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Abstract

When facing fully ambiguous images, the brain cannot commit to a single percept and instead
switches between mutually exclusive interpretations every few seconds, a phenomenon known as
bistable perception. Despite years of research, there is still no consensus on whether bistability, and
perception in general, is driven primarily by bottom-up or top-down mechanisms. Here, we adopted a
Bayesian approach in an effort to reconcile these two theories. Fifty-five healthy participants were
exposed to an adaptation of the Necker cube paradigm, in which we manipulated sensory evidence (by
shadowing the cube) and prior knowledge (e.g., by varying instructions about what participants should
expect to see). We found that manipulations of both sensory evidence and priors significantly affected
the way participants perceived the Necker cube. However, we observed an interaction between the
effect of the cue and the effect of the instructions, a finding incompatible with Bayes-optimal integration.
In contrast, the data were well predicted by a circular inference model. In this model, ambiguous sensory
evidence is systematically biased in the direction of current expectations, ultimately resulting in a

bistable percept.
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Introduction

Perception can be defined as the process of combining available information to create valid and
useful interpretations of the world. Although our phenomenological experience makes us think that
perceptual decisions are trivial, the truth might be very different. An interesting example is visual
perception of depth. When we see an object, our brain must reconstruct its 3D shape from a 2D retinal
image; in other words, the brain must solve an inference problem [1]. Unfortunately, such problems are
ill-posed, as in most cases the 2D retinal projection is compatible with many different 3D objects [2]. To
cope with perceptual uncertainty, the brain must combine ambiguous information received by peripheral
sensors (e.g., disparity cues and movement cues) with pre-existing information (either hard-wired or
learned) concerning properties of the environment or the potential cost of a wrong decision [3,4]. Such
combinations can be expressed through Bayes’ theorem, in which prior probability distributions and
sensory likelihoods are multiplied, resulting in a posterior probability distribution over possible solutions
to the perceptual problem. Most of the time, only a single dominant (most probable) interpretation will

emerge from these constraints.

However, when the level of ambiguity is too high, finding a single interpretation is not possible.
Strikingly, ambiguous figures compatible with more than one plausible interpretation [5,6] lead to
bistable (or more generally multistable) perception [7]. When facing those figures, the perceptual system
is unable to commit to a single stable interpretation and instead oscillates between mutually exclusive
interpretations every few seconds. A famous figure known to induce bistability is the Necker cube (NC)
([5]; Figure 1l1a), in which a 2D collection of lines is automatically interpreted as a 3D cube, which is
either “seen from above” (SFA interpretation) or “seen from below” (SFB interpretation). Interestingly,
the NC is an asymmetrical stimulus, meaning that it generates an implicit preference for the SFA
interpretation (i.e., the general preference of humans to interpret things as if they were below the level

of their eyes) [3,8].

While the concept of perception as inference under uncertainty offers a principled way to explain
the efficiency of perceptual systems and certain perceptual illusions, it can account for bistable

perception less directly. Indeed, if the brain uses explicit representations of uncertainty, e.g., a
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probability distribution instead of a point estimate [9-12], ambiguous stimuli should be recognized as
such and not generate a unique, persistent representation. We note that bistable perception is far from
unique in that case. Although many studies have reported that the brain is able to reach Bayes-optimal
decisions [13-16], there are numerous tasks in which human behavior deviates significantly from that of

a Bayesian observer [17-20].

Deviations from Bayesian optimality could be the consequence of highly non-linear and state-
dependent interactions between feedback and feedforward streams of information in brain circuits [21].
Some of these effects can be quantified by the circular inference framework [22]. According to this
framework, hierarchical processing in the brain is analogous to the propagation of probabilistic
messages (beliefs) in a hierarchical model of the world [23]. The combination of feedforward and
feedback inputs is equivalent to the product of prior and likelihood in Bayes’ theorem. However, because
neural circuits are highly recurrent, sensory evidence and prior information can easily reverberate and
be artificially amplified through feedforward/feedback loops in the brain, resulting in the corruption of
sensory evidence by prior information and vice versa. Such reverberation can be avoided if excitation
(E) and inhibition (I) are perfectly balanced in cortical circuits [22], a well-known property of the healthy

brain [24,25].

Recently, our team hypothesized a link between E/I imbalance in schizophrenia and the
occurrence of psychotic symptoms (hallucinations and delusions). This hypothesis was recently
reinforced by experimental evidence in a probabilistic reasoning task [26]. Interestingly, we also
detected a certain amount of circularity in healthy participants, particularly the corruption of sensory
evidence by prior information. If circular inference is a more general mechanism than initially predicted,
an interesting question arises: is it possible to find evidence of circularity [27] in the perceptual behavior
of healthy subjects in the absence of any psychotic experience? Here, we propose that bistability could

be an example of percepts induced by such circularity.

