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 ABSTRACT 24 

Accurate detection of genomic fusions by high-throughput sequencing in clinical samples with 25 

inadequate tumor purity and formalin-fixed paraffin embedded (FFPE) tissue is an essential task 26 

in precise oncology. We developed the fusion detection algorithm Junction Location Identifier 27 

(JuLI) for optimization of high-depth clinical sequencing. We implemented novel filtering steps 28 

to minimize false positives and a joint calling function to increase sensitivity in clinical setting. 29 

We comprehensively validated the algorithm using high-depth sequencing data from cancer cell 30 

lines and clinical samples and whole genome sequencing data from NA12878. We showed that 31 

JuLI outperformed state-of-the-art fusion callers in cases with high-depth clinical sequencing and 32 

rescued a driver fusion from false negative in plasma cell-free DNA. JuLI is freely available via 33 

GitHub (https://github.com/sgilab/JuLI). 34 

35 
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INTRODUCTION 36 

High-throughput sequencing is becoming increasingly prevalent in precision cancer medicine 37 

worldwide. In the Republic of Korea and United States of America, assays using high-38 

throughput sequencing have received regulatory approval as companion diagnostic tests for 39 

personalized care 40 

(http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/InVitroDiagnostics/ucm3341 

0711.htm, 42 

http://www.mohw.go.kr/react/jb/sjb0406vw.jsp?PAR_MENU_ID=03&MENU_ID=030406&CO43 

NT_SEQ=338288&page=1). Most assays use sequencing technology to identify clinically 44 

actionable single nucleotide variants (SNVs) and small insertions/deletions (indels) because they 45 

are relatively easy to detect and interpret. However, some cancers such as ALK-rearranged non–46 

small cell lung cancers (NSCLCs) and BCR/ABL-rearranged chronic myeloid leukemias (CMLs) 47 

are driven by somatic genomic fusions that cannot be detected by these methods for SNVs/indels. 48 

Patients with these oncogenic fusions respond to tyrosine kinase inhibitors (TKIs), and such 49 

genomic changes are now key therapeutic targets (Druker et al. 2001; Awad and Shaw 2014). 50 

A number of factors are prerequisite for accurate detection of genomic fusions in the clinical 51 

setting. First, obtaining a representative specimen that provides an adequate amount of tumor 52 

sample for genome profiling is an ongoing challenge. Our previous study has shown that 53 

numerous important variants are present at a low allelic fraction (Shin et al. 2017). Unlike tissues 54 

used for research, tissues from clinical procedures, such as biopsies, tend to have inadequate 55 

tumor purity. Recently, cell-free DNA (cfDNA) testing by ultra-deep sequencing has been 56 

introduced for genotyping primary cancers and monitoring of post-treatment recurrence in 57 

oncology, and this test aims to detect approximately 0.1% of allele fractions (Oellerich et al. 58 
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2017; Phallen et al. 2017; Christensen et al. 2018). Furthermore, considering the heterogeneity of 59 

individual tumors, complete profiling of a tumor may require multiple samplings from different 60 

regions, which is not clinically feasible. To capture these low fraction variants, sufficient 61 

sequencing coverage and specialized algorithms are imperative for a clinical assay. Second, it is 62 

important to obtain a sufficient quality of formaldehyde-fixed paraffin-embedded (FFPE) 63 

specimens for genome profiling. FFPE is preferred for most molecular analyses of clinical 64 

pathologies because of its advantages in collection and storage. However, formalin fixation 65 

results in DNA and RNA damage, which is affected by various preanalytical factors, such as 66 

duration of storage, formalin fixation, and ischemic time (Evers et al. 2011; Spencer et al. 2013; 67 

Araujo et al. 2015). These fragmented nucleic acids act as noise and may make it difficult to 68 

detect oncogenic fusions. The detection of genomic fusions in clinical samples tends to be 69 

challenging because of the above-mentioned problems. 70 

As the importance of detecting genomic fusions in clinical decision-making continues to increase, 71 

a critical area for improvement is currently the accuracy of detecting actionable fusions for the 72 

realization of precision cancer medicine. In the present study, we focused on improving the 73 

reliability of detecting somatic actionable fusions in cancer using high-depth DNA sequencing. 74 

To address the above problems, we developed a fusion detection algorithm optimized for clinical 75 

purposes and validated this algorithm using cancer cell lines with known driver fusions and 459 76 

NSCLC samples with known ALK fusion and/or RET fusion status and 46 prostate cancer 77 

samples with known TMPRSS2 fusion status (Supplementary Table 1). 78 

 79 

 80 

MATERIALS AND METHODS 81 
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Study design 82 

The Institutional Review Board (IRB) of Samsung Medical Center (SMC) approved this study. 83 

NSCLC samples were obtained at SMC between March 2014 and February 2017 with informed 84 

consent from some patients, whereas consent was waived by the IRB for others. The inclusion 85 

criteria for samples in this study were as follows: (i) sample was profiled using CancerSCANTM 86 

(Shin et al. 2017) or LiquidSCANTM (Park et al. 2018), the custom sequencing platforms of 87 

SMC; (ii) clinical information of the patient was stored in the clinical data warehouse of SMC. 88 

 89 

Panel design for fusion detection 90 

Samples were prepared and analyzed using CancerSCANTM or LiquidSCANTM, targeted-91 

sequencing platforms designed at SMC (Supplementary Table 1) (Shin et al. 2017; Park et al. 92 

