

Visual maps in macaque dorsomedial cortex

1 **Topographic organization of the “third tier” dorsomedial visual cortex in the macaque**

2 Kostas Hadjidimitrakis^{1,2}, Sophia Bakola^{1,2}, Tristan A. Chaplin^{1,2}, Hsin-Hao Yu^{1,2}, Omar

3 Alanazi¹, Jonathan M. Chan¹, Katrina H. Worthy¹, Marcello G.P. Rosa^{1,2,3}

4 ¹ Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton,

5 VIC 3800, Australia.

6 ² ARC Centre of Excellence for Integrative Brain Function, Monash University Node,

7 Monash University, Clayton, VIC 3800, Australia.

8 ³ School of Biomedical Sciences (previously Vision, Touch and Hearing Research Centre,

9 Department of Physiology and Pharmacology), The University of Queensland, Brisbane,

10 QLD 4072, Australia.

11

12 **With:** 10 Figures

13 **Running title:** Macaque dorsomedial extrastriate cortex

14 **Number of pages:** 25

15 **Word count:** Abstract: 250; Introduction: 650; Discussion: 1486

16 **Corresponding authors:**

17 K. Hadjidimitrakis and M.G.P. Rosa

18 Department of Physiology, Monash University, Clayton VIC 3800, Australia.

19 Email: Konstantinos.Chatzidimitrakis@monash.edu, Marcello.Rosa@monash.edu

20

21

Visual maps in macaque dorsomedial cortex

22 Abstract

23 The boundaries of the visual areas located anterior to V2 in the dorsomedial region of the
24 macaque cortex remain contentious. This region is usually conceptualized as including two
25 functional subdivisions: the dorsal component of area V3 (V3d), laterally, and another area,
26 named the parietooccipital area (PO) or V6, medially. However, the nature of the putative
27 border between V3d and PO/V6 has remained undefined. We recorded the receptive fields of
28 multiunit clusters in adult male macaques, and reconstructed the locations of recording sites
29 using histological sections and “unfolded” cortical maps. Immediately adjacent to
30 dorsomedial V2 we observed a representation of the lower contralateral quadrant, which
31 represented the vertical meridian at its rostral border. This region, corresponding to V3d of
32 previous studies, formed a simple eccentricity gradient, from approximately $<5^\circ$ in the
33 annectant gyrus, to $>60^\circ$ in the parietooccipital sulcus. However, there was no topographic
34 reversal where one would expect to find the border between V3d and PO/V6. Rather, near the
35 midline, this lower quadrant map continued directly into a representation of the peripheral
36 upper visual field, without an intervening lower quadrant representation that could be
37 unambiguously assigned to PO/V6. Thus, V3d and PO/V6 form a continuous topographic
38 map, which includes parts of both quadrants. Together with previous observations that V3d
39 and PO/V6 are both densely myelinated relative to adjacent cortex, and share similar input
40 from V1, these results suggest that they are parts of a single area, which is distinct from the
41 one forming the ventral component of the third tier complex.

42

43 **Significance statement:** The primate visual cortex has a large number of areas. Knowing the
44 extent of each visual area, and how they can be distinguished from each other, are essential
45 for the interpretation of experiments aimed at understanding visual processing. Currently,
46 there are conflicting models of the organization of the dorsomedial visual cortex rostral to
47 area V2 (one of the earliest stages of cortical processing of vision). By conducting large-scale
48 electrophysiological recordings, we found that what were originally thought to be distinct
49 areas in this region (dorsal V3, and the parietooccipital area [PO/V6]), together form a single
50 map the visual field. These results will help guide future functional studies, and the
51 interpretation of the outcomes of lesions involving the dorsal visual cortex.

52 **Introduction**

53

54 Despite four decades of research, there is still controversy regarding the boundaries of visual
55 areas in the “third tier” cortex, i.e., the areas located rostral to the second visual area (V2,
56 (Allman and Kaas, 1975). Here we focus on the parts of this complex located in the
57 dorsomedial region of the macaque brain, including the medial part of the lunate sulcus,
58 annectant gyrus, parietooccipital sulcus and mesial surface of the brain (Fig. 1). The
59 traditional view has been that there are at least two subdivisions in this region. Laterally, in
60 the lunate sulcus and annectant gyrus, most studies indicate the existence of a dorsal
61 component of area V3 (V3d; Gattass et al., 1988). Medially, the cortex along the banks of the
62 parietooccipital sulcus and mesial surface is usually assigned to a different region, termed the
63 parietooccipital area (PO; Colby et al., 1988) or V6 (Galletti et al., 1999) (Fig. 1). Although
64 proposals regarding the boundaries of PO/V6 continue to evolve (Gamberini et al., 2015), it
65 is generally agreed that receptive fields of neurons in this region emphasize peripheral vision.
66 Moreover, models proposed by various groups converge on the idea that PO/V6 encompasses
67 a representation of the lower quadrant in the parietooccipital sulcus, as well as a
68 representation of the upper visual field on the mesial surface of the hemisphere. Models
69 proposed for the organization of PO/V6 in capuchin monkeys (Neuenschwander et al., 1994)
70 and humans (Pitzalis et al., 2006) reflect these features.

71 Visual areas corresponding to early stages of visual processing each form a representation of
72 the visual field (e.g., Van Essen and Zeki, 1978; Sereno et al., 1995; Rosa et al., 1997). Thus,
73 if V3d and PO/V6 are distinct areas, it would be expected that they form separable visuotopic
74 maps. In particular, as depicted in most studies, there should be distinct representations of the
75 peripheral lower quadrant near their common boundary (Fig. 1). However, the transition
76 between V3d and PO/V6 has never been documented in detail, leaving significant room for

Visual maps in macaque dorsomedial cortex

77 other interpretations. For example, based on analyses of cortical architectonics, Lewis and
78 Van Essen (2000) indicated that V3d and PO/V6a may not be adjacent, being separated by a
79 posterior intraparietal area (PIP). Conversely, based on meta-analysis of published data,
80 Angelucci and Rosa (2015) proposed that V3d and PO/V6 could actually be parts of the same
81 area. Indeed, V3d and PO/V6 share significant similarities, such as dense myelination, a
82 projection from the primary visual cortex (V1) that originates in layer 4b, and large numbers
83 of direction-selective neurons (Felleman and Van Essen, 1987; Felleman et al., 1997; Galletti
84 et al., 2001; Rosa et al., 2009; Pitzalis et al., 2010). They are also reported to have
85 complementary emphases in representation of central (V3d) versus peripheral (PO/V6) visual
86 field. Given the above, it is important to explore the visuotopic organization of the cortex
87 around their putative border in order to ascertain if the 2-areas scheme outlined above does in
88 fact provide the best description of the organization of the dorsomedial third tier cortex.
89 Bringing clarity to the topographic organization of this region of the macaque cortex is also
90 relevant in order to understand similarities and differences with New World monkeys, in
91 which a single dorsomedial area (DM) has been proposed to occupy the corresponding region
92 (Rosa and Schmid, 1995; Rosa et al., 2005).

93 Based on electrophysiological recordings, we found that the cortex anterior to V2 formed a
94 relatively simple pattern of representation of the lower quadrant, with lateral to medial
95 gradients of increasing eccentricity and receptive field size. However, we also found that this
96 representation merged directly into a representation of the upper quadrant near the midline,
97 thereby forming a single representation of the peripheral visual field. Complementing the
98 results of a recent study of the lateral part of the third tier complex (Zhu and Vanduffel, 2018),
99 these findings point to a reinterpretation of the areas rostral to dorsal V2 in the macaque.

100

Visual maps in macaque dorsomedial cortex

101 Materials and methods

102 The present report is based on data obtained in 4 young adult male macaque monkeys
103 (*Macaca fascicularis*). The experimental protocols were approved by the Animal
104 Experimentation Ethics Committees of the University of Queensland and Monash University,
105 which also monitored the welfare of the animals. All procedures complied with the guidelines
106 of the Australian Code of Practice for the Care and Use of Animals for Scientific Purposes.