To investigate this theory, we induced bistability in healthy participants using the NC. We asked
how different pieces of information, including (a) pre-existing priors (i.e., the SFA preference), (b) newly

acquired priors (i.e., instructions), and (c) visual cues, are combined to generate the percept. We


https://doi.org/10.1101/521195
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/521195; this version posted January 15, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

compared different Bayesian and circular inference (Cl) models for their ability to fit the data. We
particularly sought to understand whether circularity and aberrant correlations between priors and

sensory evidence significantly contribute to the way we perceive the world.

Results

To determine the effects of prior knowledge and sensory evidence in an ambiguous perceptual
context, 55 participants were exposed to continuous presentation of a NC. The dominant percept was
discontinuously sampled according to the procedure presented in Figure 2 and was analyzed in terms
of relative predominance (RP). RP corresponds to the overall probability of perceiving the SFA or SFB
interpretation. A value of 1 or 0 would correspond to the SFA or SFB interpretation, respectively, fully
dominating perception. A value of 0.5 would characterize a purely chance level wherein the 2 percepts

are equiprobable.
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Figure 1: Stimuli and instructions. (a) Different Necker cubes were used to induce bistable perception, in which
the 2D figure is perceived as a 3D cube with either the left or the right side closer to the observer. Even in the case
of the completely ambiguous stimulus (1), people have an implicit preference to interpret the cube as seen from
above (SFA interpretation), which was interpreted an implicit prior. This prior can be annihilated by tilting the
stimulus (4). Sensory evidence was manipulated by adding visual cues in the form of contrasts (2-3,5-6). The
contrast could be strong (3,6) or weak (2,5) and could support (2,3) or contradict (5,6) the implicit prior. (b) A further
manipulation of the prior was achieved by giving correct or wrong information to the participants about which
interpretation was generally stronger (explicit prior). Instructions could support or contradict the implicit prior. An
additional control group received no particular instructions. Crucially, to avoid additional priming effects, all groups
received the same visual instructions (including the stimulus and the 2 possible interpretations), and the differences
were only verbal. Note that the color used in the present figure has only been added for illustration purposes; during

the experiment, participants were presented with full cubes.
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Figure 2: Experimental design. The task was inspired by [29]. Instructions were given at the beginning of the
experiment (each participant received one set of instructions, creating a between-subjects design) and were
followed by a short training phase to familiarize participants with the stimulus and the switches. During each run,
one version of the cube was continuously presented to the participants, who were asked to discontinuously report
their dominant percept by pressing a button every time a sound was heard. Each run consisted of 25 sound-trials
(mean inter-sound-interval = 1.5 s). The main experiment consisted of 30 runs separated into 6 blocks of 5 runs
each. In each block, a different variant of the stimulus was used. The first and fourth blocks always contained the

ambiguous cube. The four cue conditions were randomly assigned to the four remaining blocks.

Sensory evidence was manipulated by casting the cube into shadow in such a way that it either
contradicted or supported the SFA implicit prior (see stimuli, Figure l1a (2-3,5-6)). Visual cues were
either strong or weak so that the analysis could reconstitute a cue pseudo-continuum from strongly
contradicting to strongly supporting. In the completely ambiguous condition, no difference existed in the

color of the two sides of the cube (see stimuli, Figure 1a (1)).

Prior knowledge was manipulated by randomly allocating participants to 4 groups. The first
group was exposed to a tilted cube, which was expected to neutralize the SFA implicit bias (Figure la
(4)). The remaining 3 groups viewed a normal cube but received different explicit instructions that either

“supported”, “contradicted”, or were “neutral” with respect to the SFA bias (Figure 1b).

