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Abstract. Characterizing intratumor heterogeneity (ITH) is crucial to
understanding cancer development, but it is hampered by limits of avail-
able data sources. Bulk DNA sequencing is the most common technol-
ogy to assess ITH, but mixes many genetically distinct cells in each
sample, which must then be computationally deconvolved. Single-cell se-
quencing (SCS) is a promising alternative, but its limitations — e.g.,
high noise, difficulty scaling to large populations, technical artifacts, and
large data sets — have so far made it impractical for studying cohorts
of sufficient size to identify statistically robust features of tumor evolu-
tion. We have developed strategies for deconvolution and tumor phylo-
genetics combining limited amounts of bulk and single-cell data to gain
some advantages of single-cell resolution with much lower cost, with spe-
cific focus on deconvolving genomic copy number data. We developed a
mixed membership model for clonal deconvolution via non-negative ma-
trix factorization (NMF) balancing deconvolution quality with similarity
to single-cell samples via an associated efficient coordinate descent algo-
rithm. We then improve on that algorithm by integrating deconvolution
with clonal phylogeny inference, using a mixed integer linear program-
ming (MILP) model to incorporate a minimum evolution phylogenetic
tree cost in the problem objective. We demonstrate the effectiveness of
these methods on semi-simulated data of known ground truth, showing
improved deconvolution accuracy relative to bulk data alone.
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1 Introduction

Cancer is one of the most lethal terminal diseases in the world, resulting for
example in approximately 600,000 deaths in the U.S.A. in the past year [34].
Nevertheless, the age-adjusted rate of cancer deaths in the U.S.A. has been de-
clining, partly due to the invention of new cancer treatments. Recent work in
developing cancer therapeutics is based on the notion of personalized or preci-
sion medicine [6] to target driver alterations in specific cancer genes. Such tar-
geted treatments have shown success in prolonging life but rarely lead to durable
cures [12], largely because tumors are not normally static or homogeneous enti-
ties [8]. Most cancers exhibit phenotypes of hypermutability [20] that result in a
process of continuing evolution of clonal populations of tumor cells [27], creating
the opportunity for continuing acquisition of adaptive mutations as well as pu-
tatively selectively neutral genetic variants [41]. As a consequence, different cells
in the same tumor may acquire distinct sets of somatic alterations, including
single nucleotide variants (SNVs), copy number alterations (CNAs), and struc-
tural variations (SVs) such as gene fusions or chromosomal rearrangements. This
phenomenon, called intra-tumor heterogeneity (ITH) [24], allows tumors to de-
velop resistance to targeted treatments, as treatment-resistant subclones emerge
within the tumor [27,12] or expand from initially rare subpopulations within the
tumor’s clonal diversity. Considerable recent research into the molecular mecha-
nisms of cancer has concentrated on characterizing ITH and reconstructing the
processes of clonal evolution by which it develops across tumor progression (see,
for example, [30]).

Currently, the most common technology to profile ITH is bulk DNA sequenc-
ing, which allows one to observe aggregate genetic variation in tumors and possi-
bly matched normal tissue from the same patients. Bulk DNA sequencing allows
one to identify reasonably common genetic lesions and estimate their variant
allele fractions (VAFSs). Resolving these VAFs into models of clonal heterogene-
ity, however, requires solving a challenging computational inference problem,
known as genomic deconvolution, which strives to explain VAFs as mixtures of
unobserved clonal sequences occurring at varying frequencies within the tumor.
These methods have limited accuracy and resolution, particularly with respect
to rare clonal subpopulations [1], and reveal far less clonal heterogeneity than is
evident from direct single-cell analysis (e.g., [13,26]). Genomic deconvolution is
particularly challenging in cancers exhibiting CNAs [38], a significant limitation
given that CNAs are the primary mechanism of functional adaptation in at least
some cancer types [44,21] and that CNAs at specific loci can have important
consequences for treatment outcome (e.g., [25]).

