

1 **TITLE PAGE**

2 **JuLI: accurate detection of DNA fusions in clinical sequencing for precision oncology**

3 Hyun-Tae Shin^{1,2†}, Nayoung K. D. Kim^{1†}, Jae Won Yun^{1,2,3†}, Boram Lee^{1,2}, Sungkyu Kyung^{1,4},
4 Ki-Wook Lee^{1,5}, Daeun Ryu¹, Jinho Kim¹, Joon Seol Bae¹, Donghyun Park¹, Yoon-La Choi⁶, Se-
5 Hoon Lee⁷, Myung-Ju Ahn⁷, Keunchil Park⁷, and Woong-Yang Park^{1,2,5,8§}

6

7 ¹Samsung Genome Institute, Samsung Medical Center, Seoul, Korea.

8 ²Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul,
9 Korea.

10 ³Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan
11 University School of Medicine, Seoul, Korea.

12 ⁴Department of Bioinformatics and Life Science, Soongsil University, Seoul, Korea.

13 ⁵Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, Korea.

14 ⁶Department of Pathology and Translational Genomics, Samsung Medical Center,
15 Sungkyunkwan University School of Medicine, Seoul, Korea.

16 ⁷Department of Hematology and Oncology, Department of Medicine, Samsung Medical Center,
17 Sungkyunkwan University School of Medicine, Seoul, Korea.

18 ⁸Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Seoul,
19 Korea.

20 [§]Corresponding author

21 Woong-Yang Park, woongyang.park@samsung.com

22 [†]These authors contributed equally to this work.
23

24 **ABSTRACT**

25 Accurate detection of genomic fusions by high-throughput sequencing in clinical samples with
26 inadequate tumor purity and formalin-fixed paraffin embedded (FFPE) tissue is an essential task
27 in precise oncology. We developed the fusion detection algorithm Junction Location Identifier
28 (JuLI) for optimization of high-depth clinical sequencing. We implemented novel filtering steps
29 to minimize false positives and a joint calling function to increase sensitivity in clinical setting.
30 We comprehensively validated the algorithm using high-depth sequencing data from cancer cell
31 lines and clinical samples and whole genome sequencing data from NA12878. We showed that
32 JuLI outperformed state-of-the-art fusion callers in cases with high-depth clinical sequencing and
33 rescued a driver fusion from false negative in plasma cell-free DNA. JuLI is freely available via
34 GitHub (<https://github.com/sgilab/JuLI>).

35

36 INTRODUCTION

37 High-throughput sequencing is becoming increasingly prevalent in precision cancer medicine
38 worldwide. In the Republic of Korea and United States of America, assays using high-
39 throughput sequencing have received regulatory approval as companion diagnostic tests for
40 personalized care

41 (<http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/InVitroDiagnostics/ucm330711.htm>,
42

43 [http://www.mohw.go.kr/react/jb/sjb0406vw.jsp?PAR_MENU_ID=03&MENU_ID=030406&CO
44 NT_SEQ=338288&page=1](http://www.mohw.go.kr/react/jb/sjb0406vw.jsp?PAR_MENU_ID=03&MENU_ID=030406&CONT_SEQ=338288&page=1)). Most assays use sequencing technology to identify clinically
45 actionable single nucleotide variants (SNVs) and small insertions/deletions (indels) because they
46 are relatively easy to detect and interpret. However, some cancers such as *ALK*-rearranged non-
47 small cell lung cancers (NSCLCs) and *BCR/ABL*-rearranged chronic myeloid leukemias (CMLs)
48 are driven by somatic genomic fusions that cannot be detected by these methods for SNVs/indels.

49 Patients with these oncogenic fusions respond to tyrosine kinase inhibitors (TKIs), and such
50 genomic changes are now key therapeutic targets (Druker et al. 2001; Awad and Shaw 2014).

51 A number of factors are prerequisite for accurate detection of genomic fusions in the clinical
52 setting. First, obtaining a representative specimen that provides an adequate amount of tumor
53 sample for genome profiling is an ongoing challenge. Our previous study has shown that
54 numerous important variants are present at a low allelic fraction (Shin et al. 2017). Unlike tissues
55 used for research, tissues from clinical procedures, such as biopsies, tend to have inadequate
56 tumor purity. Recently, cell-free DNA (cfDNA) testing by ultra-deep sequencing has been
57 introduced for genotyping primary cancers and monitoring of post-treatment recurrence in
58 oncology, and this test aims to detect approximately 0.1% of allele fractions (Oellerich et al.

59 2017; Phallen et al. 2017; Christensen et al. 2018). Furthermore, considering the heterogeneity of
60 individual tumors, complete profiling of a tumor may require multiple samplings from different
61 regions, which is not clinically feasible. To capture these low fraction variants, sufficient
62 sequencing coverage and specialized algorithms are imperative for a clinical assay. Second, it is
63 important to obtain a sufficient quality of formaldehyde-fixed paraffin-embedded (FFPE)
64 specimens for genome profiling. FFPE is preferred for most molecular analyses of clinical
65 pathologies because of its advantages in collection and storage. However, formalin fixation
66 results in DNA and RNA damage, which is affected by various preanalytical factors, such as
67 duration of storage, formalin fixation, and ischemic time (Evers et al. 2011; Spencer et al. 2013;
68 Araujo et al. 2015). These fragmented nucleic acids act as noise and may make it difficult to
69 detect oncogenic fusions. The detection of genomic fusions in clinical samples tends to be
70 challenging because of the above-mentioned problems.

71 As the importance of detecting genomic fusions in clinical decision-making continues to increase,
72 a critical area for improvement is currently the accuracy of detecting actionable fusions for the
73 realization of precision cancer medicine. In the present study, we focused on improving the
74 reliability of detecting somatic actionable fusions in cancer using high-depth DNA sequencing.
75 To address the above problems, we developed a fusion detection algorithm optimized for clinical
76 purposes and validated this algorithm using cancer cell lines with known driver fusions and **459**
77 NSCLC samples with known *ALK* fusion and/or *RET* fusion status and **46** prostate cancer
78 samples with known *TMPRSS2* fusion status (**Supplementary Table 1**).

79
80

81 **MATERIALS AND METHODS**

82 **Study design**

83 The Institutional Review Board (IRB) of Samsung Medical Center (SMC) approved this study.
84 NSCLC samples were obtained at SMC between March 2014 and February 2017 with informed
85 consent from some patients, whereas consent was waived by the IRB for others. The inclusion
86 criteria for samples in this study were as follows: (i) sample was profiled using CancerSCANTM
87 (Shin et al. 2017) or LiquidSCANTM (Park et al. 2018), the custom sequencing platforms of
88 SMC; (ii) clinical information of the patient was stored in the clinical data warehouse of SMC.

89

90 **Panel design for fusion detection**

91 Samples were prepared and analyzed using CancerSCANTM or LiquidSCANTM, targeted-
92 sequencing platforms designed at SMC (**Supplementary Table 1**) (Shin et al. 2017; Park et al.
93 2018). To identify fusions using a targeted panel, we tiled across the “hotspot” introns that
94 contain well-known breakpoints of a set of clinically relevant fusions. Introns of five genes from
95 an 83-gene panel (CancerSCAN version 1 and LiquidSCAN version 1) and introns of 22 genes
96 from a 381-gene panel (CancerSCAN version 2) were densely covered with capture probes. All
97 panels targeted hotspot introns of *ALK*. The average DNA fragment size of the platform was
98 approximately 180 bp and the read length was 100 bp, thus, indicating that most fragments were
99 fully sequenced. The other specific details of the panels can be found in previously reported
100 papers (Shin et al. 2017; Park et al. 2018).

101

102 **Cell line mix experiment**

103 Four cell lines (H2228, BHP10-3, U118MG, and SK-NEP-1) known to harbor specific fusions
104 were used (**Supplementary Table 2**). The cell lines were cultured in our laboratory. Before
105 extraction of DNA, the cells were washed two times with PBS. When the samples were pooled,
106 the value from the Qubit HS assay (Life Technologies) was used, and DNAs were mixed equally
107 to a total amount of 500 ng.

108

109 **PCR validation of fusions**

110 The reference sequence of a target gene and breakpoint region was retrieved from the UCSC
111 genome browser (<http://genome.ucsc.edu/cgi-bin/hgBlat>). A target-specific primer was designed
112 using Primer3 for PCR on the basis of the reference sequence and was confirmed using Primer-
113 BLAST (National Institutes of Health; NIH; **Supplementary Table 3**). The translocation target
114 gene was amplified by PCR using specific primers. The cycling conditions were as follows:
115 94°C for 5 min, followed by 44 cycles of denaturation (94°C for 30 s), annealing (60°C for 1
116 min), and extension (72°C for 1 min), with final extension at 72°C for 10 min. The reactions
117 were performed using HelixAmp TM Ready-2X-Go Hot-Taq (Nanohelix, Korea). Sequences of
118 the PCR products were determined by an automated method (ABI Prism 3730) using the Big
119 Dye Terminator Kit (Applied Biosystems, Foster City, CA, USA). Translocation breakpoint
120 region sequences were verified by means of BLAST (NIH) and DNAsstar (Lasergene).