107

108 **Preparation:** The animals were pre-medicated with i.m. injections of diazepam (3 mg/kg)
109 and atropine (0.2 mg/kg), and, after 30 minutes, were anesthetized with ketamine (50 mg/kg)
110 and xylazine (3 mg/kg; cases 1-3), or with a ketamine/Dormitor/Butorphenol cocktail (0.1
111 mg/kg, i.m.; case 4). Anesthesia was maintained with additional doses of ketamine (12 mg/kg;
112 cases 1-3) or alfaxan (8 mg/kg; case 4) throughout surgery. The animals were placed in a
113 stereotaxic frame and, prior to the beginning of recording sessions, were implanted with a
114 bolt for holding the head while allowing an unobstructed field of vision (e.g. Bourne and
115 Rosa 2003). The femoral vein was cannulated, and a craniotomy was performed to expose the
116 dorsal aspect of the occipital and parietal lobes. After the surgical procedures were completed,
117 the animals were administered an i.v. infusion of pancuronium bromide (0.5 mg/kg, followed
118 by 0.1 mg/kg/h), combined with sufentanil citrate (6–8 µg/kg/h), in a solution of sodium
119 chloride (0.18%) / glucose (4%) and dexamethasone (0.4 mg/kg/h). They were maintained
120 under artificial ventilation, with a gaseous mixture of N₂O/O₂ (7:3). Vital signs
121 (electrocardiograph, PO₂, and levels of spontaneous activity in the cortex) were continuously
122 monitored, and the temperature was maintained between 36.5°C and 37°C by means of a
123 heating blanket connected to a rectal temperature probe. Mydriasis and cycloplegia were
124 induced by topical applications of atropine (1%) and phenylephrine hydrochloride (10%) eye

Visual maps in macaque dorsomedial cortex

125 drops. Appropriate focus was achieved by means of contact lenses with 3 mm artificial pupils,
126 which brought into focus the surface of a 57.3 cm radius translucent hemispheric screen
127 centered on the eye contralateral to the cerebral hemisphere to be studied.

128

129 **Electrophysiology:** Tungsten microelectrodes ($\sim 1\text{M}\Omega$) were inserted in anteroposterior rows
130 along parasagittal planes approximately 1.5 mm apart. Penetrations extended in most cases to
131 the calcarine sulcus, and in many cases to the ventral surface of the cortex, including
132 recordings from portions of V1 and V2 in these regions. Recording sites were obtained at
133 different depths in each penetration (every 300–500 μm). Amplification and filtering were
134 achieved via an AM Systems model 1800 microelectrode alternating current amplifier.

135 Visual stimuli were monocularly presented under mesopic adaptation levels to the eye
136 contralateral to the cortical hemisphere from which the neuronal recordings were obtained.
137 The eye ipsilateral to the recording hemisphere was occluded. Visual stimulation was
138 achieved through a manually operated light source, which was projected onto the translucent
139 hemisphere (Yu and Rosa, 2010). At each recording site, receptive fields of single units or
140 small unit clusters were mapped by correlating changes in neural activity with stimulation of
141 specific portions of the visual field. Typical visual stimuli were white spots (1–10° in
142 diameter) and luminous bars (2–20° long, 0.2–1° wide), moved or flashed (1 Hz) on the
143 surface of the screen. The stimulus luminance was between 1 and 10 cd/m. Receptive fields
144 were drawn as rectangles parallel to the axis of best orientation. The position of each
145 electrode penetration was marked on digital images of the pattern of blood vessels on the
146 cortical surface, obtained with a CCD camera. Electrolytic lesions (4–5 μA for 10 seconds)
147 were placed during the experiment to mark the transitions between areas, the end of electrode
148 tracks, and sites of special interest.

Visual maps in macaque dorsomedial cortex

149

150 **Histology:** At the end of the experiments, the animals were administered a lethal dose of
151 sodium pentobarbitone (100 mg/kg, i.v.), and perfused transcardially with heparinized saline
152 or phosphate buffer, followed by 4% paraformaldehyde in 0.1M phosphate buffer (pH 7.4).
153 The brains were removed from the skull, blocked, and cryoprotected by immersion in
154 buffered solutions of sucrose (10–30%). Once the brains sank in the 30% sucrose solution,
155 parasagittal sections (40 or 50 μ m) were obtained using a cryostat. Adjacent series were
156 stained for Nissl substance, cytochrome oxidase and myelin, using the Gallyas (1979)
157 procedure (Fig. 2). All sections were coverslipped with DPX, after dehydration in ethanol and
158 clearing with xylene.

159 The positions of recording sites were reconstructed in serial sections, based on histological
160 observation of gliosis caused by the electrode tracks (e.g. Fig. 2), electrolytic lesions, and
161 transitions between the gray and white matter. Shrinkage due to histological processing was
162 estimated by comparing the distances between the electrode tracks in the sections with the
163 microdrive readings.

164

165 **Data analysis:** The positions of the horizontal and vertical meridians of the visual field were
166 estimated during the experiment by assuming that the former was aligned with the elevation
167 of the center of the optic disk, and the latter corresponded to a vertical line approximately 15°
168 from the center of this retinal landmark. These estimates were refined during the data analysis
169 using well-established features of the visual topography of the macaque cortex as references:
170 namely, we assumed that receptive fields recorded at the V1/V2 histological border
171 overlapped with the vertical meridian of the visual field, and that receptive fields recorded
172 from neurons near the anterior border of V2 represented the horizontal meridian (Van Essen

Visual maps in macaque dorsomedial cortex

173 and Zeki, 1978; Gattass et al., 1981). Repeated plotting of small receptive fields in these
174 areas demonstrated that eye drift did not occur under the dose of pancuronium bromide that
175 we used.

176 Receptive fields were digitized as rectangles on the spherical surface. The centers of the
177 receptive fields were calculated as the mean values of the azimuth and elevation within the
178 sectors of the visual field which they encompassed, their eccentricities as the geodesic
179 distance between the centers of the receptive field and the intersection between the vertical
180 and horizontal meridians, the polar angle as the angle between the centers of the receptive
181 fields and the horizontal meridian, and the receptive field sizes as the square root of the
182 surface areas of the rectangles that represented them (Yu and Rosa, 2010).

183 Three- and two-dimensional reconstructions of the cortical surface were generated with the
184 software CARET (Van Essen et al., 2001). Sections were scanned and aligned with a
185 graphics software (Adobe Illustrator) using pinholes created prior to sectioning as a reference.
186 Layer 4 contours from each case were traced manually on the digitized sections, and
187 registered. The contours were then imported into CARET to reconstruct the 3D surface
188 models, and to create unfolded (2D) maps of the cortex. Visuotopic coordinates from each
189 recording site were projected on the reconstructed surfaces. Subsequently, visuotopic maps
190 were created by interpolating the eccentricity and polar angle of each recording site's
191 receptive field across the region of interest. We then employed an interpolation procedure to
192 estimate coordinates at all mesh nodes, using a distance weighted smoothing algorithm
193 (Sereno et al., 1994; Chaplin et al., 2013).

194 **Results**

195 The locations of the recording sites, which yielded visual receptive fields in the region of
196 interest, are illustrated in Figure 3. In each animal, we examined a cortical region extending
197 approximately from the rostral border of V1 to the caudal intraparietal sulcus, and from the
198 midline to the medial third of the lunate sulcus. The yellow lines in the unfolded maps (Fig.
199 3B, D, E, F) indicate the approximate medial boundary of the region encompassing recording
200 sites that were located in the banks of the lunate, parieto-occipital and intraparietal sulci (see
201 schematic in Fig. 3C). In each case, approximately half of the recording sites were located in
202 the banks of these sulci. For further orientation, red asterisks also indicate the crown of the
203 annexant gyrus (a buried gyrus, not visible from the surface of the brain, which separates the
204 lunate sulcus from the posterior ramus of the intraparietal sulcus). The lateral limit of our
205 recording grids included this gyrus.

206 Figure 4 summarizes the visual topography of the studied region in unfolded two-dimensional
207 reconstructions. The left panels illustrate interpolated polar angle maps, and the right panels
208 show the eccentricity maps. Receptive field sequences that illustrate in more detail the main
209 points highlighted in the analysis below are shown in Figures 5-7.

210

211 **V2:** As shown in panels A-D of Figure 4, the caudal and rostral borders of dorsal V2 were
212 evident in each animal, coinciding with representations of the vertical (red tones, and
213 continuous lines to the left of each map) and horizontal (yellow tones, and dashed lines)
214 meridians. The receptive field eccentricity in the explored region of V2 (Fig. 4E-H) increased
215 from approximately 5° (red) to 60° or more (dark blue) from lateral to medial. These
216 observations conform well to the findings of earlier studies (e.g. Gattass et al., 1981).