Table 1: Demographic characteristics of the 4 groups (without outliers). The 4 groups did not differ in terms of
age, education or sex. ¢: F-test, °: Chi-squared test

Tilted Instr. Supp. Instr. Contr. No Instr. Comparison
Variables (n=12) (n =14) (n =14) (n =15) Test p
Age 23.33 28.64 28.93 29.27 1.310 0.28
Education 17.25 19.07 18.57 18.00 1.770 0.16
mean (sd) (2.42) (1.94) (2.17) (1.96)
Sex ratio (m:f) 3:9 77 8:6 9:6 3.87° 0.28
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Model-free analysis

The effects of prior knowledge and sensory evidence manipulation are presented in Figure 3.
RP was not significantly different between the 2 ambiguous blocks (runs 1-5 and 16-20) in any of the
groups (p > 0.1), indicating only minor effects of fatigue (at least until the 20th run) and a stable effect
of the instructions. Manipulation of sensory evidence significantly impacted bistability, with RP
increasing as the visual cue changed from strongly contradicting to strongly supporting (f = 0.415, p <
0.001). Manipulation of prior knowledge through instructions only affected RP in the case of
contradicting instructions, with a significant overall reduction in RP (B = -0.096, p < 0.001). Tilting the
cube in the absence of any instruction resulted in a significant decrease in RP (f = 0.103, p < 0.001),
which substantiated the effect of an implicit prior that naturally biases perception toward SFA
dominance. Importantly, we found a significant interaction between the continuous effect of cue and the
effect of contradicting instructions (compared to the normal cube with supporting instructions and the
tilted cube with no instructions; B = 0.265, p = 0.016 and B = 0.265, p = 0.021, respectively). Note that
this interaction should not be present for a purely Bayesian observer, since the contribution of sensory

evidence and priors (when expressed as the log odds ratio) should be additive.
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Figure 3: Relative predominance between conditions. (a) The four subplots illustrate the four different prior
conditions: tilted cube (top left, green; N=12) or normal cube with no instruction (top right, blue; N=15), supporting
instructions (bottom left, yellow; N=14) or contradictory instructions (bottom right, red; N=14). The x-axis presents
the 5 cue conditions, ranging from strong cue supporting the SFB interpretation (left) to strong cue supporting the
SFA interpretation (right). Thin lines correspond to the behavior of single participants (outliers are not presented),

and thick lines represent the average RP for each group, after removing the outliers (+SE). (b) Between-groups
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comparison of average RP. A linear mixed-effects model revealed significant effects of sensory evidence (p <0.001)
as well as the prior (contradictory instructions, p < 0.001) and tilt (p < 0.001)) manipulations. We also observed a
cue x instruction interaction for the contradictory instructions (red curve) compared to supporting instructions (yellow

curve, p =0.016) and the tilted cube (green curve, p = 0.021). See also Figures S6, S7.

Model-based analysis

To test our hypothesis that circularity shapes bistable perception, we fitted a Cl model to the
average data, similar to the one introduced by Jardri and colleagues [26]. This model assumes that
participants perform approximate inference due to the reverberation of sensory evidence and priors in
the hierarchy as a result of unbalanced inhibitory control (Figure 4a, right panel). Furthermore, we
compared the performance of our Cl model against that of 2 Bayesian models performing exact
inference: first, a naive Bayes (NB) model, which is identical to the multiplicative rule of Bayes’ theorem
(Figure 4a, left panel), and second, a weighted Bayes (WB) model in which different levels of trust
(weights) could be assigned to sensory cues and priors. The WB model was equivalent to a NB model
in which all the weights were set to 1 and equivalent to a Cl model without any reverberating messages
(Figure 4a, middle panel). The NB, WB and Cl models can thus be considered 3 versions of the same
model with an increasing number of parameters being fitted to the data. Predictions for the 3 models

are presented in Figures 4b and 4c.
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Figure 4: lllustration of models and model predictions. (a) Three different models were used to fit the data. The
simplest model (naive Bayes (NB), left panel) consisted of a simple addition of the sensory evidence and prior on
the log scale and is equivalent to a three-layer generative model in which all the connections are equal to 1. The
weighted Bayes (WB) model (middle panel) further assumes that there is only partial trust between the nodes of
the generative model. Importantly, both the NB and WB models perform exact inference. Finally, we used a circular
inference (Cl) model (right panel) that further allows reverberation and overcounting of sensory evidence and prior
knowledge. (b) Log(RP) ratio predicted by the models as a function of the log-likelihood ratio. The NB model predicts
a linear dependence, whereas both the WB and Cl models predict sigmoid curves (due to the saturation imposed
by the weights). Furthermore, the 3 models make different predictions about the slope of the curves around zero.
The NB and WB models predict a slope of 1 and less than 1, respectively, and only the Cl model predicts a slope

greater than 1. (c) In the CI model, the slope of the log-likelihood/log-posterior curve also depends on the log-prior
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as aresult of the reverberations, indicating an interaction between the two different types of information [27]. Weaker

priors are associated with steeper sigmoid curves. See also Figures S1 — Sb.

