

1 **High-quality genome assembly and high-density genetic map of**
2 **asparagus bean**

3 Qiuju Xia^{1,2,10,11}, Ru Zhang^{3,11}, Xuemei Ni^{2,10,11}, Lei Pan⁴, Yangzi Wang^{2,10}, Xiao
4 Dong^{2,10}, Yun Gao⁵, Zhe Zhang^{2,10}, Ling Kui⁶, Yong Li^{2,10}, Wen Wang^{3,6}, Huanming
5 Yang^{1,7}, Chanyou Chen⁴, Jianhua Miao^{8,*}, Wei Chen^{5,7,9,*}, Yang Dong^{5,7,9,*}

6

7 ¹BGI Education Center, University of Chinese Academy of Sciences, Shenzhen
8 518083, China

9 ²BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen 518120, China

10 ³Center for Ecological and Environmental Sciences, Key Laboratory for Space
11 Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an 710072,
12 China

13 ⁴Hubei Province Engineering Research Center of Legume Plants, College of Life
14 Sciences, Jianghan University, Wuhan 430056, China

15 ⁵College of Biological Big Data, Yunnan Agricultural University, Kunming 650201,
16 China

17 ⁶State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of
18 Zoology, Chinese Academy of Sciences, Kunming 650223, China

19 ⁷BGI-Shenzhen, Shenzhen 518083, China

20 ⁸Guangxi Key Laboratory of Medicinal Resources Production and Genetic
21 Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023,
22 Guangxi, China

23 ⁹National & Local Joint Engineering Research Center on Germplasm Utilization &
24 Innovation of Chinese Medicinal Materials in Southwestern China, Kunming 650201,
25 China

26 ¹⁰Key Laboratory of Genomics ,Ministry of Agriculture , BGI-Shenzhen, Shenzhen,
27 518083, China

28 ¹¹These authors contributed equally to this study

29

30 *Corresponding authors: Jianhua Miao (mjh1962@163.com), Wei Chen
31 (wchenetr@gmail.com), and Yang Dong (loyalyang@163.com)

32

33

34

35

36 **Abstract**

37 Asparagus bean (*Vigna. unguiculata* ssp. *sesquipedalis*), known for its very long and
38 tender green pods, is an important vegetable crop broadly grown in the developing
39 countries. Despite its agricultural and economic values, asparagus bean does not have
40 a high-quality genome assembly for breeding novel agronomic traits. In this study, we
41 reported a high-quality 632.8 Mb assembly of asparagus bean based on the whole
42 genome shotgun sequencing strategy. We also generated a high-density linkage map
43 for asparagus bean, which helped anchor 94.42% of the scaffolds into 11
44 pseudo-chromosomes. A total of 42,609 protein-coding genes and 3,579
45 non-protein-coding genes were predicted from the assembly. Taken together, these
46 genomic resources of asparagus bean will facilitate the investigation of economically
47 valuable traits in a variety of legume species, so that the cultivation of these plants
48 would help combat the protein and energy malnutrition in the developing world.

49

50 **Background & Summary**

51 Asparagus bean (*Vigna unguiculata* ssp. *sesquipedalis*, $2n = 2x = 22$) is a
52 warm-season and drought-tolerant subspecies of cowpea (*Vigna unguiculata*) with a
53 wide cultivation area in East and Southeast Asia¹. This plant is also known as
54 yardlong bean because of its characteristic pod that grows up to 50-100 cm in length².
55 The long pod trait is believed to be the result of intensive local domestication after it
56 was brought to Asia from sub-Saharan Africa³. Unlike the grain-type subspecies
57 common cowpea (*Vigna. unguiculata* ssp. *unguiculata*, or black-eyed pea), asparagus
58 bean is harvested while its pod is still tender, thereby providing a very good source of
59 protein, minerals, vitamins, and dietary fiber⁴. Due to the low requirement for

60 cultivation management and its high nutritional value, asparagus bean is one of the
61 top crops that help combat malnutrition and food insecurity in most developing
62 countries⁵.

63

64 As the DNA sequencing technologies became more advanced and affordable for the
65 past decade, previous research had mainly focused on delineating the genome of
66 common cowpea (estimated genome size of 620 Mb⁶). The first common cowpea
67 (variety IT97K-499-35) genomic resources included a partial 323 Mb whole-genome
68 shotgun assembly⁷, a 497 Mb bacterial artificial chromosome physical map⁷, and
69 consensus genetic maps based on either 10K⁸ or 50K single nucleotide
70 polymorphisms (SNPs)⁷. A more recent research reported two survey genomes of
71 common cowpea (varieties IT97K-499-35 and IT86D-1010) with substantially
72 improved assembly sizes (568 Mb and 609 Mb, respectively)⁹. In addition, a draft
73 IT97K-499-35 variety reference genome was assembled by incorporating the single
74 molecule real-time technology, yielding an assembly size of 519.4 Mb into 722
75 scaffolds and 11 pseudo-chromosomes (<http://phytozome.jgi.doe.gov/>). In comparison,
76 the genetic resources for asparagus bean are lacking despite its agricultural and
77 economic importance. So far, only three genetics maps were derived from either
78 simple sequence repeat markers^{10,11} or restriction-site associated DNA sequencing for
79 asparagus bean¹².