121

122 **Alignment and preprocessing**

123 Paired-end reads were aligned using BWA-MEM at its default settings (Li and Durbin 2009)
124 with the human reference genome (hg19). Aligned reads with mapping quality <20 were filtered

125 out, and the remaining reads were sorted using SAMtools (Li et al. 2009). To prepare appropriate
126 input BAM files for other callers, we employed MarkDuplicates of Picard (Broad Institute),
127 which is commonly used for marking and removal of duplicate reads (McKenna et al. 2010).

128

129 **Workflow for fusion identification**

130 **Fusion detection algorithm** To identify genomic fusions for clinical applications, we developed
131 an algorithm called Junction Location Identifier (JuLI) with the aim of reducing the number of
132 false positives generated while maintaining sensitivity. Initially, basic statistics of the BAM files,
133 such as read length and median insert size, are calculated and used for further steps. Candidate
134 breaks are then defined using two or more clipped reads, including at least one soft-clipped read,
135 against the genome reference. If a matched normal sample is available as a control, breaks with
136 twice the cutoff value of the clipped reads are scanned in the normal sample, and candidate
137 breaks that overlapped with the breaks in the normal sample are excluded. If a set of normal
138 samples is available, a control panel can be generated using a function in JuLI, which
139 incorporates the breakpoints in multiple samples. All the samples in the present study were
140 processed without matched normal or control panel filtering. The algorithm then involves two
141 separate parts, viz., discordant and split read analyses. The user can set all parameters of each
142 step.

143

144 **Discordant read analysis** As JuLI does not remove duplicate reads as a part of the algorithm,
145 counting supporting reads is very important to reduce the number of false positive calls. JuLI
146 first uses information, including the genomic positions of both paired reads, CIGAR (Concise
147 Idiosyncratic Gapped Alignment Report) strings, and the QNAME of sequencing reads in the

148 BAM file, to reduce redundant duplicated or noise signals. Candidate breaks with fewer than
149 three unique discordant reads are filtered. Next, consensus contigs from the matched and clipped
150 side of each candidate break are generated. The average number of pairwise differences,
151 representing nucleotide diversity (π), between the reads and the consensus contig on both sides
152 of the candidate break is calculated as follows:

$$\pi = \frac{N}{N - 1} \sum_i p_i \pi_i$$

153 where N is the number of reads across the break, p_i is the frequency of the i th read across the
154 break, and π_i is the proportion of bases that differ between the read and consensus contig
155 truncated to the read length. If the normalized nucleotide diversity of either the clipped or
156 matched side is higher than 2.0, the break is excluded from further processing. The normalized
157 nucleotide diversity is calculated using the following formulae:

$$\text{normalized } \pi = \frac{\pi - \bar{\pi}_{\text{matched side}}}{S_{\text{matched side}}}$$

158 where $\bar{\pi}_{\text{matched side}}$ is the mean of nucleotide diversity of matched sides, and $S_{\text{matched side}}$ denotes
159 the standard deviation of nucleotide diversity of the matched sides. Candidate breaks that pass
160 the filters described above are paired with each other using the pair information, and split side
161 contigs of each pair are aligned to the matched side contigs of their partners. If one of the two
162 pairs matches more than 70% of the split contig length and is longer than 10 bp, the pair is called
163 a fusion event. If there are no candidate pairs that passed the filters, a fusion event is defined if
164 more than six discordant reads formed a cluster and more than 70% and more than 20 bp of the
165 split contig is mapped to the reference sequence of the cluster region.

166

167 **Split read analysis** Split read and discordant read analyses are conducted similarly. Candidate
168 breaks with fewer than three split reads are filtered and then subjected to the following filtering
169 steps, including nucleotide diversity analysis and pairwise local alignment. As JuLI is based on
170 split information, fusions with a length less than half the read length are not considered. In split
171 read analysis, if both pairs matched $\geq 70\%$ of the length of the split contigs, the pair is considered
172 a fusion event.

173

174 **Joint call analysis** The joint call combines information from multiple BAM files in each analysis
175 step and separates the numbers of each supporting read in the final step to produce individual
176 results of the BAM files. If some fusion events have been previously defined in other BAM files,
177 the fusions can be efficiently detected by specifying the target area using the BED (Browser
178 Extensible Data) format. This is extremely useful for the case in cfDNA analysis as acquired
179 serial samples for cfDNA may not have enough supporting reads, which makes it difficult to
180 detect the events (see Discussion).

181

182 **Settings of algorithms**

183 **We carefully studied the documentation for each algorithm to determine and apply
184 parameters that could be optimized in the clinical sample data.**

185 **JuLI:** All analyses were performed using JuLI v.0.1.3 with the default parameters. Fusion events
186 in the UCSC gap database were excluded from further analysis.

187 **SvABA:** All analyses were performed using SvABA v 134 (Wala et al. 2018). We applied a -M
188 flag so that the number of “weird reads” was not limited in highly fragmented FFPEs. We

189 employed sorted, indexed, and duplication-free BAMs for SvABA. The command line for the
190 analysis was as follows:

191 `svaba run -t $INPUT.bam -p 1 -G $reference.fa -a sample_id -M 100000`

192 **Delly:** We used Delly v.0.7.8 (Rausch et al. 2012) for all analyses with the default parameters.

193 We preprocessed BAM files as recommended by the developers (sorting, indexing, and duplicate
194 marking). We applied the exclusion regions of the hg19 reference included in the Delly source
195 code. The Delly command line for the analysis was as follows:

196 `delly call -x human.hg19.excl.tsv -o $OUTPUT.bcf -g $reference.fa $INPUT.bam`

197 We converted the output with BCF (binary variant call format) to VCF (variant call format)
198 using BCFtools, which was included as a submodule in Delly. We selected the results of VCF
199 that passed the quality filter for all analyses.

200 **Manta:** All analyses were performed using Manta v.1.2.2 (Chen et al. 2016). We disabled all
201 high-depth filters by applying the --exome flag during configuration for high-depth sequencing
202 data. We analyzed sorted, indexed, and duplication-free BAMs using Manta. The command line
203 for configuring was as follows:

204 `configManta.py --tumorBam $INPUT.bam --referenceFasta $reference.fa --runDir`

205 `$OUTPUT_DIR --exome`

206 Next, we launched a workflow run script with a single node using the following command line
207 for execution:

208 `$OUTPUT_DIR/runWorkflow.py -m local -j 1`

209 We selected the results of VCF that passed the quality filter for all analyses. We applied the
210 high-depth filter parameter for whole-genome sequencing (WGS) analysis.

211 **LUMPY:** We used LUMPY v.0.2.8 for all analyses (Layer et al. 2014). We analyzed sorted,
212 indexed, and duplication-free BAM files for LUMPY. We split the BAM file into paired-end and
213 split-read files using SAMtools v.0.1.19 (Li et al. 2009) with the recommended parameters and
214 performed statistical analysis of the library sizes by means of a script in LUMPY. Then, the
215 following LUMPY command line for fusion detection was executed:

216 *\$lumpy -mw 4 -tt 0.0 -pe*
217 *bam_file:\$INPUT.discordant.pe.bam,histo_file:\$INPUT.pe.histo,mean:\$MEAN,stdev:\$STDEV,r*
218 *ead_length:100,min_non_overlap:100,discordant_z:4,back_distance:20,weight:1,id:1,min_map*
219 *ping_threshold:20 -sr*
220 *bam_file:\$INPUT.sr.bam,back_distance:20,weight:1,id:2,min_mapping_threshold:20 >*
221 *\$OUTPUT.pesr.bedpe*

222 **novoBreak:** All analyses were performed using novoBreak v 1.1(Chong et al. 2017). We
223 employed sorted, indexed, and duplication-free BAMs for novoBreak. We simulated a control
224 BAM file using wgsim (H. 2011) and used the output as control input to novoBreak. The
225 command line for the analysis was as follows:

226 *\$run_novoBreak.sh \$novoBreak_exe_dir \$reference.fa \$INPUT.bam \$CONTROL.bam 1*
227 *\$OUTPUT_DIR*