217

Visual maps in macaque dorsomedial cortex

218 **V3d:** Receptive fields obtained in recording sites immediately rostral to V2 in the lunate
219 sulcus and annectant gyrus were also located in the lower visual field, and exhibited a
220 topography that was consistent across animals (Fig. 4A-D). Historically, receptive fields in
221 this region have been attributed to V3d, and the present data conform with the expected
222 visual topography (Van Essen and Zeki, 1978; Gattass et al., 1988). As progressively more
223 anterior sites were sampled in this region, the receptive fields moved from the vicinity of the
224 horizontal meridian (represented at the V2 border, dashed lines) towards the lower vertical
225 meridian (red tones and right continuous lines in Fig. 4; receptive field sequences A-E in Figs.
226 5 and 6). More importantly, consideration of recording sites arranged from lateral (e.g.
227 sequence A, Fig. 5) to medial (e.g. sequence E, Fig. 6) revealed a monotonic increase in
228 receptive field eccentricity, without any reversals that would indicate the presence of two
229 distinct lower quadrant representations.. The width of the putative V3d (3-5 mm) that
230 mirrored the pattern of representation of eccentricity found in V2 was approximately half that
231 of V2. In three cases, small islands of cortex containing receptive fields centered just above
232 the estimated horizontal meridian were observed within the putative limits of V3d, near the
233 lateral limit of the recording grid (light green tones near the bottom of the maps in Fig. 4A, B,
234 D). However, our recording grid did not include more lateral regions where a more extensive
235 representation of the upper quadrant is reported to exist adjacent to V2 (Zhu and Vanduffel,
236 2018). Receptive field 5 in Figure 5A exemplifies the upper quadrant invasion in this region.

237

238 **Cortex medial to V3d:** The representation of the horizontal meridian formed the V2/ V3d
239 border until a point near where the rostral bank of the parietooccipital sulcus reaches the
240 midline. Beyond this region (indicated by arrowheads in the Fig. 4 panels) the representation
241 of the horizontal meridian (dashed lines) bifurcated, with a posterior branch that formed the
242 rostral border of V2, and an anterior branch that formed the posterior border of V3d. The

Visual maps in macaque dorsomedial cortex

243 region of cortex between these two branches, which occupies parts of the upper bank of the
244 parietooccipital medial sulcus and of the mesial surface, contained a representation of the far
245 periphery of the upper visual quadrant (green and blue tones in Fig. 4A-D; receptive fields 2,
246 6-12, 20-25 and 31 in Fig. 7). This region has been traditionally assigned to PO/V6, usually
247 being combined with a lower quadrant representation in the parietooccipital sulcus to form a
248 complete representation of peripheral vision (Fig. 1; Colby et al., 1988; Neuenschwander et
249 al., 1994; Gamberini et al., 2015). However, as illustrated in Figures 4 and 7, this lower
250 quadrant representation can be seen as a straightforward continuation of V3d. The
251 eccentricity of the receptive fields recorded in V3d near the lip of the parietooccipital sulcus
252 (arrowheads in Fig. 4; see also Fig. 6 sequence E, and Fig. 7 sequence 1-5) was between 30°
253 and 40°, in agreement with the findings of Gattass et al. (1988). However, extending V3d to
254 encompass the midline cortex increased the range of represented eccentricities to at least 60°
255 (receptive field centers; the complete contralateral hemifield if one takes into consideration
256 the receptive field extent). Accordingly, a parsimonious interpretation of the data suggests
257 that the lower quadrant representation (V3d) extends to the border of the peripheral upper
258 quadrant representation that is usually assigned to PO/V6.

259 The visual topography of the region encompassed between the two branches of horizontal
260 meridian representation indicated that this cortex contains not one but two mirror-
261 symmetrical representations of the upper quadrant periphery. For example, in Figure 7,
262 receptive field sequences starting at the V2 border first moved towards the upper quadrant
263 vertical meridian (receptive fields 6-7, and 20-23), and then reverted towards the horizontal
264 meridian (receptive fields 8-12, and 24-26) before continuing into a V3d-like lower quadrant
265 representation (receptive fields 13-19, and 27-29). Whereas the second representation formed
266 a natural continuation of the representation of the far peripheral visual field in V3d (green
267 sector in Fig. 7, top), the first representation (yellow recording sites) is likely to correspond to

Visual maps in macaque dorsomedial cortex

268 the parietooccipital medial area (POm) described by Neuenschwander et al. (1994) in the
269 *Cebus* monkey and by Rosa and Schmid (1995) in the marmoset monkey.

270

271 **Receptive field size:** Figure 8 compares the receptive field sizes observed in dorsal V2, V3d
272 (here defined operationally as only containing receptive fields centered in the lower quadrant
273 or on the horizontal meridian), and in the cortex between these areas that represented the
274 upper quadrant. With few exceptions (described above), the latter were located in the
275 representation of the far periphery of the visual field. These results confirm that the receptive
276 fields of V3d multiunit clusters are on average larger than those of V2 (Gattass et al., 1981;
277 1988), but also indicate that the upper quadrant receptive fields recorded in the cortex
278 interposed between these areas cannot be distinguished from those of V3d. This result argues
279 against receptive field size being a criterion that could justify the distinction between V3d
280 and PO/V6.

281

282

283 **Discussion**

284 We tested the hypothesis that the cortex rostral to V2 in the macaque dorsomedial cortex
285 contains two subdivisions, V3d and V6 (or PO) according to current designations, which
286 form distinct visuotopic maps. This model, which is widely recognized in the current
287 literature, was not supported. Instead, we found that the territory usually assigned to V3d and
288 PO/V6 encompasses a single representation of the lower quadrant, which extends to the
289 temporal limit of the field of vision (Fig. 9). This representation runs as a strip of cortex
290 parallel to V2 for much of its extent, with a shared border formed by neurons that represent
291 the horizontal meridian. However, as it emerges from the rostral bank of the parietooccipital
292 sulcus into the midline, the lower quadrant representation becomes separated from V2 by a
293 region of cortex that represents the periphery of the upper quadrant. At this point, the
294 peripheral visual field is represented according to a simple map that encompasses both
295 quadrants (Fig. 9).

296 Most of the representation of the lower quadrant uncovered by our data has been traditionally
297 regarded as part of V3d (Ungerleider and Desimone, 1986; Gattass et al., 1988), whereas the
298 midline region where both the upper and the lower quadrant periphery are represented has
299 been assigned to either PO (Colby et al., 1988) or V6 (Galletti et al., 1999). Comparison with
300 published results strongly indicates that the revised area we propose overlaps well with these
301 subdivisions (Fig. 10). However, our results suggest that V3d (at least, the part located medial
302 to the annectant gyrus) and PO/V6 form a single topographic map, without reversals or re-
303 representation at the putative border. We also found no evidence for an additional area (PIP)
304 separating V3d from PO/V6, insofar as the receptive field topography is concerned. Our
305 results therefore support the view that V3d, PO and V6 are best regarded as designations
306 which have been applied to parts of a same area. This interpretation is supported by well-
307 documented anatomical similarities between V3d, V6 and PO, reviewed elsewhere (e.g. Rosa

Visual maps in macaque dorsomedial cortex

308 et al. 2005, 2009; Angelucci and Rosa, 2015). Each of these putative areas has been described
309 as being heavily myelinated relative to adjacent cortex (see also Fig. 2), and to receive a
310 dense projection from layer 4b of V1, which makes them different from ventral and lateral
311 parts of the third tier complex (Colby et al., 1988; Felleman et al., 1997; Galletti et al., 2001).
312 Together, these results argue against the notion that most of the cortex adjacent to V2 is
313 formed by a single area which includes upper and lower quadrant representations located
314 segregated to ventral and dorsal extrastriate cortex, respectively (e.g., Gattass et al., 1988;
315 Lyon and Connolly, 2012).

316

317 ***Nomenclature, and comparison with previous models***

318 Our findings raise the issue of what is the most appropriate designation for the dorsomedial
319 third tier area. On balance, this area most closely resembles area V6 as proposed by Galletti
320 et al. (1999, 2001). Like V6, the area encompasses a strip-like central and peripheral lower
321 quadrant representation, as well as a peripheral upper quadrant representation in the mesial
322 surface and parietooccipital sulcus. Thus, in order to avoid multiplication of names, we favor
323 retaining the designation V6, with the provision that this area is not separated from V2 by a
324 strip of V3d, as proposed previously (e.g. Gamberini et al., 2015).

325 Another viable option would be to retain the name V3d, which has historical precedence
326 (Ungerleider and Desimone, 1986), and has anatomical characteristics similar to those of the
327 area we mapped (Burkhalter et al., 1986). Although there is some potential for confusion
328 (given that V3d is traditionally seen as only forming a lower quadrant representation), this
329 would mitigate to some extent the reasons why V3d has been regarded as an “improbable
330 area” (Zeki, 2003).

Visual maps in macaque dorsomedial cortex

331 Finally, we regard the designation PO as the least satisfactory. As discussed by Galletti et al.
332 (2005), this area, as defined by Colby et al. (1988), seems to extend further dorsally than V6
333 does, thereby encompassing parts of the parietooccipital sulcus which are now known to
334 belong to a functionally different area (V6Av; Passarelli et al., 2011).

