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ABSTRACT 

Genome-wide association studies have identified 196 high confidence independent signals 

associated with breast cancer susceptibility. Variants within these signals frequently fall in distal 

regulatory DNA elements that control gene expression. We designed a Capture Hi-C array to enrich 

for chromatin interactions between the credible causal variants and target genes in six human 

mammary epithelial and breast cancer cell lines. We show that interacting regions are enriched for 

open chromatin, histone marks for active enhancers and transcription factors relevant to breast 

biology. We exploit this comprehensive resource to identify candidate target genes at 139 

independent breast cancer risk signals, and explore the functional mechanism underlying altered 

risk at the 12q24 risk region. Our results demonstrate the power of combining genetics, 

computational genomics and molecular studies to rationalize the identification of key variants and 

candidate target genes at breast cancer GWAS signals.  

 

INTRODUCTION  

Breast cancer is known to have an important inherited component. While rare coding mutations in 

susceptibility genes such as BRCA1, BRCA2 and PALB2 confer a high risk of breast cancer, these 

account for less than one quarter of the familial risk1. Much of the remaining heritability is due to the 

combination of a large number of common, low-penetrance variants2,3. Genome-wide association 

studies (GWAS) have been a powerful tool to identify disease-associated genetic variants, but these 

studies do not directly address the underlying biological mechanisms. A combination of fine scale-

mapping, bioinformatic and functional studies are required to establish this link4. The Breast Cancer 

Association Consortium (BCAC) and the Consortium of Investigators of Modifiers of BRCA1/2 

(CIMBA) have recently performed large-scale genetic fine-mapping of 150 breast cancer 

susceptibility regions in ~217,000 breast cancer cases and controls of European ancestry5. Step-

wise multinomial logistic regression analysis identified 196 high confidence independent risk signals, 

defined as having association p values < 10-6 after adjusting for other variants. Fachal et al (2018) 

used these data to define sets of credible causal variants (CCVs) for each signal, defined as variants 

with p values within two orders of magnitude of the top variant. 
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The majority of CCVs mapped to non-protein-coding regions of the genome and are enriched at 

regulatory DNA elements such as enhancers, silencers and insulators2,5. It is established that many 

regulatory elements are located long distances from their target gene promoters, and that regulation 

of transcription involves direct physical interactions brought about by chromatin looping6. Importantly, 

individual enhancers often loop to and regulate multiple genes, including protein-coding and 

noncoding RNA genes. Adding to the complexity, enhancers do not necessarily act on the closest 

promoter but can bypass neighbouring genes to regulate genes located more distally. There is also 

considerable evidence that most enhancer-promoter interactions occur in cis and within chromatin 

structures called topologically associating domains (TADs)7. TADs are typically several hundred 

kilobases to a few megabases in size and are relatively stable between cell types and in response 

to extracellular signals8,9.  

 

Various chromatin conformation capture (3C)-based methods have been developed to map 

chromatin contacts at a genome-wide level. The basic principle of 3C involves chromatin 

fragmentation of formaldehyde-fixed nuclei (usually by restriction digestion), followed by ligation of 

linked DNA fragments, then detection and quantification of ligation products10. One of these 

methods, Hi-C, is an unbiased but relatively low-resolution approach, that quantifies interactions 

between all possible DNA fragment pairs in the genome11. Hi-C has been used extensively to 

analyze the three-dimensional organization of genomes, including compartmentalization of 

chromatin and the position of TADs12,13. To increase Hi-C resolution, several groups have developed 

sequence capture to enrich for chromosomal interactions involving targeted regions of interest14-17. 

There are several capture methodologies, but typically RNA or DNA oligonucleotide baits are 

directed to the ends of targeted DNA fragments to enrich for ligation events prior to next generation 

sequencing18,19. Promoter Capture Hi-C (PCHi-C) is the most widely used approach where baits are 

designed to annotated promoters, resulting in strong enrichment for promoter-anchored 

interactions15-17,20. A few post-GWAS studies have also used Region Capture Hi-C, in which baits 

target linkage disequilibrium blocks or restriction fragments containing genetic variants associated 

with the disease of interest21,22.  
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Here, we applied Variant Capture Hi-C (VCHi-C) and PCHi-C to normal breast and breast cancer 

cell lines to generate a catalog of interactomes. We report several hundred candidate target genes 

in breast cancer risk regions including some known cancer driver genes but also many molecular 

targets not previously implicated in breast cancer etiology. 

 

RESULTS  

VCHi-C and PCHi-C interaction profiling 

To enrich for chromatin interactions relevant to breast cancer risk, we designed two capture arrays, 

Variant Capture (VC) and Promoter Capture (PC). The VCHi-C baits were designed to HindIII 

fragments that contained at least one CCV, regardless of the CCV regulatory potential (Figure 1A;5). 

We could design baits to 190/196 signals (97%) which included 6044/7394 CCVs. The PCHi-C baits 

were designed to annotated promoters within 1 Mb of CCVs at breast cancer risk signals (Figure 

1A). This dual-capture approach ensured comprehensive coverage of each risk signal and provided 

independent validation of interactions. We performed in situ VCHi-C and PCHi-C16,18 in two non-

tumorigenic breast cell lines (B80T5, MCF10A), two estrogen receptor positive (ER+; MCF7, T47D) 

and two ER- (MDAMB231, Hs578T) breast cancer cell lines. Sequencing of both captures produced 

over one billion unique di-tags involving CCV-containing fragments and annotated promoters (Table 

S1). To assess the robustness of the approach, each CHi-C experiment was conducted in two 

biological replicates per cell type. We observed strong correlation between the replicates, particularly 

when captured interaction pairs were within 0.5 Mb (Figure S1A).  

 

We initially used the CHiCAGO pipeline23 to assign confidence scores to interactions derived from 

the VCHi-C and PCHi-C (Table S2). Principal component analysis (PCA) based on CHiCAGO 

scores demonstrated concordance for individual replicates in the VCHi-C and PCHi-C. PCA was 

able to separate ER+ breast cancer from normal breast or ER- breast cancer cell lines (Figure 1B). 

Using a strict interaction threshold (CHiCAGO score ³5, intrachromosomal and interaction distance 

£2Mb) we detected on average ~10,000 VCHi-C and ~27,000 PCHi-C high-confidence interactions 

per cell type (Figure 1C and Table S2). The difference in interaction number between captures likely 
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reflects the higher number of PCHi-C baits. In addition, VCHi-C baits were designed to all possible 

CCV-containing HindIII fragments, but some CCVs will be correlated passenger variants or function 

through alternative non-looping mechanisms, such as promoter variants. For the VCHi-C, we 

detected a median of five variant-interacting regions (VIRs; Figure 1A) per bait per cell type, of which 

3-5% interacted with an annotated protein- or non-coding promoter. Similarly, for the PCHi-C, we 

detected a median of five promoter-interacting regions (PIRs; Figure 1A) per bait per cell type, where 

2.4% specifically interacted with a CCV-containing fragment (Figure S1B and Table S2). The 

median linear distance between interactions from either capture ranged from 192-405 kb (Figure 

S1C) and ~70% of the CHi-C interactions occurred within TAD boundaries. Hierarchical clustering 

based on CHiCAGO scores separated the cells lines based on ER-status (Figure 1D), which 

suggested that ER status mediates cell-type specificity of the interactomes. We also observed a 

positive correlation (Pearson’s r = 0.60-0.84) in CHiCAGO scores for interactions detected in both 

the VCHi-C and PCHi-C (Figure S1D), thus validating our approach. 

 

Interacting regions are enriched for regulatory features, eQTLs and CCVs in breast cells 

We first annotated CHiCAGO-scored PIRs in each breast cell type with DNase-seq data derived 

from a diverse panel of cells and tissues as part of the Roadmap Epigenomics Project24. We found 

PIRs to be enriched for regions of accessible chromatin in human mammary epithelial cells (HMEC), 

as compared to non-breast cells (Figures 2A and S2A). To explore this observation in additional 

breast cells, we annotated PIRs with assay for transposase-accessible chromatin sequencing 

(ATAC-seq) peaks in five breast cell lines (Table S3) and noted that the enrichment signals were 

strongest from PIRs detected in the matched cell line (Figure 2B). We next investigated the 

epigenetic makeup of PIRs using ChIP-seq data for histone modifications and other DNA-binding 

proteins in human cell lines. PIRs were significantly enriched for histone marks associated with active 

enhancers (H3K27ac and H3K4me1) as compared to inactive elements which are typically marked 

by the polycomb-associated mark H3K27me3 (Figure 2C).  

 

Binding sites for several structural proteins with established roles in chromatin looping were also 

enriched in PIRs, including CTCF and the cohesin subunits RAD21 and STAG1 (Figure 2D), 
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Figure 1. VCHi-C and PCHi-C in human breast cell lines. (a) Schematic of a hypothetical breast 
cancer risk signal and plausible chromatin interactions. Chromatin interactions are shown as blue 
arcs. Genes are depicted as black arrows. CHi-C baits are depicted as gray boxes. CCVs are shown 
as red vertical lines. The colored boxes illustrate variant-interacting regions (VIRs) or promoter-
interacting regions (PIRs). (b) Principle component analysis of CHiCAGO-scored interactions in 
VCHi-C or PCHi-C biological replicates. (c) Distribution of CHiCAGO-scored interaction number per 
bait per cell line (combined biological replicates). (d) Agglomerative hierarchical clustering for the 
VCHi-C and PCHi-C in six breast cell lines.  
 