228
229

230 **RESULTS**

231 **Development of a fusion detection algorithm for clinical sequencing**

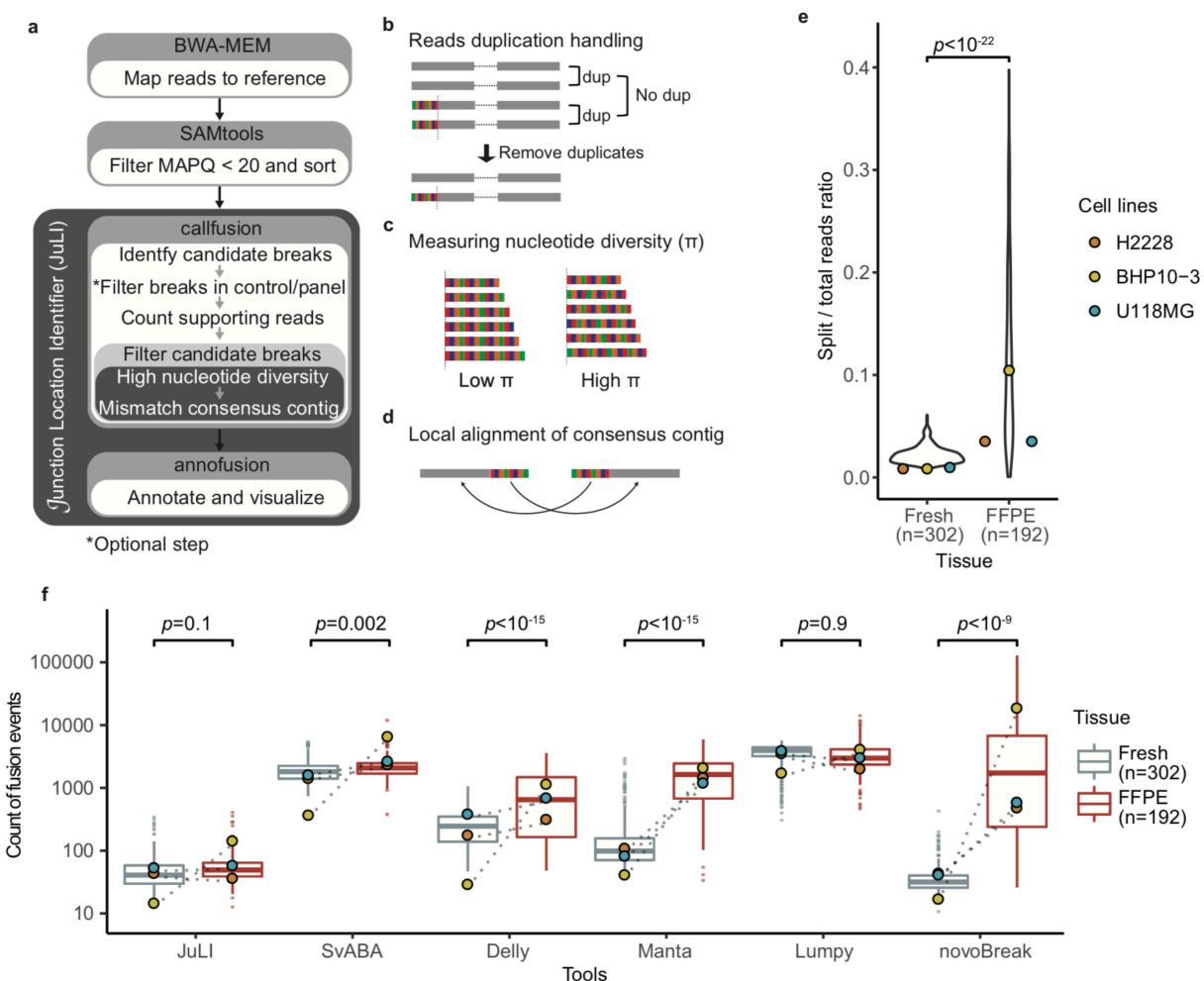
232 Since 2014, we have used a custom-designed panel (CancerSCANTM) for precision oncology that
233 covers up to 381 cancer-related genes, including introns containing frequent breakpoints in

234 selected fusion genes (Shin et al. 2017). To obtain high detection rates, we ensured a mean
235 sequencing coverage of approximately 1200X and a target insert size of approximately 180bp in
236 the initial alignment. We have developed several algorithms to improve the accuracy of our
237 platform. For fusion detection, here, we developed JuLI, which was optimized for high-depth
238 sequencing (**Fig. 1a–d**). JuLI utilizes information from both discordant and proper pair reads to
239 detect a wide range of structural variations (SVs), including duplications, deletions, inversions,
240 and interchromosomal translocations, at single-nucleotide resolution. Generally, it is preferable
241 to conduct high-depth sequencing with relatively short insert sizes (150–200 bp) to achieve high
242 sensitivity of target-enriched sequencing in various platforms, including panel-based platforms.
243 However, PCR duplicates generated during preprocessing for sequencing may result in
244 overestimation of variants, and this situation may cause false positive results that could be even
245 worse with short insert sizes (Zhou et al. 2014). To avoid this problem, identifying duplicates
246 using Picard (McKenna et al. 2010) or SAMtools (Li et al. 2009) is a necessary step in general
247 bioinformatics analysis. However, because this process uses only limited information on
248 sequence alignment map (SAM) files, it is possible to unintentionally remove reads with
249 evidence of rearrangement (**fig. S1**), which may, thus, affect the sensitivity of detecting lower
250 tumor cell content. We carefully counted reads supporting candidate breaks by determining
251 duplicate fragments using CIGAR and pair locations without applying a general deduplication
252 step (**Fig. 1b**; see **Methods**). Next, the candidates with sufficient supporting reads were
253 subjected to the following two filtering steps. First, we measured nucleotide diversity (π), which
254 is the average number of pairwise differences between the reads and the consensus contig, and
255 the breaks with high nucleotide diversity were excluded from further processing (**Fig. 1c**; see
256 **Methods**). Second, the candidate break and partner breaks were paired via pair information and

257 compared by pairwise local alignments (**Fig. 1d**; see **Methods**). Through these filtering steps, we
258 were able to accurately detect fusions by reducing the number of false positives.

259

260 **Fig. 1. The fusion detection algorithm for clinical sequencing.** (a) The scheme of Junction Location
 261 Identifier (JuLI). JuLI implements novel filtering steps to reduce the number of false positives while
 262 maintaining sensitivity by fine-tuning the counting of supporting reads without duplicate removal. (b)
 263 JuLI uses information, including the genomic positions, CIGAR strings, and read names in the BAM file,
 264 to reduce redundant duplicated or noise signals. (c) After measuring the nucleotide diversity of the breaks,
 265 JuLI filters breaks with high nucleotide diversity for the analysis. (d) The candidate breaks are paired
 266 with each other using pair information, and split side contigs of each pair are aligned to the matched side
 267 contigs of their partners. (e) The ratios of split read to the total read counts for formalin-fixed paraffin-
 268 embedded (FFPE), fresh clinical tissue samples ($n = 494$), and pair cell lines ($n = 3$) tested by
 269 CancerSCAN™. For FFPE samples, split reads and variability of split reads increased significantly (t test,
 270 $p < 10^{-22}$). (f) Variant counts obtained from the callers in patient samples ($n = 494$) and pair cell lines ($n =$
 271 3). Note that some callers showed increasing variant counts in FFPE tissues. This phenomenon was due to
 272 the low quality of FFPE samples because of DNA degradation or damage.



273

274 **Effects of damaged DNA in FFPE tissues**

275 As mentioned above, one of the challenges in analyzing clinical samples is that FFPE tissues
276 usually contain degraded DNA and smaller fragment sizes (Spencer et al. 2013). As a
277 consequence, the ratio of split to total reads is substantially higher in FFPE samples than that in
278 fresh samples examined by CancerSCAN (t test, $p < 10^{-22}$; **Fig. 1e**). To eliminate the differences
279 between individual samples, three pairs of fresh and routinely processed FFPE cancer cell lines
280 were chosen for sequencing to compare tissue effects. Furthermore, differences in the split to
281 total read ratio were also observed (**Fig. 1e**). An increase in the numbers of split reads could
282 affect noise in fusion analyses and may cause numerous false positive events. To compare FFPE
283 effects and for further analysis, we chose several state-of-the-art fusion callers, including SvABA
284 (Wala et al. 2018), Delly (Rausch et al. 2012), Manta (Chen et al. 2016), LUMPY (Layer et al.
285 2014), and novoBreak (Chong et al. 2017), that use split and discordant read information, similar
286 to JuLI. In the comparison of fusion events count, we observed a significant increase in count of
287 fusion events in FFPE tissues when using SvABA, Delly, Manta, LUMPY, and novoBreak (**Fig.**
288 **1f**). The count of fusion events of JuLI and LUMPY was not affected by the tissue type, but the
289 count of LUMPY was ten-times higher than that of JuLI, regardless of the tissue type (**Fig. 1f**).
290 Analysis of three paired fresh and routine FFPE cancer cell line specimens revealed differences
291 in counts of fusion events between the FFPE and fresh specimens. BHP10-3 revealed the highest
292 change in the split/total read ratio (**Fig. 1e**) and showed the highest difference in fusion counts
293 using most callers (**Fig. 1f**). Numerous split reads were observed in the FFPE specimen of
294 BHP10-3 probably because of DNA damage during sample preparation (**fig. S2**). For the tools
295 affected by FFPE tissues, the count of fusion events was positively correlated with split/total
296 reads ratio (**fig. S3**). However, JuLI showed the least increase in the number of fusion events

297 with increasing split/total reads ratio (**fig. S3**). Low quality of FFPE tissue can cause numerous
298 false positive results with most callers, but such quality issues did not significantly affect the
299 results yielded by JuLI.

300

301 **Validation of analytical sensitivity on cancer cell lines and patient's samples**

302 To evaluate the accuracy of the algorithm over a wide range of tumor purity, we adopted
303 experimental schemes designed by Frampton et al. (Frampton et al. 2013). To simulate different
304 tumor purity levels, four cancer cell lines harboring known fusions and a normal sample were
305 manually mixed at different ratios, generating a range of expected tumor purity levels (5%–100%)
306 (**Supplementary Table 2**). All cell line specimens were profiled using CancerSCANTM version
307 1, which targeted 83 genes. The mixed fraction of the fusions showed a high correlation
308 (correlation coefficient $[r] = 0.95$) with the relative value of the normalized supporting reads (**fig.**
309 **S4**). We observed that JuLI, SvABA, Delly, Manta, and LUMPY achieved 100% sensitivity
310 (32/32), but novoBreak missed one large deletion between *GOPC* and *ROSI* with 5% mix
311 fraction in this experiment (**Supplementary Table 4**). In addition, 37 fusions in patients' tissues
312 detected by JuLI with a wide range of supporting reads (range, 6–283) were validated by PCR to
313 verify the estimated fusion breakpoints. The locations of all fusion sequences at the estimated
314 breakpoints were confirmed (**Supplementary Table 3**).