Figure 5 illustrates the best-fitting NB (5a), WB (5b) and Cl models (5¢). Figure 6 presents the
values of the free parameters in the 3 models. The 3 models predict very different values for likelihoods
and priors. These differences can be easily explained by the NB model assuming perfect trust in sensory
evidence and priors, whereas the other 2 models predict much lower weights (wg = 0.77,wp, = 0.59 for

the WB model and wg = 0.66, w, = 0.59 for the Cl model).

The NB model captures most trends in the data qualitatively, with the following exceptions. First,
it underestimates RP in the case of the normal cube without instructions (Figure 5a, blue curve), and
second, it is unable to predict the correct slopes. The latter limitation is especially striking in the case of
a normal cube with contradicting instructions, where the slope is larger than predicted (i.e., larger than
1; Figure 5a, red curve). The WB model performs better than the NB model in most conditions, but it
also underestimates the effect of the cue when the instruction contradicts the SFA preference (see
Figure 5b, red curve). In contrast, the ClI model captures this last trend (see Figure 5c), suggesting
that the variability of the cue effect (the slope) in different conditions is due to circularity in the inference

process.

A quantitative comparison of the 3 models using BIC scores, which penalizes the use of extra
free parameters in the WB and CI models, indicated that the Cl model significantly outperformed the 2
Bayesian models (BIC scores for NB = -242.65, for WB = -240.77, and for Cl = -249.49). A lower BIC
score indicates that the model better fits the data, with a difference larger than 2 considered positive
and a difference larger than 6 considered strong (85, = 6.84 for comparison of the Cl and NB models

and 85, = 8.72 for comparison of the Cl and WB models).
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Figure 5: Observed and predicted log(RP) ratios as a function of the log-likelihood ratio. Different colors
correspond to different prior conditions. Thin lines represent single participants’ data, highlighted points correspond
to average RP (+SE), and thick lines illustrate model predictions. The three models are presented separately, since
likelihood was itself considered a free parameter [(a): NB, (b): WB, (c): Cl]. The models were fitted to aggregated
data from all participants by minimizing the mean squared distance between the observed and predicted log(RP)

ratios. See also Figures S1 — S4.
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Figure 6: Optimal values of free parameters for the three models [(a): NB, (b): WB, (c): Cl]. The NB model had
fewer free parameters than the other 2 models, since the two weights were by definition fixed to 1. We observed
important differences in the values of the likelihoods (L s¢y, Lswear) @S Well as in the values of the priors (Linpi, Lexpt)
between the NB model, on one hand, and the WB and CI models, on the other hand. These differences were mainly

due to different values for the weights (ws, wp). See also Figures S1 — S4.
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Discussion

The goal of the current study was to decipher how priors and sensory evidence are combined
to shape bistable perception. We particularly wished to investigate whether such integration is
probabilistically optimal or if other principles are at play, contributing to the debate on whether bistable
perception is a by-product of perceptual inference (regardless of its neural implementation). Our results
suggest an imperfect neural implementation of probabilistic inference, possibly due to an imbalance

between excitation and inhibition in neural circuits.

As previously reported, we found an asymmetry in the way participants interpreted the
completely ambiguous NC [8]. This finding supports the notion of an implicit preference (implicit prior)
to perceive objects in an SFA configuration [3]. More surprisingly, we showed that this preference could
be explicitly manipulated by giving information that either confirmed or rejected it (explicit prior). In
agreement with previous studies [28-30], adding visual cues also significantly biased perception toward
the corresponding interpretation. The qualitative effects of implicit priors, explicit priors and sensory
evidence appeared compatible with a probabilistic combination of information, suggesting that Bayesian

inference was still at work.

However, we also found a significant interaction between priors and sensory evidence that could
not be explained by exact inference. In particular, the effect of sensory cues was stronger when the prior
was more ambiguous (e.g., when the implicit preference for SFA was contradicted by instructions) and
weaker in the absence of a prior (e.g., a tilted cube). In contrast, Bayes’ theorem predicts that sensory
cues are weighted according to their reliability, independently of the prior. Through parametric model
comparison, we found that the present data could be better accounted for by a Cl model, in which prior
beliefs (i.e., the instructions and SFA preferences) corrupt new sensory evidence (i.e., ambiguous cues
are misinterpreted as supporting the current belief) and vice versa. This corruption could be the result
of feedback to sensory areas insufficiently controlled by inhibition [22]. Such feedback could also cause
multistable perception (i.e. generate a bistable attractor; see Supplementary Figure S5) by temporarily