 
 

consistent with the role of these factors in mediating long-range genomic interactions9,12. 

Associations were also observed for the cistromes of important breast cancer transcription factors 

(TFs); ESR1, FOXA1 and GATA3 (Figure 2D). This enrichment was stronger in the ER+ MCF7 (z-

score=5.04) and T47D (z-score=2.97) cell lines as compared to available ER- breast cancer, normal 

breast and other non-breast cell lines (Figure S2B), consistent with an additional layer of ER-
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mediated cell-type specificity25. Applying the same enrichment criteria, we also found VIRs to be 

enriched in ATAC-seq peaks in the matched cell associated with active enhancers (H3K27ac and 

H3K4me1) and also for H3K4me3, which marks active gene promoters (Figure 2F), supporting the 

notion that promoters and enhancers cooperatively communicate through transcriptionally active 

chromatin26. 

 

To demonstrate PIR and VIR gene regulatory function, we assessed the overlap of expression 

quantitative trait loci (eQTLs) in normal breast tissue from the METABRIC (Molecular Taxonomy of 

Breast Cancer International Consortium) cohort2,27. We found 800 eQTL genes (eGenes) with 

eSNPs (false discovery rate (FDR)<0.05) within PIRs in at least one analyzed breast cell line. 

Examination of the VIR data also revealed 184 eGenes interacting with eSNPs (Figure 2G). To 

assess specificity of eQTL localization to interacting regions, we maintained the interaction network 

by assigning baits to randomly selected promoters and compared the number of interactions 

supported by eQTL-target gene pairs. We found that eQTLs were significantly more likely to loop to 

their associated gene than expected by chance, across a broad range of linear distances from their 

target promoters (Figure 2G). Finally, we integrated the PIRs with CCVs5 and found that CCVs 

stratified for their association with ER+ and/or ER- tumor subtypes were enriched at PIRs in the ER+ 

breast cancer cell lines (Figure 2H). This enrichment was not as pronounced for the ER- and ER-

neutral CCVs in the ER- breast cancer and normal breast cell lines, which may indicate a lack of 

statistical power to detect enrichment or that the underlying mechanisms are more heterogeneous. 

 

Fine-mapping of VCHi-C and PCHi-C profiles  

While the CHiCAGO pipeline is extremely useful for interaction detection in CHi-C data23, many of 

the generated contact maps contain contiguous restriction fragments linked with the same target. It 

is hypothesized that such collateral contacts might result from inaccuracy during the cross-linking 

process in CHi-C28 or from bait migration via Brownian motion29. Therefore, as a complementary 

interaction scoring method, we also used a recently developed Bayesian sparse variable selection 

approach (“Peaky”; 30). The model proposes that for any given bait, the expected CHi-C signal at 

each prey fragment is expressed as a sum of contributions from a set of fragments directly contacting 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 16, 2019. ; https://doi.org/10.1101/520916doi: bioRxiv preprint 

https://doi.org/10.1101/520916
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

	 8 

 
 
 
Figure 2. PIRs and VIRs share regulatory features. Heatmaps showing promoter-interacting 
region (PIR) enrichment for (a) DNase I hypersensitivity sites in a diverse range of cell types, (b) 
ATAC-seq peaks in breast cell lines, (c) histone marks by ChIP-seq in available breast cell lines, 
and (d) relevant transcription factor binding in available breast cell lines, expressed as z-scores. 
Heatmaps showing variant-interacting region (VIR) enrichment for (e) ATAC-seq peaks in breast cell 
lines and (f) histone marks by ChIP-seq in available breast cell lines, expressed as z-scores. (g) The 
number of interactions between expression single nucleotide polymorphisms (eSNPs) and 
associated target genes (observed) compared to randomly assigned interactions (random), binned 
by interaction distance. Asterisks represent the significance of enrichment of observed versus 
randomized interacting regions (permutation test *p<0.05, **p<0.01, ***p<0.001). (h) Heatmap 
showing CCV enrichment in PIRs in breast cell lines. CCVs are classified as conferring greater risk 
of developing ER+, ER- or both (ER-neutral) tumor subtypes.  
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that bait30. We applied Peaky to the ~1300 baits from the VCHi-C and ~3200 baits from the PCHi-C 

(Table S4) to derive a measure of confidence in the location of a direct contact called the marginal 

posterior probability of a contact (MPPC)30.  

 

To facilitate a comparison with CHiCAGO-scored interactions, we applied an interaction threshold 

of MPPC ³ 0.1. We filtered for intrachromosomal and interaction distance £ 2 Mb and detected 

~3,500 VCHi-C and ~7,400 PCHi-C interactions per cell type (Figure S3A and Table S4). For the 

VCHi-C, ~11% of CCV-containing fragments interacted with an annotated protein- or non-coding 

promoter and for the PCHi-C, ~2.5% of promoter fragments specifically interacted with a CCV-

containing fragment (Figure S3B and Table S4). There were fewer interactions detected by Peaky, 

perhaps because Peaky can distinguish and rank a subset of direct contacts from long stretches of 

chromatin interactions30. The median linear distance between interactions from either capture was 

longer than CHiCAGO-scored interactions (ranged from 294-489 kb; Figure S3C). Similar to 

CHiCAGO-scored interactions, hierarchical clustering based on MPPC scores also separated the 

cell lines based on ER status (Figure S3D). We then compared the CHiCAGO and MPPC scores 

for each bait-prey pair. As reported by Eijsbouts et al30, we noted that CHiCAGO and MPPC scores 

were positively correlated (Figure S3E; Spearman’s r = 0.22-0.37). Peaky was able to refine the 

number of CHiCAGO-scored interactions by 12-17% in both captures; however a proportion of 

interactions were identified by Peaky but not CHiCAGO (Figure S3F). To provide a more stringent 

list of CCVs and candidate target genes, we combined inferences from the two approaches. 

 

Prioritizing CCVs by Peaky fine-mapping of the PCHi-C data 

At many signals, we noted that CHiCAGO identified long stretches of PIRs, some of which contained 

CCVs. We therefore used Peaky to fine-map the CHiCAGO identified interactions to identify the 

likely driver contacts within these stretches. This approach proved particularly useful at 9q33.1, 

where CHiCAGO identified 24 PIRs starting at ~340 kb from a PAPPA (Pregnancy-associated 

plasma protein A) promoter (Figure 3A). Peaky fine-mapping using a PAPPA promoter bait indicated 

this stretch of interactions might be explained by a subset of contacts (MPPC ³ 0.1), which spanned 
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one (rs811688) out of 29 CCVs in MCF7 cells (Figure 3A). 3C provided further support that the 

HindIII fragment containing rs811688 was the most frequently interacting fragment with the PAPPA 

promoter (Figure S4A). PAPPA encodes a secreted zinc metalloproteinase and is an important 

regulatory component of the insulin-like growth factor system31. Recent studies indicate PAPPA is 

frequently overexpressed in luminal B breast tumors32 and identify PAPPA as a pregnancy-

dependent oncogene that promotes the formation of pregnancy-associated breast cancer33. 

 

Another example is 10q14, where CHiCAGO identified 59 PIRs located ~1 Mb from the GATA3 

(GATA binding protein 3) promoter. Interactions between GATA3 and CCVs were restricted to the 

ER+ (T47D and MCF7) breast cell lines and spanned 49 CCVs (Figure 3B). Peaky fine-mapping 

indicated this stretch of interactions might be explained by a subset of four contacts, one of which 

spanned a region containing CCVs. Two HindIII fragments within the CCV-containing peak 

surpassed the 0.1 MPPC interaction threshold and contained 11 out of the 49 CCVs (Figure 3B). 

3C provided further support that the HindIII fragment containing 8 CCVs (FragID: 486687) was the 

most frequently interacting fragment with the GATA3 promoter (Figure S4B). Notably, one CCV 

(rs12765282) within the 3C-identified peak mapped to a putative regulatory element as defined by 

H3K27ac marks and TF binding in T47D cells (Figure 3C). This CCV is predicted to alter a GATA3- 

binding motif, with the risk allele likely acting to decrease GATA3 binding. ChIPseq data showed that 

GATA3 and ER bound to the CCV site in T47D cells, which are homozygous for the protective g-

allele (Figures 3C and 3D). GATA3 is important in mediating enhancer accessibility for ER25, raising 

the possibility of a GATA3-mediated regulatory loop underlying risk at this region.  

