

1 **A novel *bla*_{SIM-1}-carrying megaplasmid pSIM-1-BJ01**
2 **isolated from clinical *Klebsiella pneumonia***

3 Yang Lü¹, Hui Liang², Wei Zhang², Jia Liu², Shiwei Wang^{3*}, Hongyan Hu^{2*}

4 ¹ State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of
5 Sciences, Beijing, China;

6 ² Department of Laboratory Medicine, The General Hospital of Chinese People's
7 Armed Police Forces, Beijing, China;

8 ³ Key Laboratory of Resources Biology and Biotechnology in Western China, College
9 of Life Science, Northwest University, Xi'an, China;

10

11 *Address correspondence to Hu Hongyan, E-mail: huhongyanwj@163.com, Tel:
12 [+86-13691446958](tel:+86-13691446958) or Wang Shiwei, E-mail: wangsw@im.ac.cn, Tel:
13 +86-13146425379 .

14

15 **ABSTRACT**

16 A rare carbapenem-resistant gene *bla*_{SIM-1} was found in a 316-kb megaplasmid
17 designated pSIM-1-BJ01 isolated from a clinical strain *Klebsiella pneumonia* 13624.
18 The plasmid pSIM-1-BJ01 was fully sequenced and analyzed. Its length is 316,557 bp
19 and it has 342 putative open reading frames with two multidrug-resistant regions and
20 a total of 19 resistant genes. Its backbone was highly homologous to the newly
21 reported plasmid pRJA166a, which was isolated from a clinical third-generation
22 cephalosporin-resistant hypervirulent strain *K. pneumonia* ST23. The plasmid
23 pSIM-1-BJ01 was verified to be able to transfer to *Escherichia coli*. The emergency
24 of the transferable *bla*_{SIM-1}-carrying multidrug-resistant plasmid pSIM-1-BJ01
25 suggests the spread of *bla*_{SIM} among Enterobacteriaceae is possible. Therefore, the
26 data presented herein provided insights into the genomic diversity and evolution of
27 *bla*_{SIM}-carrying plasmids, as well as the dissemination and epidemiology of *bla*_{SIM}
28 among Enterobacteriaceae in public health system.

29

30 **Keywords:** SIM-1, carbapenemase, *Klebsiella pneumonia*, multidrug-resistant, China

31

32 **INTRODUCTION**

33 SIM, a rare member of metallo- β -lactamases (MBLs), belongs to Class B1 MBLs. It
34 can hydrolyze a broad array of β -lactams, including penicillin, narrow- to
35 expanded-spectrum of cephalosporins, and carbapenems, but not monobactams. The
36 SIM-1 protein exhibits 64-69% identity with the IMP-type MBLs, which are its
37 closest relatives. The first reported bacteria carrying *bla*_{SIM-1} were *Acinetobacter*
38 *baumannii* isolated from Korea in 2005 (1). In *bla*_{SIM-1}-harboring *Acinetobacter*
39 isolates collected from 2003 to 2008 in Korea, most of the *bla*_{SIM-1} genes were carried
40 in ca. 280-kb plasmids; further study found that the plasmids were transferable, but
41 not promiscuous (2). In 2011, an *A. baylyi* strain with a 360-kb plasmid carrying both
42 *bla*_{SIM-1} and *bla*_{OXA-23} was isolated from a Chinese patient in Ningbo of China, who
43 had no history of visiting Korea, but the sequence of the 360-kb plasmid was unclear
44 (3). In 2012, a *Pseudomonas aeruginosa* strain with a 282-kb *bla*_{SIM-2}-harbouring
45 plasmid pHN39-SIM (Genebank Acession Number KU254577) was isolated from a
46 Chinese patient in Zhengzhou of China; the 282-kb *bla*_{SIM-2}-harbouring plasmid was
47 sequenced, showing the SIM-2 protein differs from SIM-1 due to only a single amino
48 acid substitution Gly198Asp (4). Overall, the detection of *bla*_{SIM} is rare and mainly
49 reported by South Korea and China, mostly confined to *Acinetobacter spp.* and *P.*
50 *aeruginosa*.

51

52 The reported *bla*_{SIM-1} genes, derived from chromosome or plasmids, were always
53 carried on a gene cassette inserted into a class I integron with three additional resistant

54 genes (*arr-3*, *catB3* and *aadA1*). Except for the *bla*_{SIM-2}-harbouring plasmid
55 pHN39-SIM from *P. aeruginosa*, none of these plasmids is fully sequenced.

56

57 Here, we present a 316-kb plasmid designated pSIM-1-BJ01 carrying *bla*_{SIM-1} isolated
58 from a clinical carbapenem-resistant *Klebsiella pneumonia* 13624 strain harboring
59 three resistant plasmids in Beijing of China. To the best of our knowledge, this is the
60 first sequence report of a transferable plasmid with *bla*_{SIM-1} isolated from *K.*
61 *pneumonia*, indicating the active occurrence of resistant gene convergence under
62 clinical selection pressure and presenting a considerable challenge for infection
63 control.

64

65 MATERIALS AND METHODS

66 Bacterial Isolates and Identification

67 The isolate was obtained from a urinary specimen of a patient with 65~70 years, who
68 suffered from the insulin-dependent type II diabetes, end-stage renal failure and
69 pulmonary infection. The bacterial species identification was performed using
70 BioMérieux VITEK2, Bruker MALDI Biotyper and 16S rRNA gene sequencing.

71

72 Antimicrobial Resistance

73 Antimicrobial susceptibility testing was performed by VITEK-2 (bioMérieux) and
74 evaluated according to 2014 CLSI guidelines. Metallo-β-lactamase activity was
75 detected by Modified Hodge test. The major acquired carbapenemase genes (*bla*_{GES},

76 *bla*_{KPC}, *bla*_{SME}, *bla*_{IMI}, *bla*_{BIC}, *bla*_{IMP}, *bla*_{VIM}, *bla*_{NDM}, *bla*_{TMB}, *bla*_{FIM}, *bla*_{SPM}, *bla*_{DIM},
77 *bla*_{GIM}, *bla*_{SIM}, *bla*_{AIM}, *bla*_{SMB}, *bla*_{OXA}) were screened for by PCR with specific primers
78 described by Chen et al (5).

79

80 **Plasmid Transfer**

81 Conjugal transfer experiment was performed with *Escherichia coli* J53 Azi^r as the
82 recipient strain. Overnight cultures of the bacteria was diluted to 1.5×10^8 cells/mL.
83 Donor and recipient cells were mixed at 1:10 donor-to-recipient ratio, after 18 h of
84 incubation of donor-recipient mixtures on blood plates at 35°C, cells were washed by
85 normal saline solution and diluted to be cultured selectively on MacConkey agar
86 plates supplemented with sodium azide (100 µg/mL) and imipenem (1 µg/mL) for 24
87 h. Transconjugants were confirmed by PCR amplifying *bla*_{SIM} with primers (SIM-F: 5'
88 TACAAGGGATTCTGGCATCG 3'; SIM-R: 5' TAATGGCCTGTTCCCATGTG 3').

