
Single-Cell Transcriptomic Evidence for Dense Intracortical 
Neuropeptide Networks 

Stephen J Smith, Uygar Sümbül, Lucas Graybuck, Forrest Collman, Sharmishtaa Seshamani, Rohan 
Gala, Olga Gliko, Leila Elabbady, Jeremy A. Miller, Trygve Bakken, *Jean Rossier, Zizhen Yao, Ed Lein, 
Hongkui Zeng, Bosiljka Tasic, Michael Hawrylycz 
 
Allen Institute for Brain Science, 615 Westlake Ave N, Seattle, WA 98109, USA 
* Neuroscience Paris Seine, Sorbonne Université, 9 Quai Saint Bernard, 75005 Paris, France  
 
Briefly 
Analysis of single-cell RNA-Seq data from mouse neocortex exposes evidence for local 
neuropeptidergic modulation networks that involve every cortical neuron directly.  
 
Data Highlights 
• At least 98% of mouse neocortical neurons express one or more of 18 neuropeptide precursor 

proteins (NPP) genes.  
• At least 98% of cortical neurons express one or more of 29 neuropeptide-selective G-protein-

coupled receptor (NP-GPCR) genes. 
• Neocortical expression of these 18 NPP and 29 NP-GPCR genes is highly neuron-type-specific and 

permits exceptionally powerful differentiation of transcriptomic neuron types. 
• Neuron-type-specific expression of 37 cognate NPP / NP-GPCR gene pairs predicts modulatory 

connectivity within 37 or more neuron-type-specific intracortical networks.  
 
Summary 
Seeking insight into homeostasis, modulation and plasticity of cortical synaptic networks, we analyzed 
results from deep RNA-Seq analysis of 22,439 individual mouse neocortical neurons. This work exposes 
transcriptomic evidence that all cortical neurons participate directly in highly multiplexed networks of 
modulatory neuropeptide (NP) signaling. The evidence begins with a discovery that transcripts of one or 
more neuropeptide precursor (NPP) and one or more neuropeptide-selective G-protein-coupled receptor 
(NP-GPCR) genes are highly abundant in nearly all cortical neurons. Individual neurons express diverse 
subsets of NP signaling genes drawn from a palette encoding 18 NPPs and 29 NP-GPCRs. Remarkably, 
these 47 genes comprise 37 cognate NPP/NP-GPCR pairs, implying a strong likelihood of dense, 
cortically localized neuropeptide signaling. Here we use neuron-type-specific NP gene expression 
signatures to put forth specific, testable predictions regarding 37 peptidergic neuromodulatory networks 
that may play prominent roles in cortical homeostasis and plasticity. 
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Introduction 
Neuromodulation - the adjustment of synapse and ion channel function via diffusible cell-cell signaling 
molecules - is a fundamental requirement for adaptive nervous system function (Abbott and Regehr, 2004; 
Bargmann, 2012; Bucher and Marder, 2013; Marder, 2012; Marder et al., 2015; Mccormick and Nusbaum, 
2014; Nadim and Bucher, 2014; Nusbaum et al., 2017). Neuromodulator molecules take many different 
chemical forms, including diatomic gases such as nitric oxide, lipid metabolites such as the 
endocannabinoids, and amino acids and their metabolites such as glutamate, GABA, acetylcholine, 
serotonin and dopamine. By far the largest family of neuromodulator molecules, however, comprises the 
evolutionarily ancient proteinaceous signaling molecules known as neuropeptides (Baraban and Tallent, 
2004; Burbach, 2011; Gonzalez-Suarez and Nitabach, 2018; Hökfelt et al., 2013; van den Pol, 2012; Wang 
et al., 2015). The most well-known and widely studied neuropeptides are the endogenous “opioid” 
peptides - enkephalins, endorphins and dynorphins - but there are nearly one hundred other NPP genes 
in the human genome and numerous homologs are present in all known animal genomes except for those 
of the sponges (Porifera) (Elphick et al., 2018; Jekely, 2013). 
The broadest definition of “neuropeptide” would embrace any soluble peptide that serves as a messenger 
by diffusing from one neuron to another. A narrower but more common definition (Burbach, 2011) requires 
that (1) a neuropeptide precursor protein (NPP) transcript be translated as an NPP into the lumen of a 
source neuron’s rough endoplasmic reticulum (rER), (2) packaged into dense-core vesicles (DCVs) and 
enzymatically cleaved into one or more neuropeptide (NP) products after passage through the rER–Golgi 
complex, (3) transported and stored within the source neuron in DCVs, (4) released upon demand by 
activity- and calcium-dependent exocytosis, and only then (5) diffuse interstitially to act upon a target 
neuron by binding to a specific receptor. This pathway enlarges the potential palette of distinct 
neuropeptides beyond that established simply by the large number of NPP genes, as a given NPP may 
be cleaved into alternative NP products during its intracellular and interstitial passage. 
Most neuropeptide receptors are encoded by members of the very large superfamily of G-protein-coupled 
receptor (GPCR) genes (Hoyer and Bartfai, 2012; Krishnan and Schioth, 2015; Mains and Eipper, 2006; 
van den Pol, 2012). GPCRs are selective, high-affinity receptors distinguished by characteristic seven-
transmembrane-segment atomic structures and signal transduction involving heterotrimeric G-proteins 
(hence the name). Phylogenomic evidence suggests that the earliest behaving animals relied exclusively 
upon early neuropeptide homologs and cognate neuropeptide-selective GPCRs (NP-GPCRs) for the slow 
intercellular communication sufficient to generate their slow and simple behaviors (Elphick et al., 2018; 
Grimmelikhuijzen and Hauser, 2012; Jekely, 2013; Krishnan and Schioth, 2015; Varoqueaux and 
Fasshauer, 2017). The later evolution of neurons, focal synaptic contacts, rapidly recycled small-molecule 
neurotransmitters, and numerous ionotropic receptors was likely driven by survival advantages of faster 
cell-cell signaling (Varoqueaux and Fasshauer, 2017). The fast synaptic transmission characteristic of 
contemporary higher animals is almost invariably based on recycling small molecule neurotransmitters 
and ionotropic receptors, but modulation of synaptic transmission and membrane excitability by NP-
GPCRs remains very prominent in all extant behaving animals (Elphick et al., 2018; Grimmelikhuijzen and 
Hauser, 2012; Jekely, 2013; Krishnan and Schioth, 2015; Varoqueaux and Fasshauer, 2017). 
Because modulatory neuropeptides are not subject to the rapid transmitter re-uptake and/or degradation 
processes necessary for fast synaptic transmission, secreted neuropeptides persist long enough (e.g., 
minutes) in brain interstitial spaces for diffusion to NP-GPCRs hundreds of micrometers distant from 
release sites (Ludwig and Leng, 2006; Nässel, 2009; Russo, 2017). Neuropeptide signaling in the CNS 
can thus be presumed “paracrine”, with secretion from one neuron acting upon many others by diffusion 
over distance and signals likewise converging by diffusion from many neurons onto one. The degradation 
of active neuropeptides by extracellular peptidases in cortex is nonetheless generally expected to restrict 
signal diffusion to sub-millimeter scale local circuit volumes, such as cortical “columns” or “barrels” or 
other commonly envisioned small anatomic/functional subunit tiles of the cortical sheet. 
The many receptors encoded by different NP-GPCR genes are each highly selective for specific peptides 
but show considerable conservation at the level of downstream cellular signal transduction effects. 
Although GPCR signaling has long been recognized as complex and many faceted (Hamm, 1998), most 
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neuronal NP-GPCR actions reflect phosphorylation of ion channel or synaptic proteins, mediated by 
protein kinases dependent on the second messengers cyclic AMP and calcium (Mains and Eipper, 2006; 
Nadim and Bucher, 2014; van den Pol, 2012). Primary effects of NP-GPCRs, in turn, fall into just three 
major categories distinguished by G-protein alpha subunit class. The Gαi class (i) inhibits cAMP 
production, the Gαs class (s) stimulates cAMP production, and the Gαq class (q) amplifies calcium 
signaling dynamics (Syrovatkina et al., 2016). For most NP-GPCR genes, the primary G-protein α-subunit 
class (i.e., i, s or q) is now known (Alexander et al., 2017) and offers a good first-order prediction of the 
encoded GPCR’s signal transduction activity. The profound functional consequences of neuromodulation 
by GPCRs range from adjustment of neuronal firing properties and calcium signaling dynamics through 
regulation of synaptic weights and synaptic plasticity (Bargmann, 2012; Markram et al., 2013; Mccormick 
and Nusbaum, 2014). 
It is well established that particular neuropeptides, including vasoactive intestinal peptide (VIP), 
somatostatin (SST), neuropeptide Y (NPY), substance P, and cholecystokinin (CCK), are detectible at high 
levels in particular subsets of GABAergic cortical neurons (Tremblay et al., 2016). These neuropeptides, 
consequently, have come into broad use as markers for GABAergic interneuron classes, while the 
corresponding NPP and NP-GPCR genetics have provided molecular access to these and other broad 
neuron type classes (Daigle et al., 2018; Maximiliano José et al., 2018). In situ hybridization and microarray 
data (e.g., the Allen Brain Atlases (Hawrylycz et al., 2012; Lein et al., 2007)) have also established that 
mRNA transcripts encoding these five NPPs and that many other NPPs and cognate NP-GPCR genes 
are expressed differentially in different brain regions. There has been a critical lack, however, of 
comprehensive expression data combining whole-genome depth with single-cell resolution. Absent such 
data, it has been difficult to generate specific and testable hypotheses regarding cortical neuropeptide 
function and to design repeatable experiments to test those hypotheses (Tremblay et al., 2016; van den 
Pol, 2012).                                                                                                                                                                                                                                                                                                                                 
Here we  describe new findings regarding NPP and NP-GPCR gene expression in single cortical neurons, 
based on analysis of deep mRNA-Seq data acquired from 22,439 isolated mouse cortical neurons as 
described fully in a recent publication (Tasic et al., 2018). We begin by leveraging only the genomic depth 
and single-cell resolution of this dataset. Then, we briefly introduce the transcriptomic neurotaxonomy 
(i.e., neuron-type taxonomy) also developed in the Tasic 2018 publication and explore the additional 
analytical power of a taxonomic framework. Finally, we distill these findings into specific and testable 
predictions concerning intracortical peptidergic modulation networks. 