315

316 **Performance validation using clinical samples**

317 Because of the differences in the performance between callers depending on the range of fusion
318 length (Wala et al. 2018), we measured the F1 score [the harmonic average of positive predictive
319 value (PPV; also known as precision) and sensitivity (also known as recall)] of the callers

320 according to the minimum fusion length in 494 clinical samples examined by CancerSCAN (**Fig.**
321 **2a** and **Supplementary Table 1**). Fusion results that are shorter than the minimum length in
322 each caller were excluded from the comparison and the performance comparison criteria are
323 described in the following paragraph. In all ranges of minimum fusion size, we observed that
324 JuLI outperformed other callers. Although JuLI and SvABA were less affected by performance
325 over the range of fusion sizes, Delly exhibited increased performance at a relatively long length
326 of fusion. We observed that Manta, LUMPY, and novoBreak tended to have lower PPV
327 compared to sensitivity (**Supplementary Table 5**) and a decrease in performance in
328 predominantly FFPE tissues compared to that in fresh tissues (**Supplementary Table 5**). The
329 minimum length of F1 score saturation for each caller was 800 bp for JuLI and SvABA, 1500 bp
330 for Delly, 1900 bp for Manta, 1200 bp for LUMPY, and 1300 bp for novoBreak. In order to
331 compare except for the regions with different performance, we compared the results except for
332 the fusions with the length shorter than 1250bp, which is the median value of the performance
333 saturation length of each caller.

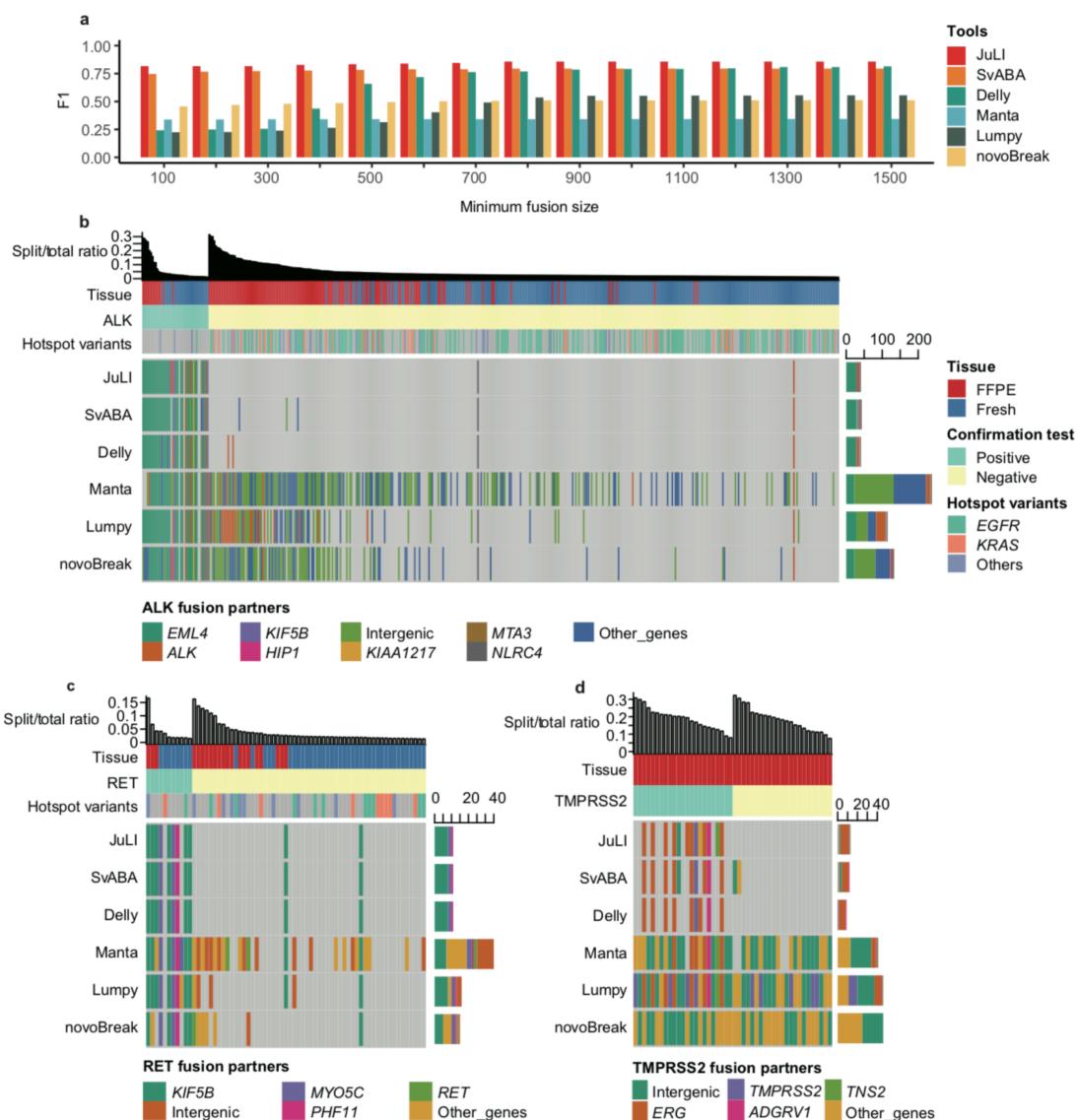
334 Activation of kinase gene by chromosomal rearrangement has been identified as a recurrent
335 driver event in NSCLCs (Takeuchi et al. 2012; Pan et al. 2014). *ALK* rearrangement acts as an
336 oncogenic driver in 4%–6% of NSCLCs (Takeuchi et al. 2012). In *ALK*-rearranged NSCLCs,
337 *ALK* inhibitor demonstrates therapeutic efficacy in terms of improved survival, and the
338 *EML4/ALK* variants and *ALK*-fusion partners may affect sensitivity to *ALK* inhibitors (Kwak et
339 al. 2010; Shaw et al. 2013; Noh et al. 2017). *RET* rearrangements have been identified in 1%–2%
340 of NSCLCs and are the potential therapeutic targets of multi-targeted kinase inhibitors (Pan et al.
341 2014; Lee et al. 2015). Therefore, accurate detection of an oncogenic fusion is important for
342 clinical decision-making. Over the last four years, CancerSCAN™ has been used at the oncology

343 clinic of SMC. We conducted performance validation in a prospective cohort of **448** patients
344 with NSCLC and profiled *ALK* and/or *RET* status by immunohistochemistry (IHC) and/or
345 fluorescence *in situ* hybridization (FISH). Of the 441 patients tested for *ALK*, 9.5% (42/441)
346 were positive, and 67 patients were tested for *RET*, of which 16.4% (11/67) were positive
347 (**Supplementary Table 1**). No patient was both *ALK*- and *RET*-positive, and the results of the
348 IHC/FISH of *ALK* and other hotspot mutations in *EGFR* (L858R or exon 19indel) or *KRAS* (G12,
349 G13, or Q61) showed a mutually exclusive pattern (Fisher's exact test, $p < 10^{-11}$). A total of **79**
350 patients were profiled using CancerSCANTM version 1, which targeted 83 genes, whereas the rest
351 were profiled using version 2, which targeted 381 genes (Shin et al. 2017). Both V1 and V2
352 panels covered the same hotspot introns involved in *ALK* and *RET* rearrangement (introns of
353 *ALK* between exons 19–21 and *RET* between exons 6–12).