80

81 In this study, we aimed to fill the knowledge gap with regard to the asparagus bean
82 genome and provide new genetic resources for breeding cowpea and related legume
83 species. A schematic workflow of the research was showcased in Fig. 1. In brief, a
84 series of short-insert and large-insert Illumina libraries were sequenced on an Illumina
85 HiSeq 4000 platform, yielding a total of 222.9 Gb clean data (Table 1). Since the
86 genome size of asparagus bean was estimated to be 652.4 Mb using the *K*-mer
87 distribution analysis (Fig. 2), the clean data used for genome assembly represented
88 about 340 × coverage. The software SOAPdenovo¹³ was used to generate a draft
89 contig assembly of 549.8 Mb with a contig N50 size of 15.2 kb (Table 2). After
90 scaffolding and gap closing, the final asparagus genome was 632.8 Mb (96.98% of the
91 estimated genome) in size with scaffold N50 size of 2.7 Mb (Table 2, Data Citation 1).
92 We also obtained 536,824 high-confident SNPs from the whole-genome sequencing
93 data of 97 asparagus bean F2 individuals and two parents from a well-controlled
94 selfing population. These SNPs were used to construct a high-density genetic map for
95 asparagus bean, in which 1,556 scaffolds were successfully anchored onto 11
96 pseudo-chromosomes (Table 3). Furthermore, the asparagus bean genome contained
97 294.95 Mb of transposable elements, accounting for 46.47% of the assembly (Table 4
98 and 5). The gene prediction was performed on a combination of *de novo*, homologous,
99 and RNA-Seq-based approaches. It resulted in 42,609 protein-coding genes and 3,579
100 non-protein-coding genes, respectively (Table 6).

101 **Methods**

102 **Materials**

103 All plant accessions were provided by Hubei Natural Science Resource Center for
104 Edible Legumes in Wuhan of China. A single plant of the widely cultivated asparagus
105 bean variety ‘Xiabao II’ (*Vigna unguiculata* ssp. *sesquipedalis* var. ‘Xiabao II’) was
106 used for *de novo* sequencing and genome assembly. A F2 sequencing population was
107 obtained for making the genetic map according to the following procedure. First, the
108 F1 population were obtained by crossing ‘Xiabao II’ (male, same plant used for *de*
109 *novo sequencing*) with a cultivar from the other subspecies, ‘Duanjiangdou’ (*Vigna*
110 *unguiculata* ssp. *unguiculata* var. ‘Duanjiangdou’; female). This step yielded 17 seeds,
111 from which only 12 seeds survived till flowering. These F1 individuals were bagged
112 to promote selfing, which produced 561 seeds in total (the F2 generation). Only 367
113 of the F2 individuals were able to germinate and mature into full plants. We selected
114 97 of the 367 F2 individuals for genome sequencing and genetic map construction.

115

116 **Whole-genome shotgun sequencing**

117 Young leaves were collected from a single ‘Xiabao II’ plant and used for genomic
118 DNA extraction by the CTAB method¹⁴. About 10 µg of genomic DNA were used for
119 library construction. Four short-insert libraries (350 bp, 445 bp, 758 bp, and 912 bp)
120 and five large-insert libraries (2 kb, 3 kb, 5 kb, 9 kb, and 15 kb) were constructed with
121 NEBNext Ultra II DNA Kit (NEB, America) and Nextera Mate Pair Sample
122 Preparation Kit (Illumina, America), respectively. These libraries were sequenced on
123 an Illumina HiSeq4000 platform. To ensure high-quality for the subsequent *de novo*
124 assembly step, we filtered out the low-quality data by the following criteria: (a) reads

125 with >2% unidentified nucleotides (N) or with poly-A structure; (b) reads with $\geq 40\%$
126 bases having low quality for short insert-size libraries and $\geq 60\%$ for large
127 insert-size libraries; (c) reads with adapters or PCR duplication; (d) reads with 20
128 bp in 5' terminal and 5 bp in 3' terminal. Subsequently, about 222.9 Gb clean data
129 were retrieved, covering 341.66-fold of the estimated genome (Table 1, Data Citation
130 2).

131

132 The genomic DNA was extracted with the same procedure for the parents and all 97
133 F2 individuals in the resequencing population. Each DNA was used to construct 500
134 bp insert size libraries, which were then sequenced on an Illumina HiSeq4000
135 platform. Each individual was sequenced to at least 4 \times coverage.
136 NGSQCToolkit_v2.3.3¹⁵ was used to filter low-quality reads (parameters : -l 70 -s 25)
137 and trim the poor-quality terminal bases (parameters: -l 5 -r 5). A total of 88.26 Gb
138 clean bases were kept, which represented 99% of the raw sequencing data (Data
139 Citation 3).

140

141 **Estimation of the genome size**

142 The genome size of asparagus bean was estimated by the distribution of 17-mer depth
143 using the filtered short-insert (<1 kb) sequencing data. The peak depth of the 17-mer
144 distribution curve was 173, and the total *K*-mer count was 112,876,121,127. The
145 genome size was estimated to be 652.5Mb using the formula Genome_Size =
146 Kmer_num/Peak_depth (Fig. 2).

147

148 ***De novo* genome assembly**

149 Clean data from short insert-size libraries were corrected with the Error Correction
150 program in SOAPdenovo package¹³. Genome assembly was performed based on the
151 *de Bruijn* graph algorithm using SOAPdenovo package¹⁶ by the following steps: (1)
152 the paired-end reads of all libraries were used to construct the contig sequences while
153 the *K*-mer values were set as 95 and 85 at the pregraph step and map step, respectively;
154 (2) mapped paired reads were used to construct scaffolds; (3) The GapCloser package
155 was used to map reads to the flanking sequences of gaps and to close gaps between
156 the scaffolds; (4) genome sequence was randomly broken to re-scaffold with SSPACE
157 package. Gaps were then filled again by GapCloser to obtain the final assembly. In
158 the end, there were 54,864 out of 80,696 contigs with sizes longer than 1 kb. The total
159 length of the contig assembly was 549.81 Mb (Table 2). The longest scaffold was
160 14,145,393 bp, and a total of 5,621 scaffolds were longer than 1,000 bp. The total
161 length of the scaffold assembly was 632.8 Mb (Table 2).