Single cell sequencing (SCS) has emerged as an alternative allowing for the
direct inference of clonal genotypes [26]. SCS itself is limited by difficult technical
artifacts, however, such as the phenomenon of allelic dropout [14] and distortion
of copy numbers due to the amplification steps used in most SCS methods to
date [19]. Moreover, SCS is relatively costly in comparison to bulk sequencing.
As a result, SCS studies to date have involved only small cohorts [28].
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Bulk and Single-Cell Copy Number Deconvolution 3

The tradeoffs between bulk sequencing and SCS have recently led to the
idea that we might combine them to reconstruct ITH with both accuracy and
scale [23,22], yielding improved performance in bulk data deconvolution and rel-
ative to using SCS data alone. To date, though, such work has focused on SNVs
specifically. There is substantial value in developing comparable methods for
CNAs given their biological importance, the greater difficulty of CNA deconvo-
lution, and their suitability for phylogenetics from low-coverage SCS [26].

In this work, we develop methods for combining bulk and single-cell data
to characterize ITH by CNAs specifically, both as a stand-alone inference and
joint with phylogenetic inference on clonal subpopulations. We pose the prob-
lem of inferring the tumor subpopulations and their representation across ge-
nomic samples using a variant of non-negative matrix factorization (NMF). We
seek solutions that deconvolve bulk data while achieving consistency between
inferred single cells and limited SCS data. We consider two problem variants,
one minimizing genomic distance between SCS-observed single-cells and inferred
clones and the other explicitly incorporating a tumor phylogeny model to favor
solutions that yield parsimonious evolution models relating observed cells and
inferred clones. We characterize performance of the methods on semi-simulated
data generated from low-coverage SCS. We show that both methods are effec-
tive at improving clonal deconvolution of CNAs with limited amounts of SCS
data, with increasing accuracy as the number of genomic samples grows. We
further show that explicitly modeling clonal evolution notably improves accu-
racy, suggesting the value of accounting for the process of tumor evolution in
characterizing clonal structure.

2 Methods

2.1 Non-Negative Matrix Factorization (NMF) Deconvo-
lution Model

As in previous work [31], we formalize the generic problem of genomic deconvolu-
tion in terms of a mixed membership model but here relating bulk and SCS data.
We focus here specifically on deconvolution of copy number data, as in [38,43],
which we assume is profiled on a set of m genomic regions. In the pure decon-
volution problem, we assume a set of n bulk samples, which might correspond
to measurements from distinct tumor sites or regions in one patient. These bulk
samples are collectively encoded in an m x n matrix B, where element b;; corre-
sponds to the mean copy number of locus 7 in sample j. Our goal is to identify an
m X k matrix of mixture components C, representing copy numbers of inferred
common clones, and a k X n matrix of mixture fractions, F', describing the degree
to which each column of C' is represented in each column of B. B is presumed to
be approximated by the product of C' and F'. We seek to minimize the deviation
between B and C x F' by some measure, such as the Frobenius norm. With the
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additional constraints that B, C, and F' are non-negative, the problem is known
as non-negative matrix factorization (NMF) [40]. More formally, we seek:

i B - CF|}? 1
win ||B - CF|i; ()

where || - || is the Frobenius norm of the matrix,

2
[|B—CF||g = \/2711 > (bij — S - fzj) , subject to the constraints

foi > 0¥0 e {1,.. k}, 5 € {1,...n}; 0, fo; = 1,V5 € {1,...,n};cie € Ny, Vi €
{1,....m}, 0 e{l,... . k}.

This optimization problem is non-convex, but prior work showed that the
Euclidean distance between B and C'F' is non-increasing under the following
multiplicative update rules [18]:

(C"B)y; (BFT)y

j < Ty il < Cil T
Jos fe]( it CZ(C’FFT)M

CTCF)y;’
providing formulas for iterative local optimization by fixing C or F' on alternate
steps. In practice, we modify this process heuristically to renormalize columns
of F' after each iteration to ensure they add to 1. Since this heuristic might un-
dermine the guarantee of monotonicity, we manually verify that ||B — CF||g,
decreases on each iteration, terminating the optimization if it fails to yield con-
tinuing improvements. More details are provided in the Supplementary Methods.

Fig. 1 provides an illustrative example of the deconvolution model. Suppose
we have a possible B, C, and F'. The two data points By and Bs represent bulk
tumor samples combining three mixture components C, Cy and Cj3. For ease of
illustration, we assume data are assayed on the copy numbers of just two genomic
loci, G; and G5. The matrix B represents the average copy numbers of GG; and
G5 in the bulk tumor samples By and Bs. In each component of C, the copy
numbers should be integers, but since the bulk tumors are weighted mixtures
of components, the values in B need not be integers. The matrix F' represents
the fractional weights used to generate B; and B from the pure components in
C. For example, the first column of F' indicates that B; is a mixture of equal
parts of C1 and Cs. This relationship can be expressed via matrix multiplication,
B = CF, as shown in the right part of Fig. 1.