354 As mentioned above, we considered fusion events that were ≥ 1250 bp in size, and ≥ 1 breaks
355 were found in the analysis of *ALK* and *RET* region. Most *ALK* and *RET* activation cases involved
356 the rearrangement or activating mutations that activate the kinase domain; in case of NSCLC,
357 *ALK* and *RET* are primarily activated by fusion with various partners (Hallberg and Palmer 2013;
358 Lee et al. 2015; Noh et al. 2017). Therefore, we assumed intragenic rearrangements in *ALK* and
359 *RET* as a false positive. The respective sensitivity and PPV of *ALK* fusions were as follows: JuLI,
360 90.4% (38/42 samples) and 95.0% (38/40); SvABA, 88.0% (37/42) and 88.0% (37/42); Delly,
361 88.0% (37/42) and 90.2% (37/41); Manta, 83.3% (35/42) and 14.7% (35/238); LUMPY, 88.0%
362 (37/42) and 32.3% (37/115); and novoBreak, 90.4% (38/42) and 28.6% (38/133) (**Fig. 2b**). For
363 *RET* fusions, JuLI, SvABA, and Delly achieved same sensitivity and PPV [81.8% (9/11 samples)
364 and 81.8% (9/11), respectively]. The sensitivity and PPV of remaining callers were as follows:
365 Manta, 90.9% (10/11) and 28.6% (10/35); LUMPY, 90.9% (10/11) and 62.5% (10/16); and

366 novoBreak, 72.7% (8/11) and 53.3% (8/15) (**Fig. 2c**). Six samples that yielded false negative
367 results of *ALK* and *RET* in JuLI analysis also tested negative in most callers, and the tumor purity
368 of these samples was significantly lower than that of the test-positive samples (**fig. S5**).
369 Therefore, some false negatives may be due to low tumor purity. Four false positives of *ALK* and
370 *RET* identified in JuLI results were observed in all other callers, and the fusions were clearly
371 identified in browser view (**fig. S6**).
372 To further compare other clinically significant fusions, we retrospectively collected 46 archived
373 prostate cancer samples and performed analysis of *ERG* fusion status by IHC and/or FISH.
374 Twenty-three of the 46 patients (50.0%) were *ERG* fusion-positive (**Supplementary Table 1**).
375 All patients with prostate cancer were profiled using CancerSCANTM version 1, and the panel
376 covered the hotspot introns between exons 1–6 of *TMPRSS2*, the most common fusion partner of
377 *ERG* fusion (Barros-Silva et al. 2013). We measured the performance of the callers with the
378 same criteria as those of NSCLC. The respective sensitivity and PPV of *ERG* fusions were as
379 follows: JuLI, 56.5% (13/23 samples) and 100.0% (13/13); SvABA, 43.5% (10/23) and 83.3%
380 (10/12); Delly, 39.1% (9/23) and 100.0% (9/9); Manta, 95.7% (22/23) and 53.7% (22/41);
381 LUMPY, 100.0% (23/23) and 50.0% (23/46); and novoBreak, 100.0% (23/23) and 50.0% (23/46)
382 (**Fig. 2d**). There was no difference in purity distribution between true positive and false negative
383 of JuLI. The relatively low sensitivity of this retrospective set may be due to other partners of
384 *ERG* that were not targeted (Cancer Genome Atlas Research 2015). Overall, the number of false
385 calls occurred as the split/total read ratio increased, but this issue had less effect in JuLI.
386

387 **Fig. 2. Validation on high-depth clinical samples.** **(a)** The F1 score [the harmonic average of positive
 388 predictive value (PPV; also known as precision) and sensitivity (also known as recall)] of the callers
 389 according to the minimum fusion length in 494 clinical samples examined by CancerSCAN™. **(b)**
 390 Validation on 441 non-small cell lung cancer (NSCLC) samples with known *ALK* fusion status via IHC
 391 and/or FISH analyses. **(c)** Validation on 67 NSCLC samples with known *RET* fusion status via IHC
 392 and/or FISH analyses. **(d)** Validation on 46 prostate cancer samples with known *ERG* fusion status via
 393 IHC and/or FISH analyses. All samples were sequenced using Illumina Hi-Seq with high coverage (~
 394 1300X). When two or more events in the fusion gene were detected, we defined fusion on the basis of the
 395 most supportive read counts. Hotspot mutations of NSCLCs were in *EGFR* (L858R or exon 19 indel) or
 396 *KRAS* (G12, G13, or Q61). IHC, immunohistochemistry; FISH, fluorescence *in situ* hybridization; FFPE,
 397 formalin-fixed paraffin-embedded.



398

399 **Performance based on sequencing coverage**

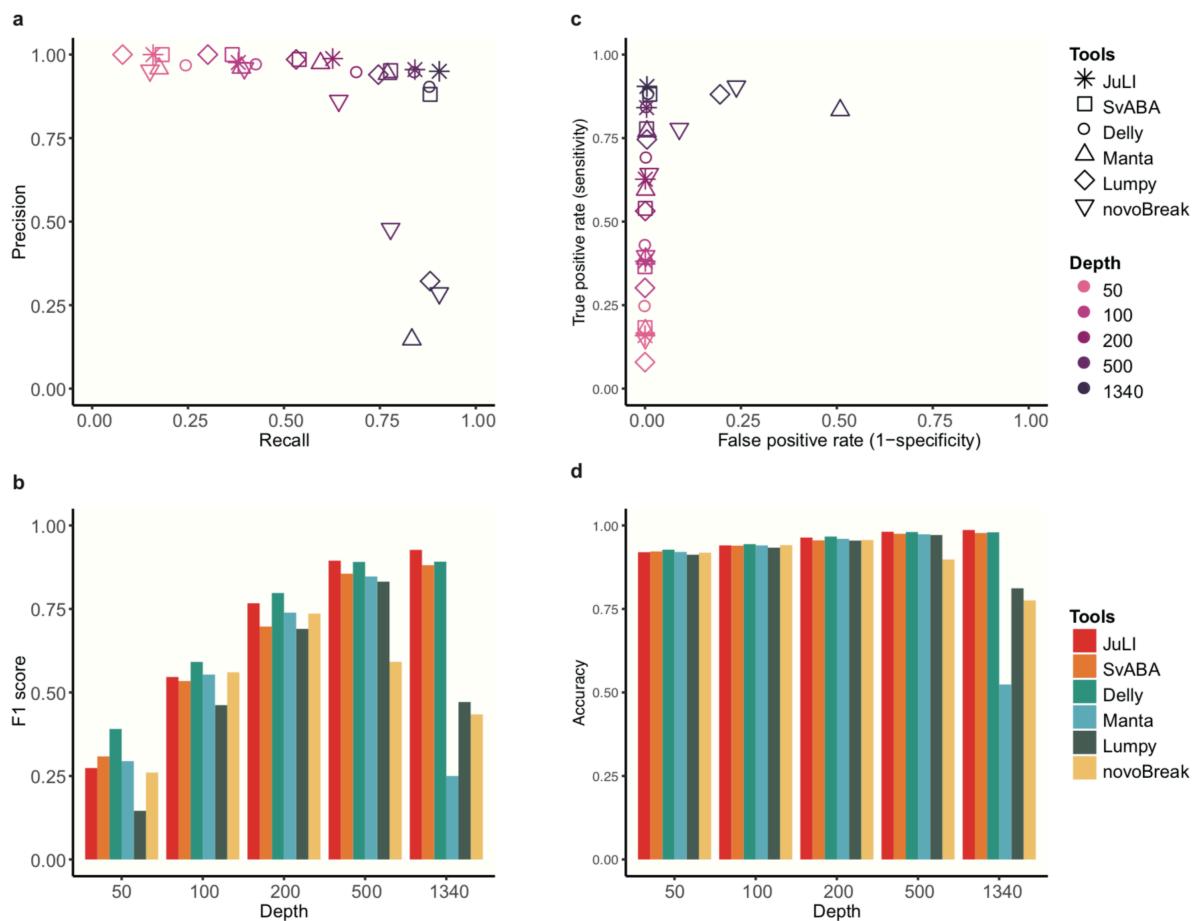
400 For panel-based high-throughput sequencing in clinical practice, test performance must at least
401 be comparable to conventional molecular tests. The factors that constitute sufficient sequencing
402 depth are influenced by tumor purity and clonality of variants as well as other characteristics of a
403 patient's tumor sample, including tissue preparation methods and sequencing platforms used.
404 Lowering tumor purity reduces detection sensitivity by proportionally reducing the effective
405 range of mutant alleles in tumor cells. In contrast to research samples, requirements for sufficient
406 tumor purity for clinical specimens may not be met; therefore, it is important to have adequate
407 coverage (Shin et al. 2017).

408 We conducted *in silico* down-sampling experiments (three iterations) using the *ALK* set of
409 NSCLCs as an alternative method for investigating the effect of sequencing depth on
410 performance. In down-sampling experiments, we observed that the average sensitivity of all the
411 callers improved with increased coverage (**Fig. 3a** and **3c**). Although sensitivity increased at high
412 coverage, PPV and specificity decreased in Manta, LUMPY, and novoBreak. In contrast, we
413 noticed that JuLI, SvABA, and Delly were less affected by coverage. The F1 score improved in
414 the 50–200× range, which is the typical range used in WGS or whole-exome sequencing (WES)
415 in all callers (**Fig. 3b**). By contrast, the F1 score worsened at high depth (1340×) in Manta,
416 LUMPY, and novoBreak, but not in others. Accuracy, which is the proportion of true results
417 (both true positives and true negatives) among all the results, was also maintained at a high-depth
418 range in JuLI, SvABA, and Delly in contrast to the other callers (**Fig. 3d**). Thus, we confirmed
419 that sensitivity improved with increased sequencing depth; however, accuracy may decrease
420 owing to increased noise levels above the threshold in some algorithms. To effectively apply

421 high-throughput sequencing in a clinical setting, it is necessary to use software optimized to
422 reduce such noise.

423

424 **Fig. 3. The effect of depth on fusion detection in clinical samples. (a)** Positive predictive value (PPV,
425 also known as precision) and sensitivity (also known as recall) based on *in silico* down-sampling
426 experiments. A total of 441 non-small cell lung cancer (NSCLC) samples were down-sampled from the
427 original depth (1340X), and the average performance was measured at each depth (three iterations). **(b)**
428 The F1 score, which is the harmonic average of PPV and sensitivity, on the basis of the coverage change.
429 **(c)** The receiver operating characteristic (ROC) curve. **(d)** Accuracy, which is the proportion of true
430 results (both true positives and true negatives), among all the results. Error bars denote standard error of
431 the mean.