162

163 **High-density genetic map construction and genome assembly anchoring**

164 All clean data obtained from the two parents and the 97 F2 individuals were mapped
165 to asparagus bean scaffold assembly using Burrows-Wheeler-Alignment tool
166 (BWA)¹⁷ mem algorithm. The SAM files were converted to BAM files using
167 SAMtools¹⁸. Then the bam files were used to call SNP by the GATK software
168 package¹⁵ with parameters “-T HaplotypeCaller -stand_call_conf 30.0

169 -stand_emit_conf 10.0" and "-T SelectVariants -selectType SNP". The SNPs were
170 filtered using GATK with parameters as the following: --filterExpression " QD < 2.0 ||
171 ReadPosRankSum < -8.0 || FS > 60.0 || MQ < 40.0 || SOR > 3.0 || MQRankSum <
172 -10.0 || QUAL < 30 " --logging_level ERROR
173 --missingValuesInExpressionsShouldEvaluateAsFailing. After genotyping, the raw
174 SNPs were filtered with the following criteria: missing rate <0.3 and heterozygous
175 genotypes <0.5, resulting in a total of 836,933 high-confidence SNPs.

176

177 For the genetic map construction, 50 SNPs were selected to generate bin markers
178 from the two termini and middle part of each scaffold. These bin markers were
179 grouped into 11 linkage groups by JoinMap v4.1¹⁹ with the regression mapping
180 algorithm. The grouped bins were then sorted and genetic distance was calculated by
181 MSTmap with the Kosambi model²⁰. According to this linkage map, scaffolds were
182 anchored onto 11 pseudo-chromosomes. The SNPs were then assigned chromosome
183 positions and a sliding window method (window size of 50 SNPs; step size of one
184 SNP) was adopted to identify recombination events for each individual. All the
185 recombination sites were merged and sorted with 20 kb intervals²¹. In the end, the
186 filtered 536,824 SNPs were combined into 2,013 bins. These were used to construct
187 11 linkage maps, resulting in 2180.14 cM spanning the whole genome. In addition,
188 1,556 scaffolds with 597.52 Mb were anchored, accounting for 94.42% of the
189 assembled genome (Table 3).

190

191 **Transposable elements annotation**

192 Transposable elements (TEs) annotation were performed by a combination of
193 homology-based and *de novo* prediction approaches. Homology-based approach
194 involved searching commonly used databases for known TEs at both DNA and
195 protein level. With default parameters, RepeatMasker 3.3.0²² was used to identify TEs
196 against the Repbase TE library 18.07²³ and RepeatProteinMask²² was used to identify
197 TEs at the protein level in the genome assembly. For *de novo* prediction,
198 RepeatModeler software (<http://www.repeatmasker.org/>) was used in constructing the
199 *de novo* repeat library. Tandem repeats were then predicted by TRF²⁴ with parameters
200 set to “Match = 2, Mismatch = 7, Delta = 7, PM = 80, PI = 10, Minscore = 50 and
201 MaxPeriod = 2000”. In total, we identified 294.95 Mb of the transposable elements,
202 accounting for 46.47% of the asparagus bean genome (Table 4 and Table 5). Among
203 all TEs, long terminal repeat (LTR), which are important determinants of angiosperm
204 genome size variation, constituted 19.24% of the assembled genome. DNA TEs
205 accounted for 7.2% of the total sequence.

206

207 **Gene annotation**

208 We used *de novo*, homology and RNA-Seq-based prediction methods to annotate
209 protein-coding genes in the asparagus bean genome. Three *de novo* prediction
210 programs, Augustus²⁵, Genscan²⁶ and GlimmerHMM²⁶ were used to annotate
211 protein-coding genes while gene model parameters were trained from *Arabidopsis*
212 *thaliana*. For homology-based prediction, protein sequences of all the protein-coding

213 genes of eleven species including common bean (*Phaseolus vulgaris*), soybean
214 (*Glycine max*), pigeonpea (*Cajanus cajan*), chickpea (*Cicer arietinum*), mungbean
215 (*Vigna radiata*), adzuki bean (*Vigna angularis*), lotus (*Lotus japonicus*), medick
216 (*Medicago truncatula*), Arabidopsis (*Arabidopsis thaliana*), grape (*Vitis vinifera*), and
217 rice (*Orzya sativa*), were first mapped to the asparagus bean genome using TblastN
218 with the parameter E-value=1e-05. GeneWise²⁷ was then used to predict gene
219 structure within each protein-coding region. RNA-Seq data of root and stem tissues¹²
220 were aligned to the asparagus bean genome using TopHat on default settings. Finally,
221 the predicted genes were merged by EvidenceModeler (EVM)²⁸ to generate a
222 consensus and non-redundant gene set. This process produced 42,609 protein-coding
223 genes with an average length of 3,156 bp (Table 6).

224
225 With BLASTP (E-value≤10⁻⁵), gene functions were assigned according to the best hit
226 of alignment to SwissProt²⁹, TrEMBL³⁰, and KEGG³¹ database. Functional domains
227 and motifs of asparagus bean genes were determined by InterProScan³², which
228 analyzed peptide sequences against protein databases including SMART, ProDom,
229 Pfam, PRINTS, PROSITE and PANTHER. Gene Ontology (GO) terms for each gene
230 were extracted from the corresponding InterPro entries. The result showed that 75.40%
231 (32,126) of the total genes were supported by TrEMBL, 56.22% (23,953) by
232 Swiss-Prot, and 59.27% (25,254) by InterPro. In addition, 10,096 (23.69%) genes
233 could not be functionally annotated with current databases (Table 7).

234

235 The tRNA genes were identified by tRNAscan-SE software³³ with default parameters.

236 The rRNA genes were identified based on homology search to previously published

237 plant rRNA sequences using BLASTN with parameters of “E-value=1e⁻⁵”. The

238 snRNA and miRNA genes were identified by INFERNAL v1.0³⁴ software against the

239 Rfam database with default parameters. In all, 3,579 non-protein-coding genes were

240 identified in the asparagus bean genome, including 1593 tRNAs, 1,076 rRNAs, 350

241 snRNAs, and 210 microRNAs (Table 8).