stabilizing the current percept despite the absence of supporting evidence [27].
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These findings add new elements to a long-lasting debate in neuroscience that questions
whether perception is mostly driven by bottom-up processes, or whether top-down effects are equally
important [21]. Multiple studies have investigated how low- or high-level manipulations affect bistability,
without offering definitive answers. For the former, authors have used priming or suppressing effects
(usually attributed to adaptation) [31-34], changes in retinal location [35], manipulation of the type of
presentation (continuous—intermittent) [36,37], and direct manipulation of the properties of the stimulus,
like intensity [38] and completeness [39]. In contrast, studies of high-level manipulations have focused
on the effects of volition [40,41], expectation and prediction [42], attention [43-45], learning [46], mental
imagery [47], knowledge of reversibility [48] and finally the preference for stimuli with a statistical
structure similar to that of natural images [8,49,50]. Note however that the present study was not

designed to test specific neural mechanisms such as adaptation and noise.

Consistent with the present study, some authors have focused on how these various effects are
combined [51-53]. Moreno-Bote et al showed that cue combination in a bistable display can be well
explained by a multiplicative law (their predictions are similar to the NB model described here) [54],
whereas Zhang and colleagues demonstrated that different types of priors are effectively combined [4].
Here, we have gone a step further and investigated how top-down (prior manipulation) and bottom-up
(sensory cues) effects interact. Rather than inducing a prior through learning, as is widely done in the
literature [46,47], we directly manipulated participants’ expectations. This manipulation assumes that
instructions can generate a high-level prior affecting perceptual processing in a way similar to a learned

prior (as in [55])

Despite the amount of available data and the apparent simplicity of the problem, very few studies
in the literature have applied normative explanations for bistable perception that include data-fitting [54].
Although proposing a complete model of bistable perception based on circular inference goes beyond
the scope of the paper, our present results suggest that a local message passing algorithm with the
addition of information loops could constitute the basic principle of such a normative model. Some
alternative normative models have relied on a simplified form of Markov Monte-Carlo sampling. More
precisely, they assumed that the current percept is based on taking one sample from the posterior

distribution and using this sample as a prior for the next time step [56,57]. However, Markov Monte-
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Carlo sampling requires very long sampling times (because of temporal correlation between samples)
to perform accurate inference. A possible argument in favor of circular inference would be that it can
reach correct conclusions quickly and accurately in most perceptual tasks, except in particularly
ambiguous cases [22], making circular inference a powerful model for perceptual inference in

unambiguous cases.

From a methodological point of view, and in contrast to most studies on bistable perception, in
which participants continuously report the dominant percept with a sustained button-press [58,59], we
asked participants to respond discontinuously, after being exposed to a go-signal [29]. This procedure
has two main advantages. First, it minimizes the role of attention. Indeed, it has been shown that
attention plays a crucial role in bistable perception, especially for certain bistable stimuli [41,60]. The
inability to control for differences in attentional load between participants could be an important source
of uncertainty and even partly explain the huge variability usually observed in some publications (see
[29]). Second, this procedure is less affected by differences in reaction time, as one could use the time
of the sound as a proxy for the time of the decision. As a consequence, discrete sampling not only
seems ideal for a rigorous experimental exploration of bistable perception but is also useful for adapting

this task to specific clinical populations with well-known attentional and motor problems.

Finally, some limitations need to be acknowledged. First, because of the type of priors used
(instructions), we were obligated to use a between-subjects design, which prevented us from comparing
the effects of different instructions in the same participant. As a result, there were only 5 conditions per
participant, and we could only fit our models to averaged data, ignoring variability between participants
(see also [15,54]). Second, all the models under consideration were based on an assumption of temporal
independence between the percepts at the time of the sounds. This assumption can be partly justified
by the weak autocorrelation of the averaged data (see Supplementary Figure S6), although these
autocorrelations may be stronger in individual participants [56]. Nevertheless, temporal statistics would
not affect the qualitative predictions of the models [54]. In particular, temporal statistics without circular
inference would not provide a valid alternative to the present findings, including the slopes and the cue
X instruction interaction. Third, a response bias could partially account for instruction effects (explicit

priors). However, a response bias would have a similar effect over responses across different cue
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conditions while leaving perceptual processing completely unaffected. Although the above is a possible
interpretation of the data, it remains highly improbable, given the non-linear interaction found between

instructions and visual cues (see also Supplementary Figure S7 for additional arguments).