335 Regardless of the final verdict on nomenclature, our results align with the fact that there are
336 well known anatomical and functional differences between the dorsal and ventral components
337 of the third tier cortex (the latter encompassing the “ventral subdivision of V3” [V3v], or
338 ventral posterior area [VP]; Burkhalter et al., 1986). In view of the above, the designation V3
339 could be assigned to this area, which forms most of the border of V2 (including the ventral
340 surface, caudal prelunate gyrus, and possibly lateral parts of the lateral lunate sulcus; Rosa et
341 al., 2000; Rosa and Tweedale, 2001). The designation V3 would reflect the characteristics of
342 the homonymous area in other mammals, which is involved in object shape analysis
343 (Manger and Rosa 2005).

344

345 ***Comparison with New World monkeys***

346 Many of the features of the revised V6 resemble those of the DM, as defined in the marmoset
347 monkey (Rosa and Schmid 1995). Like the revised macaque V6, DM also shows a
348 continuous complete representation of the lower quadrant adjacent to V2, adjoined by a
349 representation of the peripheral upper quadrant in the midline cortex (Fig. 9; Rosa and
350 Tweedale, 2001). DM also shares the dense myelination of V6, and its specific, dense input
351 from layer 4b of V1 (which is known as layer IIIc in the nomenclature of Hassler, 1996,
352 favored in many studies of New World monkeys; see Elston and Rosa, 1997 for discussion).
353 Moreover, the connections of DM appear identical to those of V3d and PO/V6, if one allows
354 for the interpretation that these are central and peripheral representations of a same area

Visual maps in macaque dorsomedial cortex

355 (Rosa et al., 2009). Because the grid of electrode penetrations did not extend far into the
356 banks of the lunate sulcus, our data do not establish the full lateral extent of the redefined
357 macaque V6. Whereas the traditional model proposes that its lateral part (V3d) extends
358 adjacent to V2 all the way to the lateral end of the lunate sulcus (Gattass et al. 1988), more
359 recent studies have questioned this, proposing instead that part of the cortex rostral to V2 in
360 this sulcus represents the central upper quadrant (Zhu and Vanduffel, 2018; meta-analysis by
361 Angelucci and Rosa, 2015). Although we did observe a few receptive fields centered in the
362 upper quadrant in the expected location, the sample was insufficient to ascertain the extent of
363 this representation. This is unfortunate, because our data leaves open the important question
364 of whether receptive fields recorded in the lunate sulcus complement the upper quadrant
365 representation we identified in the midline, as observed in area DM of marmoset monkeys
366 (Rosa et al., 2005; 2009; Angelucci and Rosa, 2015). Thus, although the present results
367 indicate that the medial part of V3d and PO/V6 are best considered as parts of the same area,
368 establishing the extent of the similarity of this area to the New World monkey DM will
369 require further work. Earlier studies (e.g., Beck and Kaas, 1999) proposed that the
370 designation DM would also be appropriate for this part of the macaque cortex, and we
371 suggest that V6 and DM could be seen as equivalent designations for the homologous areas
372 in the macaque and marmoset.

373

374 ***Area POm***

375 Our data also revealed an additional representation of the peripheral upper quadrant in the
376 parietooccipital medial sulcus of the macaque, which inserts between the peripheral
377 representations of V2 and V6. The region has also been observed in electrophysiological
378 studies of marmosets and capuchins (Neuenschwander et al., 1994; Rosa and Schmid, 1995),

Visual maps in macaque dorsomedial cortex

379 which suggested the designation area POm; similar to these studies we found that POm could
380 be distinguished from V6 by its lighter myelination (cortex rostral to PO/V6 in the
381 parietooccipital sulcus, in Fig. 2). However, our recordings were insufficient to establish the
382 full extent of POm. POm appears to overlap with the scene-selective retrosplenial region
383 identified by Nasr et al. (2011) and with the medial visual region (Vis) reported by Passarelli
384 et al. (2018) in the macaque. It may also correspond to the recently described human brain
385 area V2A (Elshout et al., 2018).

386

387 ***Conclusions***

388 Our findings point to a simpler model of the organization of the dorsomedial cortex anterior
389 to area V2 in macaques, which consolidates subdivisions proposed by different authors into a
390 single area. We propose retaining the designation V6 for this area, while acknowledging the
391 likelihood that it is homologous to area DM in New World monkeys. This model provides a
392 parsimonious account of previous anatomical and electrophysiological observations,
393 including differences between the dorsal and ventral components of the third tier complex
394 (Burkhalter et al., 1986; Beck and Kaas, 1999; Rosa et al., 2005; Jeffs et al., 2015). Knowing
395 the extent of its application to the human brain will require high-field imaging studies that
396 include stimulation of the far periphery of the visual field, preferably combined with
397 appropriate structural and functional connectivity experiments.

398

Visual maps in macaque dorsomedial cortex

399 **Acknowledgements:** The authors acknowledge the contributions of Rowan Tweedale during
400 many phases of this project, including participation in experiments, and critical reading of
401 earlier versions of the manuscript. We also thank Janssen-Cilag for the provision of sufentanil
402 citrate.

403 **Funding:** funded by grants from the Australian Research Council ((DE120102883,
404 DP140101968, CE140100007, DE120102883), National Health and Medical Research
405 Council (1020839, 1082144), and European Union (H2020-MSCA-734227-PLATYPUS),
406 SB was supported by EU Fellowship FP7-PEOPLE-2011-IOF 300452, and TAC was funded
407 by an Australian Postgraduate Award, and a Monash University Faculty of Medicine
408 Bridging Postdoctoral Fellowship.

409 **Author Contributions:** KH, SB and MGPR designed research; KH, SB, HHY and MGPR
410 performed experiments; KH, SB, TAC, HHY, OA, JMC and MGPR analyzed the data; KH,
411 SB and MGPR wrote the paper.

412 Conflict of Interest statement: The authors report no competing financial interests.

413

414 References

415 Allman JM, Kaas JH (1975) The dorsomedial cortical visual area: a third tier area in the
416 occipital lobe of the owl monkey (*Aotus trivirgatus*). *Brain Res* 100:473-487.

417 Angelucci A, Rosa MGP (2015) Resolving the organization of the third tier visual cortex in
418 primates: a hypothesis-based approach. *Vis Neurosci* 32:E010.

419 Beck PD, Kaas JH (1999) Cortical connections of the dorsomedial visual area in old world
420 macaque monkeys. *J Comp Neurol* 406:487-502.

421 Burkhalter A, Felleman DJ, Newsome WT, Van Essen DC (1986) Anatomical and
422 physiological asymmetries related to visual areas V3 and VP in macaque extrastriate cortex.
423 *Vision Res* 26:63-80.

424 Chaplin TA, Yu HH, Rosa MGP (2013) Representation of the visual field in the primary
425 visual area of the marmoset monkey: magnification factors, point-image size, and
426 proportionality to retinal ganglion cell density. *J Comp Neurol* 521:1001-1019.

427 Colby CL, Gattass R, Olson CR, Gross CG (1988) Topographical organization of cortical
428 afferents to extrastriate visual area PO in the macaque: a dual tracer study. *J Comp Neurol*
429 269:392-413.

Visual maps in macaque dorsomedial cortex

430 Elshout JA, van den Berg AV, Haak KV (2018) Human V2A: A map of the peripheral visual
431 hemifield with functional connections to scene-selective cortex. *J Vis* 18:22.

432 Elston GN, Rosa MGP (1997) The occipitoparietal pathway of the macaque monkey:
433 comparison of pyramidal cell morphology in layer III of functionally related cortical visual
434 areas. *Cereb Cortex* 7:432-452.

435 Felleman DJ, Van Essen DC (1987) Receptive fields properties of neurons in area V3 of
436 macaque monkey extrastriate cortex. *J Neurophysiol* 57:889-920.

437 Felleman DJ, A. Burkhalter A, Van Essen DC (1997) Cortical connections of areas V3 and
438 VP of macaque monkey extrastriate visual cortex. *J Comp Neurol* 379:21-47.

439 Galletti C, Fattori P, Gamberini M, Kutz DF (1999) The cortical visual area V6: brain
440 location and visual topography. *Eur J Neurosci* 11:3922-3936.

441 Galletti C, Gamberini M, Kutz DF, Fattori P, Luppino G, Matelli M (2001) The cortical
442 connections of area V6: an occipito-parietal network processing visual information. *Eur J*
443 *Neurosci* 13:1572-1588.

444 Galletti C, Gamberini M, Kutz DF, Baldinotti I, Fattori P (2005) The relationship between V6
445 and PO in macaque extrastriate cortex. *Eur J Neurosci* 21:959-970.

446 Gallyas F (1979) Silver staining of myelin by means of physical development. *Neurol Res*
447 1:203-209.

448 Gamberini M, Fattori P, Galletti C (2015) The medial parietal occipital areas in the macaque
449 monkey. *Vis Neurosci* 32:E013.

