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Abstract

Genotype-by-environment interaction (GEI) is a fundamental component in understanding
complex trait variation. However, it remains challenging to identify genetic variants with GEI
effects in humans largely because of the small effect sizes and the difficulty of monitoring
environmental fluctuations. Here, we demonstrate that GEI can be inferred from genetic
variants associated with phenotypic variability in a large sample without the need of measuring
environmental factors. We performed a genome-wide variance quantitative trait locus (vQTL)
analysis of ~5.6 million variants on 348,501 unrelated individuals of European ancestry for 13
quantitative traits in the UK Biobank, and identified 75 significant vQTLs with P<2.0x10-9 for 9
traits, especially for those related to obesity. Direct GEI analysis with five environmental factors
showed that the vQTLs were strongly enriched with GEI effects. Our results indicate pervasive
GEI effects for obesity-related traits and demonstrate the detection of GEI without

environmental data.
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Introduction

Most human traits are complex because they are affected by many genetic and environmental
factors as well as potential interactions between them?2. Despite the long history of effort3-5,
there has been limited success in identifying genotype-by-environment interaction (GEI) effects
in humans5-8. This is likely because many environmental exposures are unknown or difficult to
record during the life course, and because the effect sizes of GEI are small given the polygenic
nature of most human traits%1! so that the sample sizes of most previous studies are not large

enough to detect the small GEI effects.

The GEI effect of a genetic variant on a quantitative trait could lead to differences in variance of
the trait among groups of individuals with different variant genotypes (Figure 1a-b). GEI effects
can therefore be inferred from a variance quantitative trait locus (vQTL) analysis!2. Unlike the
classical quantitative trait locus (QTL) analysis that tests the allelic substitution effect of a
variant on the mean of a phenotype (Figure 1c), vQTL analysis tests the allelic substitution effect
on the trait variance (Figure 1b or 1d). In comparison to the analyses that perform direct GEI
tests, vQTL analysis could be a more powerful approach to identify GEI because it does not
require measures of environmental factors and thus can be performed in data with very large
sample sizes!3. Although there had been empirical evidence for the genetic control of
phenotypic variance in livestock for decades!415, it was not until recent years that genome-wide
vQTL analysis was applied in humans!21617, and only a handful of vQTLs have been identified
for a limited number of traits (e.g. the FTO locus for body mass index (BMI)17) owing to the
small effect sizes of the vQTLs. The availability of data from large biobank-based genome-wide
association studies (GWAS)1819 provide an opportunity to interrogate the genome for vQTLs for

a range of phenotypes in cohorts with unprecedented sample size.

On the other hand, the statistical methods for vQTL analysis are not entirely mature!3. There
have been a series of classical non-parametric methods?29, originally developed to detect
violation of the homogeneous variance assumption in linear regression model, which can be
used to detect vQTLs, including the Bartlett’s test2l, the Levene’s test2223 and the Fligner-Killen
test24. Recently, more flexible parametric models have been proposed, including the double
generalized linear model (DGLM)25-27 and the likelihood ratio test2s. In addition, it has been
suggested that the transformation of phenotype that alters phenotype distribution also has an

influence on the power and/or false positive rate (FPR) of a vQTL analysis6.29.

In this study, we calibrated the most commonly used statistical methods for vQTL analysis by

extensive simulations. We then used the best performing method to conduct a genome-wide
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72 vQTL analysis for 13 quantitative traits in 348,501 unrelated individuals using the full release of
73 the UK Biobank (UKB) datal8. We further investigated whether the detected vQTLs are enriched
74  for GEI by conducting a direct GEI test for the vQTLs with five environmental factors.
75
76  Results
77  Evaluation of the vQTL methods by simulation
78  We used simulations to quantify the FPR and power (i.e,, true positive rate) for the vQTL
79  methods and phenotype processing strategies (Methods). We first simulated a quantitative trait
80  based on a simulated single nucleotide polymorphism (SNP), i.e., a single-SNP model, under a
81  number of different scenarios, namely: 1) five different distributions for the random error term
82  (i.e., individual-specific environment effect); 2) four different types of SNP with or without the
83  effect on mean or variance (Methods). We used the simulated data to compare four most widely
84  used vQTL methods, namely the Bartlett’s test21, the Levene’s test2223, the Fligner-Killen (FK)
85  test24and the DGLM?25-27. We observed no inflation in FPR for the Levene’s test under the null
86  (i.e, novQTL effect) regardless of the skewness or kurtosis of the phenotype distribution or the
87  presence or absence of the SNP effect on mean (Supplementary Figure 1a). These findings are in
88  line with the results from previous studies16.2030 that demonstrate the Levene’s test is robust to
89  the distribution of phenotype. The FPR of the Bartlett’s test or DGLM was inflated if the
90  phenotype distribution was skewed or heavy-tailed (Supplementary Figure 1a). The FK test
91  seemed to be robust to kurtosis but vulnerable to skewness of the phenotype distribution
92  (Supplementary Figure 1a). We also observed that logarithm or rank-based inverse-normal
93  transformation (RINT) could result in inflated test statistics in the presence of QTL effect (i.e.,
94  SNP effect on mean; Supplementary Figure 1b).
95
96  To simulate more complex scenarios, we used a multiple-SNP model with two covariates (age
97  and sex) and different numbers of SNPs (Figure 2). The results were similar to those observed
98  above, although the power of the Levene’s test decreased with an increase of the number of
99  causal SNPs (Figure 2a). Again, logarithm transformation or RINT gave rise to an inflated FPR in
100 the presence of SNP effect on mean, and RINT led to a further loss of power (Figure 2b). These
101  results also suggested that pre-adjusting the phenotype by covariates slightly increased the
102 power of vQTL detection (Figure 2b). We therefore used the Levene’s test for real data analysis
103 with the phenotypes pre-adjusted for covariates without logarithm transformation or RINT.
104
105 Genome-wide vQTL analysis for 13 UKB traits
106  We performed a genome-wide vQTL analysis using the Levene’s test with 5,554,549 genotyped

107  or imputed common variants on 348,501 unrelated individuals of European ancestry for 13
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108  quantitative traits in the UKB18 (Methods, Supplementary Table 1 and Supplementary Figure 2).
109  For each trait, we pre-adjusted the phenotype for age and the first 10 principal components

110 (PCs, derived from SNP data) and standardised the residuals to z-scores in each gender group
111 (Methods). This process removed not only the effects of age and the first 10 PCs on the

112 phenotype but also the differences in mean and variance between the two genders. We excluded
113 individuals with adjusted phenotypes more than 5 standard deviations (SD) from the mean and
114 removed SNPs with minor allele frequency (MAF) smaller than 0.05 to avoid potential false

115  positive associations due to the coincidence of a low-frequency variant with an outlier

116  phenotype (see Supplementary Figure 3 for an example). We acknowledge that this process

117  could potentially result in a loss of power, but this can be compensated for by the use of a very
118  large sample (n ~ 350,000).