2018). To identify fusions using a targeted panel, we tiled across the “hotspot” introns that 93 

contain well-known breakpoints of a set of clinically relevant fusions. Introns of five genes from 94 

an 83-gene panel (CancerSCAN version 1 and LiquidSCAN version 1) and introns of 22 genes 95 

from a 381-gene panel (CancerSCAN version 2) were densely covered with capture probes. All 96 

panels targeted hotspot introns of ALK. The average DNA fragment size of the platform was 97 

approximately 180 bp and the read length was 100 bp, thus, indicating that most fragments were 98 

fully sequenced. The other specific details of the panels can be found in previously reported 99 

papers (Shin et al. 2017; Park et al. 2018). 100 

 101 

Cell line mix experiment 102 
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Four cell lines (H2228, BHP10-3, U118MG, and SK-NEP-1) known to harbor specific fusions 103 

were used (Supplementary Table 2). The cell lines were cultured in our laboratory. Before 104 

extraction of DNA, the cells were washed two times with PBS. When the samples were pooled, 105 

the value from the Qubit HS assay (Life Technologies) was used, and DNAs were mixed equally 106 

to a total amount of 500 ng. 107 

 108 

PCR validation of fusions 109 

The reference sequence of a target gene and breakpoint region was retrieved from the UCSC 110 

genome browser (http://genome.ucsc.edu/cgi-bin/hgBlat). A target-specific primer was designed 111 

using Primer3 for PCR on the basis of the reference sequence and was confirmed using Primer-112 

BLAST (National Institutes of Health; NIH; Supplementary Table 3). The translocation target 113 

gene was amplified by PCR using specific primers. The cycling conditions were as follows: 114 

94°C for 5 min, followed by 44 cycles of denaturation (94°C for 30 s), annealing (60°C for 1 115 

min), and extension (72°C for 1 min), with final extension at 72°C for 10 min. The reactions 116 

were performed using HelixAmp TM Ready-2X-Go Hot-Taq (Nanohelix, Korea). Sequences of 117 

the PCR products were determined by an automated method (ABI Prism 3730) using the Big 118 

Dye Terminator Kit (Applied Biosystems, Foster City, CA, USA). Translocation breakpoint 119 

region sequences were verified by means of BLAST (NIH) and DNAstar (Lasergene). 120 

 121 

Alignment and preprocessing 122 

Paired-end reads were aligned using BWA-MEM at its default settings (Li and Durbin 2009) 123 

with the human reference genome (hg19). Aligned reads with mapping quality <20 were filtered 124 
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out, and the remaining reads were sorted using SAMtools (Li et al. 2009). To prepare appropriate 125 

input BAM files for other callers, we employed MarkDuplicates of Picard (Broad Institute), 126 

which is commonly used for marking and removal of duplicate reads (McKenna et al. 2010). 127 

 128 

Workflow for fusion identification 129 

Fusion detection algorithm To identify genomic fusions for clinical applications, we developed 130 

an algorithm called Junction Location Identifier (JuLI) with the aim of reducing the number of 131 

false positives generated while maintaining sensitivity. Initially, basic statistics of the BAM files, 132 

such as read length and median insert size, are calculated and used for further steps. Candidate 133 

breaks are then defined using two or more clipped reads, including at least one soft-clipped read, 134 

against the genome reference. If a matched normal sample is available as a control, breaks with 135 

twice the cutoff value of the clipped reads are scanned in the normal sample, and candidate 136 

breaks that overlapped with the breaks in the normal sample are excluded. If a set of normal 137 

samples is available, a control panel can be generated using a function in JuLI, which 138 

incorporates the breakpoints in multiple samples. All the samples in the present study were 139 

processed without matched normal or control panel filtering. The algorithm then involves two 140 

separate parts, viz., discordant and split read analyses. The user can set all parameters of each 141 

step. 142 

 143 

Discordant read analysis As JuLI does not remove duplicate reads as a part of the algorithm, 144 

counting supporting reads is very important to reduce the number of false positive calls. JuLI 145 

first uses information, including the genomic positions of both paired reads, CIGAR (Concise 146 

Idiosyncratic Gapped Alignment Report) strings, and the QNAME of sequencing reads in the 147 
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BAM file, to reduce redundant duplicated or noise signals. Candidate breaks with fewer than 148 

three unique discordant reads are filtered. Next, consensus contigs from the matched and clipped 149 

side of each candidate break are generated. The average number of pairwise differences, 150 

representing nucleotide diversity (π), between the reads and the consensus contig on both sides 151 

of the candidate break is calculated as follows: 152 

𝜋 =  
𝑁

𝑁 −  1 𝑝!
!

𝜋! 

where N is the number of reads across the break, ρi is the frequency of the ith read across the 153 

break, and πi is the proportion of bases that differ between the read and consensus contig 154 

truncated to the read length. If the normalized nucleotide diversity of either the clipped or 155 

matched side is higher than 2.0, the break is excluded from further processing. The normalized 156 

nucleotide diversity is calculated using the following formulae:  157 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝜋 =  
𝜋 −  𝜋!"#$!!" !"#$