Results 
The present study is based on analysis of a resource single-cell mRNA-Seq dataset acquired at the Allen 
Institute (Tasic et al., 2018) and available for download at http://celltypes.brain-map.org/rnaseq/. These 
RNA-Seq data were acquired from a total of 22,439 isolated neurons, with detection of transcripts from 
a median of 9,462 genes per cell (min = 1,445; max = 15,338) and an overall total of 21,931 protein-coding 
genes detected. Neurons were sampled from two distant and very different neocortical areas: 13,491 
neurons from primary visual cortex (VISp), and 8,948 neurons from anterior lateral motor cortex (ALM). 
Tasic, et al., harvested tissue specimens from a variety of transgenic mice expressing fluorescent proteins 
to enable enrichment of samples for neurons and for relatively rare neuron types by FACS sorting after 
dissociation. This enrichment procedure resulted, by design, in a disproportionate representation of 
GABAergic neurons, canonically ~20% of neurons (Sahara et al., 2012), such that the sampled neuron 
population is roughly half GABAergic (47%) and half glutamatergic (53%). The resource publication (Tasic 
et al., 2018) should be consulted for full details of neuronal sample and library preparation, sequencing 
and data processing. 
The resource single-cell RNA-Seq data tables (Tasic et al., 2018) report the abundance of transcripts from 
individual neurons in both “counts per million reads” (CPM) and “fragments per kilobase of exon per 
million reads mapped” (FPKM) units. Our analysis of this data compares gene expression levels 
quantitatively, with two distinct use cases: (1) comparisons across large sets of different genes, and (2) 
comparisons of the same gene across different individual cells, cell types and brain areas. We have relied 
upon FPKM data (Mortazavi et al., 2008; Pimentel, 2014), for use case 1 (i.e., the Table 1 and 2 
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comparisons across genes). For use case 2 (as in all figures below), we have preferred the CPM units, 
because these units were used to generate the Tasic 2018 neurotaxonomy. While choice of units here 
seems unlikely to make any significant difference, it would seem inconsistent to use FPKM units to 
compare across cell types discerned from CPM data. 
The NP signaling genes upon which the present analysis focuses are expressed very differentially across 
the sampled populations of individual mouse cortical neurons. That is, each gene is expressed at a high 
level in some subset of cells but at zero or very low levels in the remainder of the population. To compactly 
characterize such expression, we developed a “Peak FPKM” metric. This metric is generated by ranking 
single-cell FPKM values for a given gene across the entire population of 22,439 neurons sampled, then 
designating the FPKM value at the ascending 99.9th percentile point as “Peak FPKM”. This metric was 
designed to minimize effects of sporadic outliers while still closely approximating the actual peak 
expression value in even very small subsets of neurons expressing the gene in question. 
18 Neuropeptide Precursor Protein (NPP) genes are extremely highly expressed in mouse neocortex. 
Table 1 lists 18 NPP genes highly expressed in varied subsets of the 22,439 individual neurons sampled 
from cortical areas VISp and ALM. This gene list was circumscribed by two requirements: (1) that the 
included NPP gene be highly expressed (top quartile Peak FPKM, across all protein-coding genes) in both 
VISp and ALM cortical areas, and (2) that at least one NP-GPCR gene cognate to a candidate NPP gene 
also be highly expressed in neurons within the same cortical local areas. Requirement (2) was imposed 
here to focus on prospects for intracortical paracrine neuropeptide signaling as noted in Introduction
above. Table 1 also lists Peak FPKM values for each NPP gene, percentile and absolute ranks of that 
Peak FPKM value across all protein-coding genes, the fraction of cells sampled in which expression of 
the listed gene is detectible, predicted neuropeptide product(s) encoded, and the NP-GPCR gene(s) 
fulfilling requirement (2) for that NPP gene. Transcripts of no other known NPP genes met the criteria 
specified above.

 
Table 1. 18 neuropeptide precursor protein (NPP) genes are highly expressed in mouse cortex. These genes are tabulated 
here along with peak single-cell expression levels as pFPKM (Peak FPKM, see main text), percentile and absolute ranking of 
these pFPKM values across pFPKMs for all 21,931 protein-coding genes, and the percentage of cells sampled in which 
transcripts of the specified NPP gene were detected. The table also lists predicted neuropeptide products, and genes 
encoding G-protein-coupled receptors (NP-GPCRs) that are cognate to the listed NPP genes and expressed cortex (see Table 
2). NPP genes are listed here in descending order of Peak FPKM. 
 

The Peak FPKM ranking columns in Table 1 show that expression levels of most of the 18 NPP genes 
are extremely high in the range of Peak FPKM values for all 21,931 protein-coding genes detected in all 
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neurons sampled. Of these genes, Npy, Sst, Vip and Tac2 rank as the top four overall in peak FPKM 
values, while three more, Cck, Penk and Crh also rank in the top ten. Eleven of these NPP genes rank in 
the top percentile and all 18 rank above the 80th percentile in peak FPKM.  The extremely high peak 
abundance of these NPP transcripts suggests that NPP products are likely synthesized in the highly 
expressing cells at correspondingly high rates. To maintain a steady state, the cell must therefore 
eliminate those protein products at a very high rate, with processing and secretion of active neuropeptides 
being the most likely route of elimination. The high abundance of transcripts encoding these 18 NPPs can 
thus be construed as evidence for secretion of the respective active neuropeptide products. 
Expression of NPP genes by neocortical neurons is highly differential. Figure 1A characterizes 
differential expression of the 18 NPP genes of Table 1. Each of 18 color-coded solid curves represents 
the distribution of single-neuron CPM values for one NPP gene. Curves were generated by plotting CPM 
for each individual neuron in descending rank order along a sampled cell population percentile axis. Each 
curve shows an abrupt transition from very high to very low (commonly zero) expression across the 
sampled neuron population, but these transitions occur at very different population percentile points, 
providing clear evidence for highly differential single-cell expression of each gene. Percentages of the 
sampled neuron population expressing a given NPP gene (at greater than 1 CPM) range from more than 
65% for Cck down to 1% for Nts. Recall that the cell population sampled here has been enriched for 
GABAergic cell types as noted above and described at length in the resource publication (Tasic et al., 
2018). 

 

Figure 1. Expression and co-expression of NPP genes is highly differential with statistics conserved between two distant 
cortical areas. Single-cell expression analysis of 18 NPP genes in 22,439 individual neurons from cortical areas VISp and 
ALM. (A) Distributions of single-cell expression levels in neurons pooled from VISp and ALM. Color-coded solid curves plot 
single-cell CPM values for the specified individual NPP genes in descending order along a cell population percentile axis. The 
18 curves are segregated for clarity into three panels, sorted by cell population percentiles at which CPM values fall below 1. 
Large differences in fractions of cells expressing different NPP genes are evident. The dashed curve labeled “Max NPP Gene” 
in panel Ai was generated by plotting CPM values of the highest CPM NPP gene for each individual cell in descending order. 
(B) Fractions of cells expressing each NPP genes represented separately for 13,491 VISp neurons and 8,948 ALM neurons, 
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showing conservation between areas of the patterning of NPP expression fractions documented in panel A. (C) Histograms 
illustrating frequencies of various multiples of NPP gene co-expression in individual neurons, represented separately for VISp 
and ALM neurons. The paired vertical bars show strong conservation of co-expression patterns between the two areas. 