89

90 **Whole Genome Sequencing and Data Analysis**

91 Bacterial genomic DNA was sequenced with Agilent 2100 and PacBio RSII platform.
92 The contigs were assembled by SMRT Portal program. The genes were predicted with
93 GeneMarkS and further annotated by BLASTP and BLASTN against UniPort and NR
94 databases. The complete sequence of pSIM-1-BJ01, pSIM-1-BJ02, and pSIM-1-BJ03
95 was submitted to GenBank under accession number MH681289, MK158080, and
96 MK158081, respectively.

97

98 **RESULTS**

99 **Antibiotic Resistance of the *bla*_{SIM-1}-Carrying *K. pneumoniae***

100 The isolated *K. pneumoniae* 13624 strain was resistant to ampicillin, cephalosporin,
101 and carbapenem, but sensitive to ciprofloxacin, levofloxacin, and colistin (Table 1).
102 We detected the major carbapenemase genes by PCR, only the *bla*_{SIM-1} gene was
103 amplified.

104

105 In the conjugation experiment, we also detected the *bla*_{SIM-1} by PCR in the recipient
106 *E.coli* J53 Azi^r, suggesting that a transferable plasmid (designated pSIM-1-BJ01)
107 might exist in the clinically isolated *K. pneumoniae*. The transferable plasmid
108 pSIM-1-BJ01 might give the recipient *E.coli* J53 Azi^r the carbapenem resistance, as
109 shown in Table 1.

110

111 We sequenced the whole genome of the isolated *K. pneumonia* and found that there
112 were three drug-resistant plasmids in the isolated *K. pneumonia*. They are respectively
113 the *bla*_{SIM-1}-harboring megaplasmid pSIM-1-BJ01 (Fig. 1), pSIM-1-BJ02 (Fig. 3)
114 carrying the extended-spectrum β-lactamase (ESBL) genes *bla*_{TEM-1} and *bla*_{CTX-M-15}, and
115 pSIM-1-BJ03 (Fig. 4) carrying the ESBL genes *bla*_{CTX-M-14} and *bla*_{LAP-2}.

116

117 **Overview and Comparative Analysis of pSIM-1-BJ01**

118 The plasmid pSIM-1-BJ01 is a 316,557 bp circular plasmid containing 342 putative
119 ORFs (153 hypothetical proteins), the average GC content is 46%. The new

120 megaplasmid pSIM-1-BJ01 encodes three replication initiation proteins (two RepA
121 and one RepB). In addition, it carries plasmid conjugal transfer proteins TraE, TraK,
122 TraB, TraV, TraN, TraD, TraI, TraF and TraG, which code for the entire conjugation
123 machinery. Two multidrug-resistance regions (MDRs) and one unique region related
124 to phage invasion and assembly also existed in its backbone, as shown in Fig. 1.

125

126 The sequence alignment showed that most of the pSIM-1-BJ01 backbone was
127 homologous to that of the plasmid pRJA166a (Genebank Acession Number
128 CP019048.1) isolated from a clinical hypervirulent *K. pneumonia* ST23 strain at
129 Shanghai of China recently (6). In addition, a small part of the backbone of
130 pSIM-1-BJ01 is identical to that of the plasmid pOZ181 (Genebank Acession Number
131 CP016764.1) isolated from *Citrobacter freundii* strain B38 at Guangzhou of China (7),
132 and the other small part of the backbone of pSIM-1-BJ01 is identical to that of the
133 plasmid pRpNDM1(Genebank Acession Number JX515588.1) isolated from
134 *Raoultella planticola* strain RpNDM1 at Gansu of China (8), as shown in the outset
135 circle of Fig.1.

136

137 **The MDR-1 region of pSIM-1-BJ01**

138 The plasmid pSIM-1-BJ01 possesses two MDR regions. The MDR-1 harboring the
139 *bla*_{SIM-1} is totally 63-kb in length (from 34,322 bp to 97,308 bp), including nine
140 resistant genes (*bla*_{SIM-1}, *arr3*, *catB3*, *aadA15a*, *qacE11*, *sull*, *dfrA*, *qnrS1* and
141 *aph(3')-Ia*) as shown in Fig. 2A. The *bla*_{SIM-1} is also embedded in the conserved gene

142 cassette which has 98% sequence identity to the reported class 1 integron from the
143 earliest reported *A. baylyi* (Genebank Acession Number JF731030) or *A. baumannii*
144 (Genebank Acession Number AY887066) (1), indicating a horizontal gene transfer of
145 the conserved *bla_{SIM-1}* cassette from *Acinetobacter spp.* to *K. pneumonia*. The
146 difference is that *aadA1* (streptomycin resistance gene) was replaced by *aadA15a* in
147 the class 1 integron of pSIM-1-BJ01. AadA15a, displaying two amino acids
148 substitution Met126Thr and Thr136Ile, is a new derivative of AadA15 (Genebank
149 Acession Number WP_071846190.1) and has 93% amino acid sequence identity with
150 AadA1. Except for the five resistant genes embedded in the class 1 integron, another
151 three antibiotic resistant genes *dfrA*(trimethoprim resistant gene), *qnrS1* (quinolone
152 resistance gene) and *aph(3')-Ia* (kanamycin resistance gene) also existed in the
153 MDR-1 region. The three resistant genes are respectively flanked by ISs at 5' and 3'
154 ends, implying the active occurrence of the drug-resistant gene transfer.

155

156 Up to now, mentioning the *bla_{SIM}*-harbouring plasmids, only the pHN39-SIM from *P.*
157 *aeruginosa* was fully sequenced and it was untransferable to *E.coli* through
158 conjugation or electroporation (4). It contains one MDR region with seven resistant
159 genes (*bla_{SIM-2}*, *ereA1*, *catB3q*, *arr3*, *aadA1a*, *qacEΔ1* and *sull*) and two different
160 mercury resistance gene (*mer*) arrays (a and b). Compared with the pHN39-SIM, the
161 MDR-1 region of pSIM-1-BJ01 owns one *mer* resistance gene array. The *mer* array of
162 pSIM-1-BJ01 has 78% sequence similarity to the *mer* array b of pHN39-SIM, as
163 shown in Fig. 2A. Except for the *mer* array, the pSIM-1-BJ01 also owns the tellurium

164 resistant gene (*ter*) array in MDR-1 region, the *ter* array of pSIM-1-BJ01 is 99%
165 identical to that of pRJA166a (from 78,751bp to 93,171bp) (6).

166

167 The *relB* adjacent to the *mer* array belongs to type II toxin-antitoxin systems which
168 are expected to increase the longevity of plasmids in bacterial populations even in the
169 absence of selection pressure due to antibiotics and metals. Co-occurrence of metal
170 resistance genes, antibiotic resistance genes and toxin-antitoxin genes together on a
171 conjugative plasmid highlights the potential clinical consequences of co-selection (9).