242

243 **Code Availability**

244 All tools used in this study were properly cited in the sections above. Settings and

245 parameters were also clearly described.

246

247 **Data Records**

248 The authors declare that all data reported here are fully and freely available from the

249 date of publication. The Whole Genome Shotgun project has been deposited at

250 GenBank (Data Citation 1). Raw read files are available at NCBI Sequence Read

251 Archive (Data Citation 2 and Data Citation 3).

252

253

254 **Technical Validation**

255 **DNA sample quality**

256 DNA was quantified using 0.8% agarose gel electrophoresis and Qubit Fluorometer
257 (Invitrogen, US). DNA concentrations were normalized to 100ng/μl for subsequent
258 library construction.

259

260 **Assessment of the genome assembly and annotation**

261 Completeness of the genome assembly was assessed with default settings using the
262 Benchmarking Universal Single-Copy Orthologs (BUSCO)³⁵ approach with a total of
263 1440 orthologue groups from the Embryophyta Dataset. The results showed that 93.2%
264 of the core orthologs could be found in the asparagus bean genome, indicating a
265 high-integrity assembly superior to the other four legume genomes. Furthermore, a
266 previously reported high-density linkage map⁵ was used to assess the quality of
267 anchored scaffolds. The sequences of 7,964 SNPs markers were aligned onto the 11
268 pseudo chromosomes using BLAT with parameters of “-fine”³⁶. High accordance
269 was shown between the assembled genome and the linkage map. We also aligned the
270 raw reads from short insert-size sequencing back to the assembly and showed that
271 approximately 94.88% of short reads could be successfully mapped.

272

273 **Comparison of asparagus bean genome with published common cowpea genomes**

274 A comparison was performed (Table 9) between the asparagus bean genome and
275 previously published common cowpea assemblies^{7,9}. The asparagus bean genome
276 assembly (549.81 Mb, non-N) was significantly larger than the first published
277 IT97K-499-35^a genome⁷. Its size was close to the other two common cowpea survey

278 assemblies (IT97K-499-35^b and IT86D-1010)⁹. The scaffold N50 size of our
279 asparagus bean genome was the longest of all, reaching 2.7 Mb. Moreover, the
280 asparagus bean assembly had about 94% of the scaffolds anchored into 11
281 pseudo-chromosomes according to the high-density genetic map. In addition, a set of
282 42,287 common cowpea coding sequences (CDS) derived from the single molecule
283 real-time technology (*Vigna unguiculata* v1.0, <http://phytozome.jgi.doe.gov/>) could be
284 blasted back to our asparagus bean genome with 90% similarity. All these results
285 showed that the asparagus bean genome was of high quality.

286

287 **Acknowledgements**

288 This study was funded by State Key Laboratory of Agricultural Genomics,
289 BGI-Shenzhen, Shenzhen, China (NO.2011DQ782025). Financial support for *de novo*
290 assembly was from the Key Lab of Agricultural Genomics, Chinese Ministry of
291 Agriculture, BGI-Shenzhen, Shenzhen, China, Guangdong Provincial Key Laboratory
292 of core collection of crop genetic resources research and application
293 (NO.2011A091000047). Genetic map construction was supported by the fund from
294 Shenzhen Municipal Government of China: Shenzhen Engineering laboratory of Crop
295 Molecular design breeding. RNA-seq was supported by the fund from National
296 Natural Science Foundation of China (NO.31501369).

297

298 **Author Contributions**

299 Y.D., W.C, J.H.M., H.M.Y. and W.W. conceived and led the project. Y.D., X.M.N.
300 and Y.L. contributed to secure funding. L.P. and C.Y.C. provided the sequencing
301 samples and RNA-seq data. R.Z., Y.Z.W. and L.K. performed the sequencing. Q.J.X.,

302 R.Z. and Y.G. performed genome assembly and annotation. Q.J.X., X.D. and Z.Z.
303 constructed the genetic map and anchored. Q.J.X., R.Z. and W.C. wrote the article.
304

305 Competing Interests

306 The authors declare no competing interests.
307
308

309 References

- 310 1. Ehlers, J.D., and Hall, A.E. Cowpea (*Vigna unguiculata* L. Walp.). *Field Crops Research* **53**, 187-204.(1997).
- 311 2. Xu, P., Wu, X., Wang, B., Liu, Y., Qin, D., Ehlers, J.D., Close, T.J., Hu, T., Lu, Z., and Li, G. Development and polymorphism of *Vigna unguiculata* ssp. *unguiculata* microsatellite markers used for phylogenetic analysis in asparagus bean (*Vigna unguiculata* ssp. *sesquipedalis* (L.) Verdc.). *Molecular Breeding* **25**, 675-684.(2010).
- 312 3. Fang, J., Chao, C.-C.T., Roberts, P.A., and Ehlers, J.D. Genetic diversity of cowpea [*Vigna unguiculata* (L.) Walp.] in four West African and USA breeding programs as determined by AFLP analysis. *Genetic Resources and Crop Evolution* **54**, 1197-1209.(2006).
- 313 4. Jayathilake, C., Visvanathan, R., Deen, A., Bangamuwage, R., Jayawardana, B.C., Nammi, S., and Liyanage, R. Cowpea: an overview on its nutritional facts and health benefits. *J Sci Food Agric* **98**, 4793-4806.(2018).
- 314 5. Xu, P., Wu, X., Muñoz-Amatriaín, M., Wang, B., Wu, X., Hu, Y., Huynh, B.L., Close, T.J., Roberts, P.A., Zhou, W., *et al.* Genomic regions, cellular components and gene regulatory basis underlying pod length variations in cowpea (*V. unguiculata* L. Walp). *Plant Biotechnology Journal* **15**, 547-557.(2017).
- 315 6. Chen, X., Laudeman, T.W., Rushton, P.J., Spraggins, T.A., and Timko, M.P. CGKB: an annotation knowledge base for cowpea (*Vigna unguiculata* L.) methylation filtered genomic genespace sequences. *BMC Bioinformatics* **8**, 129.(2007).
- 316 7. Munoz-Amatriain, M., Mirebrahim, H., Xu, P., Wanamaker, S.I., Luo, M., Alhakami, H., Alpert, M., Atokple, I., Batieno, B.J., Boukar, O., *et al.* Genome resources for climate-resilient cowpea, an essential crop for food security. *Plant J* **89**, 1042-1054.(2017).
- 317 8. Muchero, W., Diop, N. N., Bhat, P. R., Fenton, R. D., Wanamaker, S., Pottoroff, and M., e.a. A consensus genetic map of cowpea [*Vigna unguiculata* (L) Walp.] and synteny based on EST-derived SNPs. *Proc. Natl. Acad. Sci. U.S.A.*, 18159–18164.(2009).
- 318 9. Spriggs, A., Henderson, S.T., Hand, M.L., Johnson, S.D., Taylor, J.M., and Koltunow, A. Assembled genomic and tissue-specific transcriptomic data resources for two genetically distinct lines of Cowpea (*Vigna unguiculata* (L.) Walp). *Gates Open Research* **2**.(2018).
- 319 10. Xu, P., Wu, X., Wang, B., Liu, Y., Ehlers, J.D., Close, T.J., Roberts, P.A., Diop, N.N., Qin, D., Hu, T., *et al.* A SNP and SSR based genetic map of asparagus bean