Almost all (and possibly all) neocortical neurons express at least one NPP gene. The dashed curve in 
the Fig. 1Ai, labeled “Max NPP Gene”, was generated by plotting CPM values of the NPP gene with the 
highest CPM in each individual cell in descending order along a cell population percentile axis. This curve 
therefore shows that 97% percent of the sampled mouse cortical neurons express at least one NPP gene 
at >1 CPM and that 80% express at least one NPP gene at >1,000 CPM, a very high level. When one 
takes into account the pulsatile nature of transcription (Suter et al., 2011) and the stochastic nature of 
RNA-Seq transcript sampling (Fu and Pachter, 2016; Kim et al., 2015; Tasic et al., 2016), these numbers 
must be understood as lower limits to percentages of cortical neurons expressing at least one of the 18 
NPP genes. The results summarized in Fig. 1A may therefore be consistent with the proposition that every 
cortical neuron is peptidergic.  
Statistics of differential NPP gene expression are highly conserved between different neocortical 
areas. Figures 1B and 1C illustrate strong conservation of differential NPP expression profiles between 
VISp and ALM, two distant and very different neocortical areas. The paired bars in Fig. 1B represent 
fractions of cells expressing a given gene in each of the two areas. It is obvious that the differential 
expression profiles in VISp and ALM are highly similar (r=0.972, p<1.72E-11), in spite of stark differences 
in function and cytoarchitecture between these two areas. Conservation of expression fractions across 
so many genes in such divergent cortical areas may suggest that these patterns have strong connections 
to conserved features of cortical function and argues against these patterns being secondary to more 
ephemeral variables such as neuronal activity patterns, which seem unlikely to be highly conserved 
between VISp and ALM areas. 
Multiple NPP genes are co-expressed in almost all cortical neurons. Figure 1C represents frequencies 
with which transcripts of various multiples drawn from the set of 18 NPP genes were detected in individual 
neurons. These data establish a remarkable degree of NPP gene co-expression in almost all individual 
cortical neurons. The modal number of co-expressed NPP genes detected is 2 in VISp and 5 in ALM, but 
both distributions are actually quite flat between 2 and 5, with broad plateaus out to 7 co-expressed NPP 
genes per cell and a substantial tail out to 10. Fig. 1C also profiles strong similarities of NPP co-expression 
distributions between VISp and ALM. 
29 Neuropeptide-selective G-protein-coupled receptor (NP-GPCR) genes are highly expressed in 
mouse neocortex. Table 2 lists 29 NP-GPCR genes that are highly expressed in varied subsets of the 
22,439 individual neurons sampled from cortical areas VISp and ALM. These 29 genes encode receptor 
proteins selective for neuropeptide products encoded by the 18 NPP genes of Table 1 (cross-referenced 
in that table as “Cognate NP-GPCR Genes”). Table 2 provides quantitative information on expression 
levels of these 29 NP-GPCR genes, names the receptor proteins they encode, indicates the A-F GPCR 
class and expected primary G-protein signal transduction type and cross-references the cognate 
cortically-expressed NPP genes. As noted above, the 18 NPP genes and 29 NP-GPCR genes listed in 
Tables 1 and 2 were selected for focused analysis here due to their cognate pairing relationships and the 
consequent prospect that they may transmit local intracortical signals. 
The “pFPKM Percentile” column in Table 2 shows that most of these 29 NP-GPCR genes are expressed 
in cortex with Peak FPKM values well above median (50th percentile) for all protein coding genes. The 
high end of the range of cortical neuron pFPKM values for NP-GPCR genes does not match the extreme 
values noted for NPP genes, but this is as expected given that NP-GPCR gene products are thought to 
be durable cellular components, unlikely to be rapidly disposed by secretion as expected for NPP gene 
products. Peak FPKM values for NP-GPCR transcripts are nonetheless quite high in the range of 
transcripts of other likely durable cellular component genes, suggesting a strong likelihood that they are 
indeed translated into functionally important protein products.  
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Table 2. Genes encoding 29 NP-GPCRs expressed in mouse cortical areas VISp and ALM and cognate to the 18 
neuropeptide precursor protein (NPP) genes listed in Table 1. Peak FPPM values, Peak FPKM percentile and absolute ranks 
and the percentage of cells sampled in which transcripts of the specified NP-GPCR gene were detected. In addition, the table 
names the encoded neuropeptide-selective GPCR protein, lists the GPCR A-F class (Alexander et al., 2017), the primary G! 
signal transduction class associated with each predicted NP-GPCR as “i” for G!i/o family, “s” for G!s and “q” for G!q/11 
family (Alexander et al., 2017), and indicates cognate NPP genes. The color fills of pastel red, green and blue in the “G protein 
Class” column correspond to i, s and q classes and will be used to highlight these classes consistently in all following figures. 
NP-GPCR genes are listed here in order of Peak FPKM values. 

Expression of NP-GPCR genes by cortical neurons is highly differential. Figure 2 represents expression 
patterns of the 29 NP-GPCR genes listed in Table 2 in a manner that closely parallels the presentation 
for 18 NPP genes in Fig.1. Figure 2A establishes that each of the 29 NP-GPCR genes, like the 18 NPP 
genes, is expressed in highly differential fashion across the population of 22,439 mouse cortical neurons 
sampled. Each of 29 color-coded solid curves represents the distribution of single-neuron expression 
level values for one NP-GPCR gene. Curves were generated by plotting CPM for each individual neuron 
in descending order along a cell population percentile axis. As was noted for NPP genes in Fig. 1, each 
of the curves in Fig. 2A shows an abrupt transition from very high to very low (commonly zero) expression 
across the sampled neuron population. These transitions again occur at very different population 
percentile points, providing clear evidence for highly differential expression of NP-GPCR gene. 
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Percentages of the sampled neuron population expressing a given NP-GPCR gene (at greater than 1 
CPM) range from more than 72% for Adcyap1r1 down to 0.7% for Vipr2. 
Almost all (and possibly all) neocortical neurons express at least one NP-GPCR gene. The dashed 
curve in the left panel of Fig. 2A, labeled “Max NP-GPCR Gene”, was generated by plotting CPM values 
of the NP-GPCR gene with the highest CPM in each individual cell in descending order along a cell 
population percentile axis. This curve shows that 98% percent of the sampled mouse cortical neurons 
express at least one NP-GPCR gene at >1 CPM and that 78% express at least one NP-GPCR gene at 
>100 CPM, lower than the comparable point for NPP genes (see Fig. 1) but still a very high value. Again, 
these numbers must be understood as lower limits to percentages of cortical neurons actually expressing 
at least one of the 29 NP-GPCR genes, after taking into account the pulsatile transcription and stochastic 
sampling issues cited above. The results summarized in Fig. 2A may thus be consistent with a conclusion 
that every cortical neuron expresses at least one NP-GPCR gene cognate to a cortically expressed NPP 
gene. 
Statistics of differential NP-GPCR gene expression are highly conserved between different neocortical 
areas. Figure 2B provides evidence for strong conservation of differential NP-GPCR expression profiles 
between distant cortical areas VISp and ALM. The paired bars represent fractions of cells expressing a 
given gene in each of the two areas, again revealing strong similarities of differential expression profiles 
in the two very different neocortical areas (!=0.959, p<2.2E-16).

 

Figure 2. Expression and co-expression of NP-GPCR genes is highly differential with statistics conserved between two 
distant cortical areas. Single-cell expression analysis of 29 NP-GPCR genes in 22,439 individual neurons from cortical areas 
VISp and ALM. (A) Distributions of single-cell expression levels in neurons pooled from VISp and ALM. Color-coded solid 
curves plot single-cell CPM values for individual NP-GPCR genes in descending order along a cell population percentile axis. 
The 29 curves are segregated for clarity into five panels, sorted by cell population percentiles at which CPM values fall below 
1. Large differences in fractions of cells expressing different NP-GPCR genes are evident. Dashed curve in panel Ai was 
generated by plotting CPM values of the highest CPM NP-GPCR gene for each individual cell in descending order. (B) 
Fractions of cells expressing each NP-GPCR genes represented separately for 13,491 VISp neurons and 8,948 ALM neurons, 
showing strong conservation between areas of the patterning of NP-GPCR expression fractions documented in panel A. (C) 
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Histograms illustrating frequencies of various multiples of NP-GPCR gene co-expression in individual neurons, represented 
separately for VISp and ALM neurons. The paired vertical bars illustrate strong conservation of co-expression patterns 
between the two cortical areas. 