432

433

434 **Sensitivity validation using WGS data**

435 To estimate the sensitivity based on real WGS data, we downloaded raw FASTQ data of
436 NA12878 from European Nucleotide Archive (ERA172924,
437 <https://www.ebi.ac.uk/ena/data/view/PRJEB3381>). These data represent approximately 50X
438 coverage, which has been widely used by tools for the estimation of a variety of variation tools.
439 We compared results made by each tool to the truth set by Layer et al. (Layer et al. 2014), who
440 developed LUMPY in 2014. They provided a truth set containing 4,095 deletions detected by at
441 least one tool in the 50X dataset that were validated by split-read mapping analysis of
442 independent long-read sequencing data from PacBio or Illumina platforms. In this comparison,
443 LUMPY (47.4%; 1942/4095) was the most sensitive, followed by JuLI (41.9%; 1717/4095),
444 SvABA (41.9%; 1716/4095), Delly (38.5%; 1575/4095), Manta (37.9%; 1552/4095), and
445 novoBreak (37.7%; 1542/4095). We were able to confirm that the performance of JuLI was
446 maintained as much as other callers even at a low depth, such as WGS; however, specificity or
447 PPV representing the frequency of false positive calls was not evaluated due to the lack of true
448 negative reference.

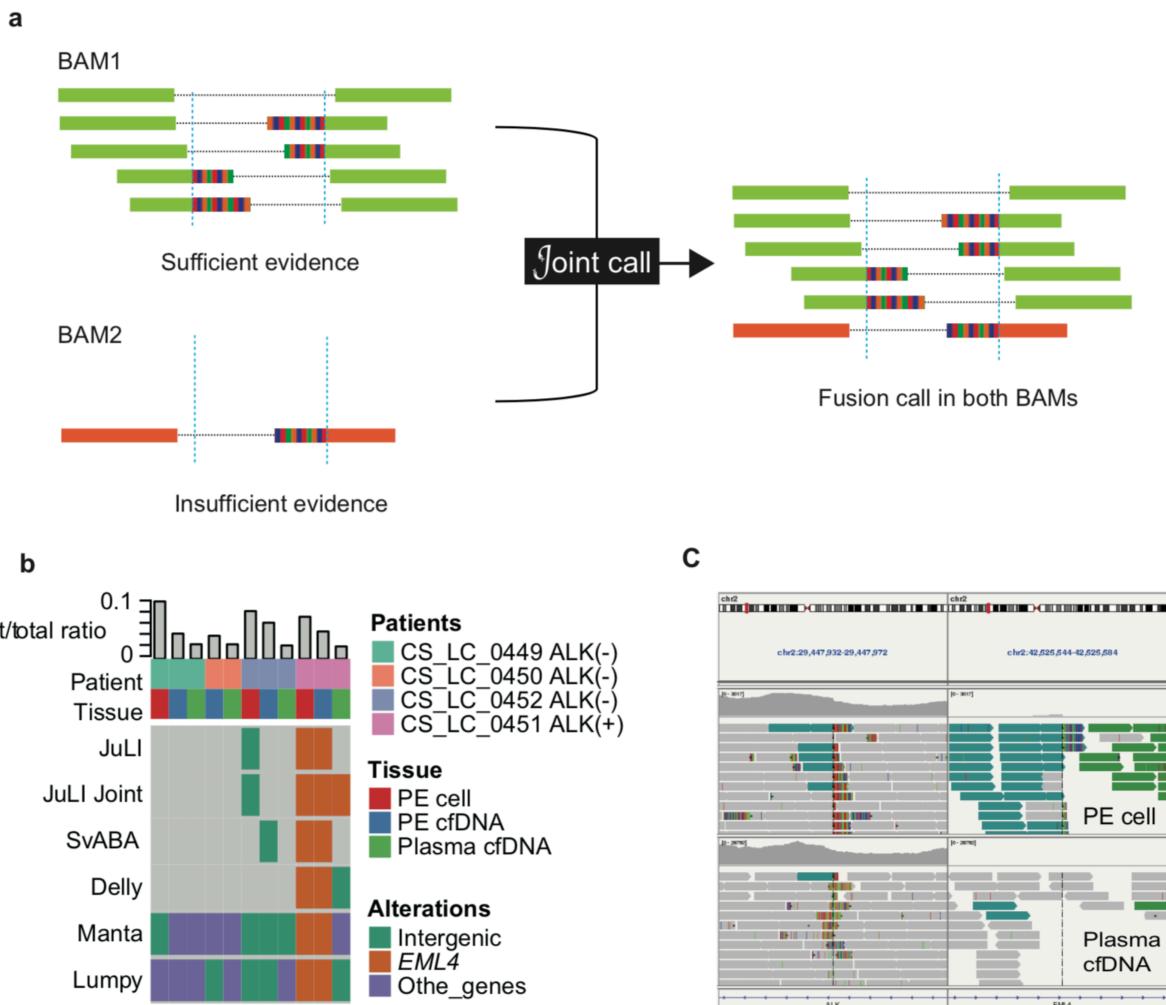
449

450 **Joint call to detect fusions with insufficient evidence**

451 Recent reports have shown that the detection of *ALK* fusion in cfDNA is feasible in clinic setting
452 (Paweletz et al. 2016; Thompson et al. 2016). Serial tumor sampling on progression has been
453 helpful in determining the optimal subsequent treatment decision-making for patients. However,
454 this is often complicated by insufficient tumor purity for molecular analysis and tumor
455 heterogeneity (Dagogo-Jack et al. 2018). If a more sensitive detection is possible in a series of
456 samples with insufficient supporting reads, slightly earlier decision-making can be made for

457 precise medicine. To achieve more sensitive fusion detection in clinical sequencing, we
458 implemented the joint call function in JuLI that can detect fusions with low supporting evidence
459 in serial/multi-region sampling tissues (**Fig. 4a**). To verify the performance of this function, *in-*
460 *silico* down-sampling experiments (mean coverage: 1X, 5X, and 10X with 100 iterations) were
461 performed on mixed cell lines with relatively low cell ratios of 5-40% (**Supplementary Table 4**).
462 In this simulation, most callers showed up to 1-2% sensitivity at 10X, joint call showed 40.6%
463 sensitivity at 10X and could detect 7.3% even at 1X (**Supplementary Table 6**).
464 To confirm the utility of the joint call function of JuLI in clinic, we applied it to *ALK* detection in
465 cfDNA of NSCLCs. Pleural effusion (PE) and peripheral plasma were collected from four
466 patients with NSCLCs, whose *ALK* status was confirmed in primary tissue (one positive and three
467 negative; **Supplementary Table 1**). DNA of cells in PE, cfDNA of PE, and cfDNA of plasma
468 were processed using LiquidSCANTM (average coverage, approximately 4300X) and analyzed
469 using the fusion callers. We excluded novoBreak from this analysis because some samples did
470 not show any results in the ultra high-depth data. In this analysis, the callers, except JuLI, missed
471 the *EML4/ALK* fusion in plasma cfDNA of the *ALK*-positive patient (CS_LC_0451), but JuLI
472 was able to identify the fusion using the joint call function (**Fig. 4b**). There were only two
473 discordant reads supporting the *ALK* fusion in plasma cfDNA of CS_LC_0451 (**Fig. 4c**).
474

475 **Fig. 4. The joint call function to detect fusions with low supporting evidence in serial/multi-region**
476 **sampling tissues. (a)** The joint call function combines information from multiple BAM files and
477 produces the individual result of the BAM files. **(b)** JuLI with the joint call function rescued the
478 *EML4/ALK* fusion of CS_LC_0451 from false negative in plasma cell-free DNA. **(c)** Only two discordant
479 reads supporting the *ALK* fusion were observed in plasma cfDNA of CS_LC_0451.