 

Taken together, at 77 signals where we could detect at least one promoter-CCV interaction, we could 

prioritize 839 out of 4208 CCVs using the combined CHICAGO (score ³ 5) and Peaky (MPPC ³ 0.1) 

fine-mapping approach. This included 33 signals where the number of prioritized genetically 

indistinguishable CCVs could potentially be reduced to less than five at each signal (Table S5). 
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Figure 3. PCHi-C Peaky fine-mapping prioritizes CCVs at 10q14 and 6p22.3. (a) Chromatin 
interactions at 9q33.1 in MCF7 breast cancer cells. Topologically associating domains (TADs; Table 
S7) are shown as horizontal gray bars above GENCODE annotated coding (blue) and non-coding 
(green) genes. The PCHi-C bait is depicted as a black box. CCVs are shown as red vertical lines. 
The ATAC-seq track is shown as a dark blue histogram. Peaky defined MPPC values (from PCHi-C 
BaitID: 479054) are plotted with the prioritized CCV overlaid as a red vertical line. CHiCAGO-scored 
interactions are shown as black arcs. The dashed red outline highlights the prioritized CCV rs811688 
and the dashed gray outline the target gene (PAPPA). (b) Chromatin interactions at 10q14 in T47D 
breast cancer cells. Topologically associating domains (TADs) are shown as horizontal gray bars 
above GENCODE annotated coding (blue) and non-coding (green) genes. The PCHi-C bait is 
depicted as a black box. CCVs are shown as red vertical lines. The ATAC-seq track is shown as a 
dark blue histogram. Peaky defined MPPC values (from PCHi-C BaitID: 486406) are plotted with the 
prioritized CCVs overlaid as red vertical lines. CHiCAGO-scored interactions are shown as black 
arcs. The dashed red outline highlights the prioritized CCVs and the dashed gray outline the target 
gene (GATA3). (c) Zoomed in view of prioritized CCVs at 10q14. HindIII fragments are shown as 
gray bars with their fragment IDs. CCVs are shown as red vertical lines. Black histograms denote 
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ChIP-seq data from T47D cells for H3K27ac, GATA3 and estrogen receptor (ER; cells treated with 
DMSO or 17 beta-estradiol (EST)). The dashed gray outline highlights CCV rs12765282. (d) Position 
weight matrix of the GATA3 binding site from JASPAR (red arrowhead indicates the CCV position in 
the motif), with homology to the risk (t) and protective (g) alleles of rs12765282 colored below.  
 

 

Prioritizing target genes by sequential CHiCAGO and Peaky fine-mapping  

The combined analyses can be extended to integrate, where possible, the VCHi-C and PCHi-C data. 

One example is 1p22.3, where CHiCAGO detected interactions in the VCHi-C data between two 

independent signals and the LMO4 (LIM-only protein 4) promoter in Hs578T breast cancer cells 

(Figure 4A). Peaky fine-mapping using signal 2 VCHi-C baits then provided further support that 

LMO4 was the likely target gene (Figure 4A). Peaky was also applied to signal 1 VCHi-C baits, but 

the resulting contact peaks did not reach the 0.1 MPPC interaction threshold (Figure S4C). We then 

interrogated the PCHi-C data using two LMO4 promoter baits in Hs578T cells. CHiCAGO identified 

84 PIRs starting at ~612 kb from the LMO4 promoter (Figure 4A). Peaky fine-mapping using the 

same promoter baits indicated this stretch of interactions might be explained by a subset of three 

direct contacts (MPPC ³0.1). One contact spanned two HindIII fragments within signal 2 and 

potentially prioritized four out of eight CCVs at this signal (Figure 4B). Of these, one CCV 

(rs3008455) mapped to a putative regulatory element as defined by open chromatin and TF binding 

in normal breast cells (Figure 4B). This CCV is predicted to alter a CTCF-binding motif, with the risk 

allele promoting increased CTCF binding (Figure 4C). LMO4 is a transcriptional modulator that is 

overexpressed in >50% of breast tumors34. Overexpression of LMO4 promotes cell proliferation, 

invasion and tumor formation and induces mammary hyperplasia in transgenic mice35.  

 

A more complex example is 16q24.2, where CHiCAGO detected 62 VIRs spanning a ~320 Kb 

genomic region derived from nine separate VCHi-C baits (Figure 4D). Peaky fine-mapping of this 

VCHi-C data then prioritized FOXC2, FOXC2-AS1, FOXL1 and MTHFSD as the likely target genes 

in B80T5 normal breast cells (Figure 4D). We interrogated the PCHi-C data using the four target 

gene promoter baits in B80T5 cells. CHiCAGO identified 40 PIRs spanning a ~500 Kb genomic 

region. Peaky fine-mapping using the same promoter baits indicated this stretch of interactions might  
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Figure 4. Sequential CHiCAGO and Peaky fine-mapping prioritizes CCVs and target genes. 
(a) Chromatin interactions at 1p22.3 in Hs578T breast cancer cells. Topologically associating 
domains (TADs) are shown as horizontal gray bars above GENCODE annotated coding (blue) and 
non-coding (green) genes. The VCHi-C or PCHi-C baits are depicted as black boxes. Risk signals 1 
and 2 are numbered and the CCVs within each signal are shown as colored vertical lines. The ATAC-
seq track is shown as a dark blue histogram. Peaky defined MPPC values (from specified BaitIDs) 
are plotted with the prioritized gene overlaid as a dark blue vertical line or prioritized CCVs overlaid 
as royal blue vertical lines. CHiCAGO-scored interactions for specified BaitIDs are shown as black 
arcs. The dashed red outline highlights the prioritized CCVs and the dashed gray outline the target 
gene (LMO4). (b) Zoomed in view of prioritized signal 2 CCVs at 1p22.3. VCHi-C baits are shown 
as gray bars with their fragment IDs. CCVs are shown as blue vertical lines. Black histograms denote 
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DNase I hypersensitivity sites or ChIP-seq data for H3K4me1 and CTCF binding from HMEC cells. 
The dashed gray outline highlights CCV rs3008455. (c) Position weight matrix of the CTCF binding 
site from JASPAR (red arrowhead indicates the CCV position in the motif), with homology to the risk 
(g) and protective (a) alleles of rs3008455 colored below. (d) Chromatin interactions at 16q24.2 in 
B80T5 normal breast cells. Topologically associating domains (TADs) are shown as horizontal gray 
bars above GENCODE annotated coding (blue) and non-coding (green) genes. The VCHi-C or 
PCHi-C baits are depicted as black boxes. CCVs are shown as red vertical lines. The ATAC-seq 
track is shown as a dark blue histogram. Peaky defined MPPC values (from specified BaitIDs) are 
plotted with the prioritized genes overlaid as dark blue or green vertical lines and prioritized CCVs 
overlaid as red vertical lines. CHiCAGO-scored interactions for specified BaitIDs are shown as black 
arcs. The dashed red outline highlights the prioritized CCVs and the dashed gray outline the 
prioritized target genes (MTHFSD, FOXC2, FOXL1 and FOXC2-AS1). 
 

 

be explained by a subset of two direct contacts (MPPC ³ 0.1). One contact spanned five HindIII 

fragments and potentially prioritized 21 out of the possible 85 CCVs at this signal (Figure 4D). 

Preliminary in silico analyses revealed many of the 21 prioritized CCVs display regulatory activity 

and therefore additional studies would be required to determine which are the likely functional 

variants. FOXC2 and FOXL1 are members of the Forkhead family of transcription factors with 

important functions in biological processes such as cell cycle control, proliferation and 

development36. FOXC2 has been implicated in triple-negative breast cancer progression and therapy 

resistance37, while FOXL1 is reported to inhibit breast cancer cell proliferation, invasion, and 

migration38. Little is known about MTHFSD (Methenyltetrahydrofolate synthetase domain-

containing), but a recent report suggests the gene encodes a stress granule-associated RNA-binding 

protein39. 

 

Identification of 651 candidate target genes at 139 breast cancer risk signals 

We defined candidate target genes of breast cancer risk signals by CHiCAGO- and/or Peaky-scored 

CCV-gene promoter interactions in VCHi-C or PCHi-C in at least two cell lines. This combined 

analysis resulted in 651 candidate target genes at 139 breast cancer risk signals, including 419 

protein-coding genes (Table S5). The majority of candidate target genes interacted with one signal, 

but ~13% interacted with two or more independent signals (Figure S4D). The 6q25 region is one of 

the more extreme examples, where five out of six independent signals all loop to and potentially 

regulate ESR1 (Figure S4E). More than 80% of signal-target gene interactions skipped at least one 
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annotated gene promoter and ~75% of signals interacted with at least two promoter-containing 

fragments (Figures S4F). One example that demonstrates both characteristics is 8q24.13, where 

signal 1 CCVs interact with six candidate target genes (WDYHV1, FBXO32, CTD-2552K11.2, 

ANXA13, FAM91A1 and TRMT12) including skipping three annotated genes to contact the TRMT12 

promoter (Figure S4G). Notably, 181 candidate target genes were identified by both CHiCAGO and 

Peaky (Figure S4H), which may further prioritize these genes for functional validation. This priority 

list includes established breast cancer driver genes such as MYC and GATA340, but also includes 

many genes with no reported role in breast cancer (Table S5).  

 

CHi-C identifies TBX3 as the target of multiple risk signals 

To further illustrate the power of combining genetic fine-mapping, CHi-C and functional studies, we 

examined in detail the 12q24 susceptibility region. Genetic fine-mapping of 12q24 identified at least 

four independent signals2,5 (listed in Table S6); signal 1 (seven CCVs), signal 2 (one CCV) and 

signal 4 (six CCVs) were more strongly associated with ER+ tumors, whereas signal 3 (eight CCVs) 

was associated with both ER+ and ER- breast cancer (Table S6). The CCVs in all four signals are 

located in a large intergenic region on 12q24 between TBX3 and MED13L (Figure 5A). We used 

ATAC-seq and available ChIP-seq datasets from ENCODE41 to map CCVs relative to transcriptional 

regulatory elements. This analyses showed evidence of putative regulatory elements overlapping 

the CCVs at each signal, indicating that one or more CCVs likely have high regulatory potential 

(Figure 5A). CHi-C and 3C identified TBX3 (T-Box 3) as the most likely target gene (Figures 5A, 

S5A and Table S6). Notably, we detected interactions between TBX3 and each of the four 

independent signals in a cell-type specific manner (Figures 5A and S5B).  