2.2 Extending NMF with Single Cell Sequence (SCS) Data

The multiplicative update algorithm is a standard method for the pure NMF
optimization problem, provided the number of samples n is large compared to
the intrinsic dimension & of the mixture. We would, however, expect it to perform
poorly for our problem, in part because real tumor data generally include few
samples per patient and in part because deconvolution of copy numbers is an
underdetermined problem. We sought to improve the optimization by biasing the
objective function to favor inferred clones similar to the observed SCS data via
an auxiliary penalty in the objective function, similar to the approach of [23,22].
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Fig. 1. Ilustration of the mathematical formulation for the mixed membership model-
ing problem. The model implies that each entry of B, C and F' is non-negative, each
entry of C is integer, and each column of F' must sum up to 1.

Intuitively, we assume that the inferred clones (C') should be closely related to
one or more of the observed single cells, which we call observed cell components
(C(Obse”’ed)). While any given single cell may not exactly match a consensus
clone, we propose that the method will be able to approximately infer mixture
components reflecting dominant clones by balancing quality of deconvolution
against similarity to observed single cells. We quantify this intuition using the
Euclidean distance between the inferred clones and observed cells, introducing
a regularization parameter « to balance the weight of this penalty relative to
the prior cost based on deconvolution quality. The resulting combined objective
appears as (Eq. (2)):

: 1 observe
wmin |B = CF|[%, + 0| C = Gl et (2)

which we optimize subject to the constraints f;; > 0,V¢ € {1,...,k},j € {1,...,n};
S f =1V € {1, ...n}icw € No,Vie {1,...,m} L e{l,.. k}

We solve for the revised model through an extension of the iterative update
algorithm [18,3]:

(CTB); (BFT);
Cip < Ciy )
(CFFT + O[(C _ C(observed)))w

ij %fljma

adding the constraints on C and F' to the update rules [37]. We further heuris-
tically improve on the standard practice of random initialization by initializing
the cell component matrix C' with true SCS data. Pseudocode for the complete
algorithm is provided in Supplementary Methods as Algorithm 1. Collectively,
these additions to the pure NMF iterative update algorithm constitute our first
approach to integrating SCS data for improved deconvolution of CNAs from
bulk DNA-seq, which we dub our phylogeny-free method.
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2.3 Extending the NMF Model with a Single-Cell Phy-
logeny Objective

We next developed an alternative phylogeny-based approach, seeking to decon-
volve the bulk data into clonal subpopulations while simultaneously inferring
a phylogeny on those deconvolved clones, similar to the SNV PHiSCS method
of Malikic et al. [22]. Intuitively, evolutionary distance provides a more biologi-
cally motivated measure of what we mean in asserting that inferred single cells
should be similar to observed single cells. As with the phylogeny-free method,
we would expect that any small sample of single cells will not exactly reflect the
spectrum of dominant clones, but that the method will be able to approximately
infer dominant clones by balancing deconvolution quality against evolutionary
distance of mixture components to observed single cells. This approach trades off
a more principled measure of solution quality for a harder optimization problem.

We quantify phylogenetic distance as the minimum over evolutionary trees
incorporating both observed single cells and inferred clones of the L; distance be-
tween copy number vectors describing each tree edge. Let C* = [C), C(Obse’"”ed)]
be a m X k* matrix consisting of columns representing inferred clonal copy num-
bers followed by columns representing the copy numbers of the observed cells.
Let ¢} denote column u of C*. We introduce a k£* x k* matrix of binary variables
S. A value of s, = 1 indicates the existence of a directed edge from node u to
node v, and a value s,,, = 0 indicates the absence of such a edge; we set s,, =0
to avoid self loops. In other words, S is an adjacency matrix for a directed graph;
in the full formulation (Supplementary Methods) we introduce constraints that
ensure the graph is a tree. We define our measure of tree cost to be

k* k"