172

173 **The MDR-2 region of pSIM-1-BJ01**

174 The length of MDR-2 is 39-kb from 226,714 bp to 265,885 bp, including ten
175 resistant genes (*msrE*, *mphE*, *armA*, *dfrA1*, *aadA5*, *qacEΔ1*, *sull*, *catA2*, *tetR* and *tetD*)
176 as shown in Fig. 2B. The MDR-2 contains two replication initiation protein genes
177 *repA* and *repB*. One fragment of the MDR-2 (from 233,359 bp to 254,517 bp) is 99%
178 identical to that of the plasmid pOZ181 (from 189,543 bp to 210,753 bp) isolated from
179 a *bla_{IMP-4}*-carrying *C.freundii* B38 (7), the 21-kb fragment contains resistant genes
180 *msrE* (the macrolide efflux pump gene), *mphE* (the macrolide 2'-phosphotransferase
181 gene), *armA* (16s rRNA methylase gene) and *sull*-type class I integron which has the
182 *dfrA1-gcu37-aadA5-qacEΔ1-sull* cassette. The only difference between the two
183 drug-resistant fragments is that the *IS4321* at the upstream of *sull*-type integron on
184 the pOZ181 is replaced by *IS110* at the corresponding part on pSIM-1-BJ01. The
185 other fragment (from 258,498 bp to 265,885 bp), carrying resistant genes *catA2*, *tetR*

186 and *tetD*, is 100% identical to that (from 143,213 bp to 135,889 bp) of the
187 *bla*_{IMP-4}-carrying pMS7884A (Genebank Acession Number CP022533.1) isolated
188 from an *Enterobacter cloacae*.

189

190 **Overview of pSIM-1-BJ02**

191 pSIM-1-BJ02 is a 95,324 bp circular plasmid containing 124 putative ORFs (54
192 hypothetical proteins), and the average GC content is 52%, as shown in Fig. 3.
193 pSIM-1-BJ02 carrying *bla*_{TEM-1} and *bla*_{CTX-M-15} is not a new plasmid, and it is 100%
194 homologous to the plasmid pL22-5 (Genebank Acession Number CP031262.1)
195 isolated from a hypermucoviscous strain *Klebsiella quasipneumoniae* ST367 in China
196 and is 99% identical to the plasmid pKF3-94 (Genebank Acession Number
197 FJ876826) isolated from a clinical drug-resistant strain *K. pneumonia* KF3 in China
198 (10).

199

200 **Overview of pSIM-1-BJ03**

201 The plasmid pSIM-1-BJ03 is a 38,669 bp circular plasmid containing 29 putative
202 ORFs (8 hypothetical proteins), and the average GC content is 49%, as shown in Fig.
203 4 . The small pSIM-1-BJ03 carrying *bla*_{LAP-2} and *bla*_{CTX-M-14} is firstly reported here, its
204 multidrug-resistant region (from 25,868 bp to 38,669 bp) is 100% identical to that of
205 pE66An (Genebank Acession Number HF545433.1) (from 80105 bp to 67304 bp)
206 isolated from *E.coli* in Vietnam.

207

208 **DISCUSSION**

209 The infection rate of carbapenem-resistant *K. pneumoniae* (CRKP) has increased
210 substantially in the past 10 years, even a fatal outbreak of hypervirulent
211 carbapenem-resistant *K. pneumonia* (hv CRKP) in a Chinese hospital (11-13). Here,
212 we presented a clinically isolated *K. pneumonia* with three resistance plasmids.
213 Among them, the plasmid pSIM-1-BJ01 carried the rare carbapenemase gene *bla*_{SIM-1}.

214

215 The very rare carbapenem-resistant gene *bla*_{SIM-1} was usually found in *Acinetobacter*
216 spp. and *Pseudomonas aeruginosa* isolated from South Korea and China, and the
217 *bla*_{SIM-1}-carrying megaplasmid pSIM-1-BJ01 isolated from *K. pneumonia* was less
218 reported. Most of the pSIM-1-BJ01 backbone were homologous to the corresponding
219 parts of pRJA166a, which was isolated from a clinical hypervirulent *K. pneumonia*
220 ST23 strain at Shanghai of China recently. The plasmid pRJA166a carrying *bla*_{DHA-1}
221 was able to disseminate across an expanded collection of *K. pneumonia* and keep its
222 stability across the transconjugants. The highly homologous backbones between the
223 two plasmids imply the close relationship of evolution and reflect the active
224 happening of gene convergence under clinical selection pressure.

225

226 Unlike the reported *bla*_{SIM}- harbouring plasmid pHN39-SIM from *P. aeruginosa*, the
227 plasmid pSIM-1-BJ01 was able to transfer to *E. coli*, indicating the possible spread of
228 *bla*_{SIM} among Enterobacteriaceae. Now there was one case report about the *bla*_{SIM-1}
229 carrying *E. coli* from India (14). The emergency of the multidrug-resistant
230 megaplasmid pSIM-1-BJ01 reflects the active occurrence of resistant gene

231 convergence under clinical selection pressure, we should pay more attention to
232 supervise the dissemination of *bla*_{SIM} in Enterobacteriaceae.

233

234 Except for the new megaplasmid pSIM-1-BJ01, the moderate-size plasmid
235 pSIM-1-BJ02 is a common reported plasmid isolated from clinical hypermucoviscous
236 drug-resistant *Klebsiella* spp. in Chinese hospitals; the small-size plasmid
237 pSIM-1-BJ03 was first reported here with its MDR region identical to that of pE66An
238 isolated from *E.coli* in Vietnam; so it is urgent to supervise these resistant plasmids'
239 transmission and evaluate the epidemicity among clinical *Klebsiella* spp. and
240 Enterobacteriaceae.

241

242 **AUTHOR CONTRIBUTIONS**

243 HHy and WSw: conception and design of the study. LY, LH, ZW and LJ: acquisition
244 of data. LY: genome sequence analysis and interpretation of data, drafting the article.
245 LH, ZW AND LJ: sample isolation and identification, antimicrobial resistance
246 analysis and molecular analysis.

247

248 **FUNDING**

249 This work was supported by Research Fund of the General Hospital of Chinese
250 People's Armed Police Forces (WZ2014013).

251

252 **Transparency declarations**

253 None to declare.

254

255 **References**

256 1. Lee K, Yum JH, Yong D, Lee HM, Kim HD, Docquier JD, Rossolini GM,
257 Chong Y. 2005. Novel acquired metallo-beta-lactamase gene, bla(SIM-1), in a
258 class 1 integron from *Acinetobacter baumannii* clinical isolates from Korea.
259 *Antimicrob Agents Chemother* 49:4485-91.

260 2. Kim Y, Roh KH, Lee Y, Chung HS, Yum JH, Yong D, Lee K, Chong Y. 2013.
261 Clonal change of blaSIM-1-carrying *Acinetobacter* spp. from 2003 to 2008 in
262 the hospital where it was initially discovered. *Microb Drug Resist* 19:37-41.