 

Our functional studies focused on the strongest signal 1 CCVs. CRISPRi-silencing of the signal 1 

element in ER+ MCF7 cells showed that TBX3, but not TBX5 and MED13L, levels were significantly 

reduced (Figure 5B). Reporter assays then confirmed that the element acts as an enhancer on the 

TBX3 promoter in the presence of either the risk or protective haplotypes (Figure 5C). We used 

available DNase-seq data derived from heterozygous MCF7 cells to show that the risk a-allele of 

CCV rs1391721 may promote allele-specific open chromatin (Figure 5D). Electrophoretic mobility 
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Figure 5. Molecular analysis of signal 1 CCVs at 12q24. (a) Chromatin interactions in MCF7 and 
B80T5 breast cell lines. Topologically associating domains (TADs) are shown as horizontal gray 
bars above GENCODE annotated coding (blue) and non-coding (green) genes. The PCHi-C baits 
are depicted as black boxes. Risk signals 1-4 are numbered and the CCVs within each signal are 
shown as colored vertical lines. ENCODE ChIP-seq data for available histone marks are depicted 
as gray boxes. The ATAC-seq tracks are shown as dark blue histograms. Peaky defined MPPC 
values (from PCHi-C BaitID: 596031) are plotted with the prioritized CCVs overlaid as red vertical 
lines. CHiCAGO-scored interactions are shown as black arcs. The dashed red outline highlights 
signal 1 CCVs and the dashed gray outline the target gene (TBX3). (b) The 12q24 enhancer was 
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repressed by targeting dCas9-KRAB to the enhancer in MCF7 cells with two different CRISPRi 
single-guide (sg) RNAs (SgEnh1 and SgEnh2). PgCON contains a non-targeting control sgRNA. 
Gene expression of TBX3, TBX5 and MED13L was measured by qPCR and normalized to GUSB. 
Error bars represent the SEM (n = 3). p values were determined by two-way ANOVA followed by 
Dunnett’s multiple-comparison test (**p<0.01). (c) Luciferase reporter assays following transient 
transfection of MCF7 cells. The 12q24 enhancer containing either the risk or protective (Prot.) 
haplotype was cloned into TBX3 promoter-driven luciferase constructs (TBX3 prom). Error bars 
represent the SEM (n = 3). p values were determined by two-way ANOVA followed by Dunnett’s 
multiple-comparison test (**p<0.01). (d) Allele-specific DNase I hypersensitivity at CCV rs1391721 
in heterozygous MCF7 cells. The depth of reads containing the risk (red) and protective (blue) alleles 
are shown. (e) EMSAs for signal 1 CCVs to detect allele-specific binding of nuclear proteins. Labeled 
oligonucleotide duplexes were incubated with MCF7 nuclear extract. Red arrowheads show bands 
of different mobility detected between risk (R) and protective (P) alleles. (f) Position weight matrix of 
the GATA3 binding site from JASPAR, with homology to the risk (a) and protective (g) alleles of 
rs1391721 colored below. (g) Allele-specific GATA3 ChIP-PCR results assessed at CCV rs1391721 
in heterozygous MCF7 cells. Error bars represent the SEM (n = 3). p values were determined by a 
two-tailed Student’s t-test (**p<0.01). (h) Allelic discrimination plot of the GATA3 ChIP in MCF7 cells. 
Genomic DNA extracted from homozygous T47D and Hs578T breast cancer cells were used as 
controls.  
 

 
shift assays (EMSAs) then assessed TF binding for each of the signal 1 CCVs. Allele-specific binding 

by nuclear proteins was observed for CCVs rs2464264, rs2454399, rs1391721 and rs1292011 in 

MCF7 and BT474 extracts (Figures 5E and S6A). Further EMSAs using competitor DNA against 

predicted TFs suggested GATA3 bound to the rs1391721 site (Figure S6B). Similar to the 10q14 

CCV, rs1391721 is also predicted to lie in a GATA3 binding site. Here, the risk a-allele promoted 

increased GATA3-binding compared to the protective g-allele (Figure 5F), as evident in GATA3 

ChIP-seq data derived from heterozygous MCF7 cells (Figure S6C). To assess occupancy of 

GATA3 in vivo, we performed ChIP followed by allele-specific qPCR in MCF7 cells and found that 

GATA3 was preferentially recruited to the a-allele of rs1391721 (Figures 5G-H). As further support, 

we investigated the correlation between GATA3 and TBX3 expression in the TCGA cohort. A 

stronger correlation was observed between GATA3 and TBX3 expression in normal breast as 

compared with the breast tumor samples (Figure S6D).  

 

TBX3 is a T-Box TF that has been linked to tumorigenesis by impacting senescence and apoptosis 

as well as promoting proliferation and tumor formation42. To determine whether TBX3 can promote 

a tumorigenic phenotype in breast cells, we stably overexpressed or repressed TBX3 in the human 
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mammary epithelial (HMLE) cell line and the MCF7 breast cancer cell line. HMLEs have been 

engineered to express hTERT and the SV40 large-T antigen and can grow in soft agar and form 

tumors in immune-deficient mice only upon introduction of an additional oncogenic insult43. 

Overexpression of TBX3 in HMLE cells resulted in a significant increase in cell colony growth in soft 

agar, suggesting that overexpression promotes anchorage-independent growth (Figures 6A and 

S6E), while CRISPR/Cas9-mediated TBX3 silencing showed a reciprocal effect (Figures 6B). These 

results are consistent with our in vitro data which indicated breast cancer risk was likely associated 

with increased TBX3 expression. The HMLE-TBX3 overexpressing cells were also injected into the 

mammary fat pads of nude mice, but no tumors were observed, suggesting elevated levels of TBX3 

alone is not enough to promote tumor development from these cells. In contrast, overexpression of 

TBX3 in MCF7 cells decreased cell colony growth in soft agar (Figures 6C and S6F), while depletion 

of TBX3 by targeting dCas9-KRAB to the TBX3 promoter resulted in a significant increase in growth 

(Figures 6D and S6G). To further investigate TBX3 in tumor growth, TBX3-depleted MCF7 cells 

were injected into the mammary fat pads of nude mice. Compared to control cells, reduced TBX3 

levels resulted in a marked increase in tumor growth in vivo (Figures 6E and 6F), which was 

reflected in increased tumor weights (Figure 6G). As reported previously 44, these data suggest that 

TBX3 can be oncogenic or tumor suppressive depending on cellular context.  

 

DISCUSSION  

The field of 3D chromatin interaction mapping is rapidly changing how we view the genome and is 

revealing important insights into disease biology. Interpretation of findings from GWAS has 

particularly benefited from the influx of chromatin data, allowing more accurate mapping and 

redefining of candidate causal genes. In this study, we generated high-resolution chromatin maps in 

human breast cells to delineate gene-regulatory interactions between breast cancer CCVs and target 

genes. We used two independent algorithms to score chromatin interactions. Peaky assisted 

identification of the probable direct contacts from long stretches of CHiCAGO-identified interactions.  

 

This proved useful when examining PIRs as we were able to further prioritize the list of CCVs, which 

will be valuable in future in-depth functional studies. The de-prioritized variants may simply represent 
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Figure 6. Altered TBX3 levels affect breast cell growth and tumor formation. (a) Representative 
images of colonies grown in soft agar for HMLE-control (GFP CON) and HMLE-TBX3 
overexpressing cells (TBX3 ORF). The graph depicts the total number of HMLE colonies formed. 
Error bars represent the SEM (n = 2). (b) Representative images of colonies grown in soft agar for 
HMLE-control (PgCON) and HMLE-CRISPR/Cas9 TBX3 edited cells (SgTBX3-C1/C2). The graph 
depicts the total number of HMLE colonies formed. Error bars represent the SEM (n = 2). (c) 
Representative images of colonies grown in soft agar for MCF7-control (GFP CON) and MCF7-TBX3 
overexpressing cells (TBX3 ORF). The graph depicts the total number of MCF7 colonies formed. 
Error bars represent the SEM (n = 4). (d) Representative images of colonies grown in soft agar for 
MCF7-control (PgCON) and MCF7-dCas9-KRAB TBX3 repressed cells (SgTBX3-P1/P2). The graph 
depicts the total number of MCF7 colonies formed. Error bars represent the SEM (n = 4). (a-d) p 
values were determined by two-way ANOVA followed by Dunnett’s multiple-comparison test 
(**p<0.01, ***p<0.001, ****p<0.0001). (e) MCF7-control (PgCON) or MCF7-dCas9-KRAB TBX3 
repressed cells (SgTBX3-P1/P2) were injected into the mammary fat pads of nude mice. Tumor 
growth curves for each group are shown. Values are shown as average tumor volumes at each time 
point. Error bars represent the SEM (n = 8-9 mice per group). (f) Tumors of individual mice were 
dissected at day 44 post injection. The five largest tumors of each group are shown. The scale bar 
represents 1 cm. (g) Plot of the individual weights of tumors with mean and SEM shown by cross-
bar and errors. (e, g) Mann–Whitney U test was used to compare differences between groups 
(*p<0.05, ****p<0.0001). 
 

