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ABSTRACT

Accurate detection of genomic fusions by high-throughput sequencing in clinical samples with
inadequate tumor purity and formalin-fixed paraffin embedded (FFPE) tissue is an essential task
in precise oncology. We developed the fusion detection algorithm Junction Location Identifier
(JuLI) for optimization of high-depth clinical sequencing. We implemented novel filtering steps
to minimize false positives and a joint calling function to increase sensitivity in clinical setting.
We comprehensively validated the algorithm using high-depth sequencing data from cancer cell
lines and clinical samples and whole genome sequencing data from NA12878. We showed that
JuLI outperformed state-of-the-art fusion callers in cases with high-depth clinical sequencing and
rescued a driver fusion from false negative in plasma cell-free DNA. JuLl is freely available via

GitHub (https://github.com/sgilab/Jull).
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INTRODUCTION

High-throughput sequencing is becoming increasingly prevalent in precision cancer medicine
worldwide. In the Republic of Korea and United States of America, assays using high-
throughput sequencing have received regulatory approval as companion diagnostic tests for
personalized care

(http://www.fda.gov/MedicalDevices/ProductsandMedical Procedures/InVitroDiagnostics/ucm33

071 Lhtm,

http://www.mohw.go.kr/react/jb/sjb0406vw.jsp?PAR_ MENU ID=03&MENU_1D=030406&CO

NT SEQ=338288&page=1). Most assays use sequencing technology to identify clinically

actionable single nucleotide variants (SNVs) and small insertions/deletions (indels) because they
are relatively easy to detect and interpret. However, some cancers such as 4ALK-rearranged non—
small cell lung cancers (NSCLCs) and BCR/ABL-rearranged chronic myeloid leukemias (CMLs)
are driven by somatic genomic fusions that cannot be detected by these methods for SNVs/indels.
Patients with these oncogenic fusions respond to tyrosine kinase inhibitors (TKIs), and such

genomic changes are now key therapeutic targets (Druker et al. 2001; Awad and Shaw 2014).

A number of factors are prerequisite for accurate detection of genomic fusions in the clinical
setting. First, obtaining a representative specimen that provides an adequate amount of tumor
sample for genome profiling is an ongoing challenge. Our previous study has shown that
numerous important variants are present at a low allelic fraction (Shin et al. 2017). Unlike tissues
used for research, tissues from clinical procedures, such as biopsies, tend to have inadequate
tumor purity. Recently, cell-free DNA (cfDNA) testing by ultra-deep sequencing has been
introduced for genotyping primary cancers and monitoring of post-treatment recurrence in

oncology, and this test aims to detect approximately 0.1% of allele fractions (Oellerich et al.
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2017; Phallen et al. 2017; Christensen et al. 2018). Furthermore, considering the heterogeneity of
individual tumors, complete profiling of a tumor may require multiple samplings from different
regions, which is not clinically feasible. To capture these low fraction variants, sufficient
sequencing coverage and specialized algorithms are imperative for a clinical assay. Second, it is
important to obtain a sufficient quality of formaldehyde-fixed paraffin-embedded (FFPE)
specimens for genome profiling. FFPE is preferred for most molecular analyses of clinical
pathologies because of its advantages in collection and storage. However, formalin fixation
results in DNA and RNA damage, which is affected by various preanalytical factors, such as
duration of storage, formalin fixation, and ischemic time (Evers et al. 2011; Spencer et al. 2013;
Araujo et al. 2015). These fragmented nucleic acids act as noise and may make it difficult to
detect oncogenic fusions. The detection of genomic fusions in clinical samples tends to be
challenging because of the above-mentioned problems.

As the importance of detecting genomic fusions in clinical decision-making continues to increase,
a critical area for improvement is currently the accuracy of detecting actionable fusions for the
realization of precision cancer medicine. In the present study, we focused on improving the
reliability of detecting somatic actionable fusions in cancer using high-depth DNA sequencing.
To address the above problems, we developed a fusion detection algorithm optimized for clinical
purposes and validated this algorithm using cancer cell lines with known driver fusions and 459
NSCLC samples with known ALK fusion and/or RET fusion status and 46 prostate cancer

samples with known TMPRSS? fusion status (Supplementary Table 1).

MATERIALS AND METHODS
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Study design

The Institutional Review Board (IRB) of Samsung Medical Center (SMC) approved this study.
NSCLC samples were obtained at SMC between March 2014 and February 2017 with informed
consent from some patients, whereas consent was waived by the IRB for others. The inclusion
criteria for samples in this study were as follows: (i) sample was profiled using CancerSCAN™
(Shin et al. 2017) or LiquidSCAN™ (Park et al. 2018), the custom sequencing platforms of

SMC; (ii) clinical information of the patient was stored in the clinical data warehouse of SMC.