480
481

482 **Annotation and visualization**

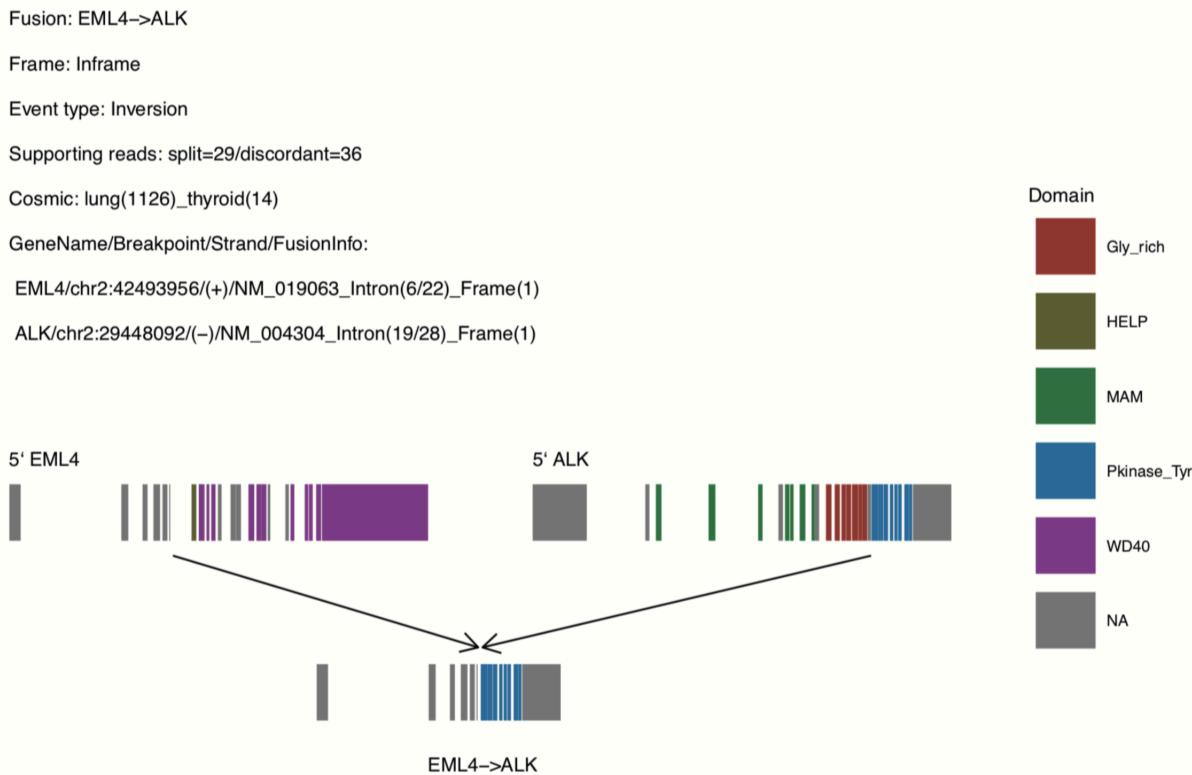
483 Accurate annotation of rearrangements is critical for clinical decision-making. JuLI annotates
484 functional consequences of genomic fusions that are identified using high-throughput sequencing
485 data in a strand-specific manner (**fig. S7**). Even with breaks at the same location, this annotation
486 approach allows the user to easily distinguish between positive and negative strand events.

487 Moreover, JuLI provides three useful pieces of information. First, JuLI predicts whether the
488 fusion transcript is in-frame or out-of-frame by means of the UCSC database (Kent et al. 2002).
489 Second, JuLI provides the frequency of fusion events based on cancer types in COSMIC (Forbes
490 et al. 2015). Third, JuLI annotates chimera protein domains via the UniProt (Apweiler et al. 2004)
491 and Pfam databases (Finn et al. 2010). Graphically visualized fusion diagrams were
492 automatically generated in PDF format showing all annotation results (**Fig. 5**).

493

494 **Fig.5. A representation showing Junction Location Identifier (JuLI) output with annotation and**
495 **visualization.** Annotation of fusions and a graphically visualized fusion diagram with the domain status

496 in PDF format.



497

498

499 **Comparison of running time between paired FFPE and fresh tissues**

500 We generated sequencing data from paired FFPE and fresh cancer cell lines using CancerSCAN
501 V1, and of these cell lines, BHP10-3 showed the highest change in the split/total read ratio (**Fig.**
502 **1e**). To compare elapsed time, we measured BHP10-3 pair analysis time of each caller with 10
503 iterations (**fig. S8**). We observed a 1.1- to 29.3-fold increase in analysis time in low-quality
504 FFPE tissue with these callers. Although JuLI was relatively slow in low quality FFPE tissue
505 because it implements several steps to improve accuracy, the speed can be increased through
506 parallel processing across multiple cores.

507

508

509 **DISCUSSION**

510 To implement precision medicine at SMC, we developed JuLI, a novel fusion detection
511 algorithm optimized for clinical application. We validated the tool on four cancer cell lines and
512 on 505 clinical tumor specimens. JuLI has several characteristics. First, with the implementation
513 of the noise reduction algorithm to minimize false positive calls, it maintains good analytical
514 specificity without loss of sensitivity, particularly in noisy samples, such as FFPE samples.
515 Second, JuLI can detect fusions with insufficient evidence in serial or multi-region sequencing
516 samples by using the joint call function. Third, JuLI is easy to use with the provided an R
517 package, which is available via GitHub (<https://github.com/sgilab/JuLI>) and supports
518 comprehensive annotation and visualization of SVs.

519 An intriguing point is that JuLI can be used for monitoring cancer in specimens such as cfDNA,
520 blood samples of minimal residual leukemic cell follow-up, and follow-up biopsy specimen
521 without ideal tumor purity (Shin et al. 2017). Split reads originating from the primary tumor have

522 high specificity in the location of fusion junction and adjacent DNA sequences, with uniqueness
523 of split portion. Sensitive calling for these predefined fusion signals in follow-up specimens
524 provided a good chance for early detection of relapsing cancer with good specificity.

525 Clinically, quantitative evaluation of fusion transcript is emphasized in follow-up of some
526 cancers, particularly for CML. Discontinuation of TKIs is suggested in recent NCCN guidelines
527 for CML, and the practice is performed based on quantitative evaluation of the *BCR-ABL1*
528 transcript. Although the normalization, RNA assay does not provide direct information on the
529 number of malignant clones. However, ultra-high coverage next-generation sequencing (NGS)
530 for DNA fusion could provide direct information on the number of remnant malignant clones in
531 future precision medicine.

532 For accurate detection of tumor-driving fusions, it is assumed to be necessary to detect fusions in
533 both RNA and DNA. RNA is a suitable material for directly detecting chimeric transcripts;
534 however, quality may be compromised because of long storage time or degradation during FFPE
535 preparation (Ludyga et al. 2012). Detection sensitivity for fusions may be maximized by
536 simultaneously performing DNA and RNA assays. Furthermore, combined fusion analysis for
537 DNA and RNA can help identify loss-of-function of a tumor suppressor gene via fusion or
538 complex fusions involving noncoding regions.

539 The limitation of this study is that a limited number of fusion events were tested for performance
540 validation. Most callers used in this study for comparison reported their results through a
541 genome-wide comparison of several samples in their papers. However, we performed quality
542 (i.e., condition)-wide comparison of 505 patient samples with three clinically important fusion
543 events and four cancer cell lines with known fusions. In a clinical setting, it may be inevitable to

544 examine tissues with inappropriate quality (low tumor purity or poor quality FFPE). Therefore,
545 our results could provide useful information to select callers in a clinical setting.
546 In clinical setting, although sensitivity is important, maintaining PPV is also essential to reduce
547 the number of false positives. In particular, if the prevalence is relatively low, such as that of the
548 *ALK* fusion in NSCLC (2%–7%) (Kwak et al. 2010), several wrong decisions can be made when
549 PPV is not guaranteed. Clinical decisions based on false test results are risky and may lead to
550 inappropriate treatment strategies. Therefore, if the PPV cannot provide a sufficiently high
551 confidence level, it will be difficult to use the method for diagnostic purposes. Because JuLI has
552 better PPV relative to the existing algorithms, it is likely to deliver accurate fusion profiling data
553 to help clinicians to make optimal therapeutic decisions.

554 **FUNDING**

555 This work was supported by the Korean Health Technology R&D Project, Ministry of Health &
556 Welfare, Republic of Korea (HI13C2096 to W.-Y.P.) and the National Research Foundation of
557 Korea (NRF) Grants funded by the Korean Government (MSIT, 2018M3C9A6017315)

558

559 **CODE AVAILABILITY**

560 The R package of JuLI is available online at GitHub (<https://github.com/sgilab/JuLI>).

561

562 **DATA AVAILABILITY**

563 The sequence data of cell lines have been deposited in NCBI sequence read archive (SRA) under
564 accession number (PRJNA514104). The patient data supporting the findings of this study are
565 available on request from the corresponding author [W.-Y.P]. The raw data on patients are not
566 publicly available because we did not have explicit consent to share the raw data acquired from
567 the collected samples for the clinical test.

568

569 **ACKNOWLEDGEMENTS**

570 This study was part of H.-T.S 's doctoral dissertation. We thank Jungwook Park and Geunhan
571 Jeong for their critical advice on the tool development.

572

573 **AUTHOR CONTRIBUTIONS**

574 H.-T.S., S.K., and K.-W.L. performed bioinformatic analysis of all data, with guidance from W.-

575 Y.P. The manuscript was written by H.-T.S., N.K.D.K., and J.W.Y. with substantial input from

576 J.K., J.S.B., and D.P.. H.-T.S., N.K.D.K., B.L., and D.R. developed the tool. Y.-L.C., S.-H.L.,

577 M.-J.A., and K.P. provided clinical data. All authors reviewed the manuscript.

578

579
580

REFERENCES

581 Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M
582 et al. 2004. UniProt: the Universal Protein knowledgebase. *Nucleic acids research* **32**(Database issue):
583 D115-119.

584 Araujo LH, Timmers C, Shilo K, Zhao W, Zhang J, Yu L, Natarajan TG, Miller CJ, Yilmaz AS, Liu T et al. 2015.
585 Impact of Pre-Analytical Variables on Cancer Targeted Gene Sequencing Efficiency. *PLoS one* **10**(11):
586 e0143092.

587 Awad MM, Shaw AT. 2014. ALK inhibitors in non-small cell lung cancer: crizotinib and beyond. *Clinical advances*
588 *in hematology & oncology : H&O* **12**(7): 429-439.

