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Abstract	23 
Genotype-by-environment	interaction	(GEI)	is	a	fundamental	component	in	understanding	24 
complex	trait	variation.	However,	it	remains	challenging	to	identify	genetic	variants	with	GEI	25 
effects	in	humans	largely	because	of	the	small	effect	sizes	and	the	difficulty	of	monitoring	26 
environmental	fluctuations.	Here,	we	demonstrate	that	GEI	can	be	inferred	from	genetic	27 
variants	associated	with	phenotypic	variability	in	a	large	sample	without	the	need	of	measuring	28 
environmental	factors.	We	performed	a	genome-wide	variance	quantitative	trait	locus	(vQTL)	29 
analysis	of	~5.6	million	variants	on	348,501	unrelated	individuals	of	European	ancestry	for	13	30 

quantitative	traits	in	the	UK	Biobank,	and	identified	75	significant	vQTLs	with	P<2.0´10-9	for	9	31 
traits,	especially	for	those	related	to	obesity.	Direct	GEI	analysis	with	five	environmental	factors	32 
showed	that	the	vQTLs	were	strongly	enriched	with	GEI	effects.	Our	results	indicate	pervasive	33 
GEI	effects	for	obesity-related	traits	and	demonstrate	the	detection	of	GEI	without	34 
environmental	data.	 	35 
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Introduction	36 
Most	human	traits	are	complex	because	they	are	affected	by	many	genetic	and	environmental	37 
factors	as	well	as	potential	interactions	between	them1,2.	Despite	the	long	history	of	effort3-5,	38 
there	has	been	limited	success	in	identifying	genotype-by-environment	interaction	(GEI)	effects	39 
in	humans5-8.	This	is	likely	because	many	environmental	exposures	are	unknown	or	difficult	to	40 
record	during	the	life	course,	and	because	the	effect	sizes	of	GEI	are	small	given	the	polygenic	41 
nature	of	most	human	traits9-11	so	that	the	sample	sizes	of	most	previous	studies	are	not	large	42 
enough	to	detect	the	small	GEI	effects.	43 
	44 
The	GEI	effect	of	a	genetic	variant	on	a	quantitative	trait	could	lead	to	differences	in	variance	of	45 
the	trait	among	groups	of	individuals	with	different	variant	genotypes	(Figure	1a-b).	GEI	effects	46 
can	therefore	be	inferred	from	a	variance	quantitative	trait	locus	(vQTL)	analysis12.	Unlike	the	47 
classical	quantitative	trait	locus	(QTL)	analysis	that	tests	the	allelic	substitution	effect	of	a	48 
variant	on	the	mean	of	a	phenotype	(Figure	1c),	vQTL	analysis	tests	the	allelic	substitution	effect	49 
on	the	trait	variance	(Figure	1b	or	1d).	In	comparison	to	the	analyses	that	perform	direct	GEI	50 
tests,	vQTL	analysis	could	be	a	more	powerful	approach	to	identify	GEI	because	it	does	not	51 
require	measures	of	environmental	factors	and	thus	can	be	performed	in	data	with	very	large	52 
sample	sizes13.	Although	there	had	been	empirical	evidence	for	the	genetic	control	of	53 
phenotypic	variance	in	livestock	for	decades14,15,	it	was	not	until	recent	years	that	genome-wide	54 
vQTL	analysis	was	applied	in	humans12,16,17,	and	only	a	handful	of	vQTLs	have	been	identified	55 
for	a	limited	number	of	traits	(e.g.	the	FTO	locus	for	body	mass	index	(BMI)17)	owing	to	the	56 
small	effect	sizes	of	the	vQTLs.	The	availability	of	data	from	large	biobank-based	genome-wide	57 
association	studies	(GWAS)18,19	provide	an	opportunity	to	interrogate	the	genome	for	vQTLs	for	58 
a	range	of	phenotypes	in	cohorts	with	unprecedented	sample	size.	59 
	60 
On	the	other	hand,	the	statistical	methods	for	vQTL	analysis	are	not	entirely	mature13.	There	61 
have	been	a	series	of	classical	non-parametric	methods20,	originally	developed	to	detect	62 
violation	of	the		homogeneous	variance	assumption	in	linear	regression	model,	which	can	be	63 
used	to	detect	vQTLs,	including	the	Bartlett’s	test21,	the	Levene’s	test22,23	and	the	Fligner-Killen	64 
test24.	Recently,	more	flexible	parametric	models	have	been	proposed,	including	the	double	65 
generalized	linear	model	(DGLM)25-27	and	the	likelihood	ratio	test28.	In	addition,	it	has	been	66 
suggested	that	the	transformation	of	phenotype	that	alters	phenotype	distribution	also	has	an	67 
influence	on	the	power	and/or	false	positive	rate	(FPR)	of	a	vQTL	analysis16,29.	68 
	69 
In	this	study,	we	calibrated	the	most	commonly	used	statistical	methods	for	vQTL	analysis	by	70 
extensive	simulations.	We	then	used	the	best	performing	method	to	conduct	a	genome-wide	71 
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vQTL	analysis	for	13	quantitative	traits	in	348,501	unrelated	individuals	using	the	full	release	of	72 
the	UK	Biobank	(UKB)	data18.	We	further	investigated	whether	the	detected	vQTLs	are	enriched	73 
for	GEI	by	conducting	a	direct	GEI	test	for	the	vQTLs	with	five	environmental	factors.	74 
	75 
Results	76 
Evaluation	of	the	vQTL	methods	by	simulation	77 
We	used	simulations	to	quantify	the	FPR	and	power	(i.e.,	true	positive	rate)	for	the	vQTL	78 
methods	and	phenotype	processing	strategies	(Methods).	We	first	simulated	a	quantitative	trait	79 
based	on	a	simulated	single	nucleotide	polymorphism	(SNP),	i.e.,	a	single-SNP	model,	under	a	80 
number	of	different	scenarios,	namely:	1)	five	different	distributions	for	the	random	error	term	81 
(i.e.,	individual-specific	environment	effect);	2)	four	different	types	of	SNP	with	or	without	the	82 
effect	on	mean	or	variance	(Methods).	We	used	the	simulated	data	to	compare	four	most	widely	83 
used	vQTL	methods,	namely	the	Bartlett’s	test21,	the	Levene’s	test22,23,	the	Fligner-Killen	(FK)	84 
test24	and	the	DGLM25-27.	We	observed	no	inflation	in	FPR	for	the	Levene’s	test	under	the	null	85 
(i.e.,	no	vQTL	effect)	regardless	of	the	skewness	or	kurtosis	of	the	phenotype	distribution	or	the	86 
presence	or	absence	of	the	SNP	effect	on	mean	(Supplementary	Figure	1a).	These	findings	are	in	87 
line	with	the	results	from	previous	studies16,20,30	that	demonstrate	the	Levene’s	test	is	robust	to	88 
the	distribution	of	phenotype.	The	FPR	of	the	Bartlett’s	test	or	DGLM	was	inflated	if	the	89 
phenotype	distribution	was	skewed	or	heavy-tailed	(Supplementary	Figure	1a).	The	FK	test	90 
seemed	to	be	robust	to	kurtosis	but	vulnerable	to	skewness	of	the	phenotype	distribution	91 
(Supplementary	Figure	1a).	We	also	observed	that	logarithm	or	rank-based	inverse-normal	92 
transformation	(RINT)	could	result	in	inflated	test	statistics	in	the	presence	of	QTL	effect	(i.e.,	93 
SNP	effect	on	mean;	Supplementary	Figure	1b).	94 
	95 
To	simulate	more	complex	scenarios,	we	used	a	multiple-SNP	model	with	two	covariates	(age	96 
and	sex)	and	different	numbers	of	SNPs	(Figure	2).	The	results	were	similar	to	those	observed	97 
above,	although	the	power	of	the	Levene’s	test	decreased	with	an	increase	of	the	number	of	98 
causal	SNPs	(Figure	2a).	Again,	logarithm	transformation	or	RINT	gave	rise	to	an	inflated	FPR	in	99 
the	presence	of	SNP	effect	on	mean,	and	RINT	led	to	a	further	loss	of	power	(Figure	2b).	These	100 
results	also	suggested	that	pre-adjusting	the	phenotype	by	covariates	slightly	increased	the	101 
power	of	vQTL	detection	(Figure	2b).	We	therefore	used	the	Levene’s	test	for	real	data	analysis	102 
with	the	phenotypes	pre-adjusted	for	covariates	without	logarithm	transformation	or	RINT.	103 
	104 
Genome-wide	vQTL	analysis	for	13	UKB	traits	105 
We	performed	a	genome-wide	vQTL	analysis	using	the	Levene’s	test	with	5,554,549	genotyped	106 
or	imputed	common	variants	on	348,501	unrelated	individuals	of	European	ancestry	for	13	107 
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quantitative	traits	in	the	UKB18	(Methods,	Supplementary	Table	1	and	Supplementary	Figure	2).	108 
For	each	trait,	we	pre-adjusted	the	phenotype	for	age	and	the	first	10	principal	components	109 
(PCs,	derived	from	SNP	data)	and	standardised	the	residuals	to	z-scores	in	each	gender	group	110 
(Methods).	This	process	removed	not	only	the	effects	of	age	and	the	first	10	PCs	on	the	111 
phenotype	but	also	the	differences	in	mean	and	variance	between	the	two	genders.	We	excluded	112 
individuals	with	adjusted	phenotypes	more	than	5	standard	deviations	(SD)	from	the	mean	and	113 
removed	SNPs	with	minor	allele	frequency	(MAF)	smaller	than	0.05	to	avoid	potential	false	114 
positive	associations	due	to	the	coincidence	of	a	low-frequency	variant	with	an	outlier	115 
phenotype	(see	Supplementary	Figure	3	for	an	example).	We	acknowledge	that	this	process	116 
could	potentially	result	in	a	loss	of	power,	but	this	can	be	compensated	for	by	the	use	of	a	very	117 
large	sample	(n	~	350,000).	118 
	119 
With	an	experiment-wise	significant	threshold	2.0´10-9	(i.e.,	1´10-8/5.03	with	1´10-8	being	a	120 