𝑆!"#$!!" !"#$
 

where 𝜋!"#$!!" !"#$ is the mean of nucleotide diversity of matched sides, and Smatched side denotes 158 

the standard deviation of nucleotide diversity of the matched sides. Candidate breaks that pass 159 

the filters described above are paired with each other using the pair information, and split side 160 

contigs of each pair are aligned to the matched side contigs of their partners. If one of the two 161 

pairs matches more than 70% of the split contig length and is longer than 10 bp, the pair is called 162 

a fusion event. If there are no candidate pairs that passed the filters, a fusion event is defined if 163 

more than six discordant reads formed a cluster and more than 70% and more than 20 bp of the 164 

split contig is mapped to the reference sequence of the cluster region. 165 

 166 
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Split read analysis Split read and discordant read analyses are conducted similarly. Candidate 167 

breaks with fewer than three split reads are filtered and then subjected to the following filtering 168 

steps, including nucleotide diversity analysis and pairwise local alignment. As JuLI is based on 169 

split information, fusions with a length less than half the read length are not considered. In split 170 

read analysis, if both pairs matched ≥70% of the length of the split contigs, the pair is considered 171 

a fusion event. 172 

 173 

Joint call analysis The joint call combines information from multiple BAM files in each analysis 174 

step and separates the numbers of each supporting read in the final step to produce individual 175 

results of the BAM files. If some fusion events have been previously defined in other BAM files, 176 

the fusions can be efficiently detected by specifying the target area using the BED (Browser 177 

Extensible Data) format. This is extremely useful for the case in cfDNA analysis as acquired 178 

serial samples for cfDNA may not have enough supporting reads, which makes it difficult to 179 

detect the events (see Discussion). 180 

 181 

Settings of algorithms 182 

We carefully studied the documentation for each algorithm to determine and apply 183 

parameters that could be optimized in the clinical sample data. 184 

JuLI: All analyses were performed using JuLI v.0.1.3 with the default parameters. Fusion events 185 

in the UCSC gap database were excluded from further analysis. 186 

SvABA: All analyses were performed using SvABA v 134 (Wala et al. 2018). We applied a -M 187 

flag so that the number of “weird reads” was not limited in highly fragmented FFPEs. We 188 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 16, 2019. ; https://doi.org/10.1101/521039doi: bioRxiv preprint 

https://doi.org/10.1101/521039
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
10 

employed sorted, indexed, and duplication-free BAMs for SvABA. The command line for the 189 

analysis was as follows: 190 

$svaba run –t $INPUT.bam –p 1 -G $reference.fa –a sample_id –M 100000 191 

Delly: We used Delly v.0.7.8 (Rausch et al. 2012) for all analyses with the default parameters. 192 

We preprocessed BAM files as recommended by the developers (sorting, indexing, and duplicate 193 

marking). We applied the exclusion regions of the hg19 reference included in the Delly source 194 

code. The Delly command line for the analysis was as follows: 195 

$delly call -x human.hg19.excl.tsv -o $OUTPUT.bcf -g $reference.fa $INPUT.bam 196 

We converted the output with BCF (binary variant call format) to VCF (variant call format) 197 

using BCFtools, which was included as a submodule in Delly. We selected the results of VCF 198 

that passed the quality filter for all analyses. 199 

Manta: All analyses were performed using Manta v.1.2.2 (Chen et al. 2016). We disabled all 200 

high-depth filters by applying the --exome flag during configuration for high-depth sequencing 201 

data. We analyzed sorted, indexed, and duplication-free BAMs using Manta. The command line 202 

for configuring was as follows: 203 

$configManta.py --tumorBam $INPUT.bam --referenceFasta $reference.fa --runDir 204 

$OUTPUT_DIR --exome 205 

Next, we launched a workflow run script with a single node using the following command line 206 

for execution: 207 

$ OUTPUT_DIR/runWorkflow.py -m local -j 1 208 

We selected the results of VCF that passed the quality filter for all analyses. We applied the 209 

high-depth filter parameter for whole-genome sequencing (WGS) analysis. 210 
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LUMPY: We used LUMPY v.0.2.8 for all analyses (Layer et al. 2014). We analyzed sorted, 211 

indexed, and duplication-free BAM files for LUMPY. We split the BAM file into paired-end and 212 

split-read files using SAMtools v.0.1.19 (Li et al. 2009) with the recommended parameters and 213 

performed statistical analysis of the library sizes by means of a script in LUMPY. Then, the 214 

following LUMPY command line for fusion detection was executed: 215 

$lumpy -mw 4 -tt 0.0 – pe 216 

bam_file:$INPUT.discordant.pe.bam,histo_file:$INPUT.pe.histo,mean:$MEAN,stdev:$STDEV,r217 

ead_length:100,min_non_overlap:100,discordant_z:4,back_distance:20,weight:1,id:1,min_map218 

ping_threshold:20 -sr 219 

bam_file:$INPUT.sr.bam,back_distance:20,weight:1,id:2,min_mapping_threshold:20 > 220 

$OUTPUT.pesr.bedpe 221 

novoBreak: All analyses were performed using novoBreak v 1.1(Chong et al. 2017). We 222 

employed sorted, indexed, and duplication-free BAMs for novoBreak. We simulated a control 223 