263 3. Zhou Z, Du X, Wang L, Yang Q, Fu Y, Yu Y. 2011. Clinical
264 carbapenem-resistant *Acinetobacter baylyi* strain coharboring blaSIM-1 and
265 blaOXA-23 from China. *Antimicrob Agents Chemother* 55:5347-9.

266 4. Sun F, Zhou D, Wang Q, Feng J, Feng W, Luo W, Zhang D, Liu Y, Qiu X, Yin
267 Z, Chen W, Xia P. 2016. The first report of detecting the blaSIM-2 gene and
268 determining the complete sequence of the SIM-encoding plasmid. *Clin
269 Microbiol Infect* 22:347-351.

270 5. Chen Z, Li H, Feng J, Li Y, Chen X, Guo X, Chen W, Wang L, Lin L, Yang H,
271 Yang W, Wang J, Zhou D, Liu C, Yin Z. 2015. NDM-1 encoded by a
272 pNDM-BJ01-like plasmid p3SP-NDM in clinical *Enterobacter aerogenes*.
273 *Front Microbiol* 6:294.

274 6. Xie Y, Tian L, Li G, Qu H, Sun J, Liang W, Li X, Wang X, Deng Z, Liu J, Ou

275 HY. 2018. Emergence of the third-generation cephalosporin-resistant
276 hypervirulent *Klebsiella pneumoniae* due to the acquisition of a
277 self-transferable blaDHA-1-carrying plasmid by an ST23 strain. *Virulence*
278 9:838-844.

279 7. Xiong J, Deraspe M, Iqbal N, Ma J, Jamieson FB, Wasserscheid J, Dewar K,
280 Hawkey PM, Roy PH. 2016. Genome and Plasmid Analysis of
281 blaIMP-4-Carrying *Citrobacter freundii* B38. *Antimicrob Agents Chemother*
282 60:6719-6725.

283 8. Li J, Lan R, Xiong Y, Ye C, Yuan M, Liu X, Chen X, Yu D, Liu B, Lin W, Bai
284 X, Wang Y, Sun Q, Wang Y, Zhao H, Meng Q, Chen Q, Zhao A, Xu J. 2014.
285 Sequential isolation in a patient of *Raoultella planticola* and *Escherichia coli*
286 bearing a novel ISCR1 element carrying blaNDM-1. *PLoS One* 9:e89893.

287 9. Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DG. 2015. Co-occurrence
288 of resistance genes to antibiotics, biocides and metals reveals novel insights
289 into their co-selection potential. *BMC Genomics* 16:964.

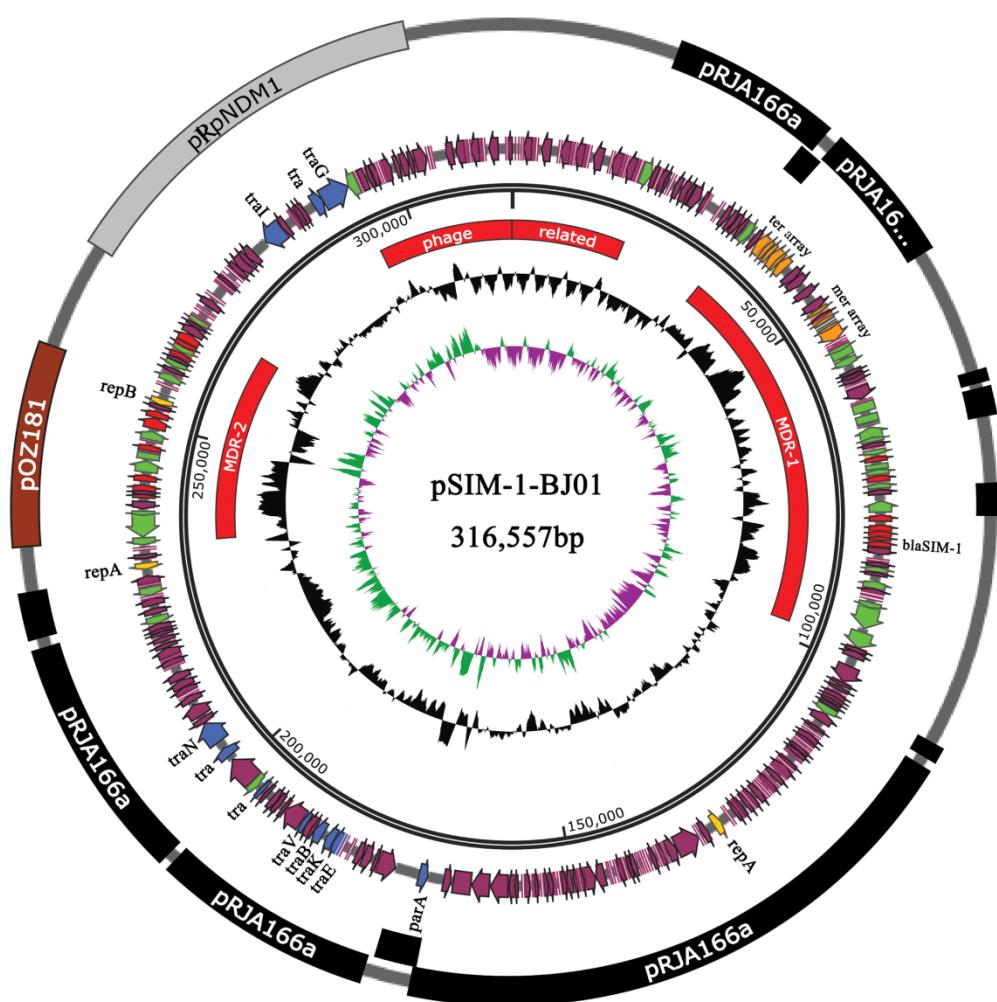
290 10. Zhao F, Bai J, Wu J, Liu J, Zhou M, Xia S, Wang S, Yao X, Yi H, Lin M, Gao
291 S, Zhou T, Xu Z, Niu Y, Bao Q. 2010. Sequencing and genetic variation of
292 multidrug resistance plasmids in *Klebsiella pneumoniae*. *PLoS One* 5:e10141.

293 11. Gu D, Dong N, Zheng Z, Lin D, Huang M, Wang L, Chan EW-C, Shu L, Yu J,
294 Zhang R, Chen S. 2018. A fatal outbreak of ST11 carbapenem-resistant
295 hypervirulent *Klebsiella pneumoniae* in a Chinese hospital: a molecular
296 epidemiological study. *The Lancet Infectious Diseases* 18:37-46.

297 12. Wong MHY, Shum H-P, Chen JHK, Man M-Y, Wu A, Chan EW-C, Yuen K-Y,
298 Chen S. 2018. Emergence of carbapenem-resistant hypervirulent *Klebsiella*
299 *pneumoniae*. *The Lancet Infectious Diseases* 18:24.

300 13. Yao H, Qin S, Chen S, Shen J, Du X-D. 2018. Emergence of
301 carbapenem-resistant hypervirulent *Klebsiella pneumoniae*. *The Lancet*
302 *Infectious Diseases* 18:25.