J(S,C,Cl Dy = NN s - len — el (3)

u=1v=1

Intuitively, J(S,C,C (Obseme‘l)) is a form of minimum evolution model on a phy-
logeny defined by S. While there are more sophisticated and realistic models
for CNA distance (e.g.,[5,4,10]), we favored L; distance here as a tractable ap-
proximation easily incorporated into the overall ILP framework. Similarly, while
there are now a number of sophisticated methods available specifically for phy-
logenetics of single-cell sequences (c.f., [17]) these are largely focused on SNV
rather than CNA phylogenetics (e.g.,[15,29,45]) with limited exceptions [39,36].
More specifically, we modify the NMF objective function as follows:

. o . (observed)
é]’[%?s(HB CF|, +8-J(8,C,C ). (4)

where ||B — CF||; = 331", Z;‘L:l
parameter to balance deconvolution quality against parsimony of the evolution-

ary model. The norm || - ||; is the element-wise L; matrix norm, i.e., the sum of
the absolute values of matrix elements, rather than the induced L; matrix norm

bij — > y—q Cit - fgj‘ and [ is a regularization
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for which the same notation is sometimes used. These are optimized subject to
the same constraints as in the previous formulations: fi; > 0,V¢ € {1,...,k},j €
(1,n}; b =1V € {1,...n}ico e NVie {1,...m}, L€ {1,....k}.

The discrete tree optimization term lacks an analytic expression and hence
does not lend itself to the prior iterative update strategy. We therefore employ
a different computational strategy based on integer linear programming (ILP)
to replace the linear algebra steps of the Lee and Seung method [18], similar to
other recent work in joint deconvolution and phylogenetics [43,9].

For this optimization problem, we use an iterative coordinate descent ap-
proach. There are three sets of variables over which to optimize: the weight
matrix F', the tree structure S, and the inferred copy numbers C. We solve for
variables F', S, and C alternately, in this order, while holding all other vari-
ables as constant. The iterative coordinate descent continues until the decrease
between successive values of C' falls below some threshold. To initialize C, we
used observed single cell data. Whenever two of the three sets of variables is held
constant, the resulting optimization problems can each be expressed as either a
linear program (LP) or an integer linear program (ILP).

When certain subsets of the variables are fixed, the resulting LP or ILP
may be simplified. When solving for F' with fixed values of S and C, the term
J(S,C,Cebserved)) ig constant and the value of S is irrelevant. Similarly, when
solving for S for fixed values of F' and C, the term ||[B — CF||; is constant
and therefore F' is irrelevant. The optimal value of C for fixed values of F' and
S, however, depends both on F' and S. We note that in the limit of using no
single-cell data, our problem statement and method is similar to that of Zaccaria
et al. [43] for incorporating tree mixtures into purely-bulk CNA deconvolution.

We solve for S via an ILP that uses a flow model to constrain solutions to a
minimum evolution tree, adapting a similar ILP method originally developed for
finding maximum parsimony character-based phylogenies [35]. Intuitively, the
model forces a tree structure by setting up a flow from an arbitrary root to each
other clone in the tree and minimizing the cost of edges needed to accommodate
all such flows. The full ILP is described in the Supplementary Methods.

2.4 Validation via Observed Single-Cell Data

To validate the method, we require bulk data for which clone copy number
vectors and frequencies are known. As this is unavailable for any real dataset,
we use semi-simulated data generated from CNV calls [2] from real SCS data
from two human glioblastoma cases [42]. The full single cell data set consists
of low-depth SCS DNA-seq used to establish mean copy numbers at 9934 ge-
nomic positions throughout the genome, at intervals of approximately 40kbp.
Each tumor was subdivided into three regions (i.e., samples), with each single
cell labeled by its region (1, 2, or 3) of origin. We used these true SCS CNA data
to generate a series of synthetic bulk data sets, simulating either one, two, or
three bulk samples from each region for a total of three, six, or nine bulk samples
per trial. Each simulated sample is generated by sampling two dominant cells
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Fig. 2. Work-flow for the simulation and validation. We separate the whole process
into 5 main steps: in step 1, we randomly chose k total single cells from each region
(indicated by the black frames), where we can pick k dominant clones (indicated by
red circles, also called true cells); in step 2, we simulated 7 tumor samples from each
region using the k cells; in step 3, we combined the 7 tumor samples to get a simulated
bulk tumor; in step 4, we deconvolved the bulk tumor integrating observed cells to get
k' = 3k inferred clones; and in step 5, we assessed the performance using the k" inferred
clones and 3k true cells.