119

120  With an experiment-wise significant threshold 2.0x10- (i.e., 1x10-8/5.03 with 1x10-8 being a
121 more stringent genome-wide significant threshold recommended by recent studies31.32 and 5.03
122 being the effective number of independent traits (Supplementary Note 3)), we identified 75

123 vQTLs for 9 traits (Figure 3, Table 1 and Supplementary Table 2). There was no vQTL for height,
124 consistent with the observation in a previous study?!’. We identified more than 15 vQTLs for
125 each of the three obesity-related traits, i.e., BMI, waist circumference (WC), and hip

126  circumference (HC) (Table 1). The 75 vQTLs were located at 40 near-independent loci after

127  excluding one of each pair of top vQTL SNPs (i.e., the SNP with lowest vQTL p-value at each

128  vQTL association peak) with linkage disequilibrium (LD) r2 > 0.01, suggesting that some of the
129  loci were associated with the phenotypic variance of multiple traits. For example, the FTO locus
130  was associated with the phenotypic variance of WC, HC, BMI, body fat percentage (BFP) and

131  basal metabolic rate (BMR) (Figure 4). For the lung-function-related traits, there was no

132 significant vQTL for forced expiratory volume in one second (FEV1) and forced vital capacity
133 (FVC) but were 3 vQTLs for FEV1/FVC ratio (FFR).

134

135  The Levene’s test assesses the difference in variance among three genotype groups free of the
136  assumption about additivity (i.e., the vQTL effect of carrying two copies of the effect allele is not
137  assumed to be twice that carrying one copy). We found two vQTLs (i.e, rs141783576 and

138  rs10456362) potentially showing non-additive genetic effect on the variance of HC and BMR,
139 respectively (Supplementary Table 2).

140

141  GWAS analysis for the 13 UKB traits

142 To investigate whether the SNPs with effects on variance also have effects on mean, we

143 performed GWAS (or genome-wide QTL) analyses for the 13 UKB traits described above. We
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144  identified 3,803 QTLs at an experiment-wise significance level (i.e., Pqr. < 2.0x10-%) for the 13
145 traits in total, a much larger number than that of the vQTLs (Table 1 and Figure 5). Among the
146 75 vQTLs, the top vQTL SNPs at 9 loci did not pass the experiment-wise significance level in the
147  QTL analysis (Supplementary Table 2). For example, the CCDC92 locus showed a significant

148  vQTL effect but no significant QTL effect on WC (Supplementary Table 2 and Figure 6a),

149 whereas the FTO locus showed both significant QTL and vQTL effects on WC (Figure 6b). For the
150 66 vQTLs with both QTL and QTL effects, the vQTL effects were all in the same directions as the
151  QTL effects, meaning that for any of these SNPs the genotype group with larger phenotypic

152  mean also tends to have larger phenotypic variance than the other groups. For the 9 loci with
153 vQTL effects only, it is equivalent to a scenario where a QTL has a GEI effect with no (or a

154  substantially reduced) effect on average across different levels of an environmental factor

155  (Figure 1b).

156

157  vQTL and GEI

158  To further investigate whether the associations between vQTLs and phenotypic variance can be
159  explained by GEI, we performed a direct GEI test based on an additive genetic model with an
160 interaction term between a top vQTL SNP and one of five environmental/covariate factors in the
161  UKB data (Methods). The five environmental factors are sex, age, physical activity (PA),

162  sedentary behaviour (SB), and ever smoking (Supplementary Note 4, Supplementary Figure 4
163  and Supplementary Table 3). We observed 16 vQTLs showing a significant GEI effect with at
164  least one of five environmental factors after correcting for multiple tests (p < 1.3x10-4 =

165  0.05/(75*5); Figure 7a and Supplementary Table 4).

166

167  To test whether the GEI effects are enriched among vQTLs in comparison with the same number
168  of QTLs, we performed GEI test for 75 top GWAS SNPs randomly selected from all the QTLs and
169  repeated the analysis 1000 times. Of the 75 top SNPs with QTL effects, the number of SNPs with
170  significant GEI effects was 1.39 averaged from the 1000 repeated samplings with a SD of 1.15
171 (Figure 7b), significantly lower the number (16) observed for the vQTLs (the difference is larger
172 than 12 SDs, equivalent to p = 6.6x10-37). This result shows that SNPs with vQTL effects are

173 much more enriched with GEI effects compared to those with QTL effects. To exclude the

174  possibility that the GEI signals were driven by phenotype processing (e.g., the adjustment of
175  phenotype for sex and age), we repeated the GEI analyses using raw phenotype data without
176  covariates adjustment; the results remain largely unchanged (Supplementary Figure 5).