more	stringent	genome-wide	significant	threshold	recommended	by	recent	studies31,32	and	5.03	121 
being	the	effective	number	of	independent	traits	(Supplementary	Note	3)),	we	identified	75	122 
vQTLs	for	9	traits	(Figure	3,	Table	1	and	Supplementary	Table	2).	There	was	no	vQTL	for	height,	123 
consistent	with	the	observation	in	a	previous	study17.	We	identified	more	than	15	vQTLs	for	124 
each	of	the	three	obesity-related	traits,	i.e.,	BMI,	waist	circumference	(WC),	and	hip	125 
circumference	(HC)	(Table	1).	The	75	vQTLs	were	located	at	40	near-independent	loci	after	126 
excluding	one	of	each	pair	of	top	vQTL	SNPs	(i.e.,	the	SNP	with	lowest	vQTL	p-value	at	each	127 
vQTL	association	peak)	with	linkage	disequilibrium	(LD)	r2	>	0.01,	suggesting	that	some	of	the	128 
loci	were	associated	with	the	phenotypic	variance	of	multiple	traits.	For	example,	the	FTO	locus	129 
was	associated	with	the	phenotypic	variance	of	WC,	HC,	BMI,	body	fat	percentage	(BFP)	and	130 
basal	metabolic	rate	(BMR)	(Figure	4).	For	the	lung-function-related	traits,	there	was	no	131 
significant	vQTL	for	forced	expiratory	volume	in	one	second	(FEV1)	and	forced	vital	capacity	132 
(FVC)	but	were	3	vQTLs	for	FEV1/FVC	ratio	(FFR).		133 
	134 
The	Levene’s	test	assesses	the	difference	in	variance	among	three	genotype	groups	free	of	the	135 
assumption	about	additivity	(i.e.,	the	vQTL	effect	of	carrying	two	copies	of	the	effect	allele	is	not	136 
assumed	to	be	twice	that	carrying	one	copy).	We	found	two	vQTLs	(i.e.,	rs141783576	and	137 
rs10456362)	potentially	showing	non-additive	genetic	effect	on	the	variance	of	HC	and	BMR,	138 
respectively	(Supplementary	Table	2).	139 
	140 
GWAS	analysis	for	the	13	UKB	traits	141 
To	investigate	whether	the	SNPs	with	effects	on	variance	also	have	effects	on	mean,	we	142 
performed	GWAS	(or	genome-wide	QTL)	analyses	for	the	13	UKB	traits	described	above.	We	143 
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identified	3,803	QTLs	at	an	experiment-wise	significance	level	(i.e.,	PQTL	<	2.0´10-9)	for	the	13	144 
traits	in	total,	a	much	larger	number	than	that	of	the	vQTLs	(Table	1	and	Figure	5).	Among	the	145 
75	vQTLs,	the	top	vQTL	SNPs	at	9	loci	did	not	pass	the	experiment-wise	significance	level	in	the	146 
QTL	analysis	(Supplementary	Table	2).	For	example,	the	CCDC92	locus	showed	a	significant	147 
vQTL	effect	but	no	significant	QTL	effect	on	WC	(Supplementary	Table	2	and	Figure	6a),	148 
whereas	the	FTO	locus	showed	both	significant	QTL	and	vQTL	effects	on	WC	(Figure	6b).	For	the	149 
66	vQTLs	with	both	QTL	and	QTL	effects,	the	vQTL	effects	were	all	in	the	same	directions	as	the	150 
QTL	effects,	meaning	that	for	any	of	these	SNPs	the	genotype	group	with	larger	phenotypic	151 
mean	also	tends	to	have	larger	phenotypic	variance	than	the	other	groups.	For	the	9	loci	with	152 
vQTL	effects	only,	it	is	equivalent	to	a	scenario	where	a	QTL	has	a	GEI	effect	with	no	(or	a	153 
substantially	reduced)	effect	on	average	across	different	levels	of	an	environmental	factor	154 
(Figure	1b).	155 
	156 
vQTL	and	GEI	157 
To	further	investigate	whether	the	associations	between	vQTLs	and	phenotypic	variance	can	be	158 
explained	by	GEI,	we	performed	a	direct	GEI	test	based	on	an	additive	genetic	model	with	an	159 
interaction	term	between	a	top	vQTL	SNP	and	one	of	five	environmental/covariate	factors	in	the	160 
UKB	data	(Methods).	The	five	environmental	factors	are	sex,	age,	physical	activity	(PA),	161 
sedentary	behaviour	(SB),	and	ever	smoking	(Supplementary	Note	4,	Supplementary	Figure	4	162 
and	Supplementary	Table	3).	We	observed	16	vQTLs	showing	a	significant	GEI	effect	with	at	163 