346 (Vigna. unguiculata ssp. sesquipedalis) and comparison with the broader species.
347 PLoS One 6, e15952.(2011).

348 11. Kongjaimun, A., Kaga, A., Tomooka, N., Somta, P., Shimizu, T., Shu, Y.,
349 Isemura, T., Vaughan, D.A., and Srinivas, P. An SSR-based linkage map of
350 yardlong bean (Vigna unguiculata (L.) Walp. subsp. unguiculata Sesquipedalis
351 Group) and QTL analysis of pod length. Genome 55, 81-92.(2012).

352 12. Pan, L., Wang, N., Wu, Z., Guo, R., Yu, X., Zheng, Y., Xia, Q., Gui, S., and
353 Chen, C. A High Density Genetic Map Derived from RAD Sequencing and Its
354 Application in QTL Analysis of Yield-Related Traits in Vigna unguiculata. Front
355 Plant Sci 8, 1544.(2017).

356 13. Luo, R., Liu, B., Xie, Y., Li, Z., Lam, T.-W., and Wang, J. SOAPdenovo2: an
357 empirically improved memory-efficient short-read de novo assembler.
358 GigaScience 1:18.(2012).

359 14. Porebski, S., Bailey, L.G., and Baum, B.R. Modification of a CTAB DNA
360 Extraction Protocol for Plants Containing High Polysaccharide and Polyphenol
361 Components. Plant Molecular Biology Reporter 15 (1) :8-15.(1997).

362 15. Patel, R.K., and Jain, M. NGS QC Toolkit: A Toolkit for Quality Control of Next
363 Generation Sequencing Data. PLoS ONE 7(2): e30619.(2012).

364 16. Boetzer, M., and Pirovano, W. SSPACE-LongRead: scaffolding bacterial draft
365 genomes using long read sequence information. BMC Bioinformatics 15,
366 211.(2014).

367 17. Li, H., and Durbin, R. Fast and accurate short read alignment with
368 Burrows-Wheeler transform. Bioinformatics 25, 1754-1760.(2009).

369 18. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G.,
370 Abecasis, G., Durbin, R., and Genome Project Data Processing, S. The Sequence
371 Alignment/Map format and SAMtools. Bioinformatics 25, 2078-2079.(2009).

372 19. Behrend, A., Borchert, T., Spiller, M., and Hohe, A. AFLP-based genetic
373 mapping of the “bud-flowering” trait in heather (Calluna vulgaris). BMC Genetics
374 14:64.(2013).

375 20. Wu, Y., Bhat, P.R., Close, T.J., and Lonardi, S. Efficient and accurate
376 construction of genetic linkage maps from the minimum spanning tree of a graph.
377 PLoS Genet 4, e1000212.(2008).

378 21. Ling, H.Q., Ma, B., Shi, X., Liu, H., Dong, L., Sun, H., Cao, Y., Gao, Q., Zheng,
379 S., Li, Y., *et al.* Genome sequence of the progenitor of wheat A subgenome
380 Triticum urartu. Nature 557, 424-428.(2018).

381 22. Tarailo-Graovac, M., and Chen, N. Using RepeatMasker to Identify Repetitive
382 Elements in Genomic Sequences.(2009).

383 23. Bao, W., Kojima, K.K., and Kohany, O. Repbase Update, a database of repetitive
384 elements in eukaryotic genomes. Mob DNA 6, 11.(2015).

385 24. Benson, G. Tandem repeats finder: a program to analyze DNA sequences.
386 Nucleic Acids Research 2:573-580.(1999).

387 25. Stanke, M., Steinkamp, R., Waack, S., and Morgenstern, B. AUGUSTUS: a web
388 server for gene finding in eukaryotes. Nucleic Acids Research 32,
389 W309-W312.(2004).