177

178  Discussion
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179  In this study, we leveraged the genetic effects associated with phenotypic variability to infer
180  GEL We calibrated the most commonly used vQTL methods by simulation. We found that the
181  FPR of the Levene’s test was well-calibrated across all simulation scenarios whereas the other
182  methods showed an inflated FPR if the phenotype distribution was skewed or heavy-tailed

183  under the null hypothesis (i.e, no vQTL effect), despite that the Levene’s test appeared to be less
184  powerful than the other methods under the alternative hypothesis in particular when the per-
185  variant vQTL effect was small (Figure 2 and Supplementary Figure 1). Parametric bootstrap or
186  permutation procedures have been proposed to reduce the inflation in the test-statistics of

187  DGLM and LRT-based method, both of which are expected to be more powerful than the

188  Levene’s test2830, but bootstrap and permutation are computationally inefficient and thus not
189  practically applicable to biobank data such as the UKB. In addition, we observed inflated FPR for
190  the Levene’s test in the absence of vQTL effects but in the presence of QTL effects if the

191  phenotype was transformed by logarithm transformation or RINT. We therefore recommend
192 the use of the Levene’s test in practice without logarithm transformation or RINT of the

193  phenotype. In addition, a very recent study by Young et al.33 developed an efficient algorithm to
194  perform a DGLM analysis and proposed a method (called dispersion effect test (DET)) to

195  remove the founding in vQTL associations (identified by DGLM) due to the QTL effects. We

196  showed by simulation that when the number of simulated causal variants was relatively large
197  (note that the DET test is not applicable to oligogenic traits), the Young et al. method (DGLM
198  followed by DET) performed similarly as the Levene’s test with differences depending on how
199  the phenotype was processed (Supplementary Figure 6).

200

201  We identified 75 genetic variants with vQTL effects for 9 quantitative traits in the UKB at a

202  stringent significance level and observed strong enrichment of GEI effects among the genetic
203  variants with vQTL effects compared to those with QTL effects. There are several vQTLs for
204  which the GEI effect has been reported in previous studies. The first example is the interaction
205  effect of the CHRNA5-A3-B4 locus (rs56077333) with smoking lung function (as measured by
206  FFRratio, i.e.,, FEV1/FVC), Pyqr. = 1.1x10-14 and PgEi(smoking) = 4.6%10-25 (Supplementary Table 2
207  and 4). The CHRNA5-A3-B4 gene cluster is known to be associated with smoking and nicotine
208  dependence3436. However, results from recent GWAS studies37-3% do not support the association
209  of this locus with lung function. We hypothesize that the effect of the CHRNA5-A3-B4 locus on
210  lung function depends on smoking4 (Supplementary Table 5). The vQTL signal at this locus
211  remained (Pyor. = 5.2x10-12) after adjusting the phenotype for array effect, which was reported
212 to affect the QTL association signal at this locus18. The second example is the interaction of the
213  WNT16-CPED1 locus with age for BMD (rs10254825: Pyqr. = 2.0x10-45 and Pggigage) = 1.2%10-7).
214  The WNT16-CPED1 locus is one of the strongest BMD-associated loci identified from GWAS#1.42,
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215  We observed a genotype-by-age interaction effect at this locus for BMD (Supplementary Table
216  6),inline with the results from previous studies that the effect of the top SNP at WNT16-CPED1
217  on BMD in humans*3 and the knock-out effect of Wnt16 on bone mass in mice*4 are age-

218  dependent. The third example is the interaction of the FTO locus with physical activity and

219  sedentary behaviour for obesity-related traits (Pyqr. < 1x10-1° for BMI, WC, HC, BFP and BMR;
220 Pegipa) = 1.3x10-10 for BMI, 1.4x10-7 for WC, 5.3x10-7 for HC and 2.6x10-7 for BMR). The FTO
221  locus was one of the first loci identified by the GWAS of obesity-related traits+> although

222 subsequent studies#647 show that IRX3 and IRX5 (rather than FTO) are the functional genes

223 responsible for the GWAS association. The top associated SNP at the FTO locus is not associated
224 with physical activity but its effect on BMI decreases with the increase of physical activity

225  level“849, consistent with the interaction effects of the FTO locus with physical activity or

226  sedentary behaviour for obesity-related traits identified in this study (Supplementary Tables 7
227  and 8).In addition, 5 of the 22 BMI vQTLs were in LD (r2 > 0.5) with the variants (identified by a
228  recently developed multiple-environment GEI test) showing significant interaction effects at
229  FDR < 5% (corresponding to p < 1.16x10-3) with at least one of 64 environmental factors for
230  BMI in the UKBS0.

231

232 Apart from GEJ, there are other possible interpretations of an observed vQTL signal, including
233 “phantom vQTLs"”2851 and epistasis (genotype-by-genotype interaction). If the underlying causal
234 QTLis not well imputed or not well tagged by a genotyped/imputed variant, the untagged

235  variation at the causal QTL will inflate the vQTL test-statistic, potentially leading to a spurious
236 vQTL association, i.e., the so-called phantom vQTL. We showed by theoretical deviations that
237  the Levene’s test-statistic due to the phantom vQTL effect was a function of sample size, effect
238  size of the causal QTL, allele frequency of the causal QTL, allele frequency of the phantom vQTL,
239  and LD between the causal QTL and the phantom vQTL (Supplementary Note 5 and

240  Supplementary Figure 7). From our deviations, we computed the numerical distribution of the
241  expected phantom vQTL F-statistics given a number of parameters including the sample size (n
242 =350,000), variance explained by the causal QTL (g2 = 0.005, 0.01 or 0.02), and MAFs of the
243 causal QTL and the phantom vQTL (MAF = 0.05 - 0.5). The result showed that for a causal QTL
244 with g2 < 0.005 and MAF > 0.05, the largest possible phantom vQTL F-statistic was smaller than
245 2.69 (corresponding to a p-value of 6.8x10-2; Supplementary Figure 8). This explains why there
246  were thousands of genome-wide significant QTLs but no significant vQTL for height (Table 1
247  and Figure 3). This result also suggests that the vQTLs detected in this study are very unlikely to
248  be phantom vQTLs because the estimated variance explained by their QTL effects were all

249  smaller than 0.005 except for rs10254825 at the WNT16 locus on BMD (g2 = 0.014)

250  (Supplementary Figure 9). However, our numerical calculation also indicated that for a QTL
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251  with MAF > 0.3 and g2 < 0.02, the largest possible phantom vQTL F-statistic was smaller than
252 5.64 (corresponding to a p-value of 3.6x10-3), suggesting rs10254825 is also unlikely to be a
253  phantom vQTL. Note that we used the variance explained estimated at the top GWAS SNP to
254  approximate g2 of the causal QTL so that g2 was likely to be underestimated because of

255  imperfect tagging. However, considering the extremely high imputation accuracy for common
256  variantsS?, the strong LD between the causal QTLs and the GWAS top SNPs observed in a

257  previous simulation study based on whole-genome-sequence data3?, and the overestimation of
258  variance explained by the GWAS top SNPs because of winner’s curse, the underestimation in
259  causal QTL g2 is likely to be small. In addition, we re-ran the vQTL analysis with the phenotype
260  adjusted for the top GWAS variants within 10Mb distance of the top vQTL SNP; the vQTL signals
261  after this adjustment were highly concordant with those without adjustment (Supplementary
262  Figure 10). We further showed that there was no evidence for epistatic interactions between the
263  top vQTL SNPs and any other SNP in more than 10 Mb distance or on a different chromosome
264  (Supplementary Figure 11).