least	one	of	five	environmental	factors	after	correcting	for	multiple	tests	(p	<	1.3´10-4	=	164 
0.05/(75*5);	Figure	7a	and	Supplementary	Table	4).		165 
	166 
To	test	whether	the	GEI	effects	are	enriched	among	vQTLs	in	comparison	with	the	same	number	167 
of	QTLs,	we	performed	GEI	test	for	75	top	GWAS	SNPs	randomly	selected	from	all	the	QTLs	and	168 
repeated	the	analysis	1000	times.	Of	the	75	top	SNPs	with	QTL	effects,	the	number	of	SNPs	with	169 
significant	GEI	effects	was	1.39	averaged	from	the	1000	repeated	samplings	with	a	SD	of	1.15	170 
(Figure	7b),	significantly	lower	the	number	(16)	observed	for	the	vQTLs	(the	difference	is	larger	171 
than	12	SDs,	equivalent	to	p	=	6.6´10-37).	This	result	shows	that	SNPs	with	vQTL	effects	are	172 

much	more	enriched	with	GEI	effects	compared	to	those	with	QTL	effects.	To	exclude	the	173 
possibility	that	the	GEI	signals	were	driven	by	phenotype	processing	(e.g.,	the	adjustment	of	174 
phenotype	for	sex	and	age),	we	repeated	the	GEI	analyses	using	raw	phenotype	data	without	175 
covariates	adjustment;	the	results	remain	largely	unchanged	(Supplementary	Figure	5).		176 
	177 
Discussion	178 
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In	this	study,	we	leveraged	the	genetic	effects	associated	with	phenotypic	variability	to	infer	179 
GEI.	We	calibrated	the	most	commonly	used	vQTL	methods	by	simulation.	We	found	that	the	180 
FPR	of	the	Levene’s	test	was	well-calibrated	across	all	simulation	scenarios	whereas	the	other	181 
methods	showed	an	inflated	FPR	if	the	phenotype	distribution	was	skewed	or	heavy-tailed	182 
under	the	null	hypothesis	(i.e.,	no	vQTL	effect),	despite	that	the	Levene’s	test	appeared	to	be	less	183 
powerful	than	the	other	methods	under	the	alternative	hypothesis	in	particular	when	the	per-184 
variant	vQTL	effect	was	small	(Figure	2	and	Supplementary	Figure	1).	Parametric	bootstrap	or	185 
permutation	procedures	have	been	proposed	to	reduce	the	inflation	in	the	test-statistics	of	186 
DGLM	and	LRT-based	method,	both	of	which	are	expected	to	be	more	powerful	than	the	187 
Levene’s	test28,30,	but	bootstrap	and	permutation	are	computationally	inefficient	and	thus	not	188 
practically	applicable	to	biobank	data	such	as	the	UKB.	In	addition,	we	observed	inflated	FPR	for	189 
the	Levene’s	test	in	the	absence	of	vQTL	effects	but	in	the	presence	of	QTL	effects	if	the	190 
phenotype	was	transformed	by	logarithm	transformation	or	RINT.	We	therefore	recommend	191 
the	use	of	the	Levene’s	test	in	practice	without	logarithm	transformation	or	RINT	of	the	192 
phenotype.	In	addition,	a	very	recent	study	by	Young	et	al.33	developed	an	efficient	algorithm	to	193 
perform	a	DGLM	analysis	and	proposed	a	method	(called	dispersion	effect	test	(DET))	to	194 
remove	the	founding	in	vQTL	associations	(identified	by	DGLM)	due	to	the	QTL	effects.	We	195 
showed	by	simulation	that	when	the	number	of	simulated	causal	variants	was	relatively	large	196 
(note	that	the	DET	test	is	not	applicable	to	oligogenic	traits),	the	Young	et	al.	method	(DGLM	197 
followed	by	DET)	performed	similarly	as	the	Levene’s	test	with	differences	depending	on	how	198 
the	phenotype	was	processed	(Supplementary	Figure	6).	199 
	200 
We	identified	75	genetic	variants	with	vQTL	effects	for	9	quantitative	traits	in	the	UKB	at	a	201 
stringent	significance	level	and	observed	strong	enrichment	of	GEI	effects	among	the	genetic	202 
variants	with	vQTL	effects	compared	to	those	with	QTL	effects.	There	are	several	vQTLs	for	203 
which	the	GEI	effect	has	been	reported	in	previous	studies.	The	first	example	is	the	interaction	204 
effect	of	the	CHRNA5-A3-B4	locus	(rs56077333)	with	smoking	lung	function	(as	measured	by	205 
FFR	ratio,	i.e.,	FEV1/FVC),	PvQTL	=	1.1´10-14	and	PGEI(smoking)	=	4.6´10-25	(Supplementary	Table	2	206 