Panel design for fusion detection

Samples were prepared and analyzed using CancerSCAN™ or LiquidSCAN™, targeted-
sequencing platforms designed at SMC (Supplementary Table 1) (Shin et al. 2017; Park et al.
2018). To identify fusions using a targeted panel, we tiled across the “hotspot” introns that
contain well-known breakpoints of a set of clinically relevant fusions. Introns of five genes from
an 83-gene panel (CancerSCAN version 1 and LiquidSCAN version 1) and introns of 22 genes
from a 381-gene panel (CancerSCAN version 2) were densely covered with capture probes. All
panels targeted hotspot introns of ALK. The average DNA fragment size of the platform was
approximately 180 bp and the read length was 100 bp, thus, indicating that most fragments were
fully sequenced. The other specific details of the panels can be found in previously reported

papers (Shin et al. 2017; Park et al. 2018).

Cell line mix experiment
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Four cell lines (H2228, BHP10-3, U118MG, and SK-NEP-1) known to harbor specific fusions
were used (Supplementary Table 2). The cell lines were cultured in our laboratory. Before
extraction of DNA, the cells were washed two times with PBS. When the samples were pooled,
the value from the Qubit HS assay (Life Technologies) was used, and DNAs were mixed equally

to a total amount of 500 ng.

PCR validation of fusions

The reference sequence of a target gene and breakpoint region was retrieved from the UCSC

genome browser (http://genome.ucsc.edu/cgi-bin/hgBlat). A target-specific primer was designed

using Primer3 for PCR on the basis of the reference sequence and was confirmed using Primer-
BLAST (National Institutes of Health; NIH; Supplementary Table 3). The translocation target
gene was amplified by PCR using specific primers. The cycling conditions were as follows:
94°C for 5 min, followed by 44 cycles of denaturation (94°C for 30 s), annealing (60°C for 1
min), and extension (72°C for 1 min), with final extension at 72°C for 10 min. The reactions
were performed using HelixAmp TM Ready-2X-Go Hot-Taq (Nanohelix, Korea). Sequences of
the PCR products were determined by an automated method (ABI Prism 3730) using the Big
Dye Terminator Kit (Applied Biosystems, Foster City, CA, USA). Translocation breakpoint

region sequences were verified by means of BLAST (NIH) and DNAstar (Lasergene).

Alignment and preprocessing

Paired-end reads were aligned using BWA-MEM at its default settings (Li and Durbin 2009)

with the human reference genome (hg19). Aligned reads with mapping quality <20 were filtered
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out, and the remaining reads were sorted using SAMtools (Li et al. 2009). To prepare appropriate
input BAM files for other callers, we employed MarkDuplicates of Picard (Broad Institute),

which is commonly used for marking and removal of duplicate reads (McKenna et al. 2010).

Workflow for fusion identification

Fusion detection algorithm To identify genomic fusions for clinical applications, we developed
an algorithm called Junction Location Identifier (JuLI) with the aim of reducing the number of
false positives generated while maintaining sensitivity. Initially, basic statistics of the BAM files,
such as read length and median insert size, are calculated and used for further steps. Candidate
breaks are then defined using two or more clipped reads, including at least one soft-clipped read,
against the genome reference. If a matched normal sample is available as a control, breaks with
twice the cutoff value of the clipped reads are scanned in the normal sample, and candidate
breaks that overlapped with the breaks in the normal sample are excluded. If a set of normal
samples is available, a control panel can be generated using a function in JuLI, which
incorporates the breakpoints in multiple samples. All the samples in the present study were
processed without matched normal or control panel filtering. The algorithm then involves two
separate parts, viz., discordant and split read analyses. The user can set all parameters of each

step.

Discordant read analysis As JuLl does not remove duplicate reads as a part of the algorithm,
counting supporting reads is very important to reduce the number of false positive calls. JuLI
first uses information, including the genomic positions of both paired reads, CIGAR (Concise

Idiosyncratic Gapped Alignment Report) strings, and the QNAME of sequencing reads in the
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BAM file, to reduce redundant duplicated or noise signals. Candidate breaks with fewer than
three unique discordant reads are filtered. Next, consensus contigs from the matched and clipped
side of each candidate break are generated. The average number of pairwise differences,
representing nucleotide diversity (7), between the reads and the consensus contig on both sides

of the candidate break is calculated as follows:

N
T=yN_ 1ZP1'7T1'
l

where N is the number of reads across the break, p; is the frequency of the ith read across the

break, and 7;is the proportion of bases that differ between the read and consensus contig
truncated to the read length. If the normalized nucleotide diversity of either the clipped or
matched side is higher than 2.0, the break is excluded from further processing. The normalized

nucleotide diversity is calculated using the following formulae:

T — Tmatched side

normalized m =
Smatched side

where T, q¢ched side 15 the mean of nucleotide diversity of matched sides, and S,u1ched side denotes
the standard deviation of nucleotide diversity of the matched sides. Candidate breaks that pass
the filters described above are paired with each other using the pair information, and split side
contigs of each pair are aligned to the matched side contigs of their partners. If one of the two
pairs matches more than 70% of the split contig length and is longer than 10 bp, the pair is called
a fusion event. If there are no candidate pairs that passed the filters, a fusion event is defined if
more than six discordant reads formed a cluster and more than 70% and more than 20 bp of the

split contig is mapped to the reference sequence of the cluster region.
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Split read analysis Split read and discordant read analyses are conducted similarly. Candidate
breaks with fewer than three split reads are filtered and then subjected to the following filtering
steps, including nucleotide diversity analysis and pairwise local alignment. As JuLl is based on
split information, fusions with a length less than half the read length are not considered. In split
read analysis, if both pairs matched >70% of the length of the split contigs, the pair is considered

a fusion event.