265

266  In conclusion, we systematically quantified the FPR and the power of four commonly used vQTL
267  methods by extensive simulations and demonstrated the robustness of the Levene’s test. We
268  also showed that in the presence of QTL effects the Levene’s test statistic could be inflated if the
269  phenotype was transformed by logarithm transformation or RINT. We implemented the

270  Levene’s test as part of the OSCA software package53 (URLSs) for efficient genome-wide vQTL
271  analysis, and applied OSCA-vQTL to 13 quantitative traits in the UKB and identified 75 vQTL (at
272 40 independent loci) associated with 9 traits, 9 of which did not show a significant QTL effect.
273  Asaproof-of-principle, we performed GEI analyses in the UKB with 5 environmental factors,
274  and demonstrated the enrichment of GEI effects among the detected vQTLs. We further derived
275  the theory to compute the expected “phantom vQTL” test-statistic due to untagged causal QTL
276  effect, and showed by numerical calculation that our observed vQTLs were very unlikely to be
277  driven by imperfectly tagged QTL effects. Our theory is also consistent with the observation of
278  pervasive phantom vQTLs for molecular traits with large-effect QTLs (e.g., DNA methylation5?).
279  However, the conclusions from this study may be only applicable to quantitative traits of

280  polygenic architecture. We caution vQTL analysis for binary or categorical traits, or molecular
281  traits (e.g., gene expression or DNA methylation), for which the methods need further

282  investigation.

283
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284  Methods

285  Simulation study

286  We used a DGLM?25-27 to simulate the phenotype based on two models with simulated SNP data
287 in a sample of 10,000 individuals, i.e., a single-SNP model and multiple-SNP model with two

288  covariates (i.e. age and sex). The single-SNP model can be written as

289 y = wpy + e withlog(cZ) = we, + log(a?)

290  and the multiple-SNP model can be expressed as

291 y =3¢ Be; + 1wy By, + e with log(a2) = B} ¢; de, + B wie b, + log(a?),

292 where y is a simulated phenotype; w or wy, is a standardized SNP genotype, ie, w = (x —

293 2f)/m with x being the genotype indicator variable coded as 0, 1 or 2, generated from
294 binomial(2, f) and fbeing the MAF generated from uniform(0.01, 0.5); ¢;is a standardized

295  covariate with c; (sex) generated from binomial(1, 0.5) and c; (age) generated from uniform(20,
296  60); eis an error term normally distributed with mean 0 and variance o2. To simulate the error
297 term with different levels of skewness and kurtosis, we generated e from five different

298  distributions, including normal distribution, ¢t-distribution with degree of freedom (df) = 10 or 3
299  and x? distribution with df = 15 or 1. 8 (¢) is the effect on mean (variance) generated from

300  N(0,1) if exists, 0 otherwise. log(c?) is the intercept of the second linear model which was set to
301 0. We re-scaled the different components to control the variance explained, i.e., 0.1 and 0.9 for
302  the genotype component and error term, respectively, for the single-SNP model, and 0.2, 0.4 and
303 0.4 for the covariate component, genotype component and error term, respectively, for the

304  multiple-SNP model. We simulated the SNP effects in four different scenarios: 1) effect on

305  neither mean nor variance (nei), 2) effect on mean only (mean), 3) effect on variance only (var),
306  or 4) effect on both mean and variance (both). We simulated only one causal SNP in the single-
307  SNP model and 4, 40 or 80 causal SNPs in the multiple-SNP model.

308

309  We performed vQTL analyses using the simulated phenotype and SNP data to compare four

310 vQTL methods, including the Bartlett’s test?!, the Levene’s test23, the Fligner-Killeen test24 and
311  the DGLM (Supplementary Note 1). We also performed the Levene’s test with four phenotype
312 process strategies, including raw phenotype (raw), raw phenotype adjusted for covariates (adj),
313 RNIT after covariate adjustment (rint), and logarithm transformation after covariate adjustment
314  (log) (Supplementary Note 2). We repeated the simulation 1,000 times and calculated the FPR
315 and power at p < 0.05 at a single SNP level.

316

317 The UK Biobank data
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318  The full release of the UKB data comprised of genotype and phenotype data for ~500,000

319  participates across the UK!8. The genotype data were cleaned and imputed to the Haplotype
320  Reference Consortium (HRC)52 and UK10K54 reference panels by the UKB team. Genotype

321  probabilities from imputation were converted to hard-call genotypes using PLINK255 (--hard-
322 call 0.1). We excluded genetic variants with MAF < 0.05, Hardy-Weinberg equilibrium test p
323 value < 1x10-5, missing genotype rate > 0.05 or imputation INFO score < 0.3, and retained

324 5,554,549 variants for analysis.

325

326  We identified a subset of individuals of European ancestry (n = 456,422) by projecting the UKB
327  PCs onto those of 1000 Genome Project (1KGP)56. Furthermore, we removed one of each pair of
328  individuals with SNP-derived (based on HapMap 3 SNPs) genomic relatedness > 0.05 using
329  GCTA-GRM57 and retained 348,501 unrelated European individuals for further analysis.

330

331  We selected 13 quantitative traits for our analysis (Supplementary Table 1 and Supplementary
332 Figure 2). The raw phenotype values were adjusted for age and the first 10 PCs in each gender
333  group. We excluded from the analysis phenotype values that were more than 5 SD from the
334  mean. The phenotypes were then standardized to z-scores with mean 0 and variance 1.