Multiple NP-GPCR genes are co-expressed in almost all cortical neurons. Figure 2C represents 
frequencies of NP-GPCR gene co-expression multiples detected in individual neurons. These data 
establish that multiple NP-GPCR genes are co-expressed in almost all cortical neurons and that numbers 
of genes co-expressed are even higher than those noted above for co-expression of NPP genes. Modal 
numbers of co-expressed NP-GPCR genes detected is 6 in both VISp and ALM with broad plateaus 
extending out to 12 co-expressed NP-GPCR genes per cell. The striking similarities of NP-GPCR co-
expression distributions between the two otherwise divergent neocortical areas once again suggests that 
the patterning of NP-GPCR co-expression may have consequences for cortical function that are 
conserved because they are functionally important. 
Transcriptomic neurotaxonomy enables the generation of testable predictions about neocortical 
neuropeptidergic signaling. Our analysis so far has relied solely upon the genomic depth and single-cell 
resolution characteristics of the 2018 Tasic transcriptomic data, without utilizing the transcriptomic 
neurotaxonomy derived as one major goal of that study (Tasic et al., 2018). This taxonomy was developed 
from a large body of single-cell mRNA-Seq data based on dimensionality reduction and iterative 
hierarchical clustering methods. Such a transcriptomic neurotaxonomy makes it possible to predict a 
protein “parts list” for any neuron that can be mapped to a given transcriptomic type. While additional 
work now under way (Cadwell et al., 2017; Daigle et al., 2018; Moffitt et al., 2016; Shah et al., 2016; Wang 
et al., 2018; Zeng and Sanes, 2017) will be needed to reconcile this transcriptomic neurotaxonomy to 
existing anatomical and physiological neurotaxonomies, this taxonomy already offers the prospect of 
genetic access to specific neuron classes and types for physiological and anatomical study and thereby 
the prospect of experimental test of transcriptomically generated hypotheses. The present analysis will 
make extensive use of a subset of the 2018 Tasic neurotaxonomy representing 115 types discriminated 
in VISp and ALM cortical areas, as summarized in Supplementary Fig. 1. This neurotaxonomy will be 
represented in the following figures by cladograms and/or color code strips that can be interpreted by 
reference to Supplementary Fig. 1 or (Tasic et al., 2018).  
Expression of the 18 NPP genes is highly neuron-type-specific. Figure 3A represents expression levels 
of the 18 NPP genes across all 115 VISp+ALM neuron types as a “heat map” matrix color coding log10 
CPM values for each NPP and each neuron type. The CPM values so rendered are calculated as “trimmed 
means” (mean value after discarding the top 1% of distributions to reject outliers) of single-cell CPM 
values aggregated by each neuron-type cluster (commonly on the order of 100 cells, see Supplementary 
Figs. 1A and 1C for actual cell counts). Figure 3A confirms and extends four reasonable expectations 
from the type-agnostic single-cell analyses of Figs. 1 and 2 above: (1) neurons of every type express one 
or more of the 18 NPP genes, (2) each of the 18 NPP genes is expressed in multiple neuron types, (3) 
neurons of every type express multiple NPP genes, and (4) expression of NPP genes is highly differential 
across neuron types. Remarkably, Fig. 3A shows that type-to-type variations in expression level for every 
one of the 18 NPP genes span the full >10,000-fold dynamic range characteristic of the Tasic 2018 RNA-
Seq data. Quite intriguingly, Fig. 3A also suggests that each of the 115 VISp+ALM cell types might be 
distinguished by a unique combinatorial pattern of NPP gene expression. This possibility will be explored 
quantitatively in connection with Fig. 4 below. 
Figure 3A provides for ready comparison of NPP gene expression patterns between glutamatergic and 
GABAergic neuron types. Clearly, GABAergic types are more prolific in the variety and strength of their 
NPP genes expression. While glutamatergic types express fewer NPP genes and do not match the 
extremely high NPP expression levels observed in almost every GABAergic type, each type nonetheless 
expresses at least one NPP gene, and generally more, at a very substantial level. This differential is 
consistent with a long history of neuroscientific use of neuropeptide products as protein markers of 
GABAergic neuron subsets (e.g., VIP, SST, NPY, Substance P), which has no parallel in the marking of 
glutamatergic neuron subsets.  
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Expression of the 29 NP-GPCR genes is highly neuron-type-specific. Figure 3B illustrates neuron type 
specificity of NP-GPCR expression in a manner identical to the treatment of NPP gene expression in Fig. 
3A and invites analogous conclusions: (1) neurons of every neuron type express one or more of the 29 
NP-GPCR genes at very high levels, (2) neurons of every type express multiple NP-GPCR genes, and (3) 
expression of NP-GPCR genes is highly differential across neuron types. Figure 3B also shows, however, 
that the stronger and more varied expression of NPP genes in GABAergic expression profiles that was 
evident in Fig. 3A is leveled or even reversed for NP-GPCR genes. That is, while GABAergic neurons 
clearly show the more prolific and varied expression of NPP genes, glutamatergic neurons may be 
somewhat more prolific expressors of NP-GPCR genes. Finally, it should be noted that there are cases 
where both an NPP gene and its cognate NP-GPCR receptor are expressed in the same neuron type, 
with the Cck / Cckbr and Adcyap1 / Adcyap1r1 pairs being prominent examples, with both being highly 
expressed in majorities of glutamatergic neuron types. !

 
Figure 3. Profiles across 115 transcriptomic neuron types reveal very high neuron-type-specificity of NP gene 
expression. Heat maps representing CPM expression values of 18 NPP and 29 NP-GPCR genes (rows) aggregated for each 
of 115 neuron types (columns) distinguished by the resource neurotaxonomy (Tasic et al., 2018). Note that every gene 
spans a very wide range of expression values across all neuron types. (A) Expression profiles of 18 NPP genes, ordered as 
in Table 1. (B) Expression profiles of 29 NP-GPCR genes for all VISp and ALM neuron types, with NP-GPCR genes ordered 
as in Table 2. Color mapping (separate keys at right for panels A and B) encode log10 mean of CPM values for each gene 
and cell type after trimming away top 1% percent CPM values to suppress outlier effects. Expression values are normalized 
separately for each gene (row), with numbers at right representing row maximum trimmed mean CPM values. 
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Neurotaxonomic cladogram and color scheme at top of this map are those introduced in the 2018 Tasic, et al., publication 
and summarized in the present Supplementary Fig. 2. 

A transcriptomic signature based upon just 47 NP-signaling genes (18 NPPs and 29 NP-GPCRs) 
permits exceptionally accurate classification of neocortical neurons. The strong marker patterning of 
the 47 NP gene expression profiles evident in Fig. 3 suggests the possibility that each of the 115 neuron 
types profiled in that figure might be distinguished by a unique combination of these 18 NPP and 29 NP-
GPCR genes. To explore this possibility quantitatively, we developed the analysis presented in Figure 4. 

 
Figure 4. Neurons can be classified effectively based on just 47 NP genes (18 NPP and 29 NP-GPCR) alone. (A) A two-
dimensional latent space representation of autoencoder network neuron type classification of 22,439 cells based on 6,083 
highly expressed (HE) genes, where each dot represents a single cell colored according to the Tasic (Tasic et al., 2018) type-
code coloring scheme, as introduced here in Fig. 3 and Supplementary Fig. 2. The clustering of type-code colors to form 
distinct islands is indicative of good clustering performance. (B) Schematic representation of the linked autoencoder 
architecture used to optimize a second network to classify neurons as similarly as possible into a latent space based on much 
smaller gene sets. (C) Representation of latent space z2 (D) A Gaussian mixture model of cell types is fit to a five-dimensional 
NP gene representation using 2018 classification. Progressively simplified taxonomies are obtained by iterative merging, and 
the most complex taxonomy for which each cell is correctly mapped is recorded as that cell's Resolution Index (RI). This 
histogram represents the distribution of RI scores corresponding to classification of the five-dimensional NP gene latent space 
representation. (E) Average RI scores for latent space representations encoded by various gene subsets. The average RI per 
cell obtained from the NP genes representation (0.928) was significantly higher than the average obtained from 100 distinct 
sets of 47 random genes (0.645), and the average of 100 sets of 47 genes that matched expression levels of the 47 NP genes 
(0.858), p<0.01.!See Supplementary Methods for additional details of autoencoder development and performance metrics.!

We began by asking whether there exists a low dimensional representation of gene expression that 
naturally separates neurons of different types into distinct parts of that low-dimensional space. The extent 
to which a neuron’s location in such a space can be inferred from the expression of a limited subset of 
genes (such as our 47 NP genes) would then provide a measure of the sufficiency of that subset to classify 
a that neuron accurately. Hierarchical clustering methods to define neuron types based upon gene 
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expression are well established (Hastie et al., 2001; Oyelade et al., 2016) but have difficulty when 
comparing and making inferences between datasets.  We therefore devised a machine learning approach 
based on linked multi-layer autoencoders (see Supplementary Methods) to address this question 
explicitly and quantitatively. 
A single autoencoder network (Hinton and Salakhutdinov, 2006) was developed and trained to encode 
CPM values of the 6,083 most highly expressed genes represented in the Tasic 2018 dataset (the “HE” 
gene set). Results are illustrated in Figure 4A, where encoding coordinates in a two-dimensional latent 
space of 22,439 individual neurons are displayed as discrete dots, each colored according to the neuron’s 
Tasic 2018 hierarchical classification (i.e., the neurotaxonomic color code introduced in Fig. 3 and 
Supplementary Fig. 2). The tight grouping of type-code colors evident in Fig. 4A implicitly represents that 
position within this latest space corresponds well to the neuron types defined by hierarchical 
classification, in spite of the fact that the autoencoder was given no explicit prior information about how 
neurons were classified by Tasic, et al. We then trained a second, linked auto-encoder with the 
architecture schematized in Fig. 4B to classify cells using only the 47-gene subset, under a cost function 
constraint that latent spaces of the two auto-encoders be as similar as possible. This allowed us to test 
the extent to which any small gene subset by itself could match the encoding performance obtained using 
the much larger gene set. Fig. 4C displays a two-dimensional latent space resulting from encoding the 
same 22,439 neurons based only on 47 NP genes tabulated above, again projecting one dot for each cell 
using the Tasic 2018 type-code colors. Once again, the tight color grouping evident in Fig. 4C suggests 
qualitatively that these 47 genes indeed enable excellent type encoding of individual neurons. 
For quantitative comparison of classification performance based on varied neocortical gene sets, we 
partitioned the autoencoder encodings into classes using a supervised Gaussian Mixture Model (see 
Supplementary Methods) and designed the resolution index schematized in Fig. 4D to evaluate 
consensus between classifications driven by autoencoder encoding with the resource hierarchical 
neurotaxonomy (Tasic et al., 2018). This index yields a value of 0 when a neuron is mapped incorrectly 
from the root node and 1 when a neuron is mapped correctly all the way to a terminal leaf node. By 
averaging this metric over all 22,439 neurons, we generated an overall figure of merit called a resolution 
index. This figure for the large HE 6083 gene set was 0.987, the same index for classification based on 
the NP 47-gene subset was 0.928.  To place these resolution index numbers in context and test the 
significance of this correspondence, we compared resolution indices resulting from linked autoencoder 
classification based on 100 subsets of 47 genes drawn randomly from the Tasic 2018 expression dataset.  
The sets of 47 random genes yielded an average resolution index of 0.645 ± 0.047 (Fig. 4E), establishing 
clearly that NP genes yield classification greatly superior to random subsets of 47 genes. Figure 4E also 
shows results from encoding runs using 100 sets of 47 random genes chosen to approximate the same 
high expression statistics of the NP genes. Again, resolution indices from the random sets fell well below 
that yielded by the 47 NP genes (average = 0.858 ± 0.0242, with none reaching the NP gene index of 
0.928 and the difference being significant at p<0.01). This demonstration of the exceptional power of NP 
genes to mark transcriptomic neuron types reinforces earlier indications of an especially close and 
fundamental connection between neuropeptide gene expression and neuron type identity. 
Cell-type-specificity of differential NP gene expression is conserved between neocortical areas. Figure 
5 juxtaposes separate VISp and ALM expression profiles for NPP and NP-GPCR genes across 93 VISp 
neuron types (Fig. 5A) and 84 ALM neuron types (Fig. 5B). Similarities of expression profiles for the two 
areas are obvious in Fig. 5, but there are also visible differences. The latter are rooted primarily in the 
substantial divergence of glutamatergic neuron taxonomies discussed at length in Tasic, et al. (Tasic et 
al., 2018) and summarized here in Supplementary Fig. 3. Very strong similarities of both NPP and NP-
GPCR expression profiles are most obvious for the GABAergic types, where the taxonomies are identical 
except for the absence of two GABAergic types in ALM (indicated by dark gray vertical placeholder bars 
in Fig. 5B). The general conservation of neuron-type-specific expression patterns between the two distant 
neocortical areas (NPP correlation: ρ= 0.974, p<2.2e-16, NP-GPCR: 0.877, p<2.2e-16) thus provides 
another indication of robust connection between NP gene expression and cortical neuron differentiation. 
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Figure 5. Expression profiles of NP genes restricted to cortical area VISp or to area ALM are very similar but differ 
somewhat due to divergence of VISp and ALM neurotaxonomies. Neuron-type-based NPP and NP-GPCR expression heat 
maps similar to those of Fig. 3 but separating data from area VISp and ALM samples. (A) Expression profiles for 18 NPP and 
29 NP-GPCR genes in area VISp, formulated, color coded and ordered as in Fig. 3. (B) Expression profiles for 18 NPP and 29 
NP-GPCR genes in area ALM, again displayed as in Fig. 3. Heat maps are placed here to vertically align GABAergic neuron 
types that match between VISp and ALM areas. Vertical dark gray bars in Fig. 5B are spacers marking the two GABAergic 
cell types absent in ALM. Glutamatergic taxonomies differ more substantially (see resource publication (Tasic et al., 2018) 
and Suppl. Fig. 1).  