Joint call analysis The joint call combines information from multiple BAM files in each analysis
step and separates the numbers of each supporting read in the final step to produce individual
results of the BAM files. If some fusion events have been previously defined in other BAM files,
the fusions can be efficiently detected by specifying the target area using the BED (Browser
Extensible Data) format. This is extremely useful for the case in cfDNA analysis as acquired
serial samples for cfDNA may not have enough supporting reads, which makes it difficult to

detect the events (see Discussion).

Settings of algorithms

We carefully studied the documentation for each algorithm to determine and apply

parameters that could be optimized in the clinical sample data.

JuLI: All analyses were performed using JuLI v.0.1.3 with the default parameters. Fusion events
in the UCSC gap database were excluded from further analysis.
SvABA: All analyses were performed using SYABA v 134 (Wala et al. 2018). We applied a -M

flag so that the number of “weird reads” was not limited in highly fragmented FFPEs. We
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employed sorted, indexed, and duplication-free BAMs for SYABA. The command line for the

analysis was as follows:

Ssvaba run —t SINPUT.bam —p 1 -G $reference.fa —a sample _id —M 100000

Delly: We used Delly v.0.7.8 (Rausch et al. 2012) for all analyses with the default parameters.
We preprocessed BAM files as recommended by the developers (sorting, indexing, and duplicate
marking). We applied the exclusion regions of the hg19 reference included in the Delly source

code. The Delly command line for the analysis was as follows:

Sdelly call -x human.hgl9.excl.tsv -o SOUTPUT.bcf -g $reference.fa SINPUT.bam

We converted the output with BCF (binary variant call format) to VCF (variant call format)
using BCFtools, which was included as a submodule in Delly. We selected the results of VCF

that passed the quality filter for all analyses.

Manta: All analyses were performed using Manta v.1.2.2 (Chen et al. 2016). We disabled all
high-depth filters by applying the --exome flag during configuration for high-depth sequencing
data. We analyzed sorted, indexed, and duplication-free BAMs using Manta. The command line

for configuring was as follows:

SconfigManta.py --tumorBam $INPUT.bam --referenceFasta $reference.fa --runDir
SOUTPUT DIR --exome
Next, we launched a workflow run script with a single node using the following command line

for execution:
8 OUTPUT DIR/runWorkflow.py -m local -j 1

We selected the results of VCF that passed the quality filter for all analyses. We applied the

high-depth filter parameter for whole-genome sequencing (WGS) analysis.
10
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LUMPY: We used LUMPY v.0.2.8 for all analyses (Layer et al. 2014). We analyzed sorted,
indexed, and duplication-free BAM files for LUMPY. We split the BAM file into paired-end and
split-read files using SAMtools v.0.1.19 (Li et al. 2009) with the recommended parameters and
performed statistical analysis of the library sizes by means of a script in LUMPY. Then, the

following LUMPY command line for fusion detection was executed:

Slumpy -mw 4 -tt 0.0 — pe

bam_file:3INPUT.discordant.pe.bam,histo_file:SINPUT .pe.histo,mean:SMEAN,stdev:$STDEV,r
ead_length:100,min_non_overlap:100,discordant z:4,back_distance:20,weight:1,id:1,min_map
ping_threshold:20 -sr
bam_file:SINPUT.sr.bam,back_distance:20,weight: 1,id:2,min_mapping threshold:20 >
SOUTPUT pesr.bedpe

novoBreak: All analyses were performed using novoBreak v 1.1(Chong et al. 2017). We
employed sorted, indexed, and duplication-free BAMs for novoBreak. We simulated a control
BAM file using wgsim (H. 2011) and used the output as control input to novoBreak. The

command line for the analysis was as follows:

Srun_novoBreak.sh $novoBreak exe dir $reference.fa SINPUT.bam SCONTROL.bam 1

SOUTPUT DIR

RESULTS
Development of a fusion detection algorithm for clinical sequencing
Since 2014, we have used a custom-designed panel (CancerSCAN™) for precision oncology that

covers up to 381 cancer-related genes, including introns containing frequent breakpoints in

11
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234  selected fusion genes (Shin et al. 2017). To obtain high detection rates, we ensured a mean

235  sequencing coverage of approximately 1200X and a target insert size of approximately 180bp in
236  the initial alignment. We have developed several algorithms to improve the accuracy of our

237  platform. For fusion detection, here, we developed JuLI, which was optimized for high-depth
238  sequencing (Fig. 1a—d). JuLI utilizes information from both discordant and proper pair reads to
239  detect a wide range of structural variations (SVs), including duplications, deletions, inversions,
240  and interchromosomal translocations, at single-nucleotide resolution. Generally, it is preferable
241  to conduct high-depth sequencing with relatively short insert sizes (150-200 bp) to achieve high
242  sensitivity of target-enriched sequencing in various platforms, including panel-based platforms.
243 However, PCR duplicates generated during preprocessing for sequencing may result in