335

336 Genome-wide vQTL analysis

337  The genome-wide vQTL analysis was conducted using the Levene’s test implemented in the
338  software tool OSCAS3 (URLSs). The Levene’s test used in the study (also known as the median-
339  Dbased Levene’s test or the Brown-Forsythe test23) is a modified version of the original Levene’s
340  test22 developed in 1960 that is essentially an one-way analysis of variance (ANOVA) of the
341  variable z;; = |y;; — 3|, where y;; is phenotype of the j-th individual in the i-th group and , is
342 the median of the i-th group. The Levene’s test statistic

(n—k) TEimi(z—2)

k-1 ¥k, Z?il(zij —27;)?

344  follows a F distribution with k — 1 and n — k degrees of freedom, where n is the total sample

343

345  size, kis the number of groups (k = 3 in vQTL analysis), n; is the sample size of the i-th group,

346  len=YC n,z;=yij -l z = nll 7;121-]-, andz = % ;;12’]?;121-,-.

347

348  The experiment-wise significance level was set to 2.0x10-%, which is the genome-wide

349  significance level (i.e. 1x10-8)3132 divided by the effective number of independent traits (i.e. 5.03
350  for 13 traits). The effective number of independent traits was estimated based on the

351  phenotypic correlation matrix58 (Supplementary Note 3). To determine the number of

10
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352  independent vQTLs, we performed an LD clumping analysis for each trait using PLINK255 (--
353 clump option with parameters --clump-p1 2.0e-9 --clump-p2 2.0e-9 --clump-r2 0.01 and --

354  clump-kb 5000). To visualize the results, we generated the Manhattan and regional association
355  plots using ggplot2 package in R.

356

357  GWAS analysis

358  The GWAS (or genome-wide QTL) analysis was conducted using PLINK255 (--assoc option) using
359  the same data as used in the vQTL analysis (note that the phenotype had been pre-adjusted for
360  covariates and PCs). The other analyses, including LD clumping, and visualization, were

361  performed using the same pipelines as those for genome-wide vQTL analysis described above.
362

363  GEI analysis

364  Five environmental/covariate factors (i.e., sex, age, PA, SB and smoking) were used for the

365  direct GEI tests. Sex was coded as 0 or 1 for female or male. Age was an integer number ranging
366  from 40 to 74. PA was assessed by a three-level categorical score (i.e., low, intermediate and
367  high) based on the short form of the International Physical Activity Questionnaire (IPAQ)

368  guideline®. SB was an integer number defined as the combined time (hours) spent driving, non-
369  work-related computer using or TV watching. The smoking factor “ever smoked” was coded as 0
370  or 1 for never or ever smoker. More details about the definition and derivation of

371  environmental factor PA, SB and smoking can be found in the Supplementary Note 4, Figure 4
372  and Table 3.

373

374  We performed a GEI analysis to test the interaction effect between the top vQTL SNP and one of

375  the five environmental factors based on the following model
376 Yy =p+ Byxg + Bexg + BgeXge t+ e,

377  whereyis phenotype, u is the mean term, x,; is mean-centred SNP genotype indicator, xg is
378  mean-centred environmental factor, and x,z = x4xg. We used a standard ANOVA analysis to
379  testfor Byg and applied a stringent Bonferroni-corrected threshold 1.33x10 (i.e. 0.05/(75x5))

380  to claim a significant GEI effect.
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381 URLs

382  OSCA, http://cnsgenomics.com/software/osca

383 PLINK2, http://www.cog-genomics.org/plink?2

384  GCTA, http://cnsgenomics.com/software/gcta

385  UCSC Genome Browser, https://genome.ucsc.edu/
386  UKB, http://www.ukbiobank.ac.uk/

387

388  Acknowledgements

389  This research was supported by the Australian Research Council (DP160101343 and

390 DP160101056), the Australian National Health and Medical Research Council (1078037,

391 1078901, 1113400, 1107258 and 1083656), and the Sylvia & Charles Viertel Charitable

392  Foundation. This study makes use of data from the UK Biobank (project ID: 12514). A full list of
393  acknowledgments of this data set can be found in Supplementary Note 6.

394

395  Author contributions

396  ].Y.and A.F.M. conceived the study.].Y,, H.W. and A.F.M. designed the experiment. F.Z. developed
397  the software tool. H.W. performed simulations and data analyses under the assistance or

398  guidance from].Y, J.Z.,, YW, KK, AX. and M.Z..].E.P.,, M.E.G., N.R.W. and P.M.V. provided critical
399  advice that significantly improved the experimental design and/or interpretation of the results.
400  P.M.V, N.R.W. and ].Y. contributed resources and funding. H.W. and ].Y. wrote the manuscript
401  with the participation of all authors.

402

403  Competing interests

404  The authors declare no competing interests.

405

406  References

407 1. Falconer DS, Mackay TFC. Introduction to quantitative genetics. 4th ed: Longman,

408 Harlow; 1996.

409 2. Lynch M, Walsh B. Genetics and analysis of quantitative traits. Sinauer Associates,

410 Sunderland, Ma; 1998.

411 3. Garrod A. The incidence of alkaptonuria: a study in chemical individuality. The Lancet.
412 1902;160(4137):1616-1620.

413 4, Haldane J. Heredity and politics. WW Norton & Co., NY; 1938.

414 5. Kraft P, Hunter D. Integrating epidemiology and genetic association: the challenge of
415 gene-environment interaction. Philosophical Transactions of the Royal Society B:

416 Biological Sciences. 2005;360(1460):1609-1616.

417 6. Thomas D. Gene-environment-wide association studies: emerging approaches. Nature
418 Reviews Genetics. 2010;11(4):259.

419 7. Aschard H, Lutz S, Maus B, et al. Challenges and opportunities in genome-wide

420 environmental interaction (GWEI) studies. Hum Genet. 2012;131(10):1591-1613.

12


https://doi.org/10.1101/519538
http://creativecommons.org/licenses/by-nc-nd/4.0/

421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473

bioRxiv preprint doi: https://doi.org/10.1101/519538; this version posted January 14, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

available under aCC-BY-NC-ND 4.0 International license.

McAllister K, Mechanic LE, Amos C, et al. Current Challenges and New Opportunities for
Gene-Environment Interaction Studies of Complex Diseases. Am J Epidemiol.
2017;186(7):753-761.