303 14. Gopalakrishnan S, Kamalanathan A, Rajan S, Bhagat VM, Ali MKS. 2018.
304 Emergence of *armA* and *rmtB* genes among VIM, NDM, and IMP
305 metallo-beta-lactamase-producing multidrug-resistant Gram-negative
306 pathogens. *Acta Microbiol Immunol Hung* 65:107-118.


307

308

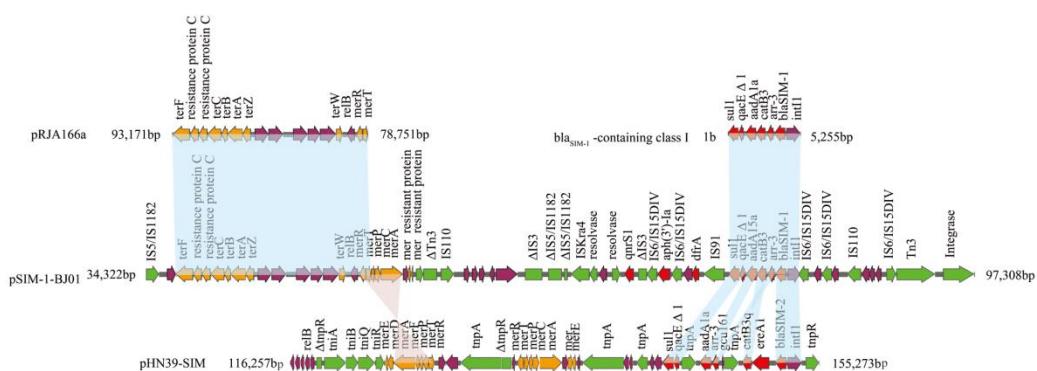
TABLE 1. Antimicrobial drug susceptibility profiles.

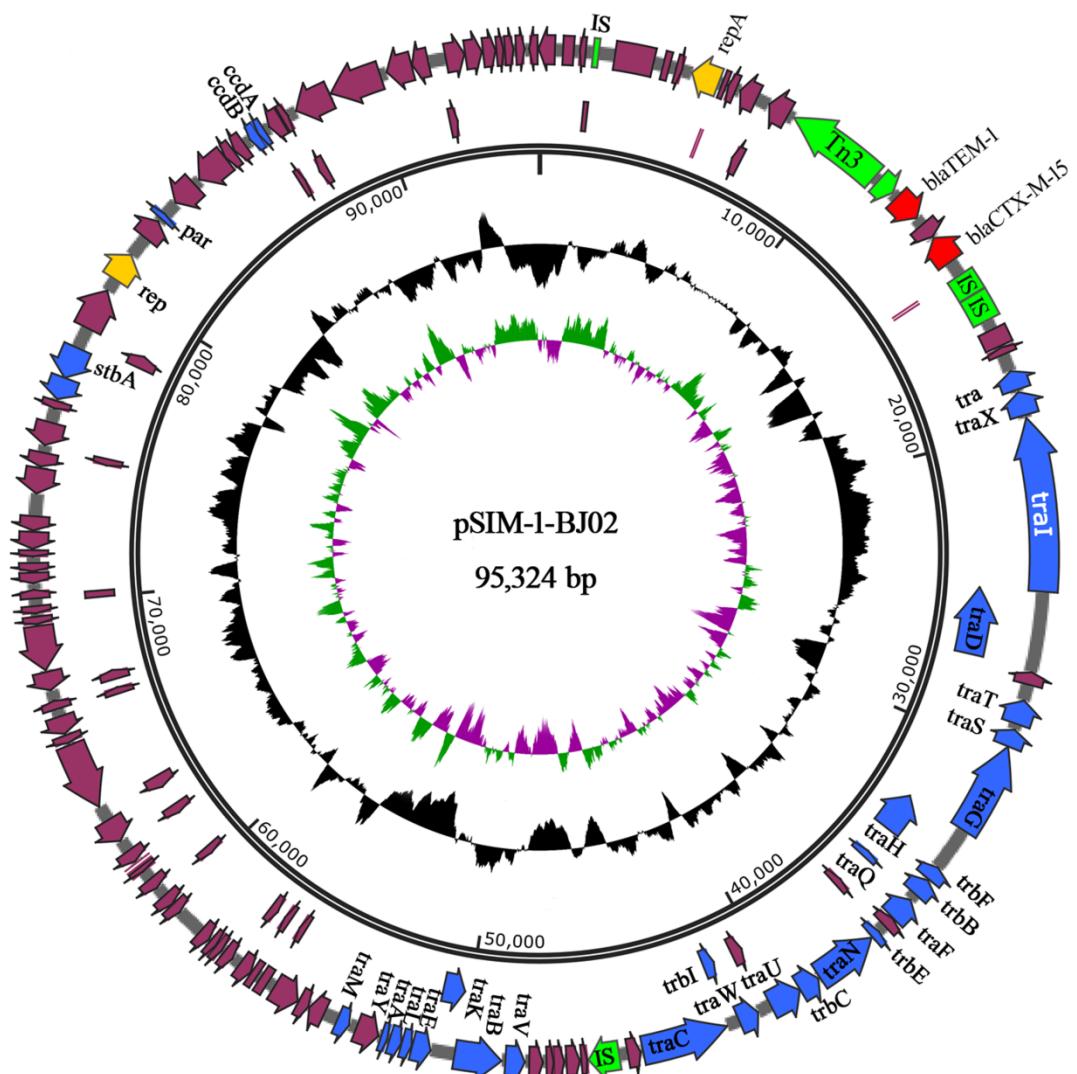
Antibiotic	MIC (mg/L)	
	<i>K. pneumoniae</i> 13624	<i>E. coli</i> J53 (pSIM-1-BJ01)
Ampicillin	>256	>256
Piperacillin	>128	>128
Cephalothin	>256	>256
Cefoxitin	>256	>256
Cefotaxime	>256	>256
Cefuroxime	>256	>256
Ceftazidime	>256	>256
Aztreonam	>128	>128
Cefepime	>64	>32
Ertapenem	>16	>8
Imipenem	>16	>8
Meropenem	>16	>8
Ciprofloxacin	<0.5	<0.5
levofloxacin	<0.5	<0.5
Colistin	<0.5	<0.5