 

those in linkage disequilibrium with the true causal variant(s). Similarly, we observed an overlap 

between CHiCAGO- and Peaky-detected target genes, but noted that a proportion was detected by 

only one method. This was not unexpected given the different statistical models, and further studies 
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will be required to establish parameters for improved resolution of direct interactions. Collectively, 

we could identify 651 candidate target genes at 139 independent breast cancer risk signals. Of 

particular interest for post-GWAS functional studies, 65 signals could be prioritized to one or two 

candidate target genes (Table 1). Some of the listed genes have functional data linking breast cancer 

CCVs to altered target gene expression, including ESR1 45, FGFR2 46 and IGFBP5 47, but most are 

still uncharacterized.  

 

A recent study used CHi-C to identify 110 putative target genes at 33 breast cancer risk loci 48. 

Surprisingly, only 30 of the 110 genes were also identified in our study. The lack of concordance 

may firstly result from a fundamental difference in capture design; Baxter et al. was based on SNPs 

correlated with the published SNP (r2³0.2); whereas the present study captures only those fragments 

containing CCVs based on fine-mapping analysis of a very large association dataset. In addition, the 

design used by Baxter and colleagues included many examples where oligonucleotide probes were 

tiled across large genomic regions rather than restricted to individual HindIII fragments. Baxter et al. 

also reported multiple genes as putative targets at some risk signals, while our analysis of the same 

signals prioritized only one or two genes. For example, at 11p15.5 Baxter et al. identified nine target 

genes, whereas our combined statistical analyses reduced this number to just two candidates, LSP1 

and MIR4298.  

 

We acknowledge that some CCV-target gene interactions may have been missed due to intrinsic 

biases in the capture. False negatives may result from lack of suitable baits for some CCV- and 

promoter-containing fragments, short range contact constraints or due to the transient and cell type-

specific nature of regulatory chromatin interactions. It is also important to keep in mind that 

interactions between a CCV and gene promoter do not infer causality. It is likely that correlated CCVs 

within some signals have no effect on TF binding or enhancer activity, or they may act via alternate 

mechanisms. Consistent with other GWAS follow-up studies 49, our results support the hypothesis 

that cis-acting regulatory variation is a predominant molecular mechanism at breast cancer risk 

signals. However, we saw no CCV-target gene looping interactions at 57 (out of 196) risk signals. 
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Twelve signals contained promoter or coding CCVs, suggesting that direct gene alteration is a 

probable mechanism underlying these risk associations. The remaining signals (n=45) contained 

baited variant or promoter fragments, but the lack of detected CCV-gene interactions suggests 

mechanisms other than distal regulation. A recent study has incorporated some of the proposed 

alternate CCV mechanisms together with the distally-regulated genes from this study to generate a 

complete catalog of candidate target genes and biological pathways 5. 

 

We provided functional evidence that breast cancer risk at 12q24 is driven by the TF, TBX3. TBX3 

is overexpressed in many cancers including breast cancer, and contributes to oncogenesis at 

multiple levels including promotion of proliferation, tumor formation and metastasis 42. Consistent 

with previous findings, our in vitro data indicate that the signal 1 CCVs likely act to increase TBX3 

expression through recruitment of GATA3 to the CCV site, resulting in increased looping of the risk 

CCV-containing enhancer to the TBX3 promoter. Several studies have suggested that TBX3 may 

also function as a tumor suppressor depending on the cellular context 44. Indeed, in MCF7 breast 

cancer cells, we showed that TBX3 repression promoted colony formation and in vivo tumor 

formation. Furthermore, somatic TBX3 mutations in primary breast tumors are predominantly loss-

of-function through impaired transcriptional repression 50. Interestingly, a recent report showed that 

many of these “double agent” genes are TFs and that breast cancer is the second most common 

cancer type associated with dual-function genes 51. The molecular mechanisms underlying this 

duality are largely unknown, but differing mutation spectrums, interaction partners and cellular 

contexts have been implicated. Dual-function genes likely contribute to the heterogeneity of cancer 

cells and some are already considered promising targets for breast cancer therapy. It will therefore 

be important to refine therapeutic strategies to selectively block one function without compromising 

the other.  

 

In summary, we report the most comprehensive study linking regulatory CCVs to candidate breast 

cancer genes. This forms an important resource for the breast cancer research community that will 

facilitate generation of hypotheses, functional experimentation as well as insights into breast cancer 
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biology. We anticipate that many of the candidate target genes may represent drug repositioning 

opportunities or be suitable for future drug targeting.   

 

METHODS 

Data availability 

Raw sequencing data has been deposited at EBI: PRJEB29716. Processed Capture Hi-C data is 

available from https://osf.io/2cnw7/. Processed chromatin interaction data can be visualized at the 

Washington Epigenome Browser via https://bit.ly/2rnCqS8. 

 

Code availability 

The custom scripts used during the study are available from the corresponding author on reasonable 

request. 

 

URLs 

HiCUP, http://bioinformatics.babraham.ac.uk/projects/hicup/overview; CHiCAGO, 

http://regulatorygenomicsgroup.org/chicago; Peaky, http://github.com/cqgd/pky; Integrative 

genomics viewer, http://software.broadinstitute.org/software/igv; Graphpad Prism, 

http://graphpad.com/scientific-software/prism/; Cutadapt (version 1.9), 

http://pypi.python.org/pypi/cutadapy/19.1; BWA-MEM (version 0.7.12), http://bio-

bwa.sourceforge.net; Samtools (version 1.1), http://htslib.org; Picard (version 1.129), 

http://github.com/broadinstitute/picard; qProfiler, http://sourceforge.net/p/adamajava/wiki/qProfiler/; 

MACS2, http://github.com/taoliu/MACS; HOMER, http://homer.ucsd.edu/homer/; R, https://www.r-

project.org; JASPAR, http://jaspar.genereg.net/. 

 

Cell lines 

Estrogen receptor positive (ER+) breast cancer cell lines MCF7 and T47D were grown in RPMI 

medium with 10% (vol/vol) fetal bovine serum (FBS), 1 mM sodium pyruvate, 10 µg/ml insulin, and 

1% (vol/vol) antibiotics. ER- breast cancer cell lines MDAMB231 and Hs578T were grown in DMEM 
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medium with 10% (vol/vol) FBS and 1% (vol/vol) antibiotics. The B80T5 mammary epithelial cell line 

(provided by Roger Reddel, CMRI, Australia) was grown in RPMI medium with 10% (vol/vol) FBS 

and 1% (vol/vol) antibiotics. The MCF10A mammary epithelial cell line was grown in DMEM/F12 

medium with 5% (vol/vol) horse serum, 10 µg/ml insulin, 0.5 µg/ml hydrocortisone, 20 ng/ml 

epidermal growth factor, 100 ng/ml cholera toxin, and 1% (vol/vol) antibiotics. Cell lines were 

maintained under standard conditions (37oC, 5% CO2), tested for Mycoplasma and profiled for short 

tandem repeats. 

 

Hi-C library preparation 

Hi-C libraries were prepared from 4-8x107 cells per library (two biological replicates per cell line; 

three replicates for the T47D VCHi-C) as described previously11, but using in-nucleus ligation as 

described in 52. The immobilized Hi-C libraries were amplified using the SureSelectXT ILM Indexing 

pre-capture primers (Agilent Technologies) with eight PCR amplification cycles. Each Hi-C library 

(750 ng) was hybridized and captured individually using the SureSelectXT Target Enrichment System 

reagents and protocol (Agilent Technologies). After library enrichment, a post-capture PCR 

amplification step was carried out using SureSelectXT ILM Indexing post-capture primers (Agilent 

Technologies) with 14-16 PCR amplification cycles. 

 

Biotinylated RNA bait library design 

The SureSelectXT Custom Target Enrichment Arrays were designed using the eARRAY software 

(Agilent Technologies). For the VCHi-C, biotinylated 120-mer RNA baits were designed to both ends 

of HindIII restriction fragments that contained at least one CCV5. A total of 1448 HindIII fragments 

were captured, covering 6044/7394 CCVs. For the PCHi-C, biotinylated 120-mer RNA baits were 

designed to both ends of HindIII restriction fragments that overlapped annotated promoters within 1 

Mb of CCVs 5. A total of 4049 HindIII fragments were captured, overlapping 2298 Ensembl-annotated 

promoters (GRCh38) 16. A bait sequence was accepted if its GC content was between 25-65%, the 

sequence contained no more than two consecutive nucleotides of the same identity, and was within 
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330 bp of the HindIII restriction fragment end. Repetitive elements were masked using SureDesign 

masking tools with the highest level of stringency. 

 

Sequencing of CHi-C libraries 

PCHi-C and VCHi-C libraries were sequenced on the Illumina HiSeq 2500 platform (Kinghorn Centre 

for Clinical Genomics, Australia). Two PCHi-C or three VCHi-C libraries were multiplexed per 

sequencing lane. 