Yang ], Lee T, Kim ], et al. Ubiquitous polygenicity of human complex traits: genome-
wide analysis of 49 traits in Koreans. PLoS genetics. 2013;9(3):e1003355.

Shi H, Kichaev G, Pasaniuc B. Contrasting the genetic architecture of 30 complex traits
from summary association data. The American Journal of Human Genetics.
2016;99(1):139-153.

Maier RM, Visscher PM, Robinson MR, Wray NR. Embracing polygenicity: a review of
methods and tools for psychiatric genetics research. Psychol Med. 2017:1-19.

Pare G, Cook NR, Ridker PM, Chasman DI. On the use of variance per genotype as a tool
to identify quantitative trait interaction effects: a report from the Women's Genome
Health Study. PLoS Genet. 2010;6(6):e1000981.

Ronnegard L, Valdar W. Recent developments in statistical methods for detecting
genetic loci affecting phenotypic variability. BMC genetics. 2012;13(1):63.

Van Vleck LD. Variation of milk records within paternal-sib groups. Journal of Dairy
Science. 1968;51(9):1465-1470.

Hill WG, Mulder HA. Genetic analysis of environmental variation. Genetics Research.
2010;92(5-6):381-395.

Struchalin MV, Dehghan A, Witteman JC, van Duijn C, Aulchenko YS. Variance
heterogeneity analysis for detection of potentially interacting genetic loci: method and
its limitations. BMC Genet. 2010;11:92.

Yang |, Loos R], Powell JE, et al. FTO genotype is associated with phenotypic variability
of body mass index. Nature. 2012;490(7419):267-272.

Bycroft C, Freeman C, Petkova D, et al. The UK Biobank resource with deep phenotyping
and genomic data. Nature. 2018;562(7726):203-209.

Collins FS, Varmus H. A new initiative on precision medicine. New England Journal of
Medicine. 2015;372(9):793-795.

Conover WJ, Johnson ME, Johnson MM. A comparative study of tests for homogeneity of
variances, with applications to the outer continental shelf bidding data. Technometrics.
1981;23(4):351-361.

Bartlett MS. Properties of sufficiency and statistical tests. Paper presented at: Proc. R.
Soc. Lond. A1937.

Levene H. Robust Tests for Equality of Variances. In Ingram Olkin; Harold Hotelling; et al
Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling Stanford
University Press, Stanford. 1960: 278-292.

Brown MB, Forsythe AB. Robust tests for the equality of variances. Journal of the
American Statistical Association. 1974;69(346):364-367.

Fligner MA, Killeen TJ. Distribution-free two-sample tests for scale. Journal of the
American Statistical Association. 1976;71(353):210-213.

Ronnegard L, Felleki M, Fikse F, Mulder HA, Strandberg E. Genetic heterogeneity of
residual variance - estimation of variance components using double hierarchical
generalized linear models. Genet Sel Evol. 2010;42:8.

Ronnegard L, Valdar W. Detecting major genetic loci controlling phenotypic variability
in experimental crosses. Genetics. 2011;188(2):435-447.

Smyth GK. Generalized linear models with varying dispersion. Journal of the Royal
Statistical Society Series B (Methodological). 1989:47-60.

Cao Y, Wei P, Bailey M, Kauwe JSK, Maxwell TJ. A versatile omnibus test for detecting
mean and variance heterogeneity. Genet Epidemiol. 2014;38(1):51-59.

Sun X, Elston R, Morris N, Zhu X. What is the significance of difference in phenotypic
variability across SNP genotypes? Am | Hum Genet. 2013;93(2):390-397.

Corty RW, Valdar W. Mean-Variance QTL Mapping on a Background of Variance
Heterogeneity. bioRxiv. 2018:276980.

13


https://doi.org/10.1101/519538
http://creativecommons.org/licenses/by-nc-nd/4.0/

474
475
476
477

478

479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526

bioRxiv preprint doi: https://doi.org/10.1101/519538; this version posted January 14, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

47.

48.

49.

50.

available under aCC-BY-NC-ND 4.0 International license.

WuY, Zheng Z, Visscher PM, Yang J. Quantifying the mapping precision of genome-wide
association studies using whole-genome sequencing data. Genome biology.
2017;18(1):86.

Pulit SL, de With SA, de Bakker PI. Resetting the bar: Statistical significance in whole-
genome sequencing-based association studies of global populations. Genetic
epidemiology. 2017;41(2):145-151.

Young Al, Wauthier FL, Donnelly P. Identifying loci affecting trait variability and
detecting interactions in genome-wide association studies. Nature Publishing Group;2018.
1546-1718.

Saccone SF, Hinrichs AL, Saccone NL, et al. Cholinergic nicotinic receptor genes
implicated in a nicotine dependence association study targeting 348 candidate genes
with 3713 SNPs. Human molecular genetics. 2006;16(1):36-49.

Thorgeirsson TE, Geller F, Sulem P, et al. A variant associated with nicotine dependence,
lung cancer and peripheral arterial disease. Nature. 2008;452(7187):638.

Fowler CD, Lu Q, Johnson PM, Marks M], Kenny PJ. Habenular a5 nicotinic receptor
subunit signalling controls nicotine intake. Nature. 2011;471(7340):597.

Repapi E, Sayers I, Wain LV, et al. Genome-wide association study identifies five loci
associated with lung function. Nature genetics. 2010;42(1):36.

Hancock DB, Eijgelsheim M, Wilk JB, et al. Meta-analyses of genome-wide association
studies identify multiple loci associated with pulmonary function. Nature genetics.
2010;42(1):45.

Wain LV, Shrine N, Artigas MS, et al. Genome-wide association analyses for lung function
and chronic obstructive pulmonary disease identify new loci and potential druggable
targets. Nature genetics. 2017;49(3):416.

Kaur-Knudsen D, Nordestgaard BG, Bojesen SE. CHRNA3 genotype, nicotine dependence,
lung function and disease in the general population. European Respiratory Journal.
2012;40(6):1538-1544.

Estrada K, Styrkarsdottir U, Evangelou E, et al. Genome-wide meta-analysis identifies 56
bone mineral density loci and reveals 14 loci associated with risk of fracture. Nature
genetics. 2012;44(5):491.