309

310

311

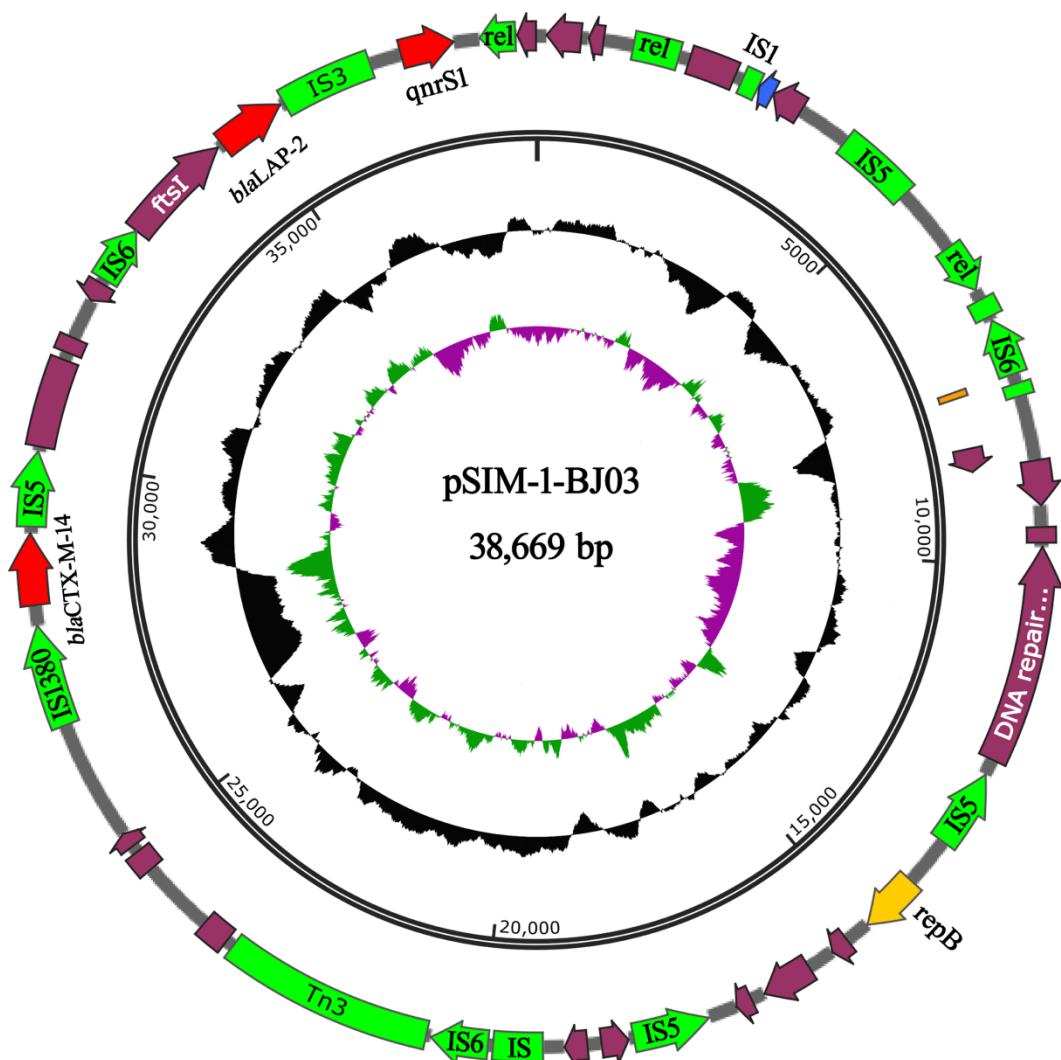

312 **Figure 1 Schematic map of the plasmid pSIM-1-BJ01** | The innermost circle
313 presents GC-Skew [Green,GC skew+/Violet, GC skew -]. Starting from the inside, the
314 second circle (black) presents GC content. The open reading frames (ORFs) are
315 annotated in the fourth circle with arrows representing the direction of transcription
316 and colored based on gene function classification [red, antibiotic resistance genes;
317 yellow, replication initiation protein genes; blue, plasmid partition and conjugal
318 transfer genes; green, transposon genes; orange, heavy-metal resistance genes]. The
319 most outside circle indicates the backbone homologue of pSIM-1-BJ01 [black, the


320 fragments from the plasmid pRJA166a; grey, the fragment from the plasmid

321 pRpNDM1; brown, the fragment from the plasmid pOZ181].