 

PCHi-C and VCHi-C sequence alignment and data processing 

Raw sequencing reads were truncated, mapped to the hg19 reference genome, and filtered using 

the HiCUP pipeline 53. Individual library statistics are presented in Table S1. Significant interactions 

were identified using the CHiCAGO pipeline23. For both captures, replicate libraries for each cell line 

were analyzed separately to learn weights which were then used to merge replicates into a single 

dataset per cell type. Interactions with CHICAGO scores ≥ 5 in at least one cell type were considered 

high-confidence interactions. 

 

Principal component and cluster analyses 

Principal Component Analysis (PCA) of the CHiCAGO interaction scores was performed for both 

variant and promoter capture arrays for each individual biological replicate. Interaction length <2 Mb 

and CHiCAGO score >0 were included. PCA was performed using the R utility prcomp with unit 

variance scaling. Hierarchical clustering with average linkage based on Euclidian distances was 

performed on the 1000 interactions with most variance using R's heatmap.2 function. Cell types were 

clustered based on profiles including interactions with CHiCAGO score >=5 and length <2 Mb. 

Interactions with score >=5 in at least one cell line were considered.  

 

PCHi-C and VCHi-C concordance 

To examine the overall concordance between promoter and variant captures, we identified 

interactions common to both experiments from the full range of CHiCAGO scores (>0) for each cell 

type. The Pearson correlation between CHiCAGO scores for interactions from each of the captures 
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was computed. Interactions scores for each capture were plotted after inverse hyperbolic sine 

(asinh) transformation with loess smoothed regression lines.  

 

Enrichment of genomic features within interacting regions 

Positions of genomic features including DNase-seq peak, histone modification ChIP-seq peaks, 

transcription factor ChIP-seq peaks (web links provided in Table S7) and ATAC-seq peaks were 

intersected with PIRs from each cell line. Enrichment was estimated by comparing to a set of 

background PIRs generated by maintaining the distribution of interaction distances and interaction 

counts relative to promoter baits for each cell type. Interactions were grouped in 50 kb distance bins, 

and 100 sets of random PIR sets were built for each cell line. We removed baited fragments from 

the pool of possible PIRs. Z scores were calculated for each genomic annotation. 

 

Fine-mapping of chromatin contacts 

PCHi-C and VCHi-C contact mapping was performed using the Peaky Bioconductor package 30. We 

first pooled aligned reads from replicate CHi-C libraries. Probable interaction-driving contacts were 

then modelled for each bait from each cell line independently. We maintained the default W value (5) 

for each bait. Two parallel chains were run and correlation between MPPC values for interacting 

prey fragments were tested until r > 0.75 (typically after 206 iterations). We achieved successful 

convergence for >93% tested baits. Distributions derived from parallel chains were then merged to 

generate cell-type and bait-specific contact maps. An arbitrary MPPC threshold of 0.1 was used for 

downstream analysis.  

 

Expression quantitative trait loci analysis 

To determine whether eSNP-target gene pairs were over-represented within captured interactions, 

we assigned interactions to random promoters within the same chromosome. This randomization 

procedure was repeated 10,000 times. The frequency of eSNP-gene occurrences within interactions 

was then tallied in the observed interaction set and compared to random expectation. 
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ATAC-seq library preparation and data analysis 

ATAC-seq was performed as previously described54. Briefly, 5x104 cells were resuspended in lysis 

buffer (10 mM Tris-HCl (pH 7.4), 10 mM NaCl, 3 mM MgCl2, 0.1% (vol/vol) IGEPAL CA-630), then 

centrifuged at 5000xg for 10 min at 4°C. Pellets were resuspended in TD buffer (10 mM Tris (pH 

7.6), 5 mM MgCl2, 10% (vol/vol) dimethylformamide) and 2.5 µl of TDE1 enzyme (Illumina). 

Transposed fragments were purified using a MinElute PCR purification kit (QIAGEN), then amplified 

and indexed with unique library indices using NEBNext High-Fidelity 2x PCR Master Mix (New 

England BioLabs). PCR products were purified with AMPure XP beads (Beckman-Coulter) and 

quantified with a Qubit dsDNA High-Sensitivity Assay kit (Thermo Fisher Scientific) and BioAnalyzer 

High Sensitivity DNA Kit (Agilent Technologies). Pools of six libraries were sequenced per lane on 

an Illumina HiSeq 2500 (Kinghorn Centre for Clinical Genomics). Raw sequencing reads were 

trimmed for adapter sequences using Cutadapt (version 1.9;55) and aligned using BWA-MEM 

(version 0.7.12;56) to the GRCh37 assembly. The aligned reads were coordinate sorted using 

Samtools (version 1.1;57) and duplicate alignments were marked with Picard (version 1.129). 

Qprofiler assessed the sequence quality and provide fragment length distribution. Peaks were called 

for each sample using MACS258. Peak annotation was performed using HOMER59. 

 

3C validation 

3C libraries were generated using HindIII as described previously47. 3C interactions were quantified 

by real-time PCR (qPCR) using primers designed within restriction fragments (Table S6). qPCR was 

performed on a RotorGene 6000 using MyTaq HS DNA polymerase (Bioline) with the addition of 25 

µM Syto9, annealing temperature of 66oC and extension time of 30s. 3C analyses were performed 

in two independent 3C libraries from each cell line quantified in duplicate. BAC clones covering each 

region were used to create artificial libraries of ligation products to normalize for PCR efficiency. 

Data were normalized to the signal from the BAC clone library and, between cell lines, by reference 

to a region within GAPDH.  
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CRISPR/Cas9 interference and cutting 

For CRISPR interference (CRISPRi), the sgRNA targets (listed in Table S6), Cas9 binding handle 

and terminator sequences were synthesized (Integrated DNA Technologies, IDT) and cloned into 

the lentiviral vector pgRNA-humanized. Virus-like particles (VLPs) containing either dCas9-KRAB or 

a targeting sgRNA were generated by transfection of HEK293 cells with Lipofectamine 2000 

(Thermo Fisher Scientific). Cells were cotransfected with the packaging plasmid pCMV-dR8.91, the 

VSV-G envelope expression plasmid pCMV-VSV-G, and with either pHR-SFFV-dCas9-BFP-KRAB 

or pgRNA-humanized. VLPs were collected from culture supernatants, mixed in equal volume, and 

transduced into MCF7 cells. Cells expressing both mCherry (via pgRNA-humanized) and blue 

fluorescent protein (via dCas9-KRAB) were isolated by FACS on an ARIA IIIu (Becton-Dickinson). 

For CRISPR cutting (CRISPRc), the GFP control and sgRNA targets (listed in Table S6) were 

synthesized (IDT) and cloned into the pXPR_011 lentiviral vector. Virus-like particles (VLPs) 

containing the GFP control or targeting sgRNAs were generated by transfection of HEK293 cells 

with FuGene (Promega). VLPs were collected from culture supernatant, transduced into HMLE-Cas9 

cells, and selected using puromycin for at least 48 h.  

 

Quantitative real-time PCR (qPCR) 

Complementary DNA (cDNA) was synthesized from RNA samples using SuperScript III (Invitrogen). 

qPCR was performed using TaqMan assays (Thermo Fisher Scientific; listed in Table S6). 

 

Plasmid construction and reporter assays 

The TBX3 promoter-driven luciferase construct was generated by insertion of a PCR amplified 

promoter fragment into the NheI and HindIII sites of the pGL3-basic vector (primers are listed in 

Table S6). The 12q24 signal 1 enhancer, containing either the risk or protective CCV alleles, was 

synthesized as gBlocks (IDT) and cloned into the BamHI and SalI sites of the TBX3-promoter 

construct (coordinates are listed in Table S6). Sanger sequencing of all constructs confirmed variant 

incorporation. MCF7 cells were transfected with equimolar amounts of luciferase reporter plasmids 

and pRL-TK transfection control plasmid with Lipofectamine 3000 (Thermo Fisher Scientific). 

Luciferase activity was measured 24 h post-transfection by the Dual-Glo Luciferase Assay System 
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(Promega). To correct for any differences in transfection efficiency or cell lysate preparation, Firefly 

luciferase activity was normalized to Renilla luciferase activity, and the activity of each construct was 

expressed relative to the reference promoter constructs, which were defined to have an activity of 1.  

 

Electromobility shift assays (EMSAs) 

Gel shift assays were performed with MCF7 or BT474 nuclear lysates and biotinylated 

oligonucleotide duplexes (listed in Table S6). Nuclear lysates were prepared using the NE-PER 

nuclear and cytoplasmic extraction reagents (Thermo Fisher Scientific) as per the manufacturer’s 

instructions. Total protein concentrations in nuclear lysates were determined by Bradford’s method. 

Duplexes were prepared by combining sense and antisense oligonucleotides in NEBuffer2 (New 

England Biolabs) and heat annealing at 80°C for 10 min followed by slow cooling to 25°C for 1 h. 