BAM file using wgsim (H. 2011) and used the output as control input to novoBreak. The 224 

command line for the analysis was as follows: 225 

$run_novoBreak.sh $novoBreak_exe_dir $reference.fa $INPUT.bam $CONTROL.bam 1 226 

$OUTPUT_DIR 227 

 228 

 229 

RESULTS 230 

Development of a fusion detection algorithm for clinical sequencing 231 

Since 2014, we have used a custom-designed panel (CancerSCANTM) for precision oncology that 232 

covers up to 381 cancer-related genes, including introns containing frequent breakpoints in 233 
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selected fusion genes (Shin et al. 2017). To obtain high detection rates, we ensured a mean 234 

sequencing coverage of approximately 1200X and a target insert size of approximately 180bp in 235 

the initial alignment. We have developed several algorithms to improve the accuracy of our 236 

platform. For fusion detection, here, we developed JuLI, which was optimized for high-depth 237 

sequencing (Fig. 1a–d). JuLI utilizes information from both discordant and proper pair reads to 238 

detect a wide range of structural variations (SVs), including duplications, deletions, inversions, 239 

and interchromosomal translocations, at single-nucleotide resolution. Generally, it is preferable 240 

to conduct high-depth sequencing with relatively short insert sizes (150–200 bp) to achieve high 241 

sensitivity of target-enriched sequencing in various platforms, including panel-based platforms. 242 

However, PCR duplicates generated during preprocessing for sequencing may result in 243 

overestimation of variants, and this situation may cause false positive results that could be even 244 

worse with short insert sizes (Zhou et al. 2014). To avoid this problem, identifying duplicates 245 

using Picard (McKenna et al. 2010) or SAMtools (Li et al. 2009) is a necessary step in general 246 

bioinformatics analysis. However, because this process uses only limited information on 247 

sequence alignment map (SAM) files, it is possible to unintentionally remove reads with 248 

evidence of rearrangement (fig. S1), which may, thus, affect the sensitivity of detecting lower 249 

tumor cell content. We carefully counted reads supporting candidate breaks by determining 250 

duplicate fragments using CIGAR and pair locations without applying a general deduplication 251 

step (Fig. 1b; see Methods). Next, the candidates with sufficient supporting reads were 252 

subjected to the following two filtering steps. First, we measured nucleotide diversity (𝜋), which 253 

is the average number of pairwise differences between the reads and the consensus contig, and 254 

the breaks with high nucleotide diversity were excluded from further processing (Fig. 1c; see 255 

Methods). Second, the candidate break and partner breaks were paired via pair information and 256 
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compared by pairwise local alignments (Fig. 1d; see Methods). Through these filtering steps, we 257 

were able to accurately detect fusions by reducing the number of false positives. 258 

  259 
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Fig. 1. The fusion detection algorithm for clinical sequencing. (a) The scheme of Junction Location 260 
Identifier (JuLI). JuLI implements novel filtering steps to reduce the number of false positives while 261 
maintaining sensitivity by fine-tuning the counting of supporting reads without duplicate removal. (b) 262 
JuLI uses information, including the genomic positions, CIGAR strings, and read names in the BAM file, 263 
to reduce redundant duplicated or noise signals. (c) After measuring the nucleotide diversity of the breaks, 264 
JuLI filters breaks with high nucleotide diversity for the analysis. (d) The candidate breaks are paired 265 
with each other using pair information, and split side contigs of each pair are aligned to the matched side 266 
contigs of their partners. (e) The ratios of split read to the total read counts for formalin-fixed paraffin-267 
embedded (FFPE), fresh clinical tissue samples (n = 494), and pair cell lines (n = 3) tested by 268 
CancerSCANTM. For FFPE samples, split reads and variability of split reads increased significantly (t test, 269 
p < 10−22). (f) Variant counts obtained from the callers in patient samples (n = 494) and pair cell lines (n = 270 
3). Note that some callers showed increasing variant counts in FFPE tissues. This phenomenon was due to 271 
the low quality of FFPE samples because of DNA degradation or damage. 272 

  273 
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Effects of damaged DNA in FFPE tissues 274 

As mentioned above, one of the challenges in analyzing clinical samples is that FFPE tissues 275 

usually contain degraded DNA and smaller fragment sizes (Spencer et al. 2013). As a 276 

consequence, the ratio of split to total reads is substantially higher in FFPE samples than that in 277 

fresh samples examined by CancerSCAN (t test, p < 10−22; Fig. 1e). To eliminate the differences 278 

between individual samples, three pairs of fresh and routinely processed FFPE cancer cell lines 279 

were chosen for sequencing to compare tissue effects. Furthermore, differences in the split to 280 

total read ratio were also observed (Fig. 1e). An increase in the numbers of split reads could 281 

affect noise in fusion analyses and may cause numerous false positive events. To compare FFPE 282 

effects and for further analysis, we chose several state-of-the-art fusion callers, including SvABA 283 

(Wala et al. 2018), Delly (Rausch et al. 2012), Manta (Chen et al. 2016), LUMPY (Layer et al. 284 

2014), and novoBreak (Chong et al. 2017), that use split and discordant read information, similar 285 

to JuLI. In the comparison of fusion events count, we observed a significant increase in count of 286 

fusion events in FFPE tissues when using SvABA, Delly, Manta, LUMPY, and novoBreak (Fig. 287 

1f). The count of fusion events of JuLI and LUMPY was not affected by the tissue type, but the 288 

count of LUMPY was ten-times higher than that of JuLI, regardless of the tissue type (Fig. 1f). 289 

Analysis of three paired fresh and routine FFPE cancer cell line specimens revealed differences 290 

in counts of fusion events between the FFPE and fresh specimens. BHP10-3 revealed the highest 291 

change in the split/total read ratio (Fig. 1e) and showed the highest difference in fusion counts 292 

using most callers (Fig. 1f). Numerous split reads were observed in the FFPE specimen of 293 