322

A

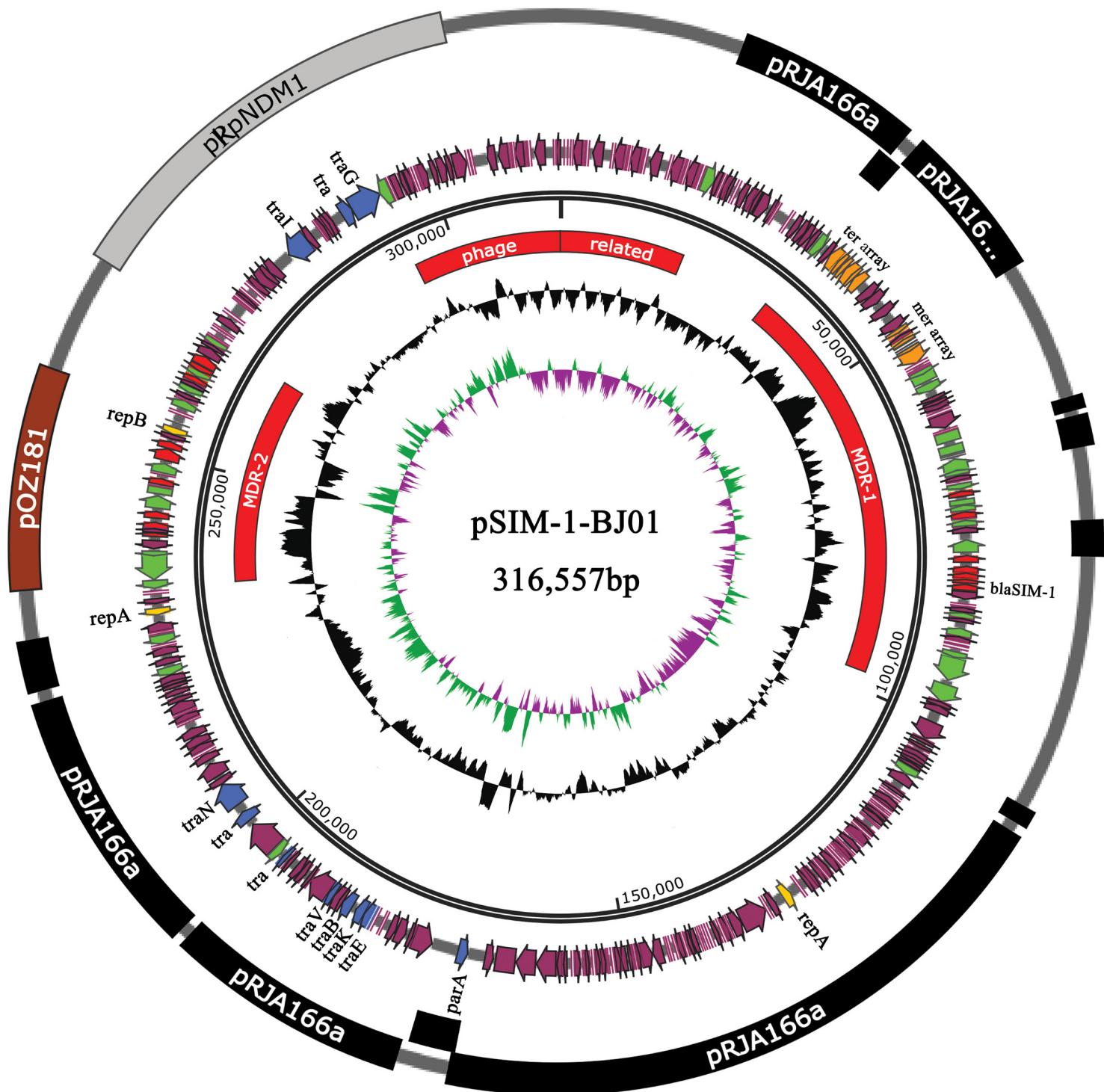


331

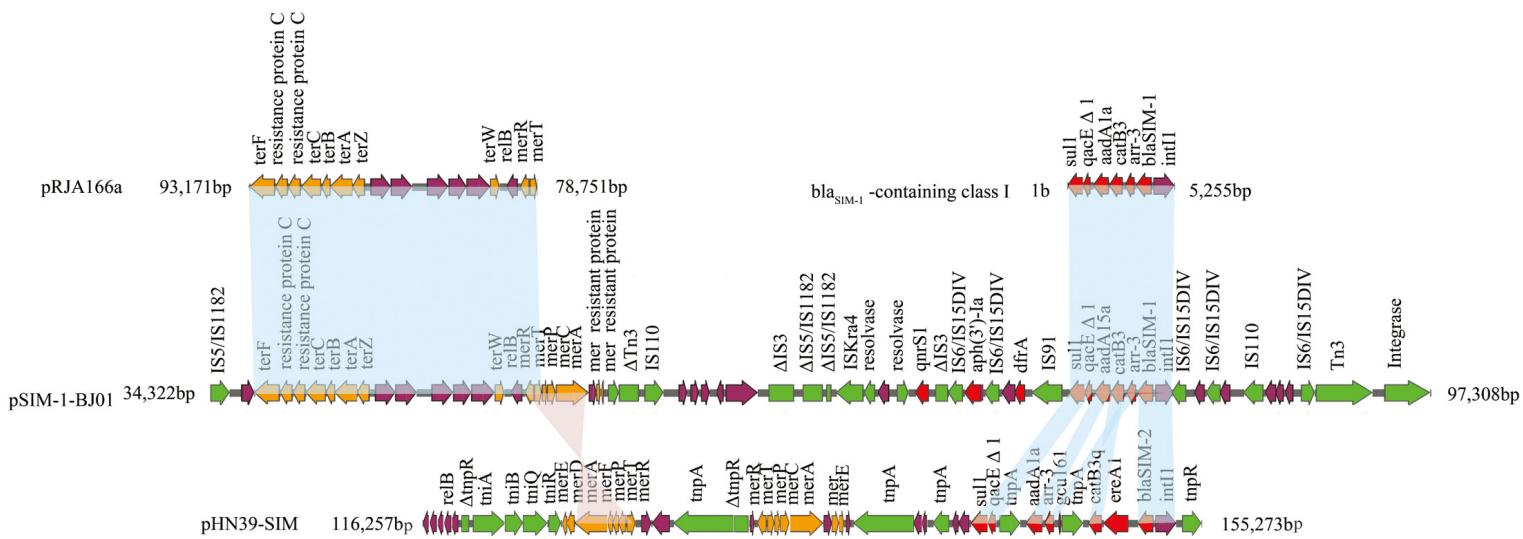
332

333 **Figure 3 Schematic map of pSIM-1-BJ02** | The innermost circle presents
334 GC-Skew [Green,GC skew+/Violet, GC skew -]. Starting from the inside, the second
335 circle (black) presents GC content. The open reading frames (ORFs) are annotated in
336 the fourth circle with arrows representing the direction of transcription and colored
337 based on gene function classification [red, antibiotic resistance genes; yellow,
338 replication initiation protein genes; blue, plasmid partition and conjugal transfer genes;
339 green, transposon genes].