450 Gattass R, Gross CG, Sandell JH (1981) Visual topography of V2 in the macaque. *J Comp*
451 *Neurol* 201:519-539.

452 Gattass R, Sousa APB, Gross CG (1988) Visuotopic organization and extent of V3 and V4 of
453 the macaque. *J Neurosci* 8:1831-1845.

454 Hassler R, 1996. Comparative anatomy of the central visual system in day and night-active
455 primates. In: *Evolution of the Forebrain* (Hassler R, Stephan H, eds), pp 419-434.
456 Stuttgart:Thieme.

457 Jeffs J, Federer F, Angelucci A (2015) Corticocortical connection patterns reveal two distinct
458 visual cortical areas bordering dorsal V2 in marmoset monkey. *Vis Neurosci* 32:E012.

Visual maps in macaque dorsomedial cortex

459 Lewis JW, Van Essen DC (2000) Mapping of architectonic subdivisions in the macaque
460 monkey, with emphasis on parieto- occipital cortex. *J Comp Neurol* 428:79-111. Lyon DC,
461 Connolly JD (2012) The case for primate V3. *Proc Biol Sci* 279:625-633.

462 Manger PR, Rosa MGP (2005) Clarifying homologies in the mammalian cerebral cortex: the
463 case of the third visual area (V3). *Clin Exp Pharmacol Physiol* 32:327-339.

464 Nasr S, Liu N, Devaney KJ, Yue X, Rajimehr R, Ungerleider LG, Tootell RB (2011) Scene-
465 selective cortical regions in human and nonhuman primates. *J Neurosci* 31:13771-13785.

466 Neuenschwander S, Gattass R, Sousa AP, Pinon MC (1994) Identification and visuotopic
467 organization of areas PO and POd in *Cebus* monkey. *J Comp Neurol* 340:65-86.

468 Passarelli L, Rosa MGP, Gamberini M, Bakola S, Burman KJ, Fattori P, Galletti C (2011)
469 Cortical connections of area V6Av in the macaque: a visual-input node to the eye/hand
470 coordination system. *J Neurosci* 31:1790-1801.

471 Passarelli L, Rosa MGP, Bakola S, Gamberini M, Worthy KH, Fattori P, Galletti C (2018)
472 Uniformity and diversity of cortical projections to precuneate areas in the macaque monkey:
473 what defines area PGm? *Cereb Cortex* 28:1700-1717.

474 Pitzalis S, Galletti C, Huang RS, Patria F, Committeri G, Galati G, Fattori P, Sereno MI
475 (2006) Wide-field retinotopy defines human cortical visual area v6. *J Neurosci* 26:7962-7973.

476 Pitzalis S, Sereno MI, Committeri G, Fattori P, Galati G, Patria F, Galletti C (2010) Human
477 v6: the medial motion area. *Cereb Cortex* 20:411-424.

478 Rosa MGP, Schmid LM (1995) Visual areas in the dorsal and medial extrastriate cortices of
479 the marmoset. *J Comp Neurol* 359:272-299.

480 Rosa MGP, Fritsches KA, Elston GN (1997) The second visual area in the marmoset monkey:
481 visuotopic organisation, magnification factors, architectonical boundaries, and modularity.
482 The Journal of comparative neurology 387:547-567.

483 Rosa MGP, Pinon MC, Gattass R, Sousa AP (2000) "Third tier" ventral extrastriate cortex in
484 the New World monkey, *Cebus apella*. *Exp Brain Res* 132:287-305.

485 Rosa MGP, Tweedale R (2001) The dorsomedial visual areas in New World and Old World
486 monkeys: homology and function. *Eur J Neurosci* 13:421-427.

487 Rosa MGP, Palmer SM, Gamberini M, Tweedale R, Pipon MC, Bourne JA (2005) Resolving
488 the organization of the New World monkey third visual complex: The dorsal extrastriate
489 cortex of the marmoset (*Callithrix jacchus*). *J Comp Neurol* 483:164-191.

Visual maps in macaque dorsomedial cortex

490 Rosa MGP, Palmer SM, Gamberini M, Burman KJ, Yu H-H, Reser DH, Bourne JA,
491 Tweedale R, Galletti C (2009) Connections of the dorsomedial visual area: pathways for
492 early integration of dorsal and ventral streams in extrastriate cortex. *J Neurosci* 29:4548-4563.

493 Sereno MI, McDonald CT, Allman JM (1994) Analysis of retinotopic maps in extrastriate
494 cortex. *Cereb Cortex* 4:601-620.

495 Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell
496 RBH (1995) Borders of multiple visual areas in humans revealed by functional magnetic
497 resonance imaging. *Science* 268:889-893.

498 Ungerleider LG, Desimone R (1986) Cortical projections of visual area MT in the macaque. *J*
499 *Comp Neurol* 248:190-222.

500 Van Essen DC, Zeki SM (1978) The topographic organization of rhesus monkey prestriate
501 cortex. *J Physiol (London)* 277:193-226.

502 Van Essen DC, Drury HA, Dickson J, Harwell J, Hanlon D, Anderson CH (2001) An
503 integrated software suite for surface-based analyses of cerebral cortex. *J Am Med Inform*
504 *Assoc* 8:443-459.

505 Yu H-H, Rosa MGP (2010) A simple method for creating wide-field visual stimulus for
506 electrophysiology: mapping and analyzing receptive fields using a hemispheric display. *J Vis*
507 10:15.

508 Zeki S (2003) Improbable areas in the visual brain. *Trends Neurosci* 26:23-26.

509 Zhu Q, Vanduffel W (2018) A new view of dorsal visual cortex in macaques revealed by
510 submillimeter fMRI. *bioRxiv*. doi: <https://doi.org/10.1101/283051>.

511

512

Visual maps in macaque dorsomedial cortex

513 **Figure legends**

514 **Figure 1: Left:** unfolded representation of the right hemisphere of a macaque brain, based on
515 a reconstruction prepared with CARET (Van Essen et al. 2001). In this map the lips of the
516 sulci are indicated in continuous black line, and their main internal folds by dashed lines. The
517 rectangle shows the region magnified on the right. **Right:** diagrammatic representation of the
518 model we test in this paper (Ungerleider and Desimone 1986; Colby et al. 1988; Gattass et al.
519 1988; Gamberini et al. 2015), according to which the cortex rostral to dorsomedial area V2
520 contains 2 areas, V3d (blue) and PO (or V6, pink), each with a distinct representation of the
521 lower visual field. The question mark indicates the possibility that another area, PIP, may
522 separate V3d from PO/V6. In this diagram thick red lines indicate representations of the
523 vertical meridian of the visual field, thick green lines indicate representations of the
524 horizontal meridian, the – signs indicate representations of the lower contralateral quadrant,
525 and the + signs indicate a representation of the upper contralateral quadrant. Abbreviations
526 (sulci): amt: anterior middle temporal sulcus; ang: annectant gyrus; ar: arcuate sulcus; ca:
527 calcarine sulcus; ce: central sulcus; cg: cingulate sulcus; io: inferior occipital sulcus; ip:
528 intraparietal sulcus; la: lateral sulcus; lu: lunate sulcus; ot: occipitotemporal sulcus; pmt:
529 posterior middle temporal sulcus; po: parietooccipital sulcus; pom: parietooccipital medial
530 sulcus; pr: principal sulcus; st: superior temporal sulcus.

531

532 **Figure 2: A, B:** parasagittal sections stained with the Gallyas (1979) method, showing the
533 histological reconstruction of the electrode penetrations and myeloarchitecture of V2, cortex
534 rostral to V2 (here indicated as “V3d”, or PO/V6, according to previous studies), and an area
535 in the rostral bank of the parietooccipital sulcus (POd, or V6A; Neuenschwander et al. 1994;
536 Luppino et al. 2005). The magnified regions are indicated by rectangles in tracings of the
537 sections (right), and their levels are indicated in a dorsal view of the brain reconstructed in
538 CARET. Several electrode tracks (red arrows) and electrolytic lesions (asterisks) are visible,
539 demonstrating the angle of approach of the electrodes. White lines underlying layer 6 indicate
540 the myeloarchitectural transition zones. Both V3d and PO/V6 stand out as more densely
541 myelinated than adjacent areas.