Overall, this study confirms that circular inference can be observed to a certain degree in healthy
individuals. This unprecedented observation opens a range of crucial questions that suggest
opportunities for further research: in what other ways could circularity affect cognition, and what are its
neural substrates? Crucially, we must determine under what circumstances circular inference generates
aberrant beliefs or percepts, such as those observed in pathological (neurological or psychiatric)

contexts.
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STAR Methods

Contact for reagent and resource sharing
Further information and requests for resources and reagents should be directed to and will be

fulfilled by the Lead Contact, Renaud Jardri (renaud.jardri@chru-lille.fr).

Experimental model and subject details

Participants were healthy volunteers meeting the following inclusion criteria: age > 18 years,
provision of informed consent, normal or corrected-to-normal near visual acuity, no past or current
medical history of neurological or psychiatric disorders, and no current or recent use of psychotropic
medication or toxic drugs (the demographic characteristics can be found in Table 1). Near visual acuity
was quantified using the Parinaud score; we considered values less than or equal to 2 to be normal. Of
the 65 participants initially recruited, 10 were excluded because of outlying mean RP values (more
details are provided in the “Quantification and Statistical Analysis” section). We highlight that 7 of
the 10 excluded participants also exhibited qualitatively bizarre behavior (such as opposite effects of
visual cues), indicating a misunderstanding of the instructions or low attention levels. The study was

approved by an ethics committee.

Method details

The general procedure (Figure 2) was inspired by Mamassian and Goutcher’s protocol [29] and
consisted of 6 blocks of 5 consecutive runs. During each run, a 200 x 200 pixel NC displayed in the
middle of a black screen was continuously presented to the participants. Using a forced-choice method,
we asked participants to report their ongoing interpretation as soon as they heard a warning sound,
which occurred 25 times in a pseudo-regular manner (mean inter-sound interval = 1.5 s, uniformly
distributed between 1 and 2 s). Each response corresponded to a trial, providing a discontinuous
sampling of the task’s perceptual dynamics. Runs were separated from one another by a black screen
with a duration of 10 s to minimize between-run influences. The experiment was also interspersed with
5 between-block breaks of hon-predefined duration. Prior to the experiment, participants were informed

that they would be presented with empty cubes, the 2 possible interpretations of which were explicitly
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mentioned. The basic instruction was to passively view these cubes without trying to constrain

perception.

We manipulated sensory evidence either by making the cubes homogeneously gray (i.e.,
perfectly ambiguous) or cuing them by shadows (Figure 1a (1-3,5-6)). This additional depth information
was intended to bias perception toward one interpretation or the other. It was specified by two
parameters. First, its orientation was defined in relation to the implicit prior. A shadow falling on the top
left corner was expected to emphasize the SFA preference and thus was classified as a supporting cue.
Conversely, a shadow that fell on the bottom right corner was characterized as a contradictory cue, as
it went against implicit bias. Second, the strength of the cue (which can also be conceived in terms of
the amount of sensory information) was controlled by the shadowing contrast level. Weak and strong
cues corresponded to 20% and 30% contrast, respectively. The 15t and 4t blocks always consisted of
presentation of an ambiguous cube. The other blocks were randomly allocated a different type of cue,
defined by the 2 x 2 factorial combination of 2 possible orientations (contradicting or supporting) and 2

possible strengths (weak or strong).

Participants were separated into 4 groups (n = 12, 14, 14, and 15) that differed in terms of how
we altered their prior knowledge. The first group was presented with a tilted cube, which was expected
to neutralize the SFA implicit bias (Figure la (4)). The remaining 3 groups viewed a normal cube—
where the implicit prior is deemed present—but received different types of instructions, which we used
to manipulate their implicit prior. In Group 2, instructions explicitly mentioned the presence of the implicit

bias:

“When looking at the cube, most people tend to see it with its front side on the right.
Differently said, there is a natural tendency to see the cube mostly “from above”. In the

present experiment, we aim to study the characteristics of this spontaneous preference.”

Because the statement was correct, the instructions were considered to support the

spontaneous bias (supporting instructions). In Group 3, participants were informed about a natural

tendency to see the cube primarily as though it were seen from below. The wording was similar, but the
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statement was incorrect, thus contradicting the implicit prior (contradictory instructions). In Group 4, the
participants received no complementary information. In this case, their prior knowledge could be
considered akin to the implicit bias (neutral instructions). Note that, to avoid any additional priming
effects, the difference among the 4 groups was only verbal, while all groups received the same visual
instructions, including the stimulus and the 2 possible interpretations. As shown in Table 1, the 4 groups

did not significantly differ in terms of demographic characteristics.