589 Barros-Silva JD, Paulo P, Bakken AC, Cerveira N, Lovf M, Henrique R, Jeronimo C, Lothe RA, Skotheim RI,
590 Teixeira MR. 2013. Novel 5' fusion partners of ETV1 and ETV4 in prostate cancer. *Neoplasia* **15**(7): 720-
591 726.

592 Cancer Genome Atlas Research N. 2015. The Molecular Taxonomy of Primary Prostate Cancer. *Cell* **163**(4): 1011-
593 1025.

594 Chen X, Schulz-Trieglaff O, Shaw R, Barnes B, Schlesinger F, Kallberg M, Cox AJ, Kruglyak S, Saunders CT.
595 2016. Manta: rapid detection of structural variants and indels for germline and cancer sequencing
596 applications. *Bioinformatics* **32**(8): 1220-1222.

597 Chong Z, Ruan J, Gao M, Zhou W, Chen T, Fan X, Ding L, Lee AY, Boutros P, Chen J et al. 2017. novoBreak: local
598 assembly for breakpoint detection in cancer genomes. *Nature methods* **14**(1): 65-67.

599 Christensen E, Nordentoft I, Vang S, Birkenkamp-Demtroder K, Jensen JB, Agerbaek M, Pedersen JS, Dyrskjot L.
600 2018. Optimized targeted sequencing of cell-free plasma DNA from bladder cancer patients. *Scientific*
601 *reports* **8**(1): 1917.

602 Dagogo-Jack I, Brannon AR, Ferris LA, Campbell CD, Lin JJ, Schultz KR, Ackil J, Stevens S, Dardaei L, Yoda S et
603 al. 2018. Tracking the Evolution of Resistance to ALK Tyrosine Kinase Inhibitors through Longitudinal
604 Analysis of Circulating Tumor DNA. *JCO precision oncology* **2018**.

605 Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, Lydon NB, Kantarjian H, Capdeville R, Ohno-
606 Jones S et al. 2001. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic
607 myeloid leukemia. *The New England journal of medicine* **344**(14): 1031-1037.

608 Evers DL, He J, Kim YH, Mason JT, O'Leary TJ. 2011. Paraffin embedding contributes to RNA aggregation,
609 reduced RNA yield, and low RNA quality. *The Journal of molecular diagnostics : JMD* **13**(6): 687-694.

610 Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K et al.
611 2010. The Pfam protein families database. *Nucleic acids research* **38**(Database issue): D211-222.

612 Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutsikakis H, Ding M, Bamford S, Cole C, Ward S et al.
613 2015. COSMIC: exploring the world's knowledge of somatic mutations in human cancer. *Nucleic acids*
614 *research* **43**(Database issue): D805-811.

615 Frampton GM, Fichtenholtz A, Otto GA, Wang K, Downing SR, He J, Schnall-Levin M, White J, Sanford EM, An P
616 et al. 2013. Development and validation of a clinical cancer genomic profiling test based on massively
617 parallel DNA sequencing. *Nature biotechnology* **31**(11): 1023-1031.

618 H. L. 2011. wgsim - Read simulator for next generation sequencing. *Github Repository*.

619 Hallberg B, Palmer RH. 2013. Mechanistic insight into ALK receptor tyrosine kinase in human cancer biology.
620 *Nature reviews Cancer* **13**(10): 685-700.

621 Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D. 2002. The human genome
622 browser at UCSC. *Genome research* **12**(6): 996-1006.

623 Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG, Ou SH, Dezube BJ, Janne PA, Costa DB et al.
624 2010. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. *The New England journal of*
625 *medicine* **363**(18): 1693-1703.

626 Layer RM, Chiang C, Quinlan AR, Hall IM. 2014. LUMPY: a probabilistic framework for structural variant
627 discovery. *Genome biology* **15**(6): R84.

628 Lee SE, Lee B, Hong M, Song JY, Jung K, Lira ME, Mao M, Han J, Kim J, Choi YL. 2015. Comprehensive analysis
629 of RET and ROS1 rearrangement in lung adenocarcinoma. *Modern pathology : an official journal of the*
630 *United States and Canadian Academy of Pathology, Inc* **28**(4): 468-479.

631 Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics*
632 **25**(14): 1754-1760.

633 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data
634 Processing S. 2009. The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**(16): 2078-

635 2079.
636 Ludyga N, Grunwald B, Azimzadeh O, Englert S, Hofler H, Tapio S, Aubele M. 2012. Nucleic acids from long-term
637 preserved FFPE tissues are suitable for downstream analyses. *Virchows Archiv : an international journal of*
638 *pathology* **460**(2): 131-140.
639 McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S,
640 Daly M et al. 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation
641 DNA sequencing data. *Genome research* **20**(9): 1297-1303.
642 Noh KW, Lee MS, Lee SE, Song JY, Shin HT, Kim YJ, Oh DY, Jung K, Sung M, Kim M et al. 2017. Molecular
643 breakdown: a comprehensive view of anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung
644 cancer. *The Journal of pathology* **243**(3): 307-319.
645 Oellerich M, Schutz E, Beck J, Kanzow P, Plowman PN, Weiss GJ, Walson PD. 2017. Using circulating cell-free
646 DNA to monitor personalized cancer therapy. *Critical reviews in clinical laboratory sciences* **54**(3): 205-
647 218.
648 Pan Y, Zhang Y, Li Y, Hu H, Wang L, Li H, Wang R, Ye T, Luo X, Zhang Y et al. 2014. ALK, ROS1 and RET
649 fusions in 1139 lung adenocarcinomas: a comprehensive study of common and fusion pattern-specific
650 clinicopathologic, histologic and cytologic features. *Lung cancer* **84**(2): 121-126.
651 Park G, Park JK, Son DS, Shin SH, Kim YJ, Jeon HJ, Lee J, Park WY, Lee KH, Park D. 2018. Utility of targeted
652 deep sequencing for detecting circulating tumor DNA in pancreatic cancer patients. *Scientific reports* **8**(1):
653 11631.
654 Paweletz CP, Sacher AG, Raymond CK, Alden RS, O'Connell A, Mach SL, Kuang Y, Gandhi L, Kirschmeier P,
655 English JM et al. 2016. Bias-Corrected Targeted Next-Generation Sequencing for Rapid, Multiplexed
656 Detection of Actionable Alterations in Cell-Free DNA from Advanced Lung Cancer Patients. *Clinical*
657 *cancer research : an official journal of the American Association for Cancer Research* **22**(4): 915-922.
658 Phallen J, Sausen M, Adleff V, Leal A, Hruban C, White J, Anagnostou V, Fiksel J, Cristiano S, Papp E et al. 2017.
659 Direct detection of early-stage cancers using circulating tumor DNA. *Science translational medicine*
660 **9**(403).
661 Rausch T, Zichner T, Schlattl A, Stutz AM, Benes V, Korbel JO. 2012. DELLY: structural variant discovery by
662 integrated paired-end and split-read analysis. *Bioinformatics* **28**(18): i333-i339.
663 Shaw AT, Kim DW, Nakagawa K, Seto T, Crino L, Ahn MJ, De Pas T, Besse B, Solomon BJ, Blackhall F et al.
664 2013. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. *The New England journal of*
665 *medicine* **368**(25): 2385-2394.
666 Shin HT, Choi YL, Yun JW, Kim NKD, Kim SY, Jeon HJ, Nam JY, Lee C, Ryu D, Kim SC et al. 2017. Prevalence
667 and detection of low-allele-fraction variants in clinical cancer samples. *Nature communications* **8**(1): 1377.
668 Spencer DH, Sehn JK, Abel HJ, Watson MA, Pfeifer JD, Duncavage EJ. 2013. Comparison of clinical targeted next-
669 generation sequence data from formalin-fixed and fresh-frozen tissue specimens. *The Journal of molecular*
670 *diagnostics : JMD* **15**(5): 623-633.
671 Takeuchi K, Soda M, Togashi Y, Suzuki R, Sakata S, Hatano S, Asaka R, Hamanaka W, Ninomiya H, Uehara H et
672 al. 2012. RET, ROS1 and ALK fusions in lung cancer. *Nature medicine* **18**(3): 378-381.
673 Thompson JC, Yee SS, Troxel AB, Savitch SL, Fan R, Balli D, Lieberman DB, Morrissette JD, Evans TL, Baum J
674 et al. 2016. Detection of Therapeutically Targetable Driver and Resistance Mutations in Lung Cancer
675 Patients by Next-Generation Sequencing of Cell-Free Circulating Tumor DNA. *Clinical cancer research : an*
676 *official journal of the American Association for Cancer Research* **22**(23): 5772-5782.
677 Wala JA, Bandopadhayay P, Greenwald NF, O'Rourke R, Sharpe T, Stewart C, Schumacher S, Li Y, Weischenfeldt J,
678 Yao X et al. 2018. SvABA: genome-wide detection of structural variants and indels by local assembly.
679 *Genome research* **28**(4): 581-591.
680 Zhou W, Chen T, Zhao H, Eterovic AK, Meric-Bernstam F, Mills GB, Chen K. 2014. Bias from removing read
681 duplication in ultra-deep sequencing experiments. *Bioinformatics* **30**(8): 1073-1080.
682