542

543 **Figure 3:** Unfolded reconstructions of the cortex in 4 cases, showing the locations of
544 recording sites from which visual responses were obtained in dorsal extrastriate areas. **A:**

Visual maps in macaque dorsomedial cortex

545 reconstructed cortex in case 1, showing locations of the sulci (for abbreviations, see Fig. 1).
546 In the insert, A, D, P and V indicate anterior, dorsal posterior and ventral in the brain. **B:**
547 magnified view of the dorsal cortex, with recording sites indicated as black points. The
548 dashed line indicates the outline of the region explored, used for analysis of visual
549 topography (see Fig. 4, below). The yellow line indicates the limit between the cortex buried
550 in the lunate-parietooccipital cleft, and the cortex exposed in the midline (including the
551 parietooccipital medial sulcus). **C:** partially inflated view of the brain, indicating the location
552 of the region reconstructed in B. **D-F:** similar representations of explored region and
553 recording sites in cases 2, 3 and 4. In all maps, the crown of the annectant gyrus is indicated
554 by the red asterisks.

555

556 **Figure 4:** Analysis of visual topography in dorsal extrastriate cortex, shown in unfolded
557 representations of the cortex of the four cases. The receptive field polar angle (**A-D**) and
558 eccentricity (**E-H**) of the recording sites (black points) was interpolated using the method
559 described by Sereno et al. (1994), and colored according to the legends shown adjacent to
560 panels A and E, respectively. In all panels, the black continuous lines were drawn
561 approximately through the middle of the regions of representation of the vertical meridian
562 (red tones, in A-D), and the dashed lines through the regions of representation of the
563 horizontal meridian (yellow/ light green). The pairs of arrow heads point to the region near
564 where the parietooccipital sulcus emerges onto the mesial surface (see text for details).

565

566 **Figure 5:** Recording sites and receptive fields obtained from three parasagittal levels (**A-C**)
567 encompassing the annectant gyrus. **Left:** parasagittal sections with recording sites indicated
568 (blue: recording sites assigned to V2; red: recording sites assigned to the area rostral to V2).
569 **Right:** receptive fields recorded in V2 and cortex rostral to V2. **Bottom left:** Cortical layer 4
570 of the parasagittal sections corresponding to the three levels is indicated by yellow lines,
571 together with the locations of the recording sites. The white and black lines indicate the
572 location of the caudal and rostral borders of the area rostral to V2, estimated as the locations
573 where the receptive field sequences reverted near the horizontal meridian and vertical
574 meridian, respectively. The inserts show the location of the reconstructed region in a flat map
575 prepared with CARET, and the levels of the 3 sections in a dorsal view of the brain.

576

Visual maps in macaque dorsomedial cortex

577 **Figure 6:** Recording sites and receptive fields obtained from two additional parasagittal
578 levels (**D, E**), medial to the annectant gyrus. Conventions as in Figure 5.

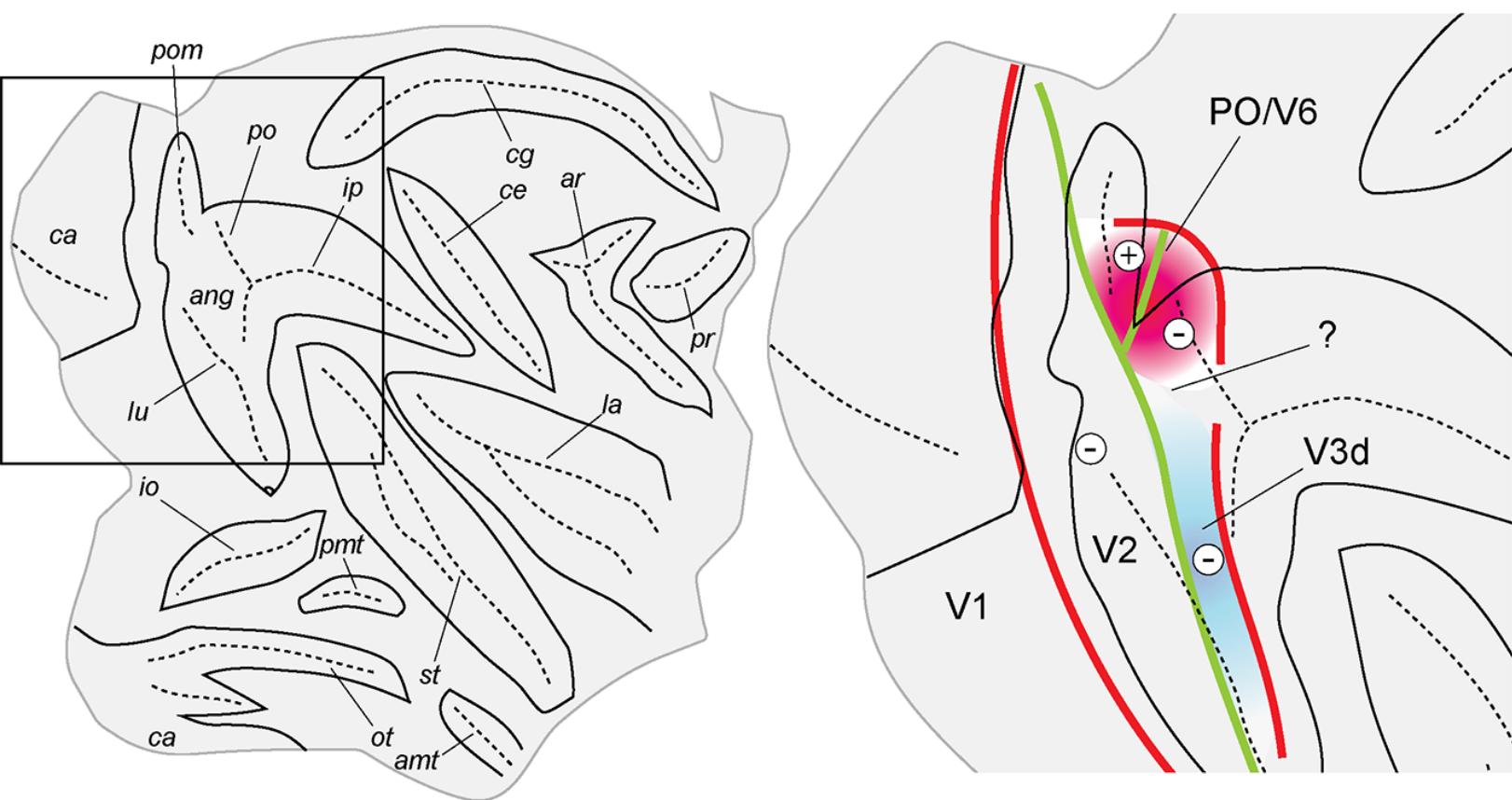
579

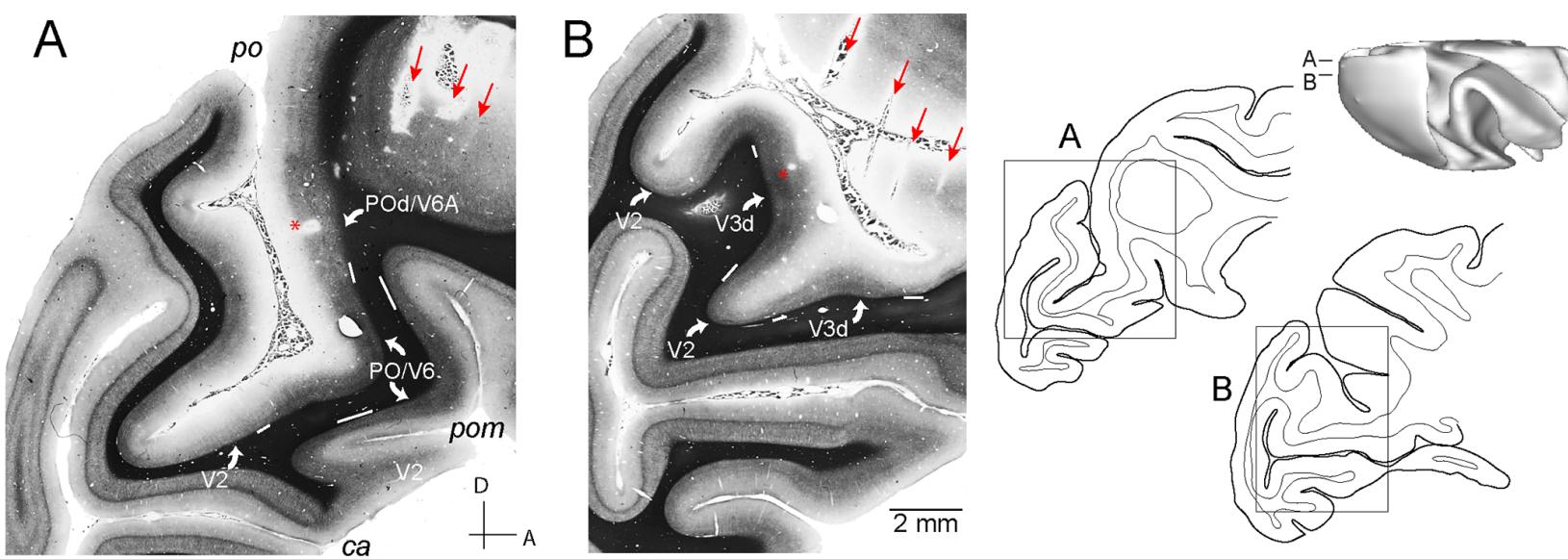
580 **Figure 7:** Receptive fields obtained from recording sites at or near the mesial surface. **Top**
581 **left:** recording sites shown in an unfolded map of the cortex. The solid and dashed lines
582 indicate representations of the lower vertical meridian and horizontal meridian, respectively,
583 and the arrows indicate the region near the emergence of the parietooccipital sulcus (as
584 shown in Fig. 4). To facilitate visualization of the far peripheral receptive fields in a planar
585 representation, the receptive fields are represented here as rectangles with area proportional
586 to that obtained using appropriate geodesic calculations (Yu and Rosa 2010). Recording sites
587 from different sections were joined into sequences (1-5, 6-19, 20-29 and 30-31) to illustrate
588 the receptive field transitions rostral to V2 (the corresponding receptive fields are shown in
589 the bottom part of the figure). The red recording sites and receptive fields were assigned to
590 third tier cortex (area PO/V6 according to most studies to date), and yellow indicates another
591 representation of the upper peripheral quadrant (POm), which inserts between V2 and PO/V6.
592 **Top right:** location of the recording sites in parasagittal sections.