BHP10-3 probably because of DNA damage during sample preparation (fig. S2). For the tools 294 

affected by FFPE tissues, the count of fusion events was positively correlated with split/total 295 

reads ratio (fig. S3). However, JuLI showed the least increase in the number of fusion events 296 
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with increasing split/total reads ratio (fig. S3). Low quality of FFPE tissue can cause numerous 297 

false positive results with most callers, but such quality issues did not significantly affect the 298 

results yielded by JuLI. 299 

 300 

Validation of analytical sensitivity on cancer cell lines and patient’s samples 301 

To evaluate the accuracy of the algorithm over a wide range of tumor purity, we adopted 302 

experimental schemes designed by Frampton et al. (Frampton et al. 2013). To simulate different 303 

tumor purity levels, four cancer cell lines harboring known fusions and a normal sample were 304 

manually mixed at different ratios, generating a range of expected tumor purity levels (5%–100%) 305 

(Supplementary Table 2). All cell line specimens were profiled using CancerSCANTM version 306 

1, which targeted 83 genes. The mixed fraction of the fusions showed a high correlation 307 

(correlation coefficient [r] = 0.95) with the relative value of the normalized supporting reads (fig. 308 

S4). We observed that JuLI, SvABA, Delly, Manta, and LUMPY achieved 100% sensitivity 309 

(32/32), but novoBreak missed one large deletion between GOPC and ROS1 with 5% mix 310 

fraction in this experiment (Supplementary Table 4). In addition, 37 fusions in patients’ tissues 311 

detected by JuLI with a wide range of supporting reads (range, 6–283) were validated by PCR to 312 

verify the estimated fusion breakpoints. The locations of all fusion sequences at the estimated 313 

breakpoints were confirmed (Supplementary Table 3). 314 

 315 

Performance validation using clinical samples 316 

Because of the differences in the performance between callers depending on the range of fusion 317 

length (Wala et al. 2018), we measured the F1 score [the harmonic average of positive predictive 318 

value (PPV; also known as precision) and sensitivity (also known as recall)] of the callers 319 
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according to the minimum fusion length in 494 clinical samples examined by CancerSCAN (Fig. 320 

2a and Supplementary Table 1). Fusion results that are shorter than the minimum length in 321 

each caller were excluded from the comparison and the performance comparison criteria are 322 

described in the following paragraph. In all ranges of minimum fusion size, we observed that 323 

JuLI outperformed other callers. Although JuLI and SvABA were less affected by performance 324 

over the range of fusion sizes, Delly exhibited increased performance at a relatively long length 325 

of fusion. We observed that Manta, LUMPY, and novoBreak tended to have lower PPV 326 

compared to sensitivity (Supplementary Table 5) and a decrease in performance in 327 

predominantly FFPE tissues compared to that in fresh tissues (Supplementary Table 5). The 328 

minimum length of F1 score saturation for each caller was 800 bp for JuLI and SvABA, 1500 bp 329 

for Delly, 1900 bp for Manta, 1200 bp for LUMPY, and 1300 bp for novoBreak. In order to 330 

compare except for the regions with different performance, we compared the results except for 331 

the fusions with the length shorter than 1250bp, which is the median value of the performance 332 

saturation length of each caller. 333 

Activation of kinase gene by chromosomal rearrangement has been identified as a recurrent 334 

driver event in NSCLCs (Takeuchi et al. 2012; Pan et al. 2014). ALK rearrangement acts as an 335 

oncogenic driver in 4%–6% of NSCLCs (Takeuchi et al. 2012). In ALK-rearranged NSCLCs, 336 

ALK inhibitor demonstrates therapeutic efficacy in terms of improved survival, and the 337 

EML4/ALK variants and ALK-fusion partners may affect sensitivity to ALK inhibitors (Kwak et 338 

al. 2010; Shaw et al. 2013; Noh et al. 2017). RET rearrangements have been identified in 1%–2% 339 

of NSCLCs and are the potential therapeutic targets of multi-targeted kinase inhibitors (Pan et al. 340 

2014; Lee et al. 2015). Therefore, accurate detection of an oncogenic fusion is important for 341 

clinical decision-making. Over the last four years, CancerSCANTM has been used at the oncology 342 
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clinic of SMC. We conducted performance validation in a prospective cohort of 448 patients 343 

with NSCLC and profiled ALK and/or RET status by immunohistochemistry (IHC) and/or 344 

fluorescence in situ hybridization (FISH). Of the 441 patients tested for ALK, 9.5% (42/441) 345 

were positive, and 67 patients were tested for RET, of which 16.4% (11/67) were positive 346 

(Supplementary Table 1). No patient was both ALK- and RET-positive, and the results of the 347 

IHC/FISH of ALK and other hotspot mutations in EGFR (L858R or exon 19indel) or KRAS (G12, 348 

G13, or Q61) showed a mutually exclusive pattern (Fisher’s exact test, p < 10−11). A total of 79 349 

patients were profiled using CancerSCANTM version 1, which targeted 83 genes, whereas the rest 350 

were profiled using version 2, which targeted 381 genes (Shin et al. 2017). Both V1 and V2 351 

panels covered the same hotspot introns involved in ALK and RET rearrangement (introns of 352 

ALK between exons 19–21 and RET between exons 6–12). 353 

As mentioned above, we considered fusion events that were ≥1250 bp in size, and ≥1 breaks 354 

were found in the analysis of ALK and RET region. Most ALK and RET activation cases involved 355 

the rearrangement or activating mutations that activate the kinase domain; in case of NSCLC, 356 

ALK and RET are primarily activated by fusion with various partners (Hallberg and Palmer 2013; 357 