244  overestimation of variants, and this situation may cause false positive results that could be even
245  worse with short insert sizes (Zhou et al. 2014). To avoid this problem, identifying duplicates
246  using Picard (McKenna et al. 2010) or SAMtools (Li et al. 2009) is a necessary step in general
247  bioinformatics analysis. However, because this process uses only limited information on

248  sequence alignment map (SAM) files, it is possible to unintentionally remove reads with

249  evidence of rearrangement (fig. S1), which may, thus, affect the sensitivity of detecting lower
250  tumor cell content. We carefully counted reads supporting candidate breaks by determining

251  duplicate fragments using CIGAR and pair locations without applying a general deduplication
252 step (Fig. 1b; see Methods). Next, the candidates with sufficient supporting reads were

253  subjected to the following two filtering steps. First, we measured nucleotide diversity (), which
254 is the average number of pairwise differences between the reads and the consensus contig, and
255  the breaks with high nucleotide diversity were excluded from further processing (Fig. 1c; see

256  Methods). Second, the candidate break and partner breaks were paired via pair information and

12
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257  compared by pairwise local alignments (Fig. 1d; see Methods). Through these filtering steps, we

258  were able to accurately detect fusions by reducing the number of false positives.

259

13
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260  Fig. 1. The fusion detection algorithm for clinical sequencing. (a) The scheme of Junction Location
261  Identifier (JuLI). JuLI implements novel filtering steps to reduce the number of false positives while

262  maintaining sensitivity by fine-tuning the counting of supporting reads without duplicate removal. (b)
263 JuLlI uses information, including the genomic positions, CIGAR strings, and read names in the BAM file,
264  to reduce redundant duplicated or noise signals. (¢) After measuring the nucleotide diversity of the breaks,
265  JuLl filters breaks with high nucleotide diversity for the analysis. (d) The candidate breaks are paired
266  with each other using pair information, and split side contigs of each pair are aligned to the matched side
267  contigs of their partners. (e) The ratios of split read to the total read counts for formalin-fixed paraffin-
268  embedded (FFPE), fresh clinical tissue samples (n = 494), and pair cell lines (n = 3) tested by

269  CancerSCAN™. For FFPE samples, split reads and variability of split reads increased significantly (7 test,
270  p<107). (f) Variant counts obtained from the callers in patient samples (n = 494) and pair cell lines (n =
271  3).Note that some callers showed increasing variant counts in FFPE tissues. This phenomenon was due to

272  the low quality of FFPE samples because of DNA degradation or damage.
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Effects of damaged DNA in FFPE tissues

As mentioned above, one of the challenges in analyzing clinical samples is that FFPE tissues
usually contain degraded DNA and smaller fragment sizes (Spencer et al. 2013). As a
consequence, the ratio of split to total reads is substantially higher in FFPE samples than that in
fresh samples examined by CancerSCAN (¢ test, p < 10~*%; Fig. 1e). To eliminate the differences
between individual samples, three pairs of fresh and routinely processed FFPE cancer cell lines
were chosen for sequencing to compare tissue effects. Furthermore, differences in the split to
total read ratio were also observed (Fig. 1e). An increase in the numbers of split reads could
affect noise in fusion analyses and may cause numerous false positive events. To compare FFPE
effects and for further analysis, we chose several state-of-the-art fusion callers, including SYABA
(Wala et al. 2018), Delly (Rausch et al. 2012), Manta (Chen et al. 2016), LUMPY (Layer et al.
2014), and novoBreak (Chong et al. 2017), that use split and discordant read information, similar
to JuLI. In the comparison of fusion events count, we observed a significant increase in count of
fusion events in FFPE tissues when using SVABA, Delly, Manta, LUMPY, and novoBreak (Fig.
1f). The count of fusion events of JuLI and LUMPY was not affected by the tissue type, but the
count of LUMPY was ten-times higher than that of JuLI, regardless of the tissue type (Fig. 1f).
Analysis of three paired fresh and routine FFPE cancer cell line specimens revealed differences
in counts of fusion events between the FFPE and fresh specimens. BHP10-3 revealed the highest
change in the split/total read ratio (Fig. 1e) and showed the highest difference in fusion counts
using most callers (Fig. 1f). Numerous split reads were observed in the FFPE specimen of
BHP10-3 probably because of DNA damage during sample preparation (fig. S2). For the tools
affected by FFPE tissues, the count of fusion events was positively correlated with split/total

reads ratio (fig. S3). However, JuLI showed the least increase in the number of fusion events
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with increasing split/total reads ratio (fig. S3). Low quality of FFPE tissue can cause numerous
false positive results with most callers, but such quality issues did not significantly affect the

results yielded by JuLl.