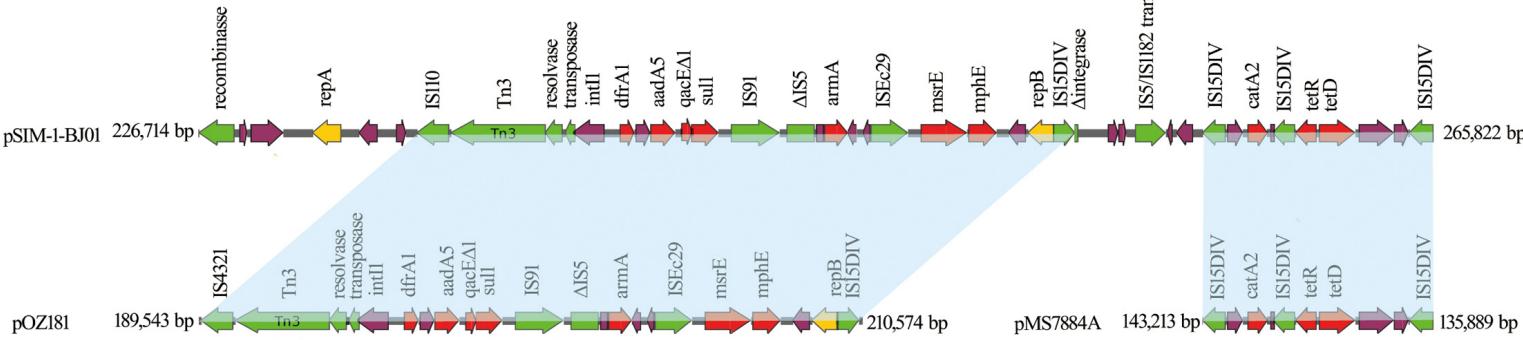
340

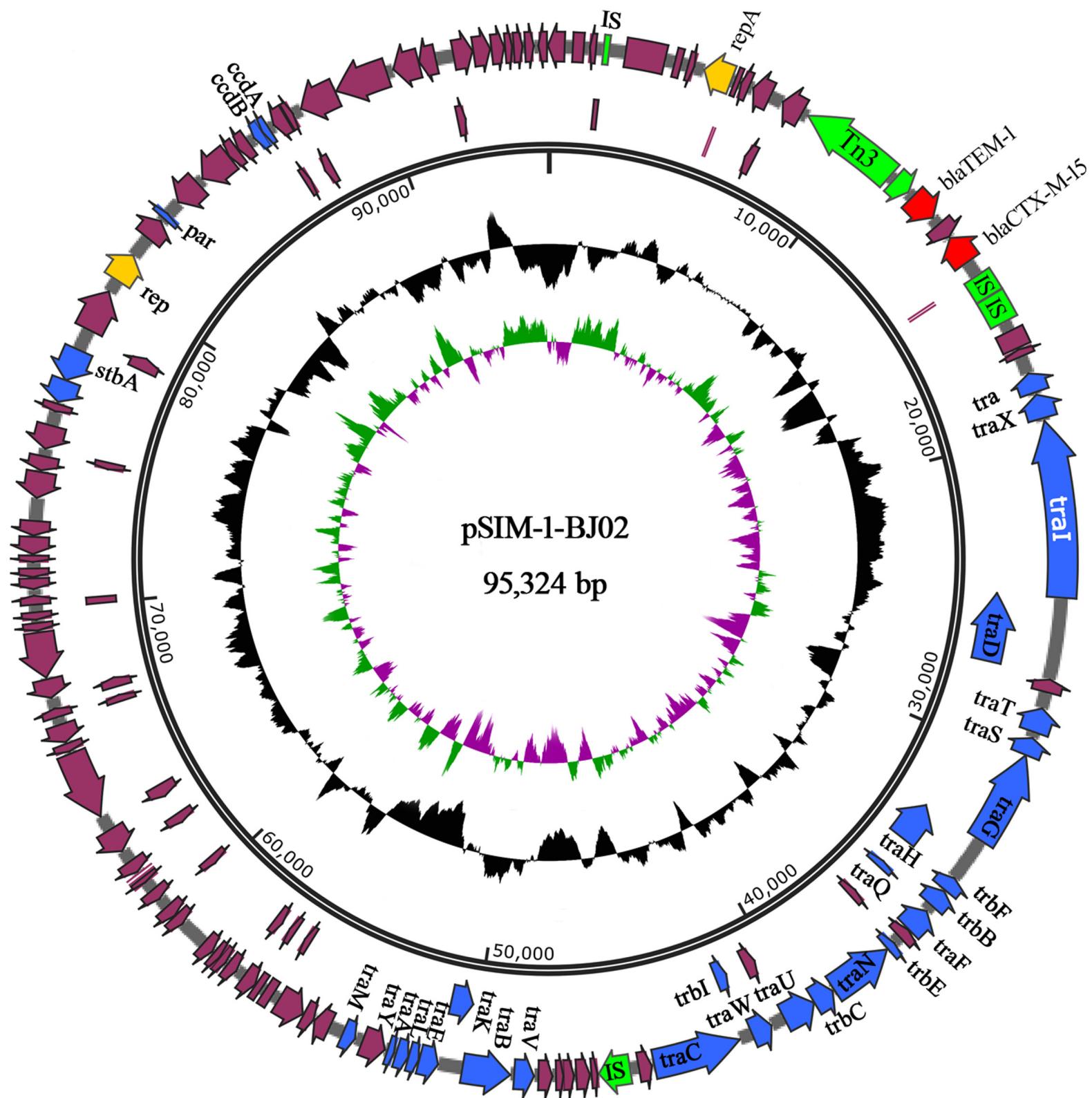

341

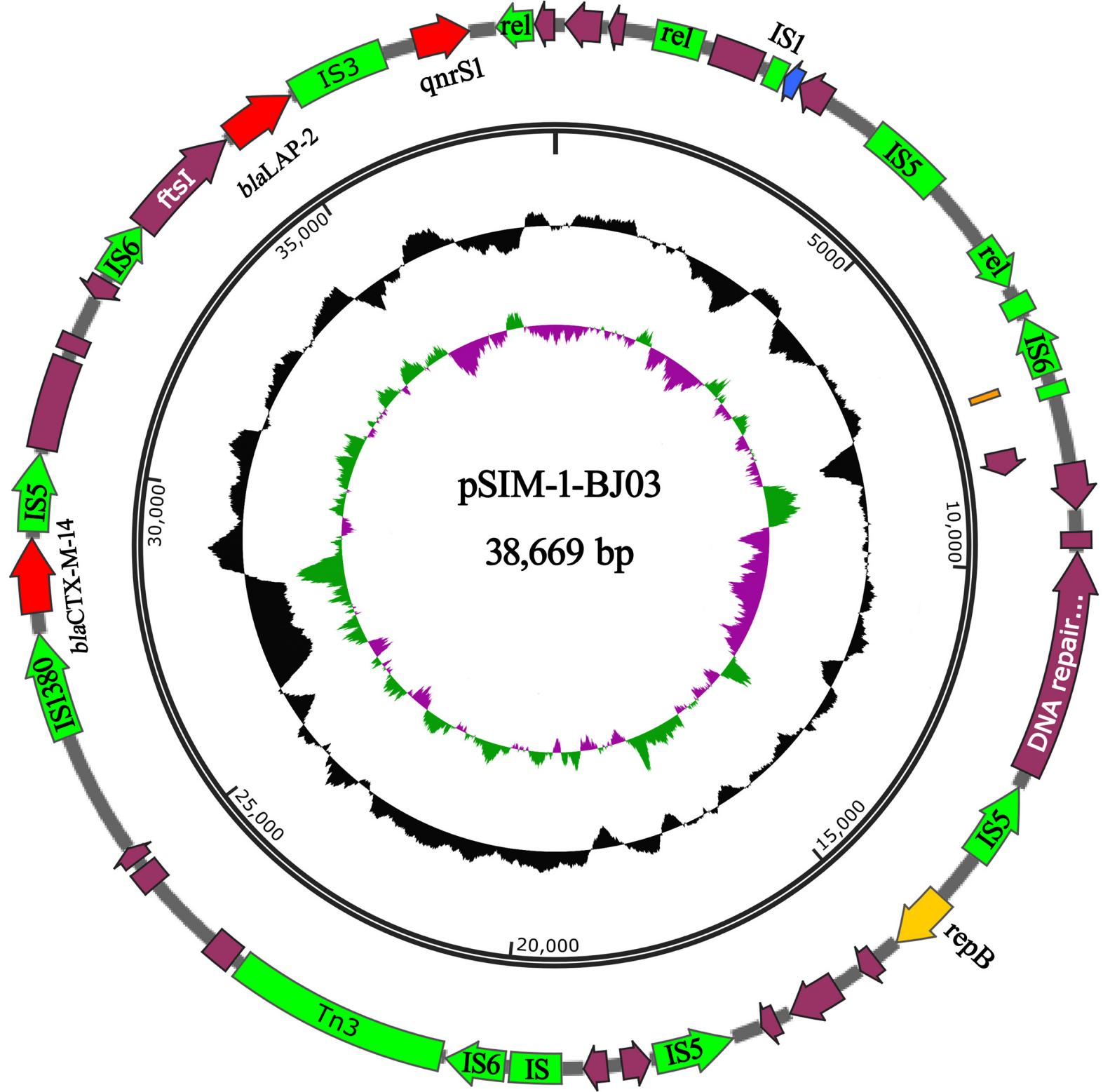
342


343 **Figure 4 Schematic map of pSIM-1-BJ03** | The innermost circle presents
344 GC-Skew [Green,GC skew+/Violet, GC skew -]. Starting from the inside, the second
345 circle (black) presents GC content. The open reading frames (ORFs) are annotated in
346 the fourth circle with arrows representing the direction of transcription and colored
347 based on gene function classification [red, antibiotic resistance genes; yellow,
348 replication initiation protein genes; blue, plasmid partition and conjugal transfer genes;
349 green, transposon genes].

350


351




A

B