from a region to represent major clones, twenty three other cells from the same
region to represent minor clones, and 50 cells from the other regions to represent
contamination, which are mixed with Dirichlet-sampled proportions with weight
parameters for dominant, minor, and contaminant clones in the ratio 10 to 0.1
to 0.01. We then assessed our ability to deconvolve the bulk data across a range
of regularization parameter values and random replicates of the chosen single
cells. We assessed accuracy by the fraction of genomic positions assigned correct
copy number and by the root mean square deviation (RMSD) between true and
inferred cell components and mixture fractions. Fig. 2 summarizes the overall
experimental design, which is described in more detail in the Supplementary
Methods in Sec. A.4. This design treats observed SCS as the ground truth, al-
lowing us to ignore the problem of doublet cells that typically must be addressed
with SCS data. We would normally require that likely doublets be removed from
SCS data in preprocessing before applying our method. This design also does
not explicitly include calling CNA markers on bulk data, itself a hard problem
that would need to be performed in preprocessing before applying our method.

We were unable to identify any competitive tool for bulk deconvolution of
purely CNA data applicable to small numbers of bulk samples and for which
software is publicly available. We therefore compare our methods to standard
NMF, as implemented by our code with zero regularization parameters.

2.5 Implementation

The methods described in Methods and refined below were all implemented
in Python3, using Gurobi. One practical change from the formulation above


https://doi.org/10.1101/519892
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/519892; this version posted January 16, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Bulk and Single-Cell Copy Number Deconvolution 9

is that we replaced the theoretical fr; > 0 with fo; > 107* to avoid having
the f values trapped at 0. The observed human subjects data cannot be re-
distributed, but code for the methods is available along with artificial data on
Github (https://github.com/CMUSchwartzLab/SCS_deconvolution).

3 Results

3.1 Phylogeny-Free Method

We first assessed the accuracy of the phylogeny-free method relative to pure
NMF and simple heuristic improvements. Fig. 3 provides a summary of accuracy
and RMSD for inference of true SCS components via the method of Sec. 2.2 for
variations in the number of tumor samples (3, 6, 9) and regularization parameter
a (0-1) over 40 replicates per condition. To provide a baseline for comparison,
each plot provides equivalent accuracy measures for NMF [18] (i.e., Algorithm
1 with @ = 0) with random initial integer valued C' (red dashed line in Fig. 3)
and with the proposed solution that all copy numbers have the normal value
of 2, which we call the “all-diploid baseline” (black dashed line in Fig. 3 and
Fig. S3). In each case, the bulk data is simulated from &’ = 6 fundamental cell
components (2 out of a random 25 cells selected in each region).

Pure NMF with random initialization performed poorly, which is unsurpris-
ing since NMF on CNA data is an underdetermined problem, although the simple
heuristic of biasing the search toward biologically plausible solutions by initial-
izing with real SCS data improves accuracy. Bringing true SCS data into the ob-
jective function yielded modest improvements in accuracy over using SCS data
solely for initialization for at least some values of the regularization parameter.
The phylogeny-free method with o = 0 corresponds to pure NMF initialized with
true SCS data, and this performed slightly worse than the all-diploid baseline
solution. Modestly increasing « led to some improvement in accuracy, but above
some value, a put too much weight on similarity to observed SCS data and too
little weight on quality of the deconvolution, giving worse overall results. The
best value of o depended on sample size, which we attribute again to NMF being
underdetermined if the number of desired components is larger than the number
of samples. The plots suggest that the method is fairly robust to « if the num-
ber of samples exceeds the intrinsic dimension of the data (six), but that SCS
data can overcome that limit for small numbers of samples with a well-tuned
regularization term. Additional Supplementary Results show minimal additional
improvement even with unrealistically large sample sizes (Fig. S4), and also show
the performance is consistent across individual inferred clones (Fig. S5).