Validation of analytical sensitivity on cancer cell lines and patient’s samples

To evaluate the accuracy of the algorithm over a wide range of tumor purity, we adopted
experimental schemes designed by Frampton et al. (Frampton et al. 2013). To simulate different
tumor purity levels, four cancer cell lines harboring known fusions and a normal sample were
manually mixed at different ratios, generating a range of expected tumor purity levels (5%—100%)
(Supplementary Table 2). All cell line specimens were profiled using CancerSCAN™ version
1, which targeted 83 genes. The mixed fraction of the fusions showed a high correlation
(correlation coefficient [#] = 0.95) with the relative value of the normalized supporting reads (fig.
S4). We observed that JuLI, SYVABA, Delly, Manta, and LUMPY achieved 100% sensitivity
(32/32), but novoBreak missed one large deletion between GOPC and ROS1 with 5% mix
fraction in this experiment (Supplementary Table 4). In addition, 37 fusions in patients’ tissues
detected by JuLI with a wide range of supporting reads (range, 6—283) were validated by PCR to
verify the estimated fusion breakpoints. The locations of all fusion sequences at the estimated

breakpoints were confirmed (Supplementary Table 3).

Performance validation using clinical samples
Because of the differences in the performance between callers depending on the range of fusion
length (Wala et al. 2018), we measured the F1 score [the harmonic average of positive predictive

value (PPV; also known as precision) and sensitivity (also known as recall)] of the callers
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320  according to the minimum fusion length in 494 clinical samples examined by CancerSCAN (Fig.
321  2a and Supplementary Table 1). Fusion results that are shorter than the minimum length in
322 each caller were excluded from the comparison and the performance comparison criteria are

323 described in the following paragraph. In all ranges of minimum fusion size, we observed that
324 JuLl outperformed other callers. Although JuLI and SvABA were less affected by performance
325  over the range of fusion sizes, Delly exhibited increased performance at a relatively long length
326  of fusion. We observed that Manta, LUMPY, and novoBreak tended to have lower PPV

327  compared to sensitivity (Supplementary Table 5) and a decrease in performance in

328  predominantly FFPE tissues compared to that in fresh tissues (Supplementary Table 5). The
329  minimum length of F1 score saturation for each caller was 800 bp for JuLI and SvVABA, 1500 bp
330  for Delly, 1900 bp for Manta, 1200 bp for LUMPY, and 1300 bp for novoBreak. In order to

331  compare except for the regions with different performance, we compared the results except for
332 the fusions with the length shorter than 1250bp, which is the median value of the performance

333 saturation length of each caller.

334  Activation of kinase gene by chromosomal rearrangement has been identified as a recurrent

335  driver event in NSCLCs (Takeuchi et al. 2012; Pan et al. 2014). ALK rearrangement acts as an
336  oncogenic driver in 4%—6% of NSCLCs (Takeuchi et al. 2012). In ALK-rearranged NSCLCs,
337 ALK inhibitor demonstrates therapeutic efficacy in terms of improved survival, and the

338  EML4/ALK variants and ALK-fusion partners may affect sensitivity to ALK inhibitors (Kwak et
339 al. 2010; Shaw et al. 2013; Noh et al. 2017). RET rearrangements have been identified in 1%—-2%
340 of NSCLCs and are the potential therapeutic targets of multi-targeted kinase inhibitors (Pan et al.
341  2014; Lee et al. 2015). Therefore, accurate detection of an oncogenic fusion is important for

342 clinical decision-making. Over the last four years, CancerSCAN"™ has been used at the oncology
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343  clinic of SMC. We conducted performance validation in a prospective cohort of 448 patients

344  with NSCLC and profiled ALK and/or RET status by immunohistochemistry (IHC) and/or

345  fluorescence in situ hybridization (FISH). Of the 441 patients tested for ALK, 9.5% (42/441)

346  were positive, and 67 patients were tested for RET, of which 16.4% (11/67) were positive

347  (Supplementary Table 1). No patient was both ALK- and RET-positive, and the results of the
348 IHC/FISH of ALK and other hotspot mutations in EGFR (L858R or exon 19indel) or KRAS (G12,
349  G13, or Q61) showed a mutually exclusive pattern (Fisher’s exact test, p < 10™'"). A total of 79
350  patients were profiled using CancerSCAN™ version 1, which targeted 83 genes, whereas the rest
351  were profiled using version 2, which targeted 381 genes (Shin et al. 2017). Both V1 and V2

352 panels covered the same hotspot introns involved in ALK and RET rearrangement (introns of

353 ALK between exons 19-21 and RET between exons 6—12).

354  As mentioned above, we considered fusion events that were >1250 bp in size, and >1 breaks

355  were found in the analysis of ALK and RET region. Most ALK and RET activation cases involved
356 the rearrangement or activating mutations that activate the kinase domain; in case of NSCLC,
357 ALK and RET are primarily activated by fusion with various partners (Hallberg and Palmer 2013;
358 Leeetal. 2015; Noh et al. 2017). Therefore, we assumed intragenic rearrangements in ALK and
359  RET as a false positive. The respective sensitivity and PPV of ALK fusions were as follows: JuLl,
360  90.4% (38/42 samples) and 95.0% (38/40); SVABA, 88.0% (37/42) and 88.0% (37/42); Delly,
361  88.0% (37/42) and 90.2% (37/41); Manta, 83.3% (35/42) and 14.7% (35/238); LUMPY, 88.0%
362  (37/42) and 32.3% (37/115); and novoBreak, 90.4% (38/42) and 28.6% (38/133) (Fig. 2b). For
363  RET fusions, JuLl, SYABA, and Delly achieved same sensitivity and PPV [81.8% (9/11 samples)
364  and 81.8% (9/11), respectively]. The sensitivity and PPV of remaining callers were as follows:

365 Manta, 90.9% (10/11) and 28.6% (10/35); LUMPY, 90.9% (10/11) and 62.5% (10/16); and
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novoBreak, 72.7% (8/11) and 53.3% (8/15) (Fig. 2¢). Six samples that yielded false negative
results of ALK and RET in JuLlI analysis also tested negative in most callers, and the tumor purity
of these samples was significantly lower than that of the test-positive samples (fig. S5).
Therefore, some false negatives may be due to low tumor purity. Four false positives of ALK and
RET identified in JuLI results were observed in all other callers, and the fusions were clearly

identified in browser view (fig. S6).

To further compare other clinically significant fusions, we retrospectively collected 46 archived
prostate cancer samples and performed analysis of ERG fusion status by IHC and/or FISH.
Twenty-three of the 46 patients (50.0%) were ERG fusion-positive (Supplementary Table 1).
All patients with prostate cancer were profiled using CancerSCAN™ version 1, and the panel
covered the hotspot introns between exons 1-6 of TMPRSS2, the most common fusion partner of
ERG fusion (Barros-Silva et al. 2013). We measured the performance of the callers with the
same criteria as those of NSCLC. The respective sensitivity and PPV of ERG fusions were as
follows: JuLl, 56.5% (13/23 samples) and 100.0% (13/13); SVABA, 43.5% (10/23) and 83.3%
(10/12); Delly, 39.1% (9/23) and 100.0% (9/9); Manta, 95.7% (22/23) and 53.7% (22/41);
LUMPY, 100.0% (23/23) and 50.0% (23/46); and novoBreak, 100.0% (23/23) and 50.0% (23/46)
(Fig. 2d). There was no difference in purity distribution between true positive and false negative
of JuLI. The relatively low sensitivity of this retrospective set may be due to other partners of
ERG that were not targeted (Cancer Genome Atlas Research 2015). Overall, the number of false

calls occurred as the split/total read ratio increased, but this issue had less effect in JuLL.
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387  Fig. 2. Validation on high-depth clinical samples. (a) The F1 score [the harmonic average of positive
388  predictive value (PPV; also known as precision) and sensitivity (also known as recall)] of the callers
389  according to the minimum fusion length in 494 clinical samples examined by CancerSCAN™. (b)
390  Validation on 441 non-small cell lung cancer (NSCLC) samples with known ALK fusion status via [HC
391  and/or FISH analyses. (¢) Validation on 67 NSCLC samples with known RET fusion status via IHC
392  and/or FISH analyses. (d) Validation on 46 prostate cancer samples with known ERG fusion status via
393  IHC and/or FISH analyses. All samples were sequenced using Illumina Hi-Seq with high coverage (~
394 1300X). When two or more events in the fusion gene were detected, we defined fusion on the basis of the
395  most supportive read counts. Hotspot mutations of NSCLCs were in EGFR (L858R or exon 19 indel) or
396 KRAS (G12, G13, or Q61). IHC, immunohistochemistry; FISH, fluorescence in situ hybridization; FFPE,
397  formalin-fixed paraffin-embedded.
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399  Performance based on sequencing coverage

400  For panel-based high-throughput sequencing in clinical practice, test performance must at least
401  be comparable to conventional molecular tests. The factors that constitute sufficient sequencing
402  depth are influenced by tumor purity and clonality of variants as well as other characteristics of a
403  patient’s tumor sample, including tissue preparation methods and sequencing platforms used.
404  Lowering tumor purity reduces detection sensitivity by proportionally reducing the effective

405  range of mutant alleles in tumor cells. In contrast to research samples, requirements for sufficient
406  tumor purity for clinical specimens may not be met; therefore, it is important to have adequate
407  coverage (Shin et al. 2017).

408  We conducted in silico down-sampling experiments (three iterations) using the ALK set of

409  NSCLCs as an alternative method for investigating the effect of sequencing depth on

410  performance. In down-sampling experiments, we observed that the average sensitivity of all the
411  callers improved with increased coverage (Fig. 3a and 3¢). Although sensitivity increased at high
412 coverage, PPV and specificity decreased in Manta, LUMPY, and novoBreak. In contrast, we

413 noticed that JuLI, SVABA, and Delly were less affected by coverage. The F1 score improved in
414  the 50-200x range, which is the typical range used in WGS or whole-exome sequencing (WES)
415  in all callers (Fig. 3b). By contrast, the F1 score worsened at high depth (1340x) in Manta,

416 LUMPY, and novoBreak, but not in others. Accuracy, which is the proportion of true results

417  (both true positives and true negatives) among all the results, was also maintained at a high-depth
418  range in JuLl, SVABA, and Delly in contrast to the other callers (Fig. 3d). Thus, we confirmed
419  that sensitivity improved with increased sequencing depth; however, accuracy may decrease

420  owing to increased noise levels above the threshold in some algorithms. To effectively apply
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421  high-throughput sequencing in a clinical setting, it is necessary to use software optimized to

422  reduce such noise.