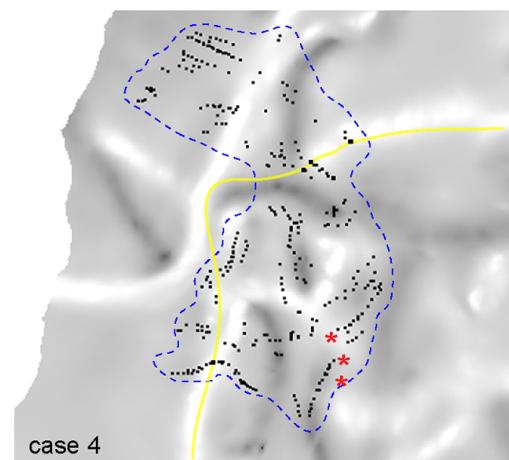
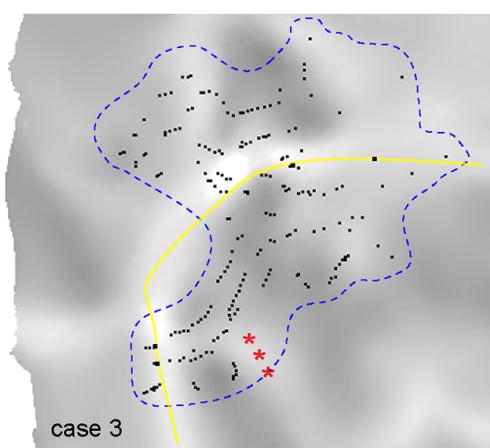
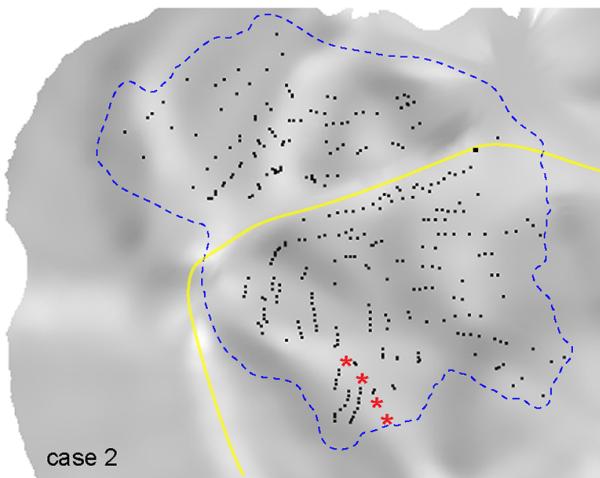
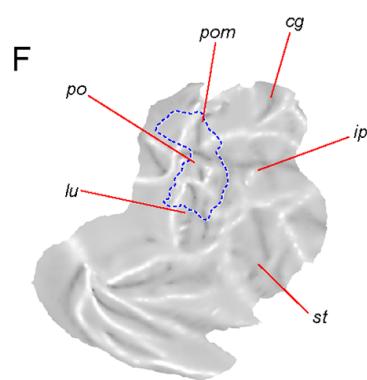
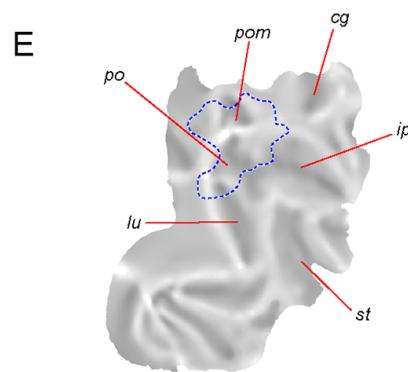
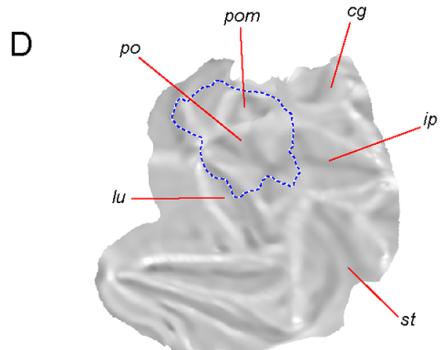
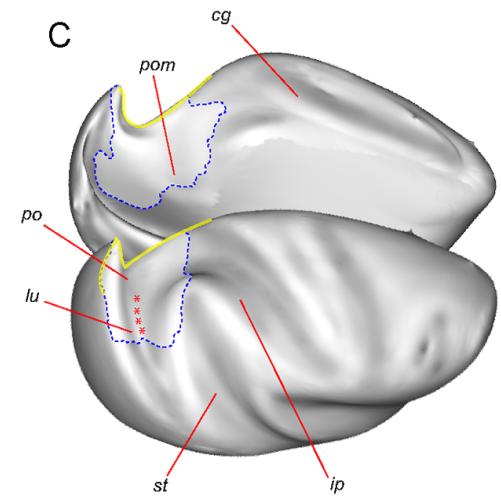
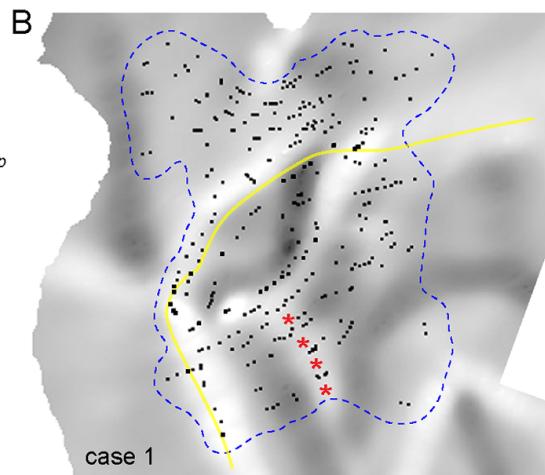
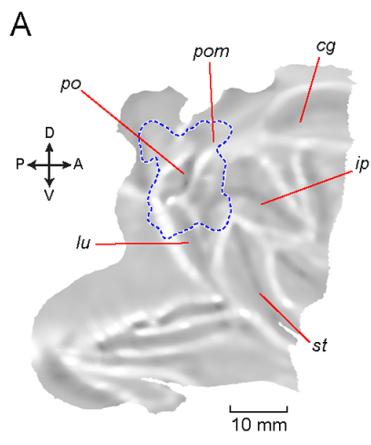
593