Fig. 4 provides an illustrative example of performance for a single selected
clone inferred from three, six, or nine samples, intended to demonstrate kinds
of errors the method tends to produce. We chose the one cell component with
smallest RMSD for each sample size to simplify visual inspection. We see that
at least in these high-quality cases, the distributions of copy numbers are similar
for the inferred and true cells. For loci at or just above diploid, the modified
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Fig. 3. Accuracy and RMSD of the phylogeny-free method as functions of tumor sam-
ples and regularization parameter. The red dashed line shows average overall accuracy
(left panel) or RMSD (center and right panels) of NMF with random initialization.
The black dashed line shows the performance of the all-diploid baseline solution. Since
we cannot resolve mixture fractions for an all-diploid solution, we omit it from the
mixture fraction results. Different bars show performance as a function of regulariza-
tion parameter « of Eq. 2 from 0.0 to 1.0 in increments of 0.2. The X-axis shows the
number of tumor samples and the Y-axis the average accuracy or RMSD.
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Copy Number
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Fig. 4. Visualization of copy number as a function of genomic locus for single exam-
ples of inferred and true clones for the phylogeny-free method for three, six, and nine
samples. The figure uses the minimum-RMSD pair for each case. The black dashed line
shows the copy number inferred by modified NMF and the orange bar shows the true
copy number in that position.

NMF can usually infer the exact copy number. Where errors occur, they tend
to be in loci with large (5-10) or smaller copy numbers (0-1).

3.2 Phylogeny-based Method

We next examined results of the phylogeny-based method of Sec. 2.3 under the
same conditions used to assess the phylogeny-free method. Fig. 5 summarizes
average accuracy and RMSD as a function of regularization parameter 3. The
figure compares the results of pure NMF with the all-diploid baseline. Setting
B = 0 provides poor performance, substantially below the all-diploid baseline
solution. Making 8 = 0 for Fig. 5 represents the same optimization problem as
a = 0 for Fig. 3, but solved by the coordinate descent method we developed
to accommodate the ILP phylogeny objective rather than by the modified it-
erative update algorithm with the simpler Lo objective. Fig. 5 thus suggests
that the new coordinate descent method is less effective at pure NMF than is
the prior iterative update algorithm. Despite that observation, the results on
B > 0.2 show substantially better accuracy than was achieved by pure NMF
or the phylogeny-free algorithm. Further, the results appear robust to variation
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Fig. 5. Average accuracy and RMSD for the phylogeny-based method as functions of
tumor samples and regularization parameter. The left panel shows the average accu-
racy of inferred copy numbers, the center panel average RMSD between inferred and
true copy numbers, and the right panel average RMSD between the inferred and true
mixture fractions. The black dashed line shows the performance of the all-diploid base-
line solution. Since we cannot resolve mixture fractions for an all-diploid baseline, we
omit it from the mixture fraction results. Bar plots show performance with different
regularization parameters S of Eq. 3 from 0.0 to 1.0 with increment of 0.2. The X-axis
shows the number of tumor samples and the Y-axis the average accuracy or RMSD.

3 tumor samples 6 tumor samples 9 tumor samples

Copy Number

TV TIAT

Genomic Loci

Fig. 6. Visualization of copy number as a function of genomic locus for single examples
of inferred and true clones for the phylogeny-based method for three, six, and nine
samples. The figure uses the minimum-RMSD pair for each case. The black dashed
line shows the inferred copy number and the orange bars show the true copy number
in each position.

in £ across the range examined. Supplementary Results distinguishing accuracy
across cells (Fig. S6) support the robustness of the phylogeny-based method to
a range of 8 values in cell-to-cell inferences.

Fig. 6 shows copy numbers for a single minimum-RMSD pair for inferred and
true clones for each number of samples, again to visualize the nature of inference
errors. The results again show exact fitting for most loci, as well as better fitting
for both large (5-10) and small (0-1) copy numbers than the phylogeny-free
method of Fig. 4. There is no evident pattern to the smaller number of errors
that do occur for the phylogeny-based versus phylogeny-free method, which are
observed for a range of low and high copy number values.

Fig. 7 compares the two methods at their optimal regularization parameters
for three, six, and nine tumor samples. The phylogeny-based method outperforms
the phylogeny-free method in accuracy and copy number RMSD in all cases. It
is slightly better in mixture fraction RMSD for three samples, but worse for
six and nine samples. Fig. S7 in the Supplementary Results shows comparative
performance of the two methods in individual cell components. Given the poorer
performance at pure NMF of the phylogeny-based method’s algorithm versus the
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Fig. 7. Comparison between phylogeny-free and phylogeny-based methods. Bar graphs
show average accuracy and RMSD over all cell components and replicates using the op-
timal regularization parameter for the given method, measure, and number of samples.
The left panel shows accuracy in copy numbers for «=0.2, 0.2, 0.4 for the phylogeny-
free method and 5=0.2, 0.4, 0.4 for the phylogeny-based method for 3, 6 and 9 tumor
samples, respectively. The center panel shows RMSD of copy numbers for a=0.2, 0.2,
0.2 for the phylogeny-free method and 5=0.2, 0.4, 0.4 for the phylogeny-based method
for 3, 6, and 9 tumor samples, respectively. The right panel shows RMSD of mixture
fractions for a=0.2, 0.2, 0.2 for the phylogeny-free method and $=0.2, 0.2, 0.2 for the
phylogeny-based method for 3, 6, and 9 tumor samples, respectively. The X-axis shows
the number of tumor samples and the Y-axis the average accuracy or RMSD.