To neutralize the potential confounding bias of eye-movements, participants were additionally
instructed to gaze at a fixation point in the middle of the screen. A training session allowed each

participant to familiarize himself/herself with the stimuli and the apparatus.

The experiments were implemented in MATLAB v. 2011b (MathWorks, Natich, MA), using
Psychtoolbox v. 3.0.10. Stimuli were displayed on a 17-inch LED screen with a resolution of 1280 x
1024 pixels. Responses were collected using a classical computer keyboard. A chin-cup and forehead
bar ensured immobilization of the participant’s head at a distance of 60 cm between the eye and the

screen.

Model-free analysis
RP was calculated by taking the grand mean of responses across trials, runs and participants.

It can be interpreted as the general probability to perceive one interpretation or the other on each trial.

Model-based analysis

We conceptualized perception as an inferential process, in which the brain generates a
subjective belief about the possible interpretations of the NC (i.e., a posterior probability) and uses it to
make a perceptual decision, particularly whether it is an SFA or SFB cube. Three different models were
fitted to the average RPs of the 4 groups. All the models assumed independence between the sequential
perceptual decisions within a run. They differed in how the 3 main effects of the experiment (sensory

evidence S, an implicit prior P;,,,;, and an explicit prior P,,,,) were combined to give rise to the posterior
probability P(X|S, Pimplﬂpexpl)' In this expression, X is a binary variable that corresponds to the 3D

interpretation (X = 1 corresponds to SFA, X = 0 corresponds to SFB.
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The simplest model that was fitted to the data is the NB model, which assumes perfect
integration of likelihoods and priors according to the Bayes theorem. Consequently, it's equivalent to a
basic multiplicative rule [54] (additive rule in the log scale) (eq. 1; Figure 4a, left panel). The WB model
extended the NB model by assuming only partial trust to the sensory evidence and prior information (eq.
2; Figure 4a, middle panel). Crucially, both models are Bayesian models performing exact inference.
Finally, the third model is a circular inference model [26], meaning that information is not only weighted,
as in the WB model, but it'’s also amplified, due to information loops (eq. 3; Figure 4a, right panel). As
a result, the Cl model is doing sub-optimal inference, which renders it qualitatively different from the
other 2 models.

The 3 models are quantitatively described by the following equations:

LRP = LS + Limpl + Lexpl (1)
Lgp = F(Ls,ws) + F(Limpl + Lexpl'WP) (2)

Lgp = F(Ls + F(Ls,ws) + F(Lpy, wp),Ws) + F(Lp, + F(Ls,ws) + F(Lp,, wp),wp) (3)

where F(L,w) is a sigmoid function:

wel +1—w
F(L,w) = log (m) (4)

and Lp, = Limp; + Lexpi- Lrp COrresponds to the log-ratio of the RP and is taken to be equal to the log-
posterior ratio. That assumption is because we assume that perceptual decisions are made using
probability matching, a commonly observed strategy in sequential 2AFC tasks [20,54,61]. We note that
applying a SoftMax to the log posterior odds (a more appropriate model for perceptual decisions) would

only induce a global change in the gain of the former and would not affect any of our conclusions.

RP
1—-RP

Lep = log( ) (5)
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The log-likelihood ratio L, the implicit log-prior ratio L;,,, and the explicit log-prior ratio L,,,, are given

by the following equations:

L=log(;=5) ©

Because none of these variables was known, they were all treated as free parameters. To reduce as
much as possible the total number of free parameters that needed to be optimized, we further

considered symmetry both in the effects of the cues and the instructions, resulting in 4 free parameters

(Ls,strong' Ls,weak' Limpl' Lexpl)-
Finally, wsand w, (appearing only in the WB and Cl models) correspond to participants’ trust (or weight)
in the sensory evidence and priors, respectively, and constituted the 2 additional free parameters of

those models:

ws=P(X =1|S=1)=PX =0|S = 0) )

wp=P(X=1P=1) = P(X =0|P = 0) (10)

Importantly, since the SFA prior was completely uninformative in the case of the titled cube, we

considered the following:
wp > 0.5 if Normal Cube,wp = 0.5 if Tilted Cube (11)

As a control, we also considered the case in which w, has the same value in all conditions (see

Supplementary Figure 1).
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An illustration of the different models is presented in Figure 4a The Cl model (Figure 4a, right
panel) hypothesizes that the perceptual system performs approximate inference due to unbalanced
inhibitory control. Those impairments lead to a failure to remove efficiently redundant messages: a
reverberating prior, which is misinterpreted as sensory evidence, re-ascends the hierarchy and corrupts
the likelihood term and redundant sensory evidence, which descends the hierarchy and corrupts the
prior term. Additionally, as in [26], a cross-term is added to each component, rendering likelihood and
prior information completely inseparable. Because of those extra terms, the sensory evidence and prior
components become aberrantly correlated, and consequently they generate an interaction (Figure 3c;
[27]). Note that the WB model (Figure 4a, middle panel) can be derived from the Cl model by removing

the reverberated terms, while the NB model (Figure 4a, left panel) by further assuming: wg = wp, = 1.