390 26. Burge, C., and Karlin, S. Prediction of Complete Gene Structures in Human
391 Genomic DNA. *J. Mol. Biol.* 268, 78–94.(1997).
392 27. Birney, E., and Durbin, R. Using GeneWise in the *Drosophila* Annotation
393 Experiment. *Genome Research* 10:547–548.(2000).
394 28. Haas, B.J., Salzberg, S.L., Zhu, W., Pertea, M., Allen, J.E., Orvis, J., White, O.,
395 Buell, C.R., and Wortman, J.R. Automated eukaryotic gene structure annotation
396 using EvidenceModeler and the Program to Assemble Spliced Alignments.
397 *Genome Biol* 9, R7.(2008).
398 29. Bairoch, A., and Apweiler, R. The SWISS-PROT protein sequence database and
399 its supplement TrEMBL in 2000. *Nucleic Acids Research* 1:45-48.(2000).
400 30. Boeckmann, B. The SWISS-PROT protein knowledgebase and its supplement
401 TrEMBL in 2003. *Nucleic Acids Research* 31, 365-370.(2003).
402 31. Kanehisa, M., and Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes.
403 *Nucleic Acids Research* 1:27-30.(2000).
404 32. Jones, P., Binns, D., Chang, H.Y., Fraser, M., Li, W., McAnulla, C., McWilliam,
405 H., Maslen, J., Mitchell, A., Nuka, G., *et al.* InterProScan 5: genome-scale protein
406 function classification. *Bioinformatics* 30, 1236-1240.(2014).
407 33. Schattner, P., Brooks, A.N., and Lowe, T.M. The tRNAscan-SE, snoScan and
408 snoGPS web servers for the detection of tRNAs and snoRNAs. *Nucleic Acids*
409 *Res* 33, W686-689.(2005).
410 34. Nawrocki, E.P., Kolbe, D.L., and Eddy, S.R. Infernal 1.0: inference of RNA
411 alignments. *Bioinformatics* 25, 1335-1337.(2009).
412 35. Simão, F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva, E.V., and Zdobnov,
413 E.M. BUSCO: Assessing genome assembly and annotation completeness with
414 single-copy orthologs. *Bioinformatics* 31, 3210-3212.(2015).
415 36. Kent, W.J. BLAT--the BLAST-like alignment tool. *Genome Res* 12,
416 656-664.(2002).
417

418 **Data Citations**

419 1. *GeneBank* PRJNA454850 (2018). *CNSA* CNP0000264 (2018).
420 2. *NCBI Sequence Read Archive* SRP144706 (SRR7135464-SRR7135488) (2018).
421 *CNSA* CNP0000264 (2018).
422 3. *NCBI Sequence Read Archive* SRP144706 (SRR7125688-SRR7125784) (2018).
423 *CNSA* CNP0000264 (2018).

424 **Figures & Tables**

425 426 **Figure 1. General description of the assembly workflow.** The pipeline included
427 removal of low quality and adapter-contaminated reads, *de novo* assembly,
428 construction of linkage map, chromosome-scale assembly, and genome annotation.
429

430

431 **Figure 2. 17-mer frequency distribution of sequencing reads.**

432

433 **Table 1. Statistics of raw data after filtering.**

Insert Size	Clean Length (bp)	Number of Clean Reads	Clean Bases (Gb)	Sequence Coverae (X)
350	2 X 125 #Hiseq4000	143,324,095	35.831	54.92
445	2 X 125 #Hiseq4000	200,584,850	50.146	76.86
758	2 X 125 #Hiseq4000	60,211,855	15.053	23.07
912	2 X 125 #Hiseq4000	113,659,706	28.415	43.55
2000	2 X 125 #Hiseq4000	79,141,602	19.785	30.32
3000	2 X 125 #Hiseq4000	82,610,562	20.653	31.65
5000	2 X 125 #Hiseq4000	80,415,362	20.104	30.81
9000	2 X 125 #Hiseq4000	72,037,228	18.009	27.6
15000	2 X 125 #Hiseq4000	59,701,495	14.925	22.87
Total	-	891,686,755	222.921	341.66

434

435 **Table 2. Results of the asparagus bean genome assembly.**

	Contigs		Scaffolds	
	Size (bp)	Number	Size (bp)	Number
N90	4,293	36,621	221,483	308
N80	7,053	26,804	918,008	183
N70	9,566	20,138	1,507,419	130
N60	12,222	15,059	2,195,354	96
N50	15,154	11,022	2,730,264	70
Longest	119,701	-	14,145,393	-
Total Number (>=500b)	-	61,962	-	9,083
Total Number (>=1kb)	-	54,864	-	5,621
Total	549,819,688	80,696	632,812,756	21,836

436

437 **Table 3. Statistics of pseudo-chromosomes and genetic map in asparagus bean.**

Chromosomes	Anchored Scaffolds Number	Total length (Mb)	SNP Number	bin marker Number	Genetic distance (cM)
Vu1	97	45.38	36,916	154	94.72
Vu2	161	82.25	58,426	306	398.24
Vu3	224	54.99	80,711	162	214.19
Vu4	81	41.88	41,888	170	125.31
Vu5	233	55.8	40,719	175	185.51
Vu6	162	52.07	54,989	159	113.72

Vu7	148	49.22	44,186	193	333.04
Vu8	203	49.61	95,735	155	164.48
Vu9	81	51.81	23,748	189	207.05
Vu10	87	60.58	31,849	171	83.74
Vu11	79	53.94	27,657	179	260.14
Total	1556	597.53	536,824	2013	2180.14

438

439 **Table 4. Statistics of repeats in the asparagus bean genome.**

Type	Repeat Size (bp)	% of genome
Trf	67,718,076	10.67
Repeatmasker	41,222,404	6.49
Proteinmask	64,741,265	10.2
<i>De novo</i>	264,487,557	41.67
Total	294,953,638	46.47

440

441 **Table 5. TEs content in the assembled asparagus bean genome.**

Type	Rebase TEs		TE proteins		De novo		Combined TEs	
	Length (bp)	% in genome	Length (bp)	% in genome	Length (bp)	% in genome	Length (bp)	% in genome
DNA	6,870,914	1.0825	9,850,112	1.5518	41,887,195	6.5992	46,098,143	7.2626
LINE	698,393	0.11	1,195,466	0.1883	1,651,447	0.2601	2,666,968	0.4201
SINE	30,804	0.0048	-	-	62,452	0.0098	74,704	0.0117
LTR	33,989,514	5.3549	53,894,224	8.4908	112,113,184	17.6631	122,145,625	19.2437
Other	13,118	0.002	-	-	-	-	13,118	0.002
Unknown	-	-	-	-	119,021,287	18.7515	119,021,287	18.7515
Total	41,222,404	6.494	64,741,265	10.1998	261,567,318	41.2092	272,160,906	42.8782