phylogeny-free method’s algorithm, we tentatively attribute the phylogeny-based
method’s better overall performance to better evolutionary distance estimates
and not to a better optimization algorithm.

The phylogeny-based method also provides as output the phylogeny. While
we cannot exhaustively show trees across all replicates, we provide three rep-
resentative examples in Fig. 8. Because we use true SCS data to generate our
synthetic mixtures, we do not know the full ground truth trees for the data and do
not attach any biological meaning to the inferred trees. We can partially validate
correctness of the trees using the fact that the cells were gathered from distinct
tumor regions, and while we would not expect clonal ancestry to segregate per-
fectly by region we should see a trend towards closer evolutionary relationship
among cells in spatial proximity. We tested whether pairs of cells from distinct
regions cluster together in disjoint subtrees (a kind of partial-information quar-
tet distance); we found that a significant majority of pairs-of-pairs do (79% for
3-sample data, 74% each for 6- or 9-sample data) providing some support for
the biological relevance of the trees.

4 Conclusions and Discussion

We presented two novel methods for deconvolving clonal copy number variation
from bulk tumor genomic data assisted by small amounts of SCS data. The work
is intended to provide a practical strategy for producing high-quality clonal
CNA deconvolution scalable to large tumor cohorts in the face of still high
costs of single-cell DNA sequencing. Validation on semi-simulated data shows
that limited amounts of SCS copy number data can be productively used to
improve upon pure bulk deconvolution, as assessed by accuracy in inferring clonal
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3 tumor samples 6 tumor samples 9 tumor samples

Fig. 8. Tree structure inferred via the phylogeny-based method ILP method for three
problem instances. The examples come from the same instances used to pick the rep-
resentative copy number profiles in Fig. 6. In each tree, nodes 0 - 5 are inferred cells,
nodes 6 - 11 are observed cells, and node 12 is the diploid root.

copy number profiles and their proportions in single- or multi-sample tumor
genomic data. We showed substantial improvement by explicitly constructing
clonal phylogenies jointly with deconvolution, suggesting the value of a principled
evolutionary model in inferring accurate clonal structure.

While this work provides a proof-of-principle demonstration for combining
bulk and SCS data for CNA deconvolution, it also suggests a need for future
work. Data of the kind needed by this study remain rare, largely because cur-
rent SCS studies have not been designed for such a hybrid approach. Most studies
to date have profiled many single cells from few patients rather than few cells
from larger cohorts, as the current work proposes. We hope that demonstrating
the effectiveness of the strategy will promote its use in future study designs,
and stimulate new thinking on how most effectively to use single-cell sequenc-
ing technologies to solve the underlying data science problems, in turn creating
more data on which similar algorithms can be improved. The framework might
also be improved in a variety of ways, including more realistic tree models and
consideration of other constraints one can extract from SCS data. For example,
we considered only penalty terms on C but might also use SCS to improve esti-
mates of the clonal frequency matrix F' [33]. The method might also be improved
by replacing L1 distance with measures reflecting more sophisticated models of
CNA-driven evolution [5,32,4,10]. Tt could be useful to identify minor clones that
have likely loss of heterozygosity events, since these may influence clinical out-
comes, and to automate inference of the number of dominant clones. It would
also be useful to combine the CNAs of this work with the SNVs of Malikic
et al. [23,22], as is commonly done now for bulk deconvolution (e.g., [7,16,11]),
and to leverage more effectively data from new low-coverage SCS DNA-seq meth-
ods [46] or long-read sequencing. In addition, our algorithms for solving for these
models are heuristic and we might productively consider alternative methods to
approach true global optima or to improve scalability to larger datasets.
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