and	4).	The	CHRNA5-A3-B4	gene	cluster	is	known	to	be	associated	with	smoking	and	nicotine	207 
dependence34-36.	However,	results	from	recent	GWAS	studies37-39	do	not	support	the	association	208 
of	this	locus	with	lung	function.	We	hypothesize	that	the	effect	of	the	CHRNA5-A3-B4	locus	on	209 
lung	function	depends	on	smoking40	(Supplementary	Table	5).	The	vQTL	signal	at	this	locus	210 

remained	(PvQTL	=	5.2´10-12)	after	adjusting	the	phenotype	for	array	effect,	which	was	reported	211 
to	affect	the	QTL	association	signal	at	this	locus18.	The	second	example	is	the	interaction	of	the	212 

WNT16-CPED1	locus	with	age	for	BMD	(rs10254825:	PvQTL	=	2.0´10-45	and	PGEI(age)	=	1.2´10-7).	213 
The	WNT16-CPED1	locus	is	one	of	the	strongest	BMD-associated	loci	identified	from	GWAS41,42.	214 
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We	observed	a	genotype-by-age	interaction	effect	at	this	locus	for	BMD	(Supplementary	Table	215 
6),	in	line	with	the	results	from	previous	studies	that	the	effect	of	the	top	SNP	at	WNT16-CPED1	216 
on	BMD	in	humans43	and	the	knock-out	effect	of	Wnt16	on	bone	mass	in	mice44	are	age-217 
dependent.	The	third	example	is	the	interaction	of	the	FTO	locus	with	physical	activity	and	218 
sedentary	behaviour	for	obesity-related	traits	(PvQTL	<	1´10-10	for	BMI,	WC,	HC,	BFP	and	BMR;	219 

PGEI(PA)	=	1.3´10-10	for	BMI,	1.4´10-7	for	WC,	5.3´10-7	for	HC	and	2.6´10-7	for	BMR).	The	FTO	220 
locus	was	one	of	the	first	loci	identified	by	the	GWAS	of	obesity-related	traits45	although	221 
subsequent	studies46,47	show	that	IRX3	and	IRX5	(rather	than	FTO)	are	the	functional	genes	222 
responsible	for	the	GWAS	association.	The	top	associated	SNP	at	the	FTO	locus	is	not	associated	223 
with	physical	activity	but	its	effect	on	BMI	decreases	with	the	increase	of	physical	activity	224 
level48,49,	consistent	with	the	interaction	effects	of	the	FTO	locus	with	physical	activity	or	225 
sedentary	behaviour	for	obesity-related	traits	identified	in	this	study	(Supplementary	Tables	7	226 
and	8).	In	addition,	5	of	the	22	BMI	vQTLs	were	in	LD	(r2	>	0.5)	with	the	variants	(identified	by	a	227 
recently	developed	multiple-environment	GEI	test)	showing	significant	interaction	effects	at	228 

FDR	<	5%	(corresponding	to	p	<	1.16´10-3)	with	at	least	one	of	64	environmental	factors	for	229 
BMI	in	the	UKB50.	230 
	231 
Apart	from	GEI,	there	are	other	possible	interpretations	of	an	observed	vQTL	signal,	including	232 
“phantom	vQTLs”28,51	and	epistasis	(genotype-by-genotype	interaction).	If	the	underlying	causal	233 
QTL	is	not	well	imputed	or	not	well	tagged	by	a	genotyped/imputed	variant,	the	untagged	234 
variation	at	the	causal	QTL	will	inflate	the	vQTL	test-statistic,	potentially	leading	to	a	spurious	235 
vQTL	association,	i.e.,	the	so-called	phantom	vQTL.	We	showed	by	theoretical	deviations	that	236 
the	Levene’s	test-statistic	due	to	the	phantom	vQTL	effect	was	a	function	of	sample	size,	effect	237 
size	of	the	causal	QTL,	allele	frequency	of	the	causal	QTL,	allele	frequency	of	the	phantom	vQTL,	238 
and	LD	between	the	causal	QTL	and	the	phantom	vQTL	(Supplementary	Note	5	and	239 
Supplementary	Figure	7).	From	our	deviations,	we	computed	the	numerical	distribution	of	the	240 
expected	phantom	vQTL	F-statistics	given	a	number	of	parameters	including	the	sample	size	(n	241 
=	350,000),	variance	explained	by	the	causal	QTL	(q2	=	0.005,	0.01	or	0.02),	and	MAFs	of	the	242 
causal	QTL	and	the	phantom	vQTL	(MAF	=	0.05	–	0.5).	The	result	showed	that	for	a	causal	QTL	243 
with	q2	<	0.005	and	MAF	>	0.05,	the	largest	possible	phantom	vQTL	F-statistic	was	smaller	than	244 
2.69	(corresponding	to	a	p-value	of	6.8´10-2;	Supplementary	Figure	8).	This	explains	why	there	245 

were	thousands	of	genome-wide	significant	QTLs	but	no	significant	vQTL	for	height	(Table	1	246 
and	Figure	3).	This	result	also	suggests	that	the	vQTLs	detected	in	this	study	are	very	unlikely	to	247 
be	phantom	vQTLs	because	the	estimated	variance	explained	by	their	QTL	effects	were	all	248 
smaller	than	0.005	except	for	rs10254825	at	the	WNT16	locus	on	BMD	(q2	=	0.014)	249 
(Supplementary	Figure	9).	However,	our	numerical	calculation	also	indicated	that	for	a	QTL	250 
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with	MAF	>	0.3	and	q2	<	0.02,	the	largest	possible	phantom	vQTL	F-statistic	was	smaller	than	251 