Expression of 37 cognate NPP/NP-GPCR pairs in cortex predicts the potential existence of 37 
intracortical peptidergic networks. Expression of an NPP gene in one neuron and a cognate NP-GPCR 
gene in another nearby neuron implies the prospect of local paracrine signaling, with secretion of a 
specific neuropeptide by the first neuron activating the cognate specific neuropeptide receptor on a 
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second, nearby neuron. The present set of 47 cortical NP genes (18 NPP and 29 NP-GPCR) comprises 
the 37 distinct cognate NPP/NP-GPCR pairs enumerated in Table 3 and predicts accordingly 37 distinct 
peptidergic neuromodulation networks. As noted in the Introduction, expected neuropeptide diffusion 
distances suggest that any neuron within a local cortical area (e.g., VISp or ALM) might signal by diffusion 
to any other neuron within that same local area, but almost surely not to more distant areas (e.g., from 
VISp to ALM). In the following, we therefore make predictions of 74 (37 x 2) peptidergic distinct signaling 
networks, keeping separate consideration of signaling within VISp and within ALM. 

 

Table 3. The 18 NPP and 29 NP-GPCR genes of Tables 1 and 2 comprise 37 cognate NPP/NP-GPCR pairs and predict at 
least 37 potentially distinct peptidergic modulatory networks. The 37 pairs are enumerated here along with indications of 
the expected primary GPCR signal transduction class for each NP-GPCR (Alexander et al., 2017) and an indication of the 
gene expression prevalence for each cognate pair as a fraction of the total number of neuron pairs surveyed. Table fill colors 
echo G-protein class as in Table 2.  

Type-specific NP gene expression profiles predict type-specific peptidergic coupling. Figure 6 
displays heat maps representing predictions of neuron-type-specific peptidergic coupling from a 
selection of the 37 cognate NP gene pairs and expression profiles of the paired NPP and NP-GPCR 
genes. The predictions of Fig. 6 are based on cell-type-by-cell-type aggregation of binarized cell-pair-
by-cell-pair products of the NPP and NP-GPCR gene CPM values. CPM values were first thresholded at 
the 50th percentile independently for each cell type. The coupling matrix is then defined as:! !!

 

where  denotes the expression of individual cell j in cell type p, |C(p)| denotes the total number of 
expressing cells of type p, and I is the indicator function and is therefore the fraction of expressing pairs 
exceeding the 50th percentile threshold. 
 

!
"#
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Figure 6. Expression profiles of conjugate NPP/NP-GPCR pairs predict neuropeptidergic signaling networks. Square 
matrices representing predictions of local peptidergic coupling between specific neuron types based on the resource data 
tables and neurotaxonomy (Tasic et al., 2018). Coupling values predicted from Eqn. 1, normalized to maximum values within 
each matrix, are plotted in all panels according to the color scale located between panels A and B. (A) A 93 x 93 matrix 
predicting coupling amongst the 93 VISp neuron types based on type-specific expression of the NPP gene Npy and the 
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cognate NP-GPCR gene Npy1r. Color strip nearest the left edge of the matrix is the expression profile for Npy (identical to the 
row so labeled in the expression heat map of Fig. 5A), while the color strip immediately to its left represents the 93 VISp neuron 
types according to the Tasic, et al., color scheme as summarized in Suppl. Fig. 1. The color strip nearest the top edge of the 
coupling matrix is the expression profile for the Npy1r NP-GPCR gene (identical to row so labeled in Fig. 5B), with the adjacent 
color strip again representing the 93 VISp neuron types. (B) An 84 x 84 square matrix representing Npy-Npy1r coupling as in 
panel A, except based on data from area ALM and thus representing only the 84 neuron types distinguished by Tasic, et al., in 
that area. Black bars within the type-code color strips and gray bars in heat map of panel B are spacers in place of the two 
VISp GABAergic neuron types not found in area ALM, there to preserve alignment of the 58 remaining neuron types common 
to the two areas. Glutamatergic type alignments differ more substantially (see Tasic, et al. (Tasic et al., 2018) and Suppl. Fig. 
3). Dashed lines crossing on each plot (and all plots in this figure) demarcate the four quadrants of possible directed NPP/NP-
GPCR pairings between glutamatergic and GABAergic neuron types: (Glut➞Glut), (Glut➞GABA), (GABA➞GABA) and 
(GABA➞Glut), as labeled in panel A. (C-E) Exemplary coupling matrix predictions for three additional sets of cognate NPP/NP-
GPCR pairs, with the four plotted in (C) being representative of coupling to Gαi-coupled NP-GPCRs, the four in (D) representing 
Gαs-coupled NP-GPCRs and the four in (E) representing Gαq-coupled NP-GPCRs. All are drawn from area VISp data and 
rendered as in panel A, except without copying the expression profile strips as in Fig. 5.  

The exemplar matrix displayed in Fig. 6A predicts coupling in area VISp based on the expression profiles 
of Npy and Npy1r in VISp. Figure 6B represents a similar prediction for the same pair in area ALM. The 
dashed white crosses overlying both plots partition the matrices based on pairings of glutamatergic and 
GABAergic neuron types. Both matrices predict strong signaling from the canonical broad class of Npy-
positive GABAergic neurons to a broad subset of GABAergic neurons that strongly express the Npy1r 
NP-GPCR: the strongest coupling thus falls in the GABA➞ GABA quadrant. Weaker coupling is observed 
in the GABA➞ Glut quadrant, where the Npy1r NP-GPCR gene is less strongly expressed in the 
Glutamatergic cell types.  Strong similarities between the VISp and ALM coupling matrices are most 
notable. Apparent differences between VISp and ALM coupling predictions are mainly due to exclusive 
expression of different glutamatergic cell types in the two areas, and only in small part due to difference 
in same-type expression within the two cortical areas. 
Figures 6C-E represent 12 more of the 37 cognate pair coupling matrices predicted for VISp using Eqn. 
1. Along with Figs. 6A and 6B, these exemplify the wide variety of neuron-type-specific coupling motifs 
resulting from transcriptomic prediction. Most coupling matrices (i.e., pairs 2, 6, 9, 16, 19, 25, 29, 31), 
predict significant coupling over wide swaths of type-pairs, approaching 20% of the entire matrix. A few 
matrices at the other extreme, such as 27 and 33, predict very sparse coupling.  Other predictions are 
intermediate in sparsity. The full sets of 37 predicted coupling matrices enumerated in Table 3 for both 
VISp and ALM are represented in Suppl. Figure 2, where strong similarities between the two cortical 
areas are again quite obvious.  
Figure 6 and Suppl. Fig. 2 also illustrate the tendency of coupling predictions from most cognate NP 
pairs to fall in contiguous “patches” of the full coupling matrix. This is a natural reflection of the strong 
tendency of both NPP and NP-GPCR expression to align with early nodes in the 2018 Tasic hierarchical 
clustering which was also evident in Figs. 3 and 5. The broadest example of coupling matrix patches 
reflecting hierarchical neurotaxonomy structure is provided by the observation of that most sizable 
coupling patches fall strictly within single quadrants of glutamatergic-GABAergic neuron type pairing. 