Kemp JP, Morris JA, Medina-Gomez C, et al. Identification of 153 new loci associated with
heel bone mineral density and functional involvement of GPC6 in osteoporosis. Nature
genetics. 2017;49(10):1468.

Medina-Gomez C, Kemp JP, Estrada K, et al. Meta-analysis of genome-wide scans for total
body BMD in children and adults reveals allelic heterogeneity and age-specific effects at
the WNT16 locus. PLoS genetics. 2012;8(7):e1002718.

Movérare-Skrtic S, Henning P, Liu X, et al. Osteoblast-derived WNT16 represses
osteoclastogenesis and prevents cortical bone fragility fractures. Nature medicine.
2014;20(11):1279.

Frayling TM, Timpson NJ, Weedon MN, et al. A common variant in the FTO gene is
associated with body mass index and predisposes to childhood and adult obesity.
Science. 2007;316(5826):889-894.

Smemo S, Tena ], Kim K-H, et al. Obesity-associated variants within FTO form long-
range functional connections with IRX3. Nature. 2014;507(7492):371.

Claussnitzer M, Dankel SN, Kim K-H, et al. FTO obesity variant circuitry and adipocyte
browning in humans. New England Journal of Medicine. 2015;373(10):895-907.
Kilpeldinen TO, Qi L, Brage S, et al. Physical activity attenuates the influence of FTO
variants on obesity risk: a meta-analysis of 218,166 adults and 19,268 children. PLoS
medicine. 2011;8(11):e1001116.

Loos R], Yeo GS. The bigger picture of FTO—the first GWAS-identified obesity gene.
Nature Reviews Endocrinology. 2014;10(1):51.

Moore R, Casale FP, Jan Bonder M, et al. A linear mixed-model approach to study
multivariate gene-environment interactions. Nature Genetics. 2018.

14


https://doi.org/10.1101/519538
http://creativecommons.org/licenses/by-nc-nd/4.0/

527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548

549

bioRxiv preprint doi: https://doi.org/10.1101/519538; this version posted January 14, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

51.

52.

53.

54.

55.

56.

57.

58.

59.

available under aCC-BY-NC-ND 4.0 International license.

Ek WE, Rask-Andersen M, Karlsson T, Enroth S, Gyllensten U, Johansson A. Genetic
variants influencing phenotypic variance heterogeneity. Hum Mol Genet.
2018;27(5):799-810.

McCarthy S, Das S, Kretzschmar W, et al. A reference panel of 64,976 haplotypes for
genotype imputation. Nat Genet. 2016;48(10):1279-1283.

Zhang F, Chen W, Zhu Z, et al. OSCA: a tool for omic-data-based complex trait analysis.
bioRxiv. 2018:445163.

The UK10K Consortium. The UK10K project identifies rare variants in health and
disease. Nature. 2015;526(7571):82-90.

Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee ]]. Second-generation PLINK:
rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7.

Genomes Project Consortium. A map of human genome variation from population-scale
sequencing. Nature. 2010;467(7319):1061.

Yang |, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait
analysis. Am | Hum Genet. 2011;88(1):76-82.

Bretherton CS, Widmann M, Dymnikov VP, Wallace JM, Bladé 1. The effective number of
spatial degrees of freedom of a time-varying field. Journal of climate. 1999;12(7):1990-
20009.

IPAQ Research Committee. Guidelines for data processing and analysis of the
International Physical Activity Questionnaire (IPAQ)-short and long forms.
www.ipaq.ki.se. 2005.

15


https://doi.org/10.1101/519538
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/519538; this version posted January 14, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

550  Figures

551
a b d d

GEIl with QTL effect GEI without QTL effect QTL only vQTL only

15
|
o
o
10
|
o
o
o0

)
oo »

o

Phenotype
0
1
Phenotype

Phenotype
Phenotype

° go%éé %gg&

-10

T T T
AA AB BB AA AB BB AA AB BB

Genotype Genotype Genotype Genotype

552

553  Figure 1. Schematic of the differences in mean or variance among genotype groups in the
554  presence of GEI, QTL and vQTL effect. The phenotypes of 1,000 individuals were simulated
555  based on a genetic variant (MAF = 0.3) with a) both QTL and GEI effects, (b) GEI effect only (no
556  QTL effect), (c) QTL effect only (no GEI or vQTL effect), or (d) vQTL only (no QTL effect).

557
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558
559  Figure 2. Evaluation of the statistical methods and phenotype processing strategies for

560  vQTL analysis by simulation. Phenotypes of 10,000 individuals were simulated based on
561  different number of SNPs (i.e. 4, 40 or 80), two covariates (i.e. sex and age) and one error term
562  in a multiple-SNP model (Methods). The SNP effects were simulated under four scenarios: 1)
563  effect on neither mean nor variance (nei), 2) effect on mean only (mean), 3) effect on variance
564  only (var), or 4) effect on both mean and variance (both). The error term was generated from
565 five different distributions: normal distribution, t-distribution with df = 10 or 3, or x?

566  distribution with df = 15 or 1. In panel a, four statistical test methods, i.e., the Bartlett’s test
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567  (Bart), the Levene’s test (Lev), the Fligner-Killen test (FK) and the DGLM, were used to detect
568  vQTLs. In panel b, the Levene’s test was used to analyse phenotypes processed using four

569  strategies, i.e., raw phenotype (raw), raw phenotype adjusted for covariates (adj), rank-based
570  inverse-normal transformation after covariate adjustment (rint), and logarithm transformation
571  after covariate adjustment (log). The FPR or power was calculated as the number of vQTLs with
572  p<0.05 divided by the total number of tests across 1,000 simulations. The red horizontal line
573  represents an FPR of 0.05.