5.64	(corresponding	to	a	p-value	of	3.6´10-3),	suggesting	rs10254825	is	also	unlikely	to	be	a	252 
phantom	vQTL.	Note	that	we	used	the	variance	explained	estimated	at	the	top	GWAS	SNP	to	253 
approximate	q2	of	the	causal	QTL	so	that	q2	was	likely	to	be	underestimated	because	of	254 
imperfect	tagging.	However,	considering	the	extremely	high	imputation	accuracy	for	common	255 
variants52,	the	strong	LD	between	the	causal	QTLs	and	the	GWAS	top	SNPs	observed	in	a	256 
previous	simulation	study	based	on	whole-genome-sequence	data31,	and	the	overestimation	of	257 
variance	explained	by	the	GWAS	top	SNPs	because	of	winner’s	curse,	the	underestimation	in	258 
causal	QTL	q2	is	likely	to	be	small.	In	addition,	we	re-ran	the	vQTL	analysis	with	the	phenotype	259 
adjusted	for	the	top	GWAS	variants	within	10Mb	distance	of	the	top	vQTL	SNP;	the	vQTL	signals	260 
after	this	adjustment	were	highly	concordant	with	those	without	adjustment	(Supplementary	261 
Figure	10).	We	further	showed	that	there	was	no	evidence	for	epistatic	interactions	between	the	262 
top	vQTL	SNPs	and	any	other	SNP	in	more	than	10	Mb	distance	or	on	a	different	chromosome	263 
(Supplementary	Figure	11).	264 
	265 
In	conclusion,	we	systematically	quantified	the	FPR	and	the	power	of	four	commonly	used	vQTL	266 
methods	by	extensive	simulations	and	demonstrated	the	robustness	of	the	Levene’s	test.	We	267 
also	showed	that	in	the	presence	of	QTL	effects	the	Levene’s	test	statistic	could	be	inflated	if	the	268 
phenotype	was	transformed	by	logarithm	transformation	or	RINT.	We	implemented	the	269 
Levene’s	test	as	part	of	the	OSCA	software	package53	(URLs)	for	efficient	genome-wide	vQTL	270 
analysis,	and	applied	OSCA-vQTL	to	13	quantitative	traits	in	the	UKB	and	identified	75	vQTL	(at	271 
40	independent	loci)	associated	with	9	traits,	9	of	which	did	not	show	a	significant	QTL	effect.	272 
As	a	proof-of-principle,	we	performed	GEI	analyses	in	the	UKB	with	5	environmental	factors,	273 
and	demonstrated	the	enrichment	of	GEI	effects	among	the	detected	vQTLs.	We	further	derived	274 
the	theory	to	compute	the	expected	“phantom	vQTL”	test-statistic	due	to	untagged	causal	QTL	275 
effect,	and	showed	by	numerical	calculation	that	our	observed	vQTLs	were	very	unlikely	to	be	276 
driven	by	imperfectly	tagged	QTL	effects.	Our	theory	is	also	consistent	with	the	observation	of	277 
pervasive	phantom	vQTLs	for	molecular	traits	with	large-effect	QTLs	(e.g.,	DNA	methylation51).	278 
However,	the	conclusions	from	this	study	may	be	only	applicable	to	quantitative	traits	of	279 
polygenic	architecture.	We	caution	vQTL	analysis	for	binary	or	categorical	traits,	or	molecular	280 
traits	(e.g.,	gene	expression	or	DNA	methylation),	for	which	the	methods	need	further	281 
investigation.	282 
	 	283 
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Methods	284 
Simulation	study	285 
We	used	a	DGLM25-27	to	simulate	the	phenotype	based	on	two	models	with	simulated	SNP	data	286 
in	a	sample	of	10,000	individuals,	i.e.,	a	single-SNP	model	and	multiple-SNP	model	with	two	287 
covariates	(i.e.	age	and	sex).	The	single-SNP	model	can	be	written	as	288 

𝑦 = 𝑤𝛽% + 𝑒	with	𝑙𝑜𝑔(𝜎-.) = 𝑤𝜙% + 𝑙𝑜𝑔(𝜎.)	289 

and	the	multiple-SNP	model	can	be	expressed	as	290 

𝑦 = ∑ 𝑐34
5 𝛽67 + ∑ 𝑤89

5 𝛽%: + 𝑒	with	𝑙𝑜𝑔(𝜎-
.) = ∑ 𝑐34

5 𝜙67 + ∑ 𝑤88
5 𝜙%: + 𝑙𝑜𝑔(𝜎

.),	291 

where	𝑦	is	a	simulated	phenotype;	𝑤	or	𝑤8	is	a	standardized	SNP	genotype,	i.e.,	𝑤 = (𝑥 −292 

2𝑓)/@2𝑓(1 − 𝑓)	with	𝑥	being	the	genotype	indicator	variable	coded	as	0,	1	or	2,	generated	from		293 

binomial(2,	f)	and	f	being	the	MAF	generated	from	uniform(0.01,	0.5);	cj	is	a	standardized	294 
covariate	with	c1	(sex)	generated	from	binomial(1,	0.5)	and	c2	(age)	generated	from	uniform(20,	295 
60);	e	is	an	error	term	normally	distributed	with	mean	0	and	variance	𝜎-..	To	simulate	the	error	296 
term	with	different	levels	of	skewness	and	kurtosis,	we	generated	𝑒	from	five	different	297 
distributions,	including	normal	distribution,	t-distribution	with	degree	of	freedom	(df)	=	10	or	3	298 
and	𝜒.	distribution	with	df	=	15	or	1.	𝛽	(𝜙)	is	the	effect	on	mean	(variance)	generated	from	299 
N(0,1)	if	exists,	0	otherwise.	𝑙𝑜𝑔(𝜎.)	is	the	intercept	of	the	second	linear	model	which	was	set	to	300 
0.	We	re-scaled	the	different	components	to	control	the	variance	explained,	i.e.,	0.1	and	0.9	for	301 
the	genotype	component	and	error	term,	respectively,	for	the	single-SNP	model,	and	0.2,	0.4	and	302 
0.4	for	the	covariate	component,	genotype	component	and	error	term,	respectively,	for	the	303 
multiple-SNP	model.	We	simulated	the	SNP	effects	in	four	different	scenarios:	1)	effect	on	304 
neither	mean	nor	variance	(nei),	2)	effect	on	mean	only	(mean),	3)	effect	on	variance	only	(var),	305 
or	4)	effect	on	both	mean	and	variance	(both).	We	simulated	only	one	causal	SNP	in	the	single-306 
SNP	model	and	4,	40	or	80	causal	SNPs	in	the	multiple-SNP	model.	307 
	308 
We	performed	vQTL	analyses	using	the	simulated	phenotype	and	SNP	data	to	compare	four	309 
vQTL	methods,	including	the	Bartlett’s	test21,	the	Levene’s	test23,	the	Fligner-Killeen	test24	and	310 
the	DGLM	(Supplementary	Note	1).	We	also	performed	the	Levene’s	test	with	four	phenotype	311 
process	strategies,	including	raw	phenotype	(raw),	raw	phenotype	adjusted	for	covariates	(adj),	312 
RNIT	after	covariate	adjustment	(rint),	and	logarithm	transformation	after	covariate	adjustment	313 
(log)	(Supplementary	Note	2).	We	repeated	the	simulation	1,000	times	and	calculated	the	FPR	314 
and	power	at	p	<	0.05	at	a	single	SNP	level.	315 
	316 
The	UK	Biobank	data		317 
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The	full	release	of	the	UKB	data	comprised	of	genotype	and	phenotype	data	for	~500,000	318 
participates	across	the	UK18.	The	genotype	data	were	cleaned	and	imputed	to	the	Haplotype	319 
Reference	Consortium	(HRC)52	and	UK10K54	reference	panels	by	the	UKB	team.	Genotype	320 
probabilities	from	imputation	were	converted	to	hard-call	genotypes	using	PLINK255	(--hard-321 
call	0.1).	We	excluded	genetic	variants	with	MAF	<	0.05,	Hardy-Weinberg	equilibrium	test	p	322 