442

443 **Table 6. Prediction of protein-coding genes in asparagus bean genome.**

	Gene set	Gene number	Ave. gene length	Ave. CDS length	Total Exon number	Ave. exon number	Ave. exon length	Total intron number
Homology	Augustus	45,883	2,243.10	1,005.11	207,693	4.53	222.05	56,802,940
	Arabidopsis	26,867	3,133.37	1,080.92	124,326	4.63	233.59	55,143,207
	Pigeonpea	44,018	3,055.98	996.71	169,707	3.86	258.52	90,644,666
	Chickpea	29,722	3,267.60	1,101.41	135,727	4.57	241.19	64,383,299
	Soybean	35,380	2,919.91	1,032.92	152,214	4.3	240.09	66,761,546
	Lotus	37,713	2,436.51	912.21	142,619	3.78	241.22	57,486,204
	Medicago	37,164	2,785.79	951.18	148,495	4	238.05	68,181,528
	Rice	25,956	2,971.76	1,010.14	112,815	4.35	232.41	50,915,754
	Common bean	32,860	3,059.37	1,099.25	149,363	4.55	241.84	64,409,431
	Mungbean	29,468	3,695.35	1,123.44	143,184	4.86	231.21	75,789,153
	Grape	27,358	3,732.39	1,059.30	134,163	4.9	216.01	73,130,296

	Adzuki bean	37,596	3,191.78	991.8	160,449	4.27	232.4	82,710,459
Denovo	Genscan	40,736	8,880.46	1,153.45	230,011	5.65	204.28	314,767,263
	GlimmerHMM	46,755	1,867.51	847.52	164,690	3.52	240.61	47,689,651
Transcriptome		114,947	8,244.23	752.27	243,192	2.12	355.57	861,179,063
EVidenceModeler		42,609	3,156.05	1,043.18	190,304	4.47	233.57	90,027,213

444

445 **Table 7. Functional annotation of predicted genes in asparagus bean genome.**

	Number	Percent (%)
Total	42,609	-----
InterPro	25,254	59.27
GO	19,254	45.19
KEGG	18,372	43.12
Swiss-Prot	23,953	56.22
TrEMBL	32,126	75.4
NR	32,356	75.94
Annotated	32,513	76.31