Binding reactions were performed in binding buffer (10% (vol/vol) glycerol, 20 mM HEPES (pH 7.4), 

1 mM DTT, protease inhibitor cocktail (Roche), 0.75 µg poly(dI:dC) (Sigma-Aldrich)) with 7.5 µg of 

nuclear lysate. For competition assays, binding reactions were pre-incubated with 1 pmol of 

competitor duplex (competitor sequences are listed in Table S6) at 25°C for 10 min before the 

addition of 10 fmol of biotinylated duplex and incubation at 25°C for 15 min. Reactions were 

separated on 10% (wt/vol) Tris-Borate-EDTA (TBE) polyacrylamide gels (Bio-Rad) in TBE buffer at 

160 V for 40 min. Duplex-bound complexes were transferred onto Zeta-Probe positively-charged 

nylon membranes (Bio-Rad) by semi-dry transfer at 25 V for 20 min, then cross-linked onto the 

membranes under 254 nm ultra-violet light for 10 min. Membranes were processed with the 

LightShift Chemiluminescent EMSA kit (Thermo Fisher Scientific) as per the manufacturer’s 

instructions. Chemiluminescent signals were visualized with the C-DiGit blot scanner (LI-COR). 

 

Chromatin immunoprecipitation (ChIP) 

MCF7 cells were cross-linked with 1% (wt/vol) formaldehyde at 37oC for 10 min, rinsed once with ice-

cold PBS containing 5% (wt/vol) BSA and once with PBS, and harvested in PBS containing protease 

inhibitor cocktail (Roche). Harvested cells were centrifuged for 2 min at 3000 rpm. Cell pellets were 

resuspended in 0.35 ml of lysis buffer (1% (wt/vol) SDS, 10 mM EDTA, 50 mM Tris-HCl (pH 8.1)), 

protease inhibitor cocktail and sonicated three times for 15 s at 70% duty cycle (Branson SLPt) 
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followed by centrifugation at 13000 rpm for 15 min. Supernatants were collected and diluted in 

dilution buffer (1% (wt/vol) Triton X-100, 2 mM EDTA, 150 mM NaCl, 20 mM Tris-HCl (pH 8.1)). Two 

micrograms of anti-GATA3 antibody (Santa Cruz) or control IgG (Santa Cruz) was prebound for 6 h 

to protein G Dynabeads (Thermo Fisher Scientific) and then added to the diluted chromatin for 

overnight immunoprecipitation. The magnetic bead-chromatin complexes were collected and 

washed six times in RIPA buffer (50 mM HEPES (pH 7.6), 1 mM EDTA, 0.7% (vol/vol) sodium 

deoxycholate, 1% (vol/vol) NP-40, 0.5 M LiCl), then twice with TE buffer. To reverse cross-linking, 

the magnetic bead complexes were incubated overnight at 65oC in elution buffer (1% (wt/vol) SDS, 

0.1 M NaHCO3). DNA fragments were purified using the QIAquick Spin Kit (QIAGEN). For qPCR 

(primers are listed in Table S6), 2 µl from a 100 µl immunoprecipitated chromatin extraction were 

amplified for 40 cycles. All PCR products were sequenced by Sanger sequencing.  

 

TBX3 overexpression 

The TBX3 overexpression construct (pLX307/TBX3) was generated by Gateway cloning from 

pDONR201 containing the full length TBX3 cDNA into the pLEX_307 lentiviral destination vector 

(Thermo Fisher Scientific). A negative control construct (pLX307/CON) was generated by excising 

TBX3 via NheI and SpeI restriction enzyme digestion and self-ligating the vector backbone. VLPs 

were generated from HEK293 cells transfected with pLX307/CON or pLX307/TBX3 as described 

above and transduced into HMLE or MCF7 cells. Transductants were selected with puromycin for at 

least 48 h. 

 

Western blotting 

Cell pellets were lysed in RIPA buffer (50 mM Tris-HCl (pH 8.0), 150 mM NaCl; 1% (vol/vol) IGEPAL 

CA-630, 0.5% (vol/vol) sodium deoxycholate, 0.1% (wt/vol) SDS, 1 mM DTT, protease inhibitor 

cocktail) and clarified by centrifugation to remove cell debris. Forty micrograms of lysate 

supernatants were separated by SDS-polyacrylamide gel electrophoresis, electroblotted onto PVDF 

membranes by semi-dry transfer (Bio-Rad) and blocked in blocking buffer (1% (wt/vol) casein, 0.1% 

(vol/vol) Tween 20, PBS). TBX3 was detected with 1 µg/ml rabbit anti-TBX3 antibody (Thermo Fisher 
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Scientific) and actin with 400 ng/ml of rabbit anti-actin antibody (Sigma-Aldrich). Primary antibodies 

were detected with horseradish peroxidase-conjugated goat anti-rabbit IgG (Cell Signaling). 

Detected proteins were visualized with enhanced chemiluminescence substrate (Bio-Rad) and the 

G:BOX Chemi XX6 gel documentation system (Syngene). 

 

Soft agar colony formation assay 

Six-well plates were layered with 0.6% (wt/vol) noble agar (Becton-Dickinson) in RPMI or DMEM 

medium supplemented with 10% (vol/vol) FBS and antibiotics and allowed to set at 4°C. Twenty-

four hours later, cells were trypsinized and 8x103 MCF7 or 5x104 HMLE cells were resuspended in 

0.3% (wt/vol) noble agar and plated on top of bottom agar layers (3 wells/cell line). Colonies were 

imaged after 3-4 weeks using a Leica MZ FLIII stereo microscope. 

 

Cell proliferation assay 

Cell proliferation was measured using a label-free, non-invasive cellular confluence assay on the 

IncuCyte Live-Cell Imaging System (Essen Bioscience). MCF7 cells were seeded at 20,000 

cells/well into 24-well plates and imaged on the IncuCyte using a 10x objective lens every 3 h over 

7 days. Imaging was performed in an incubator maintained at 37°C under a 5% CO2 atmosphere. 

Cell confluence in each well was measured using IncuCyte ZOOM 2016A software, and the data 

analyzed using GraphPad Prism.  

 

Mouse tumor xenograft model 

A cholesterol-based pellet containing 17β-estradiol (0.72 mg, 90-day slow release, Innovative 

Research of America) was implanted subcutaneously in the interscapular region of 8-week old 

female BALB/c-Foxn1nu/Arc mice. Three days later, MCF7 CRISPRi-suppressed cells (1x107 

cells/mouse) were injected into the 4th right mammary fatpad (8-9 mice per cell line). Tumor volumes 

were measured with a digital caliper every second day until the experimental end stage approved by 

the QIMR Berghofer animal ethics committee; 525 mm3 according to the formula 

(π×length×width2/6). 
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Table 1. Independent breast cancer risk signals with £ two candidate protein-coding genes. 
 