value	<	1´10-5,	missing	genotype	rate	>	0.05	or	imputation	INFO	score	<	0.3,	and	retained	323 
5,554,549	variants	for	analysis.	324 
	325 
We	identified	a	subset	of	individuals	of	European	ancestry	(n	=	456,422)	by	projecting	the	UKB	326 
PCs	onto	those	of	1000	Genome	Project	(1KGP)56.	Furthermore,	we	removed	one	of	each	pair	of	327 
individuals	with	SNP-derived	(based	on	HapMap	3	SNPs)	genomic	relatedness	>	0.05	using	328 
GCTA-GRM57	and	retained	348,501	unrelated	European	individuals	for	further	analysis.	329 
	330 
We	selected	13	quantitative	traits	for	our	analysis	(Supplementary	Table	1	and	Supplementary	331 
Figure	2).	The	raw	phenotype	values	were	adjusted	for	age	and	the	first	10	PCs	in	each	gender	332 
group.	We	excluded	from	the	analysis	phenotype	values	that	were	more	than	5	SD	from	the	333 
mean.	The	phenotypes	were	then	standardized	to	z-scores	with	mean	0	and	variance	1.	334 
	335 
Genome-wide	vQTL	analysis	336 
The	genome-wide	vQTL	analysis	was	conducted	using	the	Levene’s	test	implemented	in	the	337 
software	tool	OSCA53	(URLs).	The	Levene’s	test	used	in	the	study	(also	known	as	the	median-338 
based	Levene’s	test	or	the	Brown-Forsythe	test23)	is	a	modified	version	of	the	original	Levene’s	339 
test22	developed	in	1960	that	is	essentially	an	one-way	analysis	of	variance	(ANOVA)	of	the	340 
variable	𝑧D3 = |𝑦D3 − 𝑦FG|,	where	𝑦D3	is	phenotype	of	the	j-th	individual	in	the	i-th	group	and	𝑦FG 	is	341 

the	median	of	the	i-th	group.	The	Levene’s	test	statistic	342 

(𝑛 − 𝑘)
(𝑘 − 1)

∑ 𝑛D8
DJ5 (𝑧D. − 𝑧..).

∑ ∑ (LM
3J5

8
DJ5 𝑧D3 − 𝑧D.).

	343 

follows	a	F	distribution	with	𝑘 − 1	and	𝑛 − 𝑘	degrees	of	freedom,	where	n	is	the	total	sample	344 
size,	k	is	the	number	of	groups	(𝑘 = 3	in	vQTL	analysis),	𝑛D 	is	the	sample	size	of	the	i-th	group,	345 

i.e.	𝑛 = ∑ 𝑛D8
DJ5 ,	𝑧D3 = |𝑦D3 − 𝑦FG|,	𝑧D. =

5
LM
∑ 𝑧D3
LM
3J5 ,	and	𝑧.. =

5
O
∑ ∑ 𝑧D3

LM
3J5

8
DJ5 .	346 

	347 

The	experiment-wise	significance	level	was	set	to	2.0´10-9,	which	is	the	genome-wide	348 

significance	level	(i.e.	1´10-8)31,32	divided	by	the	effective	number	of	independent	traits	(i.e.	5.03	349 

for	13	traits).	The	effective	number	of	independent	traits	was	estimated	based	on	the	350 
phenotypic	correlation	matrix58	(Supplementary	Note	3).	To	determine	the	number	of	351 
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independent	vQTLs,	we	performed	an	LD	clumping	analysis	for	each	trait	using	PLINK255	(--352 
clump	option	with	parameters	--clump-p1	2.0e-9	--clump-p2	2.0e-9	--clump-r2	0.01	and	--353 
clump-kb	5000).	To	visualize	the	results,	we	generated	the	Manhattan	and	regional	association	354 
plots	using	ggplot2	package	in	R.	355 
	356 
GWAS	analysis	357 
The	GWAS	(or	genome-wide	QTL)	analysis	was	conducted	using	PLINK255	(--assoc	option)	using	358 
the	same	data	as	used	in	the	vQTL	analysis	(note	that	the	phenotype	had	been	pre-adjusted	for	359 
covariates	and	PCs).	The	other	analyses,	including	LD	clumping,	and	visualization,	were	360 
performed	using	the	same	pipelines	as	those	for	genome-wide	vQTL	analysis	described	above.	361 
	362 
GEI	analysis	363 
Five	environmental/covariate	factors	(i.e.,	sex,	age,	PA,	SB	and	smoking)	were	used	for	the	364 
direct	GEI	tests.	Sex	was	coded	as	0	or	1	for	female	or	male.	Age	was	an	integer	number	ranging	365 
from	40	to	74.	PA	was	assessed	by	a	three-level	categorical	score	(i.e.,	low,	intermediate	and	366 
high)	based	on	the	short	form	of	the	International	Physical	Activity	Questionnaire	(IPAQ)	367 
guideline59.	SB	was	an	integer	number	defined	as	the	combined	time	(hours)	spent	driving,	non-368 
work-related	computer	using	or	TV	watching.	The	smoking	factor	“ever	smoked”	was	coded	as	0	369 
or	1	for	never	or	ever	smoker.	More	details	about	the	definition	and	derivation	of	370 
environmental	factor	PA,	SB	and	smoking	can	be	found	in	the	Supplementary	Note	4,	Figure	4	371 
and	Table	3.	372 
	373 
We	performed	a	GEI	analysis	to	test	the	interaction	effect	between	the	top	vQTL	SNP	and	one	of	374 
the	five	environmental	factors	based	on	the	following	model	375 