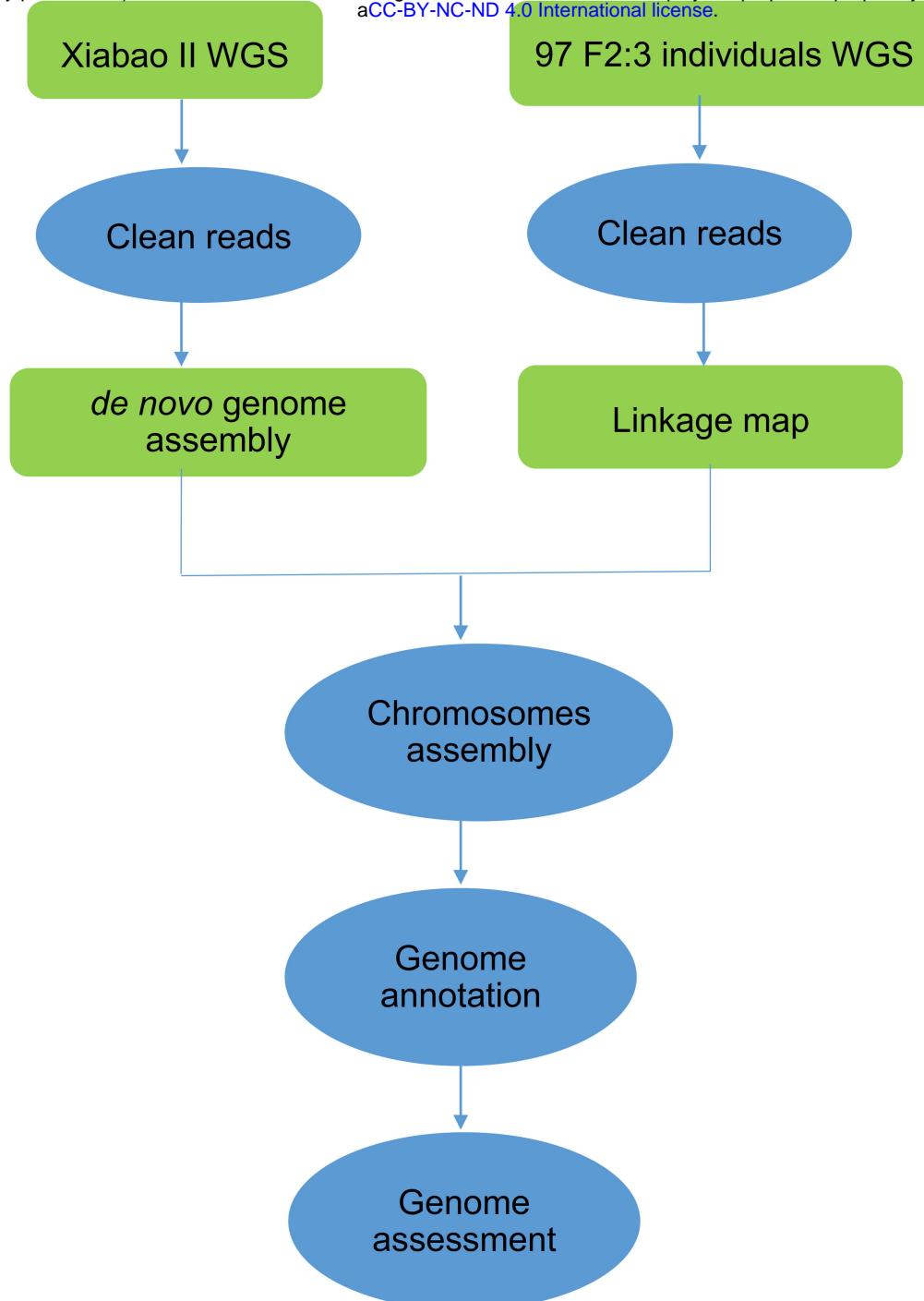
446

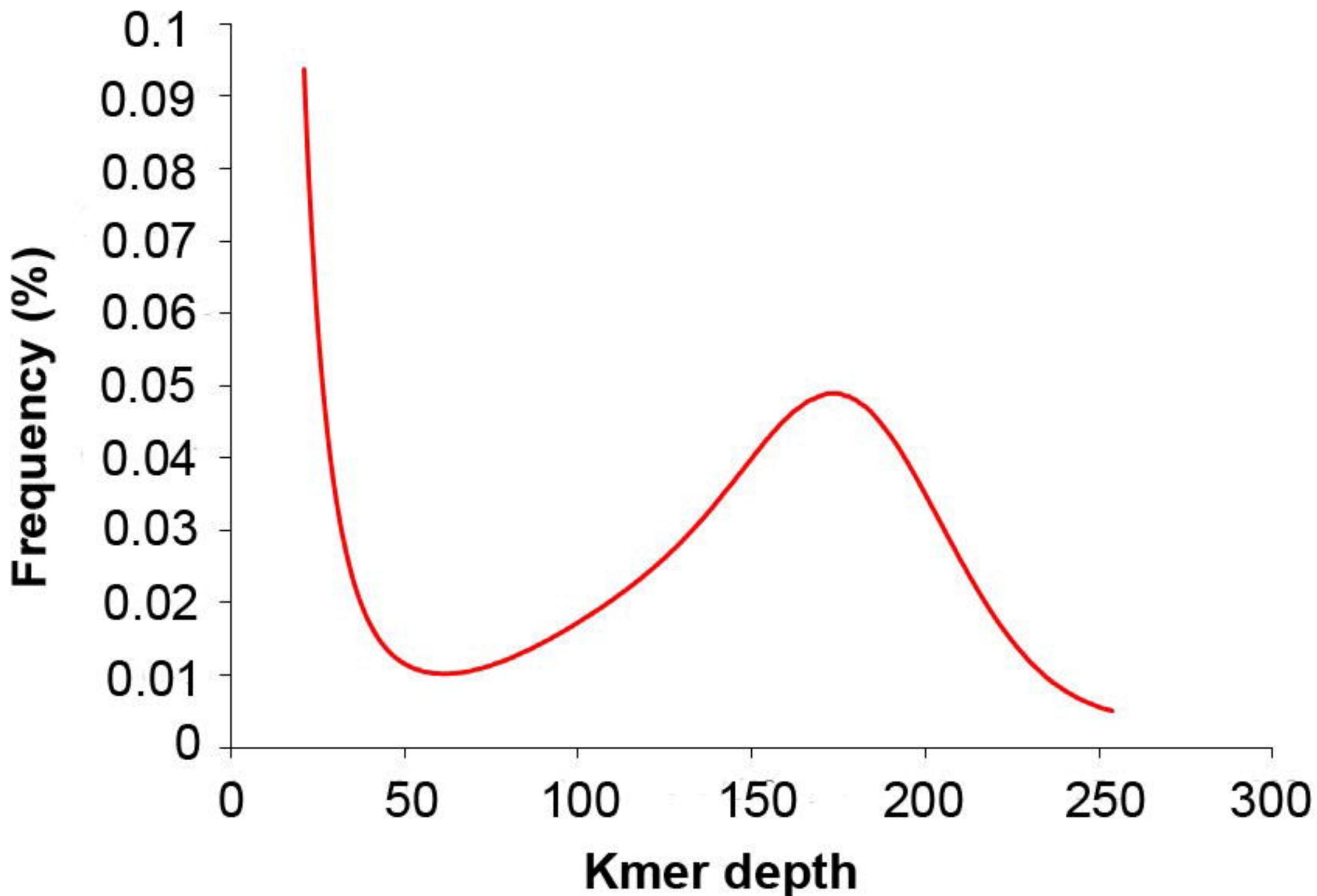
447 **Table 8. Annotation of non-coding RNA in asparagus bean genome.**

Type	Copy(w)	Average Length(bp)	Total Length(bp)	% of genome	
miRNA	210	118.0571	24792	0.003906	
tRNA	1593	75.10295	119639	0.018849	
rRNA	538	155.6636	83747	0.013194	
18S	114	346.0877	39454	0.006216	
rRNA	28S	77	116.2338	8950	0.00141
	5.8S	22	146.8636	3231	0.000509
	5S	325	98.80615	32112	0.005059
	snRNA	350	120.44	42154	0.006641
snRNA	CD-box	179	102.1285	18281	0.00288
	HACA-box	24	123.7083	2969	0.000468
	splicing	147	142.2041	20904	0.003293

448

449 **Table 9. Comparisons of asparagus bean genome with published common**
450 **cowpea assemblies.**


	Xiabao			
	II	IT97K ^a	IT97K ^b	IT86D
Assembled Non-N Size (Mb)	549.81	323.3	568.1	609.5
GC content (%)	28.78	35.96	33.6	33.59
Repeat elements (%)	46.47	NA	NA	NA
Scaffold N50 size (kb)	2730.26	6.33	17.92	36.69
Total scaffolds	21,836	644,126	57,590	39,123


Number of Anchored into chromosomes	1,556	NA	NA	NA
Annotated protein-coding genes	42,609	NA	NA	NA
Numbers of CDS ^c	41,457	14,994	40,055	40,198

451

452