Cytoband Locus Signal Target gene/s Cytoband Locus Signal Target gene/s 
1p22.3 chr1:87656923_88656923 2 LMO4 8q24.21 chr8:127424659_130041931 3 MYC 
1q32.1 chr1:200937832_201937832 1 IPO9 9q31.2 chr9:109803808_111395353 1 KLF4 
2p23.3 chr2:28670676_29670676 1 ALK,SPDYA 9q33.1 chr9:118813486_119813486 1 PAPPA 
2p24.1 chr2:18815791_19820803 1 OSR1 10p14 chr10:8588113_9588113 1 GATA3 
2q35 chr2:217405832_218796508 1 IGFBP5 10q25.2 chr10:114273927_115286154 1 TCF7L2 
2q35 chr2:217405832_218796508 3 IGFBP5 10q26.12 chr10:122593901_123849324 2 FGFR2 
3p24.1 chr3:26827965_28285247 2 AZI2,CMC1 11p15.5 chr11:1398664_2442575 1 LSP1 
3q23 chr3:140612859_141612859 1 ZBTB38 11q13.3 chr11:68831418_69879161 1 MYEOV 
4p14 chr4:38312876_39312876 1 TBC1D1,TLR10 11q13.3 chr11:68831418_69879161 2 MYEOV 
4q24 chr4:105569013_106856761 1 GSTCD,PPA2 11q13.3 chr11:68831418_69879161 3 MYEOV 
5p13.3 chr5:32067732_33067732 1 ZFR 11q24.3 chr11:128952507_129961171 1 BARX2 
5p15.33 chr5:779790_1797488 1 SLC6A18 12p11.22 chr12:27639846_29034415 1 CCDC91 
5p15.33 chr5:779790_1797488 2 SLC6A18 12p13.1 chr12:13913931_14913931 1 ATF7IP 
5q11.1 chr5:49141645_50695093 2 CTD-2203A3.1,ISL1 12q22 chr12:95527759_96527759 1 NTN4,RP11-536G4.1 
5q11.2 chr5:55531884_56587883 1 MAP3K1 12q24.21 chr12:115336522_116336522 1 TBX3 
5q11.2 chr5:55531884_56587883 4 MAP3K1 12q24.21 chr12:115336522_116336522 2 TBX3 
5q11.2 chr5:55531884_56587883 5 MAP3K1 12q24.21 chr12:115336522_116336522 3 TBX3 
5q11.2 chr5:57684061_58865569 1 GAPT 13q13.1 chr13:32468810_33472626 1 FRY 
5q11.2 chr5:57684061_58865569 2 PDE4D 13q22.1 chr13:73464519_74464519 1 KLF5 
5q33.3 chr5:157730013_158744083 1 EBF1 14q13.3 chr14:36632769_37635752 1 SLC25A21,SLC25A21-AS1 
6p22.3 chr6:15899557_16899557 1 ATXN1 14q24.1 chr14:68117194_69534682 1 ZFP36L1 
6q14.1 chr6:81628386_82795951 1 AL359693.1 14q24.1 chr14:68117194_69534682 2 ZFP36L1 
6q23.1 chr6:129849119_130849119 1 AKAP7,TMEM244 16q12.2 chr16:53300954_54355291 2 IRX5,LPCAT2 
6q25 chr6:151418856_152937016 2 ESR1 16q23.2 chr16:80148327_81150805 1 CDYL2 
6q25 chr6:151418856_152937016 3 SYNE1 18q11.2 chr18:23832476_25075396 1 KCTD1 
6q25 chr6:151418856_152937016 5 ESR1 19q12 chr19:29777729_30777729 1 CCNE1 
6q25.1 chr6:149086328_150086328 1 TAB2 19q13.31 chr19:43783447_44786513 1 KCNN4 
7q22.1 chr7:101054599_102054599 1 COL26A1 20p12.3 chr20:5448227_6448227 1 GPCPD1 
7q34 chr7:139442304_140442304 1 SLC37A3 21q21.1 chr21:16073983_17073983 1 HSPA13,NRIP1 
8p12 chr8:29009616_30009616 1 DUSP4 21q21.1 chr21:16073983_17073983 2 HSPA13,NRIP1 
8q21.11 chr8:75730301_76917937 2 CRISPLD1 22q13.31 chr22:45783297_46783297 1 ATXN10 
8q23.3 chr8:116709548_117709548 1 TRPS1 22q13.31 chr22:45783297_46783297 2 ATXN10,WNT7B 
8q24.21 chr8:127424659_130041931 2 FAM84B,MYC     
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Figure S1. VCHi-C and PCHi-C CHiCAGO-identified interaction characteristics, related to 
Figure 1. (A) Scatter plots showing the correlation between duplicate VCHi-C or PCHi-C libraries 
based on the number of raw di-tags mapping to interaction fragment pairs. The analysis was stratified 
by cell line (rows) and distance between interacting fragments (columns). r is Spearman’s 
correlation; the black lines represent the linear regression fit. (B) The abundance of different classes 
of CHiCAGO-scored VCHi-C (upper panel) and PCHi-C (lower panel) interactions. (C) Distribution 
of CHiCAGO-scored interaction lengths in each breast cell line. Dashed black vertical lines denote 
the median interaction length. (D) Scatter plots showing the concordance of inverse hyperbolic sine 
(asinh)-transformed CHiCAGO-scored VCHi-C versus PCHi-C interactions in the respective breast 
cell lines. r is Pearson’s correlation; the black lines represent the linear regression fit.  
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Figure S2. PIRs are enriched for breast-specific regulatory features, related to Figure 2. (A) 
Heatmap showing promoter-interacting region (PIR) enrichment for DNase I hypersensitivity sites in 
additional ROADMAP cell types, expressed as z-scores. (B) Heatmap showing PIR enrichment for 
transcription factor binding in breast (additional datasets) and other cell types, expressed as z-
scores.  
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Figure S3. VCHi-C and PCHi-C Peaky-identified interaction characteristics, related to Figures 
3 and 4. (A) Distribution of Peaky-scored interaction number per bait per cell line (combined 
biological replicates). (B) The abundance of different classes of Peaky-scored VCHi-C (upper panel) 
and PCHi-C (lower panel) interactions. (C) Distribution of Peaky-scored interaction lengths in each 
breast cell line. Dashed black vertical lines denote the median interaction length. (D) Agglomerative 
hierarchical clustering for the VCHi-C and PCHi-C. (E) Scatter plots showing the correlation between 
CHiCAGO (inverse hyperbolic sine-transformed) and Peaky (square root-transformed) interaction 
scores. r is Spearman’s correlation; the black lines represent the loess smoothed fit. (F) Venn 
diagrams illustrating the overlap in CHiCAGO- and Peaky-scored interactions in each capture per 
cell line. 
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Figure S4. Candidate target gene properties, related to Figures 3 and 4. (A) 3C interaction 
profiles at 9q33.1 between the PAPPA promoter and CCVs in MCF7 cells. The anchor point is set 
at the PAPPA promoter. Error bars represent SD (n=3). (B) 3C interaction profiles at 10q14 between 
the GATA3 promoter and CCVs in T47D cells. The anchor point is set at the GATA3 promoter. Error 
bars represent SD (n=3). (C) Chromatin interactions at 1p22.3 in Hs578T cells. Topologically 
associating domains (TADs) are shown as horizontal gray bars above GENCODE annotated coding 
(blue) and non-coding (green) genes. The VCHi-C baits are depicted as black boxes. Risk signals 1 
and 2 are numbered and the CCVs within each signal are shown as colored vertical lines. The ATAC-
seq track is shown as a dark blue histogram. Peaky defined MPPC values (from nine specified 
BaitIDs) are plotted. CHiCAGO-scored interactions are shown as black arcs. The dashed red outline 
highlights the signal 1 CCVs. (D) Correlation between the number of candidate target genes and 
independent risk signals in the PCHi-C and VCHi-C datasets. (E) Chromatin interactions at 6q25 in 
MCF7, MCF10A and Hs578T breast cell lines. Topologically associating domains (TADs) are shown 
as horizontal gray bars above GENCODE annotated coding (blue) genes. The ESR1 PCHi-C bait 
(BaitID: 355261) is depicted as a black box. Risk signals 1-6 are numbered and the CCVs within 
each signal are shown as colored vertical lines. CHiCAGO-scored interactions are shown as black 
arcs. The dashed colored vertical lines highlight ESR1 promoter-signal interactions. (F) Enumeration 
of the number of transcription start sites skipped during chromatin looping for the 651 target gene 
promoter interactions. (G) Chromatin interactions at 8q24.13 in MCF7, MCF10A and Hs578T breast 
cell lines. Topologically associating domains (TADs) are shown as horizontal gray bars above 
GENCODE annotated coding (blue) and non-coding (green) genes. VCHi-C baits are depicted as 
black boxes and the signal 1 CCVs as red vertical lines. CHiCAGO-scored interactions are shown 
as black arcs. The dashed gray vertical lines highlight promoter-signal interactions to the candidate 
target genes. (H) Venn diagram illustrating the number of candidate target genes identified by 
CHiCAGO, Peaky and both algorithms. 
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Figure S5. Chromatin interactions across 12q24, related to Figure 5. (A) Chromatin interactions 
at 12q24 in ER+ T47D, ER- MDAMB231 and Hs578T breast cancer cell lines, and MCF10A non-
tumorigenic breast cells. Topologically associating domains (TADs) are shown as horizontal gray 
bars above GENCODE annotated coding (blue) and non-coding (green) genes. PCHi-C baits are 
depicted as black boxes. Risk signals 1-4 are numbered and the CCVs within each signal are shown 
as colored vertical lines. Peaky defined MPPC values (from PCHi-C baitID 596031) are plotted with 
the CCVs overlaid as colored vertical lines. CHiCAGO-scored interactions are shown as black arcs. 
(B) 3C interaction profiles between the risk signals 1-4 and the TBX3 promoter in MCF7 and B80T5 
cell lines. Anchor points are set at signals 1-4. Error bars represent SD (n=3). 
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Figure S6. Additional in vitro and in vivo studies for 12q24, related to Figures 5 and 6. (A) 
EMSAs for signal 1 CCVs to detect allele-specific binding of nuclear proteins. Labeled 
oligonucleotide duplexes were incubated with BT474 nuclear extract. Red arrowheads show bands 
of different mobility detected between risk (R) and protective (P) alleles. (B) EMSAs for CCV 
rs1391721 to identify candidate nuclear proteins. Unlabeled competitor oligonucleotide duplexes for 
predicted transcription factors (100-fold molar excess) were incubated with labeled rs1391721-
containing oligonucleotide duplex and MCF7 nuclear extract. Red arrowheads indicate bands that 
were competed for complex formation on the risk (a) allele. (C) Allele-specific GATA3 binding at 
CCV rs1391721 in heterozygous MCF7 cells. The depth of reads containing the risk (red) and 
protective (blue) alleles are shown. (D) Scatter plots of TBX3 versus GATA3 gene expression in 
TCGA normal breast tissue (n=113, r is Pearson’s correlation) and breast tumors (n=1095, r is 
Pearson’s correlation). (E) Top: TBX3 levels in HMLE-control (GFP CON) and HMLE-TBX3 
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overexpressing (TBX3 ORF) cells assessed by qPCR and normalized to GUSB. Error bars represent 
SEM (n=3). Bottom: Western blot analysis of TBX3 and Actin, serving as a loading control, in 
matched cell samples. (F) Top: TBX3 levels in MCF7-control (GFP CON) and MCF7-TBX3 
overexpressing (TBX3 ORF) cells assessed by qPCR and normalized to GUSB. Error bars represent 
SEM (n=3). Bottom: Western blot analysis of TBX3 and Actin in matched cell samples. (G) Top: 
TBX3 levels in MCF7-control (PgCON) and MCF7-TBX3-dCas9-KRAB repressed cells (SgTBX3-
P1/P2) assessed by qPCR and normalized to GUSB. Error bars represent SEM (n=3). Bottom: 
Western blot analysis of TBX3 and Actin in matched cell samples. (E-G) P-values were determined 
by a two-tailed t-test (****p<0.0001).  
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