Lee et al. 2015; Noh et al. 2017). Therefore, we assumed intragenic rearrangements in ALK and 358 

RET as a false positive. The respective sensitivity and PPV of ALK fusions were as follows: JuLI, 359 

90.4% (38/42 samples) and 95.0% (38/40); SvABA, 88.0% (37/42) and 88.0% (37/42); Delly, 360 

88.0% (37/42) and 90.2% (37/41); Manta, 83.3% (35/42) and 14.7% (35/238); LUMPY, 88.0% 361 

(37/42) and 32.3% (37/115); and novoBreak, 90.4% (38/42) and 28.6% (38/133) (Fig. 2b). For 362 

RET fusions, JuLI, SvABA, and Delly achieved same sensitivity and PPV [81.8% (9/11 samples) 363 

and 81.8% (9/11), respectively]. The sensitivity and PPV of remaining callers were as follows: 364 

Manta, 90.9% (10/11) and 28.6% (10/35); LUMPY, 90.9% (10/11) and 62.5% (10/16); and 365 
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novoBreak, 72.7% (8/11) and 53.3% (8/15) (Fig. 2c). Six samples that yielded false negative 366 

results of ALK and RET in JuLI analysis also tested negative in most callers, and the tumor purity 367 

of these samples was significantly lower than that of the test-positive samples (fig. S5). 368 

Therefore, some false negatives may be due to low tumor purity. Four false positives of ALK and 369 

RET identified in JuLI results were observed in all other callers, and the fusions were clearly 370 

identified in browser view (fig. S6). 371 

To further compare other clinically significant fusions, we retrospectively collected 46 archived 372 

prostate cancer samples and performed analysis of ERG fusion status by IHC and/or FISH. 373 

Twenty-three of the 46 patients (50.0%) were ERG fusion-positive (Supplementary Table 1). 374 

All patients with prostate cancer were profiled using CancerSCANTM version 1, and the panel 375 

covered the hotspot introns between exons 1–6 of TMPRSS2, the most common fusion partner of 376 

ERG fusion (Barros-Silva et al. 2013). We measured the performance of the callers with the 377 

same criteria as those of NSCLC. The respective sensitivity and PPV of ERG fusions were as 378 

follows: JuLI, 56.5% (13/23 samples) and 100.0% (13/13); SvABA, 43.5% (10/23) and 83.3% 379 

(10/12); Delly, 39.1% (9/23) and 100.0% (9/9); Manta, 95.7% (22/23) and 53.7% (22/41); 380 

LUMPY, 100.0% (23/23) and 50.0% (23/46); and novoBreak, 100.0% (23/23) and 50.0% (23/46) 381 

(Fig. 2d). There was no difference in purity distribution between true positive and false negative 382 

of JuLI. The relatively low sensitivity of this retrospective set may be due to other partners of 383 

ERG that were not targeted (Cancer Genome Atlas Research 2015). Overall, the number of false 384 

calls occurred as the split/total read ratio increased, but this issue had less effect in JuLI. 385 

  386 
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Fig. 2. Validation on high-depth clinical samples. (a) The F1 score [the harmonic average of positive 387 
predictive value (PPV; also known as precision) and sensitivity (also known as recall)] of the callers 388 
according to the minimum fusion length in 494 clinical samples examined by CancerSCANTM. (b) 389 
Validation on 441 non-small cell lung cancer (NSCLC) samples with known ALK fusion status via IHC 390 
and/or FISH analyses. (c) Validation on 67 NSCLC samples with known RET fusion status via IHC 391 
and/or FISH analyses. (d) Validation on 46 prostate cancer samples with known ERG fusion status via 392 
IHC and/or FISH analyses. All samples were sequenced using Illumina Hi-Seq with high coverage (~ 393 
1300X). When two or more events in the fusion gene were detected, we defined fusion on the basis of the 394 
most supportive read counts. Hotspot mutations of NSCLCs were in EGFR (L858R or exon 19 indel) or 395 
KRAS (G12, G13, or Q61). IHC, immunohistochemistry; FISH, fluorescence in situ hybridization; FFPE, 396 
formalin-fixed paraffin-embedded. 397 

  398 
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Performance based on sequencing coverage 399 

For panel-based high-throughput sequencing in clinical practice, test performance must at least 400 

be comparable to conventional molecular tests. The factors that constitute sufficient sequencing 401 

depth are influenced by tumor purity and clonality of variants as well as other characteristics of a 402 

patient’s tumor sample, including tissue preparation methods and sequencing platforms used. 403 

Lowering tumor purity reduces detection sensitivity by proportionally reducing the effective 404 

range of mutant alleles in tumor cells. In contrast to research samples, requirements for sufficient 405 

tumor purity for clinical specimens may not be met; therefore, it is important to have adequate 406 

coverage (Shin et al. 2017).  407 

We conducted in silico down-sampling experiments (three iterations) using the ALK set of 408 

NSCLCs as an alternative method for investigating the effect of sequencing depth on 409 

performance. In down-sampling experiments, we observed that the average sensitivity of all the 410 

callers improved with increased coverage (Fig. 3a and 3c). Although sensitivity increased at high 411 

coverage, PPV and specificity decreased in Manta, LUMPY, and novoBreak. In contrast, we 412 

noticed that JuLI, SvABA, and Delly were less affected by coverage. The F1 score improved in 413 

the 50–200× range, which is the typical range used in WGS or whole-exome sequencing (WES) 414 

in all callers (Fig. 3b). By contrast, the F1 score worsened at high depth (1340×) in Manta, 415 