𝑦 = 𝜇 + 𝛽%𝑥% + 𝛽Q𝑥Q + 𝛽%Q𝑥%Q + 𝑒,	376 

where	y	is	phenotype,	𝜇	is	the	mean	term,	𝑥%	is	mean-centred	SNP	genotype	indicator,	𝑥Q	is	377 

mean-centred	environmental	factor,	and	𝑥%Q = 𝑥%𝑥Q .	We	used	a	standard	ANOVA	analysis	to	378 

test	for	𝛽%Q	and	applied	a	stringent	Bonferroni-corrected	threshold	1.33´10-4	(i.e.	0.05/(75´5))	379 

to	claim	a	significant	GEI	effect.	 	380 
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URLs	381 
OSCA,	http://cnsgenomics.com/software/osca	382 
PLINK2,	http://www.cog-genomics.org/plink2	383 
GCTA,	http://cnsgenomics.com/software/gcta	384 
UCSC	Genome	Browser,	https://genome.ucsc.edu/	385 
UKB,	http://www.ukbiobank.ac.uk/	386 
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Figures	550 

 551 

	552 

Figure	1.	Schematic	of	the	differences	in	mean	or	variance	among	genotype	groups	in	the	553 
presence	of	GEI,	QTL	and	vQTL	effect.	The	phenotypes	of	1,000	individuals	were	simulated	554 
based	on	a	genetic	variant	(MAF	=	0.3)	with	a)	both	QTL	and	GEI	effects,	(b)	GEI	effect	only	(no	555 
QTL	effect),	(c)	QTL	effect	only	(no	GEI	or	vQTL	effect),	or	(d)	vQTL	only	(no	QTL	effect).	556 

	 	557 
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	558 
Figure	2.	Evaluation	of	the	statistical	methods	and	phenotype	processing	strategies	for	559 
vQTL	analysis	by	simulation.	Phenotypes	of	10,000	individuals	were	simulated	based	on	560 
different	number	of	SNPs	(i.e.	4,	40	or	80),	two	covariates	(i.e.	sex	and	age)	and	one	error	term	561 
in	a	multiple-SNP	model	(Methods).	The	SNP	effects	were	simulated	under	four	scenarios:	1)	562 
effect	on	neither	mean	nor	variance	(nei),	2)	effect	on	mean	only	(mean),	3)	effect	on	variance	563 
only	(var),	or	4)	effect	on	both	mean	and	variance	(both).	The	error	term	was	generated	from	564 
five	different	distributions:	normal	distribution,	t-distribution	with	df	=	10	or	3,	or	𝜒.	565 
distribution	with	df	=	15	or	1.	In	panel	a,	four	statistical	test	methods,	i.e.,	the	Bartlett’s	test	566 
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(Bart),	the	Levene’s	test	(Lev),	the	Fligner-Killen	test	(FK)	and	the	DGLM,	were	used	to	detect	567 
vQTLs.	In	panel	b,	the	Levene’s	test	was	used	to	analyse	phenotypes	processed	using	four	568 
strategies,	i.e.,	raw	phenotype	(raw),	raw	phenotype	adjusted	for	covariates	(adj),	rank-based	569 
inverse-normal	transformation	after	covariate	adjustment	(rint),	and	logarithm	transformation	570 
after	covariate	adjustment	(log).	The	FPR	or	power	was	calculated	as	the	number	of	vQTLs	with	571 
p	<	0.05	divided	by	the	total	number	of	tests	across	1,000	simulations.	The	red	horizontal	line	572 
represents	an	FPR	of	0.05.	573 
	 	574 
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	575 
Figure	3.	Manhattan	plots	of	genome-wide	vQTL	analysis	for	13	traits	in	the	UKB.	For	each	576 
of	the	13	traits	(see	Table	1	for	full	names	of	the	traits),	test	statistics	(-log10(PvQTL))	of	all	577 

common	(MAF³0.05)	SNPs	from	the	vQTL	analysis	are	plotted	against	their	physical	positions.	578 

The	dash	line	represents	the	genome-wide	significance	level	1.0´10-8	and	the	solid	line	579 

represents	the	experiment-wise	significance	level	2.0´10-9.	For	graphical	clarity,	SNPs	with	PvQTL	580 

<	1´10-25	are	omitted,	SNPs	with	PvQTL	<	2.0´10-9	are	colour-coded	in	orange,	the	top	vQTL	SNP	581 
is	represented	by	a	diamond,	and	the	remaining	SNPs	are	colour-coded	in	grey	or	blue	for	odd	582 
or	even	chromosome.	583 
	 	584 
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	585 
Figure	4.	Regional	plots	of	the	FTO	locus	associated	with	the	phenotypic	variability	of	5	586 
traits.	For	each	of	these	5	traits	for	which	the	phenotypic	variance	is	significantly	associated	587 
with	the	FTO	locus,	vQTL	test	statistics	(-log10(PvQTL))	are	plotted	against	SNP	positions	588 
surrounding	the	top	vQTL	SNP	(represented	by	a	purple	diamond)	at	the	FTO	locus.	SNPs	in	589 
different	levels	of	LD	with	the	top	vQTL	SNP	are	shown	in	different	colours.	The	RefSeq	genes	in	590 
the	top	panel	are	extracted	from	the	UCSC	Genome	Browser	(URLs).	591 
	 	592 
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	593 
Figure	5.	Manhattan	plots	of	genome-wide	vQTL	or	QTL	analysis	for	waist	circumference	594 
in	the	UKB.	Test	statistics	(-log10(PvQTL))	of	all	common	SNPs	from	vQTL	(a)	or	QTL	(b)	analysis	595 
are	plotted	against	their	physical	positions.	The	dash	line	represents	the	genome-wide	596 

significance	level	1´10-8	and	the	solid	line	represents	the	experiment-wise	significance	level	597 