Discussion 
Light from single-cell transcriptomics is now beginning to illuminate dark corners of cellular neuroscience 
that have long resisted mechanistic and functional analysis (Fan et al., 2018; Földy et al., 2016; Gokce et 
al., 2016; Okaty et al., 2011; Paul et al., 2017; Shekhar et al., 2016; Tasic et al., 2018, 2016; Telley et al., 
2016; Zeng and Sanes, 2017). Cortical neuropeptide signaling may be one such corner. While profound 
impacts of neuropeptide signaling are well-established in a wide range of non-mammalian and sub-
cortical neural structures (Borbély et al., 2013; Burbach, 2011; Elphick et al., 2018; Grimmelikhuijzen and 
Hauser, 2012; Katz and Lillvis, 2014; Kuffler et al., 1979) and there certainly is an excellent literature on 
cortical neuropeptide signaling (Crawley, 1985; Férézou et al., 2007; Gallopin et al., 2006; Gomtsian et 
al., 2018; Hamilton et al., 2013; Liu et al., 2018; Mena et al., 2013; Rossier and Chapouthier, 1982; Williams 
and Zieglgänsberger, 1981), published physiological results are surprisingly rare given the breadth of 
neuroscientific interest in cortex. The new transcriptomic data analyzed here suggest a possible 
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explanation for this relative rarity.  Though many NPP and cognate NP-GPCR genes are expressed 
abundantly in all or very nearly all neocortical neurons, such expression is highly differential, highly cell-
type specific, and often redundant. These previously uncharted differential expression factors may have 
hindered repeatable experimentation. Our analysis supports this unwelcome proposition but may also 
point the way to more productive new perspectives on intracortical peptidergic neuromodulation. 
Summary of findings. The present analysis establishes that mRNA transcripts from one or more of 18 
NPP genes are detectible in over 97% of mouse neocortical neurons and that transcripts of one or more 
of 29 NP-GPCR genes are detectible in over 98%. Transcripts of at least one of the 18 NPP genes are 
present in the vast majority of cortical neurons at extremely high copy number, strongly suggesting brisk 
translation into neuropeptide precursor proteins. Brisk synthesis of precursor proteins further suggests 
brisk processing to active neuropeptide products and secretion of these products. Likewise, NP-GPCR 
transcripts rank high in abundance compared to transcripts of other cellular proteins, again strongly 
supporting product functionality. Our observations thus support the proposition that all, or very nearly all, 
neocortical neurons are both neuropeptidergic and modulated by neuropeptides. We are not aware of 
any previous empirical support for such a conclusion. 
We have closely examined single-neuron expression patterns of sets of 47 NP genes (18 NPP and 
cognate 29 NP-GPCR) and find that these patterns are highly conserved between two distant and 
generally quite different areas of neocortex. Such conservation lends additional support to the proposition 
that NP gene products may have a very fundamental importance to cortical local circuit function and 
argues against these patterns reflecting more ephemeral variable such as recent activity patterns, which 
would seem unlikely to correlate so strongly between cortical areas with such different roles in brain 
function. 
Following earlier indications that neurons may express multiple NPP genes, e.g., (Mezey et al., 1999), our 
analysis establishes that expression of multiple NPP genes in individual neurons may be the rule in cortex. 
Our analysis also establishes the generality of expression of multiple NP-GPCR genes in individual cortical 
neurons. The significance of these observations remains to be explored but should be viewed in light of 
recent discoveries of large numbers and great diversity of transcriptomic neuron types in neocortex and 
many other brain regions. Combinatorial expression of neuropeptide precursor and receptor genes 
obviously expands the prospects for molecular multiplexing that may allow selective communication 
amongst a multiplicity of distinct neuron types even though the signaling molecules propagate in diffuse 
paracrine fashion. 
We also find that a modest set of 47 neuropeptide-signaling genes permits transcriptomic neuron type 
classification that is exceptionally precise in comparison to other similarly small gene sets. This tight 
alignment of neuron type classifications based solely on neuropeptide-signaling gene expression with 
classifications based on genome-wide expression patterns offers an intriguing suggestion of a very deep 
and fundamental connection between the expression of evolutionarily ancient neuropeptide-signaling 
genes and the differentiation of neuron type identities during metazoan speciation. 
Prediction of cortical modulation networks. Our analysis delineates neuron-type-specific expression of 
37 cognate pairs amongst the 18 NPP and 29 NP-GPCR genes expressed in mouse neocortex. Each of 
these pairs can be taken to predict a modulatory connection from cells expressing a particular NPP gene, 
via a secreted NP product, to cells expressing the particular NP-GPCR gene. Each pair thus establishes 
the prospect of a modulatory network with nodes defined by the neurotaxonomic identities of the 
transmitting NPP-expressing and the receiving NP-GPCR-expressing neurons. The analyses represented 
in Figs. 1, 2, 3 and 5 and Table 3 establish that at least one of the 37 pairs directly involves every neuron 
sampled, and that the vast majority of neurons are directly involved in more than one of the 37 predicted 
networks. Because of this saturated, multiplexed coverage of all neurons and neuron types, we refer to 
these predicted neuropeptidergic networks as “dense”. 
The logic of our prediction of multiplexed NP networks is summarized in the form of a simplified schematic 
by Figure 7A-E. Figure 7 also suggests how multiple NP networks may align with neuron-type-based 
predictions of synaptic network architectures as the relevant empirical connectomic and neurotaxonomic 
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information, as schematized by (Fig. 7F)  becomes available. Figure 7G integrates the fictitious network 
graphs of Figs. 7E and 7G, articulating a schematic view of cortical circuitry as the superimposition of 
many and diverse modulatory and synaptic networks, with neuron types as common nodes uniting a 
heterogeneous multiplicity of slow and fast signaling networks. 

 
Figure 7. Schema for transcriptomic prediction of neuropeptide networks. (A) Three fictitious, conceptual neuropeptide 
systems (NP1, NP2 and NP3, color-coded red, green and blue) stand in here for the much larger numbers of actual peptidergic 
signaling elements listed in Tables 1, 2 and 3 above. Biological literature cited in main text predicts paracrine intercellular 
signaling from neurons secreting products (NPx) of precursor genes (NPPx) to neurons expressing the receptor gene (NPRx). 
Paracrine diffusion of NP products is represented in this figure by scattered red, green and blue dots. (B) Four fictitious neuron 
types (“a” and “b” excitatory, “c” and “d” inhibitory, as coded by pastel shades) stand in here for the scores of transcriptomic 
cell types, some glutamatergic, some GABAergic, discerned by Tasic, et al., as tabulated in Suppl. Fig. 1. (C) A gene 
expression “heat” map, much smaller but otherwise analogous to those portrayed Figs. 3 and 5 above, represents neuron-
type-specific mRNA levels in the fictitious 3 NPPx and 3 NPRx genes of panel A. (D) Three neuron-type-based 
neuropeptidergic coupling matrices analogous to the 37 NP predicted coupling matrices represented in Fig. 6 and Suppl. Fig. 
2, derived here from the schematic heat map of panel C. (E) Schematic NP network coupling graphs cast from the NP coupling 
matrices of panel D. (F) Fictitious neuron-type-based synaptic network graphs as expected from the eventual convergence of 
empirical connectomic and connectome-based neurotaxonomic analysis. (G) A multiplex superimposing all three NP coupling 
graphs from panel E, with neuron types a-d serving as common nodes in this unified diffusion graph. The fictitious excitatory 
and inhibitory synaptic networks of panel F are overlaid here to represent the aspiration to eventually integrate empirical 
descriptions of synaptic and myriad modulatory networks. 