LUMPY, and novoBreak, but not in others. Accuracy, which is the proportion of true results 416 

(both true positives and true negatives) among all the results, was also maintained at a high-depth 417 

range in JuLI, SvABA, and Delly in contrast to the other callers (Fig. 3d). Thus, we confirmed 418 

that sensitivity improved with increased sequencing depth; however, accuracy may decrease 419 

owing to increased noise levels above the threshold in some algorithms. To effectively apply 420 
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high-throughput sequencing in a clinical setting, it is necessary to use software optimized to 421 

reduce such noise. 422 

  423 
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Fig. 3. The effect of depth on fusion detection in clinical samples. (a) Positive predictive value (PPV, 424 
also known as precision) and sensitivity (also known as recall) based on in silico down-sampling 425 
experiments. A total of 441 non-small cell lung cancer (NSCLC) samples were down-sampled from the 426 
original depth (1340X), and the average performance was measured at each depth (three iterations). (b) 427 
The F1 score, which is the harmonic average of PPV and sensitivity, on the basis of the coverage change. 428 
(c) The receiver operating characteristic (ROC) curve. (d) Accuracy, which is the proportion of true 429 
results (both true positives and true negatives), among all the results. Error bars denote standard error of 430 
the mean. 431 

 432 

  433 
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Sensitivity validation using WGS data 434 

To estimate the sensitivity based on real WGS data, we downloaded raw FASTQ data of 435 

NA12878 from European Nucleotide Archive (ERA172924, 436 

https://www.ebi.ac.uk/ena/data/view/PRJEB3381). These data represent approximately 50X 437 

coverage, which has been widely used by tools for the estimation of a variety of variation tools. 438 

We compared results made by each tool to the truth set by Layer et al. (Layer et al. 2014), who 439 

developed LUMPY in 2014. They provided a truth set containing 4,095 deletions detected by at 440 

least one tool in the 50X dataset that were validated by split-read mapping analysis of 441 

independent long-read sequencing data from PacBio or Illumina platforms. In this comparison, 442 

LUMPY (47.4%; 1942/4095) was the most sensitive, followed by JuLI (41.9%; 1717/4095), 443 

SvABA (41.9%; 1716/4095), Delly (38.5%; 1575/4095), Manta (37.9%; 1552/4095), and 444 

novoBreak (37.7%; 1542/4095). We were able to confirm that the performance of JuLI was 445 

maintained as much as other callers even at a low depth, such as WGS; however, specificity or 446 

PPV representing the frequency of false positive calls was not evaluated due to the lack of true 447 

negative reference. 448 

 449 

Joint call to detect fusions with insufficient evidence 450 

Recent reports have shown that the detection of ALK fusion in cfDNA is feasible in clinic setting 451 

(Paweletz et al. 2016; Thompson et al. 2016). Serial tumor sampling on progression has been 452 

helpful in determining the optimal subsequent treatment decision-making for patients. However, 453 

this is often complicated by insufficient tumor purity for molecular analysis and tumor 454 

heterogeneity (Dagogo-Jack et al. 2018). If a more sensitive detection is possible in a series of 455 

samples with insufficient supporting reads, slightly earlier decision-making can be made for 456 
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precise medicine. To achieve more sensitive fusion detection in clinical sequencing, we 457 

implemented the joint call function in JuLI that can detect fusions with low supporting evidence 458 

in serial/multi-region sampling tissues (Fig. 4a). To verify the performance of this function, in-459 

silico down-sampling experiments (mean coverage: 1X, 5X, and 10X with 100 iterations) were 460 

performed on mixed cell lines with relatively low cell ratios of 5-40% (Supplementary Table 4). 461 

In this simulation, most callers showed up to 1-2% sensitivity at 10X, joint call showed 40.6% 462 

sensitivity at 10X and could detect 7.3% even at 1X (Supplementary Table 6). 463 

To confirm the utility of the joint call function of JuLI in clinic, we applied it to ALK detection in 464 

cfDNA of NSCLCs. Pleural effusion (PE) and peripheral plasma were collected from four 465 

patients with NSCLS, whose ALK status was confirmed in primary tissue (one positive and three 466 

negative; Supplementary Table 1). DNA of cells in PE, cfDNA of PE, and cfDNA of plasma 467 

were processed using LiquidSCANTM (average coverage, approximately 4300X) and analyzed 468 

using the fusion callers. We excluded novoBreak from this analysis because some samples did 469 

not show any results in the ultra high-depth data. In this analysis, the callers, except JuLI, missed 470 

the EML4/ALK fusion in plasma cfDNA of the ALK-positive patient (CS_LC_0451), but JuLI 471 

was able to identify the fusion using the joint call function (Fig. 4b). There were only two 472 

discordant reads supporting the ALK fusion in plasma cfDNA of CS_LC_0451 (Fig. 4c). 473 

  474 
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Fig. 4. The joint call function to detect fusions with low supporting evidence in serial/multi-region 475 
sampling tissues. (a) The joint call function combines information from multiple BAM files and 476 
produces the individual result of the BAM files. (b) JuLI with the joint call function rescued the 477 
EML4/ALK fusion of CS_LC_0451 from false negative in plasma cell-free DNA. (c) Only two discordant 478 
reads supporting the ALK fusion were observed in plasma cfDNA of CS_LC_0451. 479 

 480 
  481 
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Annotation and visualization 482 