The CI model used here was similar to the model used by Jardri and colleagues to explain
participants’ behavior (both those suffering from schizophrenia and healthy participants) in a
probabilistic reasoning task [26]. Nevertheless, an important difference needs to be highlighted. In the
present study, the redundant messages corrupted the original messages only once (there was still
overcounting of information, but the amount of amplification stayed constrained), which is equivalent to
setting as and ap (the parameters in the original model that represented the number of times the
redundant messages were taken into account) equal to 1. The reason was twofold. First, fixing the
number of loops did not change the results qualitatively. Indeed, the resulting model predicted both a
slope larger than 1 and an interaction between sensory evidence and priors, the two characteristic
features of circular inference observed in the data. Second, the additional complexity (2 more free

parameters) did not further improve the fit (see Supplementary Figure S2).

Figure 4b illustrates the predictions of the 3 models. Contrary to the linear NB model, both the
WB model and the Cl model are non-linear models, due to the saturation of the posterior that is caused
by the weights. Importantly, the 3 models make different predictions about the slope of the log-
likelihood/log-posterior curve around 0: the NB model and WB model predict a slope equal to and
smaller than one, respectively. Interestingly, only the Cl model can generate a slope that is larger than

one, due to overcounting of the prior and of sensory evidence. Moreover, it predicts interaction between
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the prior and sensory evidence, such that the slope differs depending on prior strength and weight

(Figure 4c).

Finally, in eq. 1-3, we assumed that instructions act as an additional prior term, essentially
changing the strength of the implicit preference independently of the presence of a visual cue. As a
result, any interaction between the effect of the cue and the effect of the instructions is forbidden under
Bayesian formalisms and can only be explained by non-Bayesian mechanisms such as the presence of
circular inference. It is worth noting though that alternative interpretations of the instructions (which are
even more complex) might also generate such an interaction, notably likelihood-dependent instructions,
or instructions that directly affect the reliability of the sensory evidence. Those additional models were

also considered and compared to the CI model (see Supplementary Figures S3 and S4).

Quantification and statistical analysis

Model-free analysis

Because RP is a ranged variable, we performed exclusively non-parametric analyses. The
effects of priors, sensory evidence, and their interaction were tested using a linear mixed-effects model
comprising the effects of cues and instructions as well as their interaction as fixed effects, together with
Gaussian random effects for intercepts and slopes. For significant omnibus effects, we performed post
hoc comparisons using either paired or unpaired rank-sum tests to clarify simple effects in the 2 x 2
design. Finally, one-sample Wilcoxon signed rank tests were performed to compare the mean RP with
0.5, i.e., chance level. All participants whose RP was more than 1.5 interquartile ranges below the first
guartile or above the third quartile were considered as outliers and were excluded. All significance tests
were performed on the final sample of the 55 participants (12, 14, 14 and 15 for each group respectively),
they were two-tailed and used an alpha value of 0.05 in the statistical toolbox of Matlab v. 2011b
(MathWorks, Natich, MA). More information about the different tests can be found in the Results and in

the figure legends.

Model fitting

All the models were fitted to the data by minimizing the mean squared distance between the

log(RP) ratio for the different conditions and the predictions of the models. Instead of simply considering
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the means, we used data points from each participant, making full use of the available information but
assuming that the parameters did not vary between participants. The optimal values for parameters
were obtained using a non-linear programming method (sequential quadratic programming; a built-in
MATLAB function), appropriate for non-linear constrained multivariable functions. To avoid local minima,
the optimization process was repeated 100 times for each model, with initial values chosen each time

randomly from the parameter space.

Model comparison

We compared the quality of the fits for the 3 models using BIC scores. We approximated the

likelihoods of all the models as normally distributed. The BIC score can then be calculated by the

following equation:

BIC = nlog(c?) + klog(n) (12)

where n is the total number of data points (5 points per participant), 2 is the mean squared error, and

k is the number of free parameters (4 for NB, 6 for the other models).
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