Transcriptomic prediction of paracrine local signaling from GABAergic neuron sources is particularly 
compelling. Because few cortical GABAergic neurons have axons that project beyond the confines of a 
single cortical area, considerations of diffusion physics and the limited lifetime of peptides after secretion 
strongly imply that secreted neuropeptides must act locally, if at all. The extremely high levels of NPP 
expression in GABAergic neurons argue, in turn, that they must act somewhere. Most cortical 
glutamatergic neurons do emit long axons, so it is possible that neuropeptides secreted from such 
neurons may act in remote and perhaps extracortical projection target areas. Even so, most cortical 
glutamatergic neurons do have locally ramifying axons and may also secrete neuropeptides from their 
local dendritic arbors (Vila-Porcile et al., 2009). The high cortical expression of NP-GPCRs cognate to 
NPP genes expressed by glutamatergic neurons in the same local area suggests a scenario supportive 
of local modulatory signaling from glutamatergic neuron sources, even though this case may not be quite 
as strong as that for GABAergic neurons.  That said, the much more profuse expression of NPP genes in 
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GABAergic neuron types along with the somewhat more profuse NP-GPCR expression in glutamatergic 
types still suggests a “prevailing wind” of peptidergic signaling, blowing predominantly from GABAergic 
to glutamatergic neurons, as presaged in an earlier microarray analysis of developing mouse cortex 
(Batista-Brito et al., 2008). Though our NP network predictions are entirely consistent with decades of 
pioneering work on peptidergic neuromodulation and cortical gene expression (Burbach, 2011; Hökfelt 
et al., 2013; van den Pol, 2012), it is perhaps only with the recent advent of data with single-cell resolution 
and genomic depth that it has become reasonable to propose the extreme neuron-type-specificity and 
density of network coverage suggested by our analysis . The cell-type-specific patterning of NP gene 
expression has allowed us to cast our predictions in testable form, and we believe emerging means to 
perturb and sense neuropeptide signaling, as discussed below, bring with them means to test these 
predictions critically.  
Caveats to transcriptomic prediction. The present predictions of functional neuromodulatory coupling 
are based on analysis of cellular mRNA abundance, but prediction from such data depends upon (1) 
extrapolation from cellular mRNA census to inference about the synthesis, processing, localization and 
functional status of cellular NPP and NP-GPCR proteins, (2) assumptions about neuropeptide diffusion 
and lifetime in cortical interstitial spaces, (3) assumptions about signal transduction and effector 
consequences of neuropeptide binding in cortex to target cell NP-GPCR receptors. Though we have 
already discussed several factors mitigating such concerns, we stipulate here that these uncertainties 
remain substantial, and note the need for much further investigation.  
Testing peptidergic network predictions. Physiological and anatomical experimentation will be essential 
to testing transcriptomic predictions of intracortical neuropeptide signaling.  We have suggested that 
such work may have been frustrated in the past by irreproducibility due to the uncharted multiplicity, 
neuron-type-specificity, and redundancy of NPP and NP-GPCR expression. This conundrum may now 
be resolved with the emergence of transcriptomic neurotaxonomies and new tools for experimental 
access to specific cortical neuron types. Such access may be either prospective, using Cre driver lines 
(Daigle et al., 2018; He et al., 2016; Madisen et al., 2015) or viral vectors (Dimidschstein et al., 2016) of 
substantial neuron-type-specificity, or retrospective using highly multiplexed FISH (Lein et al., 2017; Zeng 
and Sanes, 2017) or immunostaining methods (He et al., 2016; Xu et al., 2010), patch-seq (Cadwell et al., 
2017; Lein et al., 2017) or morphological neuron type classification methods (DeFelipe et al., 2013; Zeng 
and Sanes, 2017). By allowing the generation of highly specific predictions of peptidergic signaling 
between specific neuron types, these new molecular tools should enormously advance the prospects for 
decisive and repeatable tests of neuron-type-specific intracortical neuropeptide signaling hypotheses.  
A vast pharmacopeia of well-characterized specific ligands and antagonists for most NP-GPCRs 
(Alexander et al., 2017) will be bedrock for the functional analysis of neuron-type-specific peptide 
signaling. For analysis of type-specific neuropeptide signaling in network context (i.e., ex vivo slices and 
in vivo), newer optophysiological methods of calcium imaging and optogenetic stimulation/inhibition will 
certainly join electrophysiology as foundations for measurement of neuropeptide impacts. In addition, 
many new tools more specific to neuropeptide signaling are emerging. Super-resolution 3D 
immunohistologies like array tomography (Smith, 2018) and 3D single-molecule methods (Jia et al., 2014; 
von Diezmann et al., 2017) will enable imaging of DCV localization and neuropeptide contents in type-
specific network anatomical context. Genetically encoded sensors of extracellular GPCR ligands 
(Patriarchi et al., 2018; Sun et al., 2018), GPCR activation (Haider et al., 2019; Hill and Watson, 2018; 
Livingston et al., 2018; Ratnayake et al., 2017; Stoeber et al., 2018), G-protein mobilization (Ratnayake et 
al., 2017), cAMP concentration (Hackley et al., 2018; Ma et al., 2018), protein kinase activation (Chen et 
al., 2014) and protein phosphorylation (Haider et al., 2019) will enable fine dissection of NP dynamics and 
NP-GPCR signal transduction events (Spangler and Bruchas, 2017). In addition, new caged NP-GPCR 
ligands (Banghart et al., 2018) and antagonists (Banghart et al., 2013) will provide for precise spatial and 
temporal control for NP receptor activation. All of these tools have been demonstrated already in 
physiological applications, and all should be readily applicable to testing specific hypotheses derived 
from the type-specific peptidergic signaling predictions we have set forth. 
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Prospects for elucidating network homeostasis, modulation and plasticity. The original motivation for 
the present analysis was to deepen our understanding of the homeostasis, modulation and plasticity of 
cortical synaptic networks. Our work has raised the prospect that dense and highly multiplexed 
peptidergic neuromodulation could play very significant roles in these processes. Due to the clearly 
formidable complexity of cortical networks, however, a real grasp of the myriad network interactions 
implicated is certain to require theoretical and computational approaches, in addition to the biophysical 
approaches outlined in the preceding section.  Perhaps most intriguing in the more theoretical directions 
are concepts that have emerged from work at the fertile intersection of the neuroscience of learning and 
memory and the computer science of machine learning and artificial neural networks (Dayan and Abbott, 
2001; Huh and Sejnowski, 2017; Koch and Segev, 1998; Lillicrap et al., 2016; Marblestone et al., 2016; 
Shai and Larkum, 2017; Song et al., 2000). 
Neuroscience and computer science efforts to model or engineer adaptive neural networks share the 
hard problem of optimal adjustment of large numbers of what both fields call “synaptic weights”. At the 
heart of this challenge is “credit assignment”, that is, the assignment of “credit” for progressive 
improvement during network development and learning processes to the correct subsets of synapses as 
needed to guide individualized synaptic weight adjustment. Neuroscientists struggle with the credit 
assignment problem as they search for the relevant biological learning rules. Computer scientists struggle 
with the excessive computational requirements of currently standard backpropagation-of-error-based 
credit assignment. One concept that has come into prominence as a candidate biologically plausible 
solution to the credit assignment problem is that of modulated “Hebbian” or “spike-timing-dependent” 
plasticity (STDP) (Bengio et al., 2016; Dan and Poo, 2006; Farries and Fairhall, 2007; Florian, 2007; 
Frémaux and Gerstner, 2016; Izhikevich, 2007; Marblestone et al., 2016; Pawlak et al., 2010; Poo et al., 
2016; Roelfsema and Holtmaat, 2018; Xie and Seung, 2003). While most biological studies of modulated 
STDP so far have focused on the monoamine neuromodulator dopamine (Izhikevich, 2007; Kuśmierz et 
al., 2017; Schultz, 2015), known commonalities of signal transduction downstream from widely varying 
GPCRs suggest strongly that NP-GPCRs could play roles closely analogous to those postulated for 
dopamine-selective GPCRs (Hamilton et al., 2013; Roelfsema and Holtmaat, 2018). 
A neurotaxonomic framework for integrating multiple, superimposed modulatory and synaptic networks, 
analogous to that schematized in very simple form by Fig. 7, may prove critical to advancing theoretical 
analyses of synaptic network homeostasis and plasticity. At present, efforts in this direction are limited 
by scant empirical information on synaptic connectomes and their neurotaxonomic annotation. It is very 
encouraging, however, that vigorous ongoing efforts, e.g., see (Daigle et al., 2018; Swanson and 
Lichtman, 2016; Tasic, 2018; Zeng and Sanes, 2017), suggest that such information is likely to materialize 
soon. 
Prospects for neuropsychiatric drug development. Molecular components of neuropeptide signaling 
have beguiled as drug since targets the first wave of discovery that crested in the late twentieth century 
(Hökfelt et al., 2003; Hoyer and Bartfai, 2012). Many billions of dollars have been invested accordingly, 
but the returns seem to have been less than originally hoped. The present study raises the possibility that 
both NP-targeted drug discovery and the reproducibility of physiological experimentation have been 
hindered in similar ways by the same uncharted multiplicity, cell-type-specificity and redundancy of NPP 
and NP-GPCR expression. By charting these waters, single-neuron transcriptomic analysis may improve 
the odds substantially for both reproducible research and drug development. 
Today’s psychiatric pharmaceuticals almost all target signaling by the monoamine neuromodulators 
dopamine, serotonin, noradrenaline and/or histamine and their selective GPCR receptors (Data-Franco 
et al., 2017; Hamon and Blier, 2013; Millan et al., 2015; Urs et al., 2014). Because they are so numerous, 
neuropeptide signaling systems may be much more neuron-type specific than monoamines. Greater 
neuron-type-specificity may translate to NP-targeting drugs being less troubled by side-effects and 
compensation (Hoyer and Bartfai, 2012). Moreover, while GPCRs have long been known as among the 
most “druggable” of targets (Gurrath, 2001; Lundstrom, 2009), the “druggability” of GPCRs is currently 
advancing very rapidly due to advances in GPCR structural biology and molecular dynamic simulations 
(Hilger et al., 2018; Koehl et al., 2018; Weis and Kobilka, 2018). It seems likely that new knowledge of 
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peptide component neuron-type-specificity may substantially advance the development of NP-targeting 
pharmaceuticals. 
Conclusions. Analysis of single-cell RNA-Seq data from mouse cortex reveals a new panoramic view of 
NPP and NP-GPCR gene expression. This view exposes an unexpected density and multiplicity of 
neuropeptide gene expression, as we have summarized and discussed. We have articulated many of 
findings into new and specific predictions regarding ways that cortical neurons may modulate one 
another’s function. These predictions are just now subject to experimental test with the recent emergence 
of transcriptomic neurotaxonomies, means for genetic access to specific neuron types and powerful new 
tools for biophysical analysis of neuropeptide actions. Such tests are likely to greatly deepen our 
understanding of adaptive cortical function. 
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Supplementary Materials 
Supplementary Figure 1. Brief summary of the resource (Tasic et al., 2018) neurotaxonomy. 