Accurate annotation of rearrangements is critical for clinical decision-making. JuLI annotates 483 

functional consequences of genomic fusions that are identified using high-throughput sequencing 484 

data in a strand-specific manner (fig. S7). Even with breaks at the same location, this annotation 485 

approach allows the user to easily distinguish between positive and negative strand events. 486 

Moreover, JuLI provides three useful pieces of information. First, JuLI predicts whether the 487 

fusion transcript is in-frame or out-of-frame by means of the UCSC database (Kent et al. 2002). 488 

Second, JuLI provides the frequency of fusion events based on cancer types in COSMIC (Forbes 489 

et al. 2015). Third, JuLI annotates chimera protein domains via the UniProt (Apweiler et al. 2004) 490 

and Pfam databases (Finn et al. 2010). Graphically visualized fusion diagrams were 491 

automatically generated in PDF format showing all annotation results (Fig. 5). 492 

  493 
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Fig.5. A representation showing Junction Location Identifier (JuLI) output with annotation and 494 
visualization. Annotation of fusions and a graphically visualized fusion diagram with the domain status 495 
in PDF format. 496 

 497 

  498 
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Comparison of running time between paired FFPE and fresh tissues 499 

We generated sequencing data from paired FFPE and fresh cancer cell lines using CancerSCAN 500 

V1, and of these cell lines, BHP10-3 showed the highest change in the split/total read ratio (Fig. 501 

1e). To compare elapsed time, we measured BHP10-3 pair analysis time of each caller with 10 502 

iterations (fig. S8). We observed a 1.1- to 29.3-fold increase in analysis time in low-quality 503 

FFPE tissue with these callers. Although JuLI was relatively slow in low quality FFPE tissue 504 

because it implements several steps to improve accuracy, the speed can be increased through 505 

parallel processing across multiple cores. 506 

 507 

 508 

DISCUSSION 509 

To implement precision medicine at SMC, we developed JuLI, a novel fusion detection 510 

algorithm optimized for clinical application. We validated the tool on four cancer cell lines and 511 

on 505 clinical tumor specimens. JuLI has several characteristics. First, with the implementation 512 

of the noise reduction algorithm to minimize false positive calls, it maintains good analytical 513 

specificity without loss of sensitivity, particularly in noisy samples, such as FFPE samples. 514 

Second, JuLI can detect fusions with insufficient evidence in serial or multi-region sequencing 515 

samples by using the joint call function. Third, JuLI is easy to use with the provided an R 516 

package, which is available via GitHub (https://github.com/sgilab/JuLI ) and supports 517 

comprehensive annotation and visualization of SVs. 518 

An intriguing point is that JuLI can be used for monitoring cancer in specimens such as cfDNA, 519 

blood samples of minimal residual leukemic cell follow-up, and follow-up biopsy specimen 520 

without ideal tumor purity (Shin et al. 2017). Split reads originating from the primary tumor have 521 
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high specificity in the location of fusion junction and adjacent DNA sequences, with uniqueness 522 

of split portion. Sensitive calling for these predefined fusion signals in follow-up specimens 523 

provided a good chance for early detection of relapsing cancer with good specificity.  524 

Clinically, quantitative evaluation of fusion transcript is emphasized in follow-up of some 525 

cancers, particularly for CML. Discontinuation of TKIs is suggested in recent NCCN guidelines 526 

for CML, and the practice is performed based on quantitative evaluation of the BCR-ABL1 527 

transcript. Although the normalization, RNA assay does not provide direct information on the 528 

number of malignant clones. However, ultra-high coverage next-generation sequencing (NGS) 529 

for DNA fusion could provide direct information on the number of remnant malignant clones in 530 

future precision medicine. 531 

For accurate detection of tumor-driving fusions, it is assumed to be necessary to detect fusions in 532 

both RNA and DNA. RNA is a suitable material for directly detecting chimeric transcripts; 533 

however, quality may be compromised because of long storage time or degradation during FFPE 534 

preparation (Ludyga et al. 2012). Detection sensitivity for fusions may be maximized by 535 

simultaneously performing DNA and RNA assays. Furthermore, combined fusion analysis for 536 

DNA and RNA can help identify loss-of-function of a tumor suppressor gene via fusion or 537 

complex fusions involving noncoding regions. 538 

The limitation of this study is that a limited number of fusion events were tested for performance 539 

validation. Most callers used in this study for comparison reported their results through a 540 

genome-wide comparison of several samples in their papers. However, we performed quality 541 

(i.e., condition)-wide comparison of 505 patient samples with three clinically important fusion 542 

events and four cancer cell lines with known fusions. In a clinical setting, it may be inevitable to 543 
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examine tissues with inappropriate quality (low tumor purity or poor quality FFPE). Therefore, 544 

our results could provide useful information to select callers in a clinical setting. 545 

In clinical setting, although sensitivity is important, maintaining PPV is also essential to reduce 546 

the number of false positives. In particular, if the prevalence is relatively low, such as that of the 547 

ALK fusion in NSCLC (2%–7%) (Kwak et al. 2010), several wrong decisions can be made when 548 

PPV is not guaranteed. Clinical decisions based on false test results are risky and may lead to 549 

inappropriate treatment strategies. Therefore, if the PPV cannot provide a sufficiently high 550 

confidence level, it will be difficult to use the method for diagnostic purposes. Because JuLI has 551 

better PPV relative to the existing algorithms, it is likely to deliver accurate fusion profiling data 552 

to help clinicians to make optimal therapeutic decisions.  553 
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