2.0´10-9.	For	graphical	clarity,	SNPs	with	PvQTL	<	1´10-25	or	PQTL	<	1´10-75	are	omitted,	SNPs	with	598 

P	<	2.0´10-9	are	colour-coded	in	orange,	the	top	vQTL	or	QTL	SNP	is	represented	by	a	diamond,	599 
and	the	remaining	SNPs	are	colour-coded	in	grey	or	blue	for	vQTL	analysis	(a)	or	grey	or	pink	600 
for	QTL	analysis	(b)	for	odd	or	even	chromosomes.	601 
	 	602 
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	603 
Figure	6.	QTL	and	vQTL	regional	plots	of	the	CCDC92	or	FTO	locus	for	waist	604 
circumference.	The	QTL	and	vQTL	test	statistics	(i.e.,	-log10(P	values))	for	waist	circumference	605 
are	plotted	against	SNP	positions	surrounding	the	top	vQTL	SNP	at	the	CCDC92	(panel	a)	or	FTO	606 
locus	(panel	b).	The	top	vQTL	SNP	is	represented	by	a	purple	diamond.	SNPs	in	different	levels	607 
of	LD	with	the	top	vQTL	SNP	are	shown	in	different	colours.	The	RefSeq	genes	in	the	top	panel	608 
are	extracted	from	the	UCSC	Genome	Browser	(URLs).	609 
	 	610 
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	611 
Figure	7.	Enrichment	of	GEI	effects	among	the	75	vQTLs	in	compared	with	a	random	set	of	612 
QTLs.	Five	environmental	factors,	i.e.,	sex,	age,	physical	activity	(PA),	sedentary	behaviour	(SB),	613 
and	smoking,	were	used	in	the	GEI	analysis.	(a)	The	heatmap	plot	of	GEI	test	statistics	(-614 
log10(PGEI))	for	the	75	top	vQTL	SNPs.	“*”	denotes	significant	GEI	effects	after	Bonferroni	615 

correction	(PGEI	<	1.33´10-4	=	0.05/(75*5)).	(b)	The	distribution	of	the	number	of	significant	GEI	616 
effects	for	75	top	QTL	SNPs	randomly	selected	from	all	the	top	QTL	SNPs	with	1000	repeats	617 
(mean	1.39	and	SD	1.15).	The	red	line	represents	the	number	of	significant	GEI	effects	for	the	75	618 
top	vQTL	SNPs	(i.e.,	16).	619 
	 	620 

0

100

200

300

0 5 10 15 20
The number of top SNPs

C
ou

nt
s

1

2

3

4

>=5

−log10(PGxE)

Trait

WC

HC

BMD

BW

BMI

BFP

BMR

WHR

FFR

a b

*

*

*

*
*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Sex Age PA SB Smoking

rs476828(MC4R)
rs1421085(FTO)

rs78719460(GOLGA3)
rs80083564(BDNF)

rs10456362(ZKSCAN4)
rs62033406(FTO)

rs2523625(HLA−B)
rs900399(CCNL1)
rs1128249(GRB14)

rs2820468(LYPLAL1)
rs459193(C5orf67)
rs2238691(GIPR)

rs11152213(MC4R)
rs1421085(FTO)

rs34898535(STX1B)
rs8056890(ATP2A1)

rs10846580(CCDC92)
rs17789506(KLF14)

rs141783576(RSPO3)
rs72891717(TFAP2B)
rs3132947(GPSM3)

rs34158769(BTN3A2)
rs10200566(ADCY3)
rs6751993(TMEM18)

rs62104180(FAM150B)
rs2605098(LYPLAL1)

rs6685593(OPTC)
rs1800437(GIPR)

rs11152213(MC4R)
rs1421085(FTO)

rs34898535(STX1B)
rs8056890(ATP2A1)
rs7133378(CCDC92)
rs12667251(KLF14)
rs987237(TFAP2B)

rs4472337(UHRF1BP1)
rs1062070(RNF5)
rs13198716(ABT1)

rs12507026(GNPDA2)
rs7649970(PPARG)

rs13412194(TMEM18)
rs62104180(FAM150B)
rs10913469(SEC16B)

rs2238691(GIPR)
rs10871777(MC4R)
rs11642015(FTO)

rs12716979(STX1B)
rs4072402(RABEP2)

rs11057413(ZNF664−FAM101A)
rs7132908(BCDIN3D)

rs2049045(BDNF)
rs4132670(TCF7L2)
rs17150703(MSRA)
rs987237(TFAP2B)
rs3132947(GPSM3)

rs34817112(PRSS16)
rs12507026(GNPDA2)

rs10016841(SLIT2)
rs1225053(CPNE4)
rs1641155(FANCL)

rs10203386(ADCY3)
rs6751993(TMEM18)

rs62104180(FAM150B)
rs6689335(LYPLAL1)
rs545608(SEC16B)
rs13322435(CCNL1)
rs603140(TMEM135)
rs10254825(WNT16)

rs4576334(STARD3NL)
rs3020332(ESR1)

rs9371221(CCDC170)
rs1414660(GREM2)

rs56077333(CHRNA3)
rs12374521(FBXO38)

rs6537292(HHIP)

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 14, 2019. ; https://doi.org/10.1101/519538doi: bioRxiv preprint 

https://doi.org/10.1101/519538
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

Table	1.	The	number	of	experiment-wise	significant	vQTLs	or	QTLs	for	the	13	UKB	traits.	621 

Trait	 Description	
Number	

of	vQTLs	

Number	of	

QTLs	

HT	 Standing	height	 0	 1063	

FVC	 Forced	vital	capacity	 0	 325	

FEV1	 Forced	expiratory	volume	in	1-second		 0	 266	

FFR	 FEV1	and	FVC	ratio	 3	 17	

BMD	 Heel	bone	mineral	density	T-score,	automated	 6	 267	

BW	 Birth	weight	 1	 57	

BMI	 Body	mass	index	 22	 271	

WC	 Waist	circumference	 16	 196	

HC	 Hip	circumference	 16	 249	

WHR	 Waist	to	Hip	Ratio	 1	 157	

WHRadjBMI	 WHR	adjusted	for	BMI	 0	 221	

BFP	 Body	fat	percentage	 5	 249	

BMR	 Basal	metabolic	rate	 5	 465	

Total	 	 75	 3,803	
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