 

 

 
 
Transcriptomic neurotaxonomies enable neuron-type-specific profiling of NPP and NP-GPCR gene 
expression. Tasic and co-workers (Tasic et al., 2018) generated these taxonomies by iterative 
hierarchical clustering of data from single-cell RNA-Seq analysis of 22,439 mouse cortical neurons 
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dissociated from areas VISp and ALM. (A) Taxonomic cladogram of glutamatergic neurons. Horizontal 
bars represent numbers of analyzed cells falling into each neuron type category. (B) Neuron type labels 
and type-code colors for each glutamatergic neuron type. (C) Taxonomic cladogram for GABAergic 
neurons. (D) Neuron type labels and type-code colors for each GABAergic neuron type. (E) 
Concatenated glutamatergic and GABAergic type-code color strips and type labels for (i) the resource 
aggregate of VISp and ALM neuron types (VISp+ALM), (ii) VISp-only neuron types, and (iii) ALM-only 
neuron types. The neuron-type color codes and neurotaxonomy strips i-iii will be re-used consistently 
throughout the present publication.  
The cladogram in (A) represents the Tasic 2018 taxonomy of glutamatergic neurons in areas VISp and 
ALM and indicates the number of single-cell transcriptomes mapped to each “leaf” cluster. These cell 
numbers bear some relation to the actual proportions of cell types in the source tissues, but the 
relationship is imprecise. More reliable quantitative information about neuron-type proportions is likely 
to emerge from ongoing spatial transcriptomics studies and is certain to be useful but unlikely to be 
critical to the present analysis. Panels (A) and (B) also introduces the Tasic neuron-type-coding color 
scheme for glutamatergic neurons, which are used consistently in Figs. 3-6 of the main text. The table 
in (B) enumerates and labels each of the 55 glutamatergic neuron type leaf clusters graphed in (A). 
These neuron type labels were generated by Tasic, et al., to capture salient distinguishing feature for 
each neuron type. For glutamatergic types, these features always include cortical layer and a VISp vs 
ALM area designation wherever a cell type was found only in that one area. The labels also include 
names of key marker genes. Panel (B) shows that most of the 55 Tasic glutamatergic types are 
exclusive either to VISp or to ALM, with only four (41. L6 CT Nxph2 Wls, 48. L6b Col8a1 Rxfp1, 53. L6b 
P2ry12 and 55. L6b Hsd17b) common to both areas. 
Panels (C) and (D) represent the Tasic 2018 taxonomy of 60 GABAergic cortical neuron types just as (A) 
and (B) represented the 55 Glutamatergic types. These figures also introduce the Tasic type-coding 
color scheme for GABAergic neurons, which again will be used consistent in all following figures. As 
evident from comparison of (B) and (D), and discussed extensively by Tasic, et al., GABAergic neuron 
types are much more prevalently common to both VISp and ALM cortical areas, with all but two (88. Sst 
Tac1 Tacr3 and 112. Pvalb Reln Itm2a) of the 60 GABAergic types found in both areas. For GABAergic 
neurons, the Tasic type labels refer strictly to marker gene combinations. A notably large fraction of the 
marker genes appearing in the Tasic type labels are either NPP or NP-GPCR genes. Names of these 
genes are highlighted by bold red type in both (B) and (D). Most of these red-highlighted NP genes can 
be found in Table 1 but a few cannot because they did not meet our curation criterion of high cortical 
expression of both members of a conjugate NPP and NP-GPCR pair. 
Panel (E) concatenates the Tasic glutamatergic and GABAergic neuron-type rosters and type-code 
color strips reproduced in Figs. 3A-D, tailored as needed to represent (i) all 115 neurons types in VISp 
and ALM, (ii) the 93 VISp-only types and (iii) the 84 ALM-only types. These edited rosters and code 
strips maintain a neuron type sequence dictated by the cladograms of (A) and (C). Though the sequence 
of glutamate and GABA types is somewhat arbitrary, we concatenated the rosters using glutamatergic-
first ordering used by Tasic, et al. (Tasic et al., 2018). Note that (E) sub-panels i, ii and iii are aligned 
laterally to keep the conserved GABAergic cell types in horizontal register. Type-color pixels are 
replaced with black spacers for the two GABAergic cell types that are not present in ALM, again to 
maintain horizontal register of the conserved GABAergic types. Because few glutamatergic cell types 
are conserved between VISp and ALM, there is no such precise register for the glutamatergic types. 
The annotated color strips in this panel are provided to aid in interpretation of subsequent figures where 
space and font-size constraints render repeated typographic annotation impractical. It is hoped that 
even individuals with color vision anomalies will find these type-code color strips useful due to the 
redundancy of type order, luminance and hue information. 
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Supplementary Figure 2. Predicted Neuron-Type-Based Peptidergic Coupling Matrices. 
 
Predictions of neuron-type-based coupling matrices for all 37 of the cognate NPP/NP-GPCR pairs listed 
in Table 3, pairing predictions for VISp and ALM cortical areas, color grouped according to G! class. All 
predictions were generated as described in connection with Fig. 6 and are represented as in Figs. 6C and 
6D. 
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Supplementary Methods 
 
Autoencoder-based classifier development and evaluation methods. We used two types of 
gene datasets: 1) The “HE” gene set, which contains the expression of 6083 highly expressed 
neuronal genes in 22,439 neurons and 2) 47-gene sets, which contain the expression of 47 
specific genes in 22,439 neurons (chosen either as the set of peptidergic precursor genes or 
random sets of 47 genes as explained in main text). Both “HE” and 47-gene datasets are divided 
into training and validation sets using a 92%-8% split. 
 
Autoencoders are deep neural network models that consist of encoder/decoder subnetworks. In 
its basic form (Hinton and Salakhutdinov, 2006), the encoder subnetwork compresses the high 
dimensional input into a low dimensional representation, and the decoder subnetwork estimates 
the original input from that low dimensional representation. We constructed a network with two 
autoencoders, with 8 hidden layers each. The architecture of the first autoencoder(“HE Genes 
autoencoder”) is Input(6083) → Dropout(0.8) → Dense(100) → Dense(100) → Dense(100) → 
Dense(100) → Dense(d) → Batch Normalization (latent representation z1) → Dense(100) → 
Dense(100) → Dense(100) → Dense(100) → Dense(6083), and the architecture of the second 
autoencoder (“NP Genes autoencoder”) is Input(47) → Dropout(0) → Dense(50) → Dense(50) → 
Dense(50) → Dense(50) → Dense(d) → Batch Normalization (latent representation z2) → 
Dense(50) → Dense(50) → Dense(50) → Dense(50) → Dense(47). Here, the numbers in 
parentheses denote the number of units in that layer, the numbers of input/output units in each 
network match the number of input genes, and the Dropout layer (Srivastava et al., 2014) is used 
to prevent overfitting in the first network. The 2-d representations shown in Fig. 4-a (d=2) and 
the 5-d representations used in Fig4-d,e (d=5) are the outputs of the Batch Normalization layer 
(Ioffe and Szegedy, 2015) for both networks. The Dense layers use the rectified linear (ReLU) 
function as the nonlinear transformation except for Dense(d) layers which do not use a nonlinear 
transformation. Both networks were iteratively trained using the backpropagation algorithm with 
the Adam optimizer (Kingma and Ba, 2014) and a batch size of 956. The “HE Genes” network 
was trained for 50,000 epochs using the mean squared error between the input and the output 
layers as the loss function. The “NP genes” network was trained for 10,000 epochs using 
L=R+λC as the loss function, where R denotes the mean squared reconstruction loss as in the 
HE Genes network, C denotes the coupling loss between the latent representations of the two 
networks, and λ=100 is the weighting scalar between the two terms. After training the HE genes 
network and obtaining the latent representation z1 for each cell, C calculates the mean squared 
error between the latent representation of the NP genes network z2 and z1, normalized by the 
minimum eigenvalue of the 2-d representations of each batch during each training iteration. The 
two additive terms, R and C, together minimize the reconstruction error while attempting to 
match the representations learned based on the HE gene set. The same procedure was used for 
all small gene subsets including NP and random gene sets. The Python implementations of the 
autoencoders using the Tensorflow [128] and Keras [129] libraries will be made publicly available 
upon acceptance. 
 
We determined the optimal latent dimensionality (d=5) by varying the latent space dimensionality 
of the HE Genes network between 2 and 20 dimensions. The optimal dimensionality was chosen 
by maximizing the classification accuracy of a Gaussian Mixture Model (GMM) on a test set, 
whose cluster memberships in the training set are those of the resource taxonomy (Tasic et al., 
2018). We used the adjusted Rand index to quantify the similarity between two different 
partitionings of the same test set (e.g., the Tasic 2018 taxonomy as the ground truth and the 
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predictions of the GMM), where a score of 1 corresponds to a perfect matching and a score of 
0 corresponds to the chance level. At the optimal latent dimensionality of d=5, the GMM classifier 
achieved an adjusted Rand index of 0.8672 on the test set. 
 
We quantified the performance of the GMM classifiers due to the different gene sets using the 
hierarchical dendrogram of the Tasic 2018 taxonomy by calculating the Resolution Index (RI) [33] 
for each cell. RI measures the depth of the first common ancestor of the predicted node and the 
original node in the taxonomy, from the lowest resolution at the root (RI = 0) to the finest 
resolution at the leaves (RI = 1). To account for the exclusion of all non-neuronal cell-types, 
scores were normalized over the resolution index corresponding to the first neuronal node on 
the Tasic 2018 taxonomy [33]. The performance of each gene set was quantified by taking the 
average RI score (across the cells) due to the respective GMM classifiers acting on the respective 
latent space representations. The RI scores reported in the main text are averages over all cells 
(training and test). The corresponding scores due to the test set only are 0.920 for the NP 47-
gene subset, 0.768±0.039 for the expression-matched random sets of 47 genes, and  
0.464±0.069 for the random sets of 47 genes, demonstrating an even wider performance gap. 
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