423
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424 Fig. 3. The effect of depth on fusion detection in clinical samples. (a) Positive predictive value (PPV,
425  also known as precision) and sensitivity (also known as recall) based on in silico down-sampling

426  experiments. A total of 441 non-small cell lung cancer (NSCLC) samples were down-sampled from the
427  original depth (1340X), and the average performance was measured at each depth (three iterations). (b)
428  The F1 score, which is the harmonic average of PPV and sensitivity, on the basis of the coverage change.
429  (c) The receiver operating characteristic (ROC) curve. (d) Accuracy, which is the proportion of true

430  results (both true positives and true negatives), among all the results. Error bars denote standard error of

431 the mean.
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Sensitivity validation using WGS data
To estimate the sensitivity based on real WGS data, we downloaded raw FASTQ data of
NA12878 from European Nucleotide Archive (ERA172924,

https://www.ebi.ac.uk/ena/data/view/PRJEB3381). These data represent approximately 50X

coverage, which has been widely used by tools for the estimation of a variety of variation tools.
We compared results made by each tool to the truth set by Layer et al. (Layer et al. 2014), who
developed LUMPY in 2014. They provided a truth set containing 4,095 deletions detected by at
least one tool in the 50X dataset that were validated by split-read mapping analysis of
independent long-read sequencing data from PacBio or Illumina platforms. In this comparison,
LUMPY (47.4%; 1942/4095) was the most sensitive, followed by JuLI (41.9%; 1717/4095),
SvABA (41.9%; 1716/4095), Delly (38.5%; 1575/4095), Manta (37.9%; 1552/4095), and
novoBreak (37.7%; 1542/4095). We were able to confirm that the performance of JuLI was
maintained as much as other callers even at a low depth, such as WGS; however, specificity or
PPV representing the frequency of false positive calls was not evaluated due to the lack of true

negative reference.

Joint call to detect fusions with insufficient evidence

Recent reports have shown that the detection of ALK fusion in cfDNA is feasible in clinic setting
(Paweletz et al. 2016; Thompson et al. 2016). Serial tumor sampling on progression has been
helpful in determining the optimal subsequent treatment decision-making for patients. However,
this is often complicated by insufficient tumor purity for molecular analysis and tumor
heterogeneity (Dagogo-Jack et al. 2018). If a more sensitive detection is possible in a series of

samples with insufficient supporting reads, slightly earlier decision-making can be made for

24


https://doi.org/10.1101/521039
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/521039; this version posted January 16, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

457  precise medicine. To achieve more sensitive fusion detection in clinical sequencing, we

458  implemented the joint call function in JuLl that can detect fusions with low supporting evidence
459  in serial/multi-region sampling tissues (Fig. 4a). To verify the performance of this function, in-
460  silico down-sampling experiments (mean coverage: 1X, 5X, and 10X with 100 iterations) were
461  performed on mixed cell lines with relatively low cell ratios of 5-40% (Supplementary Table 4).
462  In this simulation, most callers showed up to 1-2% sensitivity at 10X, joint call showed 40.6%
463  sensitivity at 10X and could detect 7.3% even at 1 X (Supplementary Table 6).

464  To confirm the utility of the joint call function of JuLlI in clinic, we applied it to ALK detection in
465  cfDNA of NSCLCs. Pleural effusion (PE) and peripheral plasma were collected from four

466  patients with NSCLS, whose ALK status was confirmed in primary tissue (one positive and three
467  negative; Supplementary Table 1). DNA of cells in PE, cfDNA of PE, and cfDNA of plasma
468  were processed using LiquidSCAN™ (average coverage, approximately 4300X) and analyzed
469  using the fusion callers. We excluded novoBreak from this analysis because some samples did
470  not show any results in the ultra high-depth data. In this analysis, the callers, except JuLI, missed
471  the EML4/ALK fusion in plasma cfDNA of the ALK-positive patient (CS_LC 0451), but JuLI
472  was able to identify the fusion using the joint call function (Fig. 4b). There were only two

473  discordant reads supporting the ALK fusion in plasma cfDNA of CS_LC 0451 (Fig. 4c¢).