574
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Figure 3. Manhattan plots of genome-wide vQTL analysis for 13 traits in the UKB. For each
of the 13 traits (see Table 1 for full names of the traits), test statistics (-logio(Pvqr)) of all
common (MAF>0.05) SNPs from the vQTL analysis are plotted against their physical positions.
The dash line represents the genome-wide significance level 1.0x10-8 and the solid line
represents the experiment-wise significance level 2.0x10-9. For graphical clarity, SNPs with Pyqr1.
< 1x10-25 are omitted, SNPs with Pyqri, < 2.0x10-% are colour-coded in orange, the top vQTL SNP
is represented by a diamond, and the remaining SNPs are colour-coded in grey or blue for odd

or even chromosome.
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585 chromosome 16

586  Figure 4. Regional plots of the FTO locus associated with the phenotypic variability of 5
587  traits. For each of these 5 traits for which the phenotypic variance is significantly associated
588  with the FTO locus, vQTL test statistics (-logio(Pvqri)) are plotted against SNP positions

589  surrounding the top vQTL SNP (represented by a purple diamond) at the FTO locus. SNPs in
590 different levels of LD with the top vQTL SNP are shown in different colours. The RefSeq genes in
591  the top panel are extracted from the UCSC Genome Browser (URLs).
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593
594  Figure 5. Manhattan plots of genome-wide vQTL or QTL analysis for waist circumference

595  in the UKB. Test statistics (-logio(Pvors)) of all common SNPs from vQTL (a) or QTL (b) analysis
596  are plotted against their physical positions. The dash line represents the genome-wide

597  significance level 1x10-8 and the solid line represents the experiment-wise significance level
598  2.0x10-°. For graphical clarity, SNPs with Pyqr, < 1x10-25 or Pqri, < 1x10-75 are omitted, SNPs with
599 P <2.0x10-%are colour-coded in orange, the top vQTL or QTL SNP is represented by a diamond,
600  and the remaining SNPs are colour-coded in grey or blue for vQTL analysis (a) or grey or pink

601  for QTL analysis (b) for odd or even chromosomes.
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Figure 6. QTL and vQTL regional plots of the CCDC92 or FTO locus for waist
circumference. The QTL and vQTL test statistics (i.e., -logio(P values)) for waist circumference
are plotted against SNP positions surrounding the top vQTL SNP at the CCDC92 (panel a) or FTO
locus (panel b). The top vQTL SNP is represented by a purple diamond. SNPs in different levels
of LD with the top vQTL SNP are shown in different colours. The RefSeq genes in the top panel

are extracted from the UCSC Genome Browser (URLSs).

22


https://doi.org/10.1101/519538
http://creativecommons.org/licenses/by-nc-nd/4.0/

611
612

613
614
615
616
617
618
619
620

bioRxiv preprint doi: https://doi.org/10.1101/519538; this version posted January 14, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

R
r512374521(FBXO38)
1556077333(CHRNAG)
51414660(GREM2)
169371221(CCDC170)
153020332(ESR1)
154576334(STARD3NL)
r510254825(WNT16)
15603140(TMEM135)
1513322435(CCNL1)
r5545608(SEC168)
156689335(LYPLAL)
1562104180(FAM1508)
156751993(TMEM18)
1510203386(ADCY3)
151641155(FANCL)
151225053(CPNE4)
1510016841(SLIT2)
1512507026(GNPDA2)
1534817112(PRSS16)
153132947(GPSM3)
15987237(TFAP2B)
1517150703(MSRA)
154132670(TCF7L2)
52049045(BDNF)
157132908(BCDINGD)
1511057413(ZNF664-FAM101A)
154072402(RABEP2)
1$12716979(STX18)
1511642015(FTO)
1510871777(MC4R)
152238691 (GIPR)
1510913469(SEC168)
1562104180(FAM1508)
1513412194(TMEM18)
157649970(PPARG)
1512507026(GNPDA2)
1513198716(ABT1)
151062070(RNF5)
154472337(UHRF1BP1)
15987237(TFAP2B)
1512667251(KLF14)
157133378(CCDC92)
158056890(ATP2A1)
1534898535(STX18)
151421085(FTO)
1511152213(MC4R)
151800437(GIPR)
156685593(OPTC)
152605098(LYPLALT
1562104180(FAM1508)
156751993(TMEM18)
1510200566(ADCY3)

153132947(GPSM3
1572891717(TFAP2B)
15141783576(RSPO3)
1517789506(KLF14)
510846580(CCDC92)
1S8056890(ATP2A1)
1534898535(STX18)
151421085(FTO)
1511152213(MC4R)
152238691 (GIPR)
15459193(C50rf67)
152820468(LYPLAL1)
r51128249(GRB14)
r5900399(CCNL1)
152523625(HLA-B)
1562033406(FTO)
1510456362(ZKSCAN4)
1580083564(BDNF)
1S78719460(GOLGAJ)
151421085(FTO)
15476828(VIC4R)

Smoking

300
£ 200
3
Q
o
100
o4 —
Trait 0 5 10 15
EFR The number of top SNPs

N
[lew

Pwe
| B9
v
| Eiz
| EG

—log10(P,

>=5
I ¢

3
2
1

)

20

Figure 7. Enrichment of GEI effects among the 75 vQTLs in compared with a random set of

QTLs. Five environmental factors, i.e,, sex, age, physical activity (PA), sedentary behaviour (SB),

and smoking, were used in the GEI analysis. (a) The heatmap plot of GEI test statistics (-
logi0(Pcr1)) for the 75 top vQTL SNPs. “*” denotes significant GEI effects after Bonferroni

correction (Pggr < 1.33x10-4 = 0.05/(75*5)). (b) The distribution of the number of significant GEI
effects for 75 top QTL SNPs randomly selected from all the top QTL SNPs with 1000 repeats

(mean 1.39 and SD 1.15). The red line represents the number of significant GEI effects for the 75
top vQTL SNPs (i.e., 16).
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Table 1. The number of experiment-wise significant vQTLs or QTLs for the 13 UKB traits.

Number  Number of
Trait Description

of vQTLs QTLs
HT Standing height 0 1063
FVC Forced vital capacity 0 325
FEV1 Forced expiratory volume in 1-second 0 266
FFR FEV1 and FVC ratio 3 17
BMD Heel bone mineral density T-score, automated 6 267
BW Birth weight 1 57
BMI Body mass index 22 271
WC Waist circumference 16 196
HC Hip circumference 16 249
WHR Waist to Hip Ratio 1 157
WHRadjBMI ~ WHR adjusted for BMI 0 221
BFP Body fat percentage 5 249
BMR Basal metabolic rate 5 465
Total 75 3,803
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