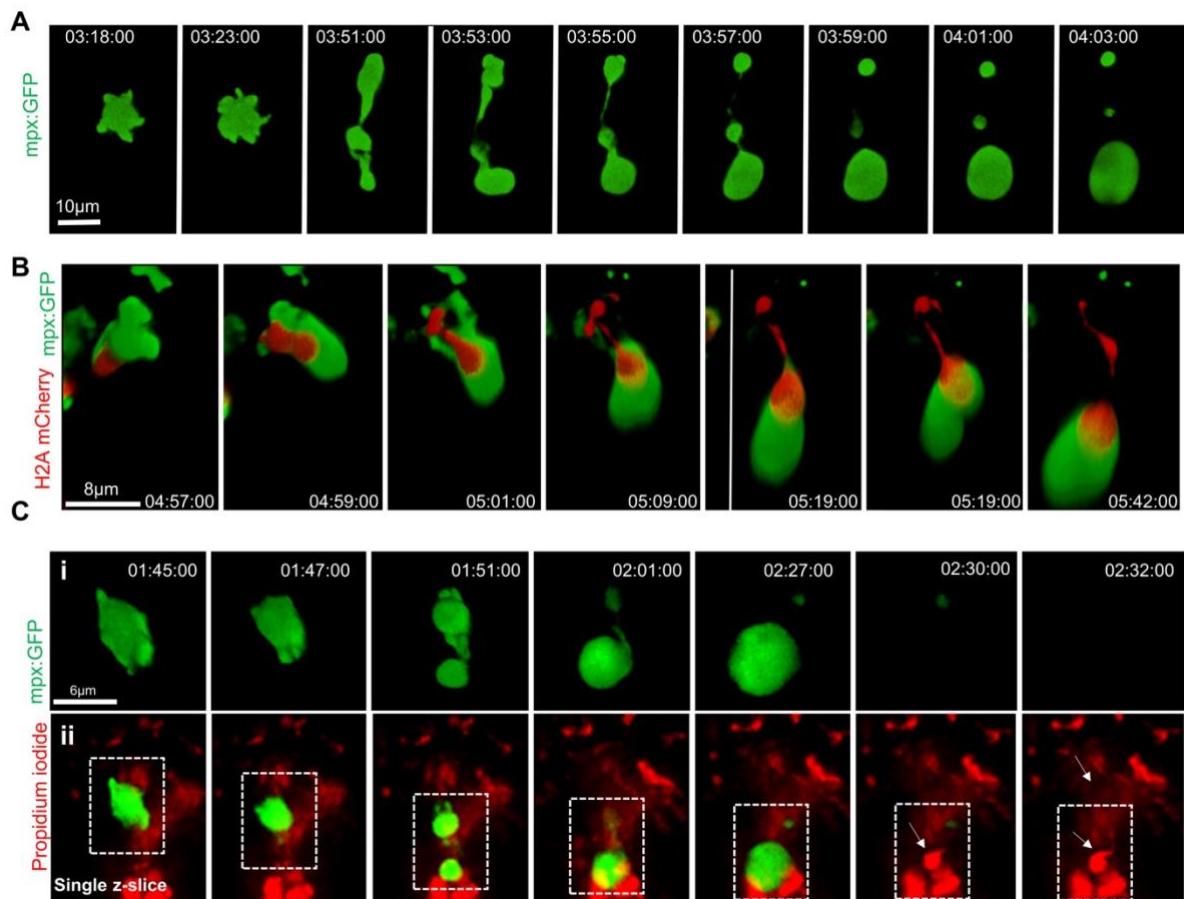
959

960 Supplemental Figure 6

961

962

963


964

965

966

967

968
969
970
971
972
973
974