474
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475  Fig. 4. The joint call function to detect fusions with low supporting evidence in serial/multi-region

476  sampling tissues. (a) The joint call function combines information from multiple BAM files and

477  produces the individual result of the BAM files. (b) JuLI with the joint call function rescued the
478  EML4/ALK fusion of CS_LC_0451 from false negative in plasma cell-free DNA. (¢) Only two discordant
479  reads supporting the ALK fusion were observed in plasma cfDNA of CS_LC 0451.
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Annotation and visualization

Accurate annotation of rearrangements is critical for clinical decision-making. JuLI annotates
functional consequences of genomic fusions that are identified using high-throughput sequencing
data in a strand-specific manner (fig. S7). Even with breaks at the same location, this annotation
approach allows the user to easily distinguish between positive and negative strand events.
Moreover, JuLl provides three useful pieces of information. First, JuLI predicts whether the
fusion transcript is in-frame or out-of-frame by means of the UCSC database (Kent et al. 2002).
Second, JuLI provides the frequency of fusion events based on cancer types in COSMIC (Forbes
et al. 2015). Third, JuLI annotates chimera protein domains via the UniProt (Apweiler et al. 2004)
and Pfam databases (Finn et al. 2010). Graphically visualized fusion diagrams were

automatically generated in PDF format showing all annotation results (Fig. 5).
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494  Fig.5. A representation showing Junction Location Identifier (JuLI) output with annotation and

495  visualization. Annotation of fusions and a graphically visualized fusion diagram with the domain status
496  in PDF format.
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Comparison of running time between paired FFPE and fresh tissues

We generated sequencing data from paired FFPE and fresh cancer cell lines using CancerSCAN
V1, and of these cell lines, BHP10-3 showed the highest change in the split/total read ratio (Fig.
le). To compare elapsed time, we measured BHP10-3 pair analysis time of each caller with 10
iterations (fig. S8). We observed a 1.1- to 29.3-fold increase in analysis time in low-quality
FFPE tissue with these callers. Although JuLI was relatively slow in low quality FFPE tissue
because it implements several steps to improve accuracy, the speed can be increased through

parallel processing across multiple cores.

DISCUSSION

To implement precision medicine at SMC, we developed JuLl, a novel fusion detection
algorithm optimized for clinical application. We validated the tool on four cancer cell lines and
on 505 clinical tumor specimens. JuLI has several characteristics. First, with the implementation
of the noise reduction algorithm to minimize false positive calls, it maintains good analytical
specificity without loss of sensitivity, particularly in noisy samples, such as FFPE samples.
Second, JuLI can detect fusions with insufficient evidence in serial or multi-region sequencing
samples by using the joint call function. Third, JuLI is easy to use with the provided an R

package, which is available via GitHub (https://github.com/sgilab/JuLl ) and supports

comprehensive annotation and visualization of SVs.

An intriguing point is that JuLI can be used for monitoring cancer in specimens such as cfDNA,
blood samples of minimal residual leukemic cell follow-up, and follow-up biopsy specimen

without ideal tumor purity (Shin et al. 2017). Split reads originating from the primary tumor have
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522 high specificity in the location of fusion junction and adjacent DNA sequences, with uniqueness
523  of split portion. Sensitive calling for these predefined fusion signals in follow-up specimens

524  provided a good chance for early detection of relapsing cancer with good specificity.

525  Clinically, quantitative evaluation of fusion transcript is emphasized in follow-up of some

526  cancers, particularly for CML. Discontinuation of TKIs is suggested in recent NCCN guidelines
527  for CML, and the practice is performed based on quantitative evaluation of the BCR-ABL1

528  transcript. Although the normalization, RNA assay does not provide direct information on the
529  number of malignant clones. However, ultra-high coverage next-generation sequencing (NGS)
530  for DNA fusion could provide direct information on the number of remnant malignant clones in
531  future precision medicine.

532 For accurate detection of tumor-driving fusions, it is assumed to be necessary to detect fusions in
533  both RNA and DNA. RNA is a suitable material for directly detecting chimeric transcripts;

534  however, quality may be compromised because of long storage time or degradation during FFPE
535  preparation (Ludyga et al. 2012). Detection sensitivity for fusions may be maximized by

536  simultaneously performing DNA and RNA assays. Furthermore, combined fusion analysis for
537  DNA and RNA can help identify loss-of-function of a tumor suppressor gene via fusion or

538  complex fusions involving noncoding regions.

539  The limitation of this study is that a limited number of fusion events were tested for performance
540  validation. Most callers used in this study for comparison reported their results through a

541  genome-wide comparison of several samples in their papers. However, we performed quality
542 (i.e., condition)-wide comparison of 505 patient samples with three clinically important fusion

543  events and four cancer cell lines with known fusions. In a clinical setting, it may be inevitable to
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544  examine tissues with inappropriate quality (low tumor purity or poor quality FFPE). Therefore,
545  our results could provide useful information to select callers in a clinical setting.

546  In clinical setting, although sensitivity is important, maintaining PPV is also essential to reduce
547  the number of false positives. In particular, if the prevalence is relatively low, such as that of the
548 ALK fusion in NSCLC (2%-7%) (Kwak et al. 2010), several wrong decisions can be made when
549 PPV is not guaranteed. Clinical decisions based on false test results are risky and may lead to
550  inappropriate treatment strategies. Therefore, if the PPV cannot provide a sufficiently high

551  confidence level, it will be difficult to use the method for diagnostic purposes. Because JuLI has
552 better PPV relative to the existing algorithms, it is likely to deliver accurate fusion profiling data

553  to help clinicians to make optimal therapeutic decisions.
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