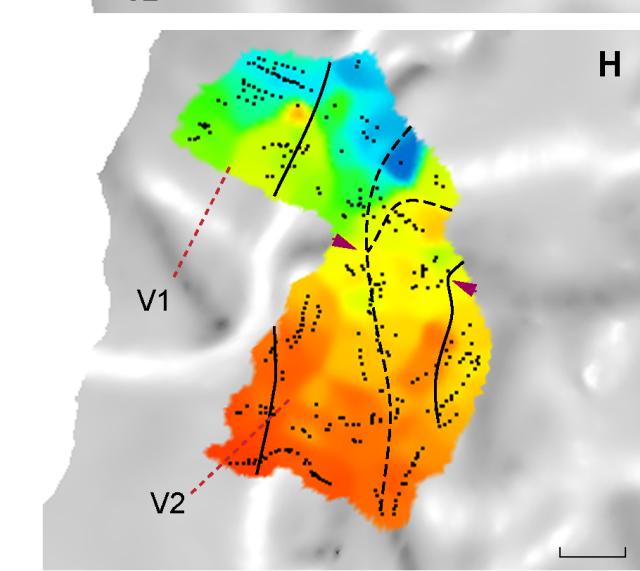
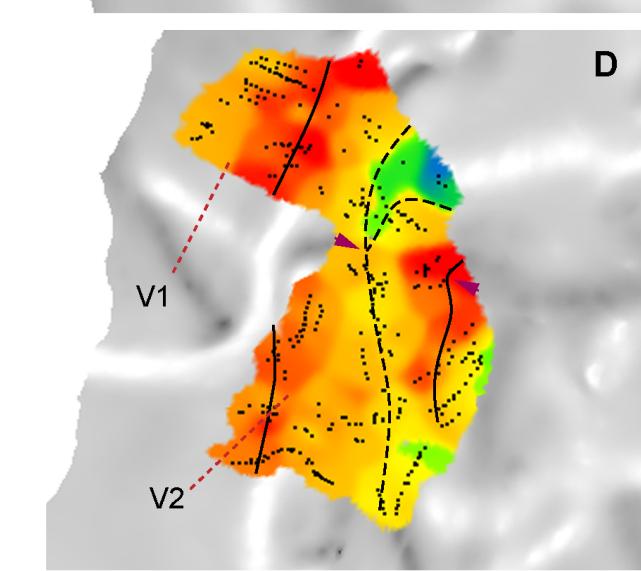
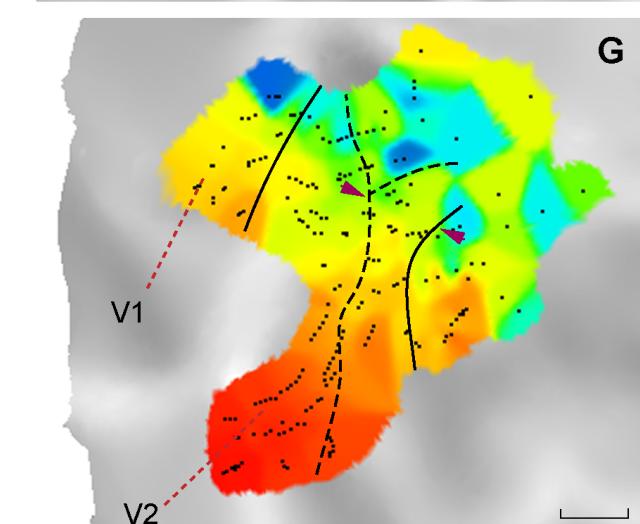
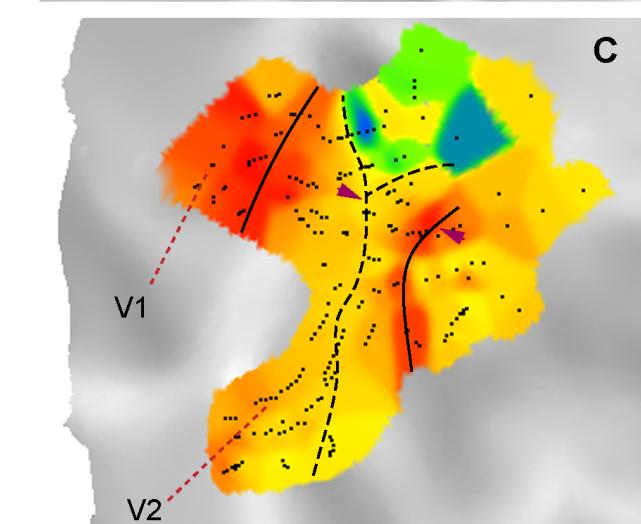
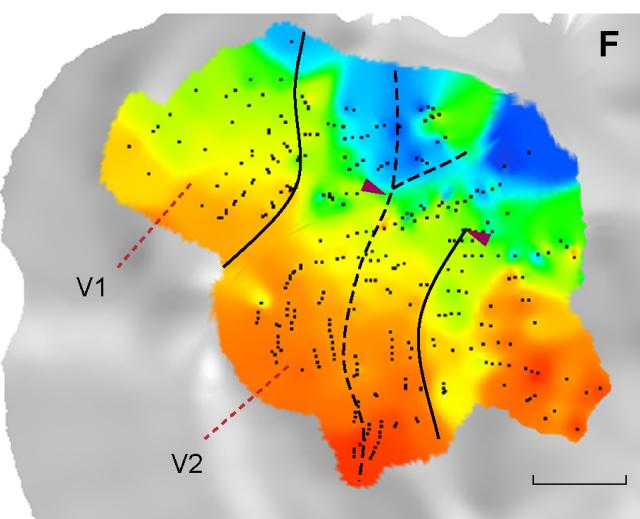
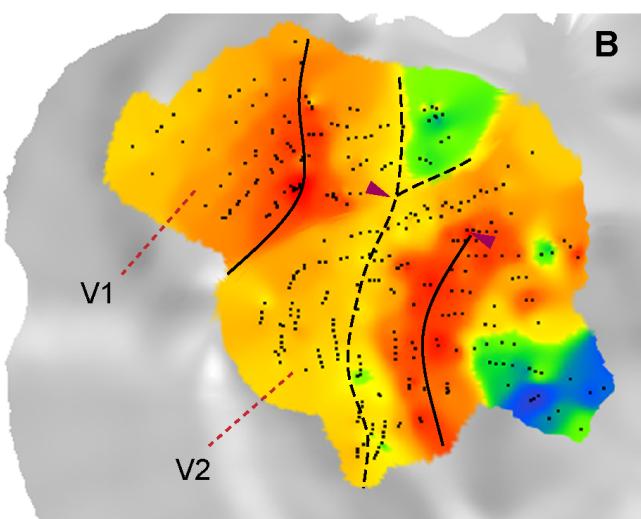
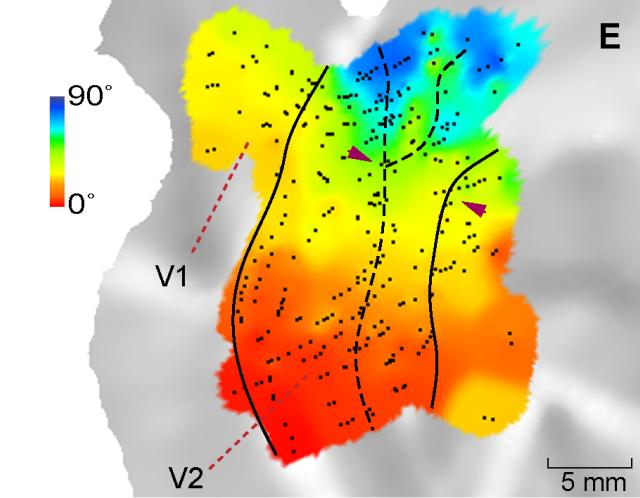
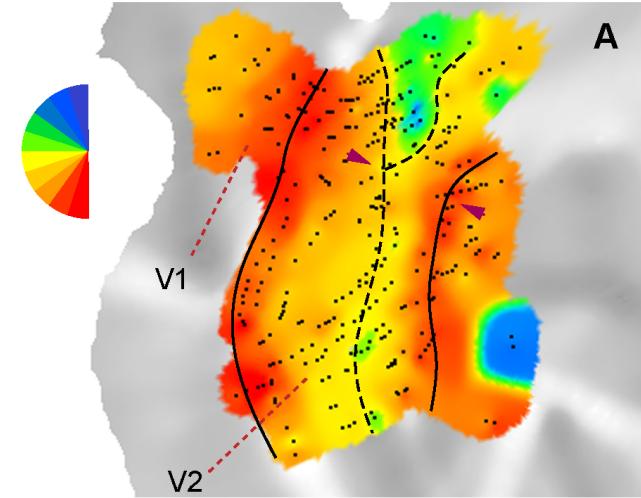
594 **Figure 8:** Receptive field size as a function of eccentricity in dorsal V2 (**A**), and in the cortex
595 immediately rostral to V2, including the territory usually assigned to V3d and PO/V6 (**B**).
596 Each graph shows receptive fields from 4 animals. The best-fitting power functions,
597 calculated using a model II (principal axis) regression are illustrated for V2 (blue line) and
598 for lower quadrant V3d/PO/V6 (red line). Receptive fields centered on the horizontal
599 meridian were included in this calculation. Confidence intervals (95%) are indicated by
600 dashed lines. The slopes of the functions calculated for lower quadrant V2 and V3d/PO/V6
601 are clearly different ($P < 0.001$, permutation test). The number of receptive fields centered on
602 the upper quadrant was much smaller, and non-uniformly distributed across eccentricities,
603 preventing robust statistical comparison. However, the corresponding points (green) overlap
604 extensively with those representing receptive fields in the lower quadrant and horizontal
605 meridian (red). In B, receptive fields assigned to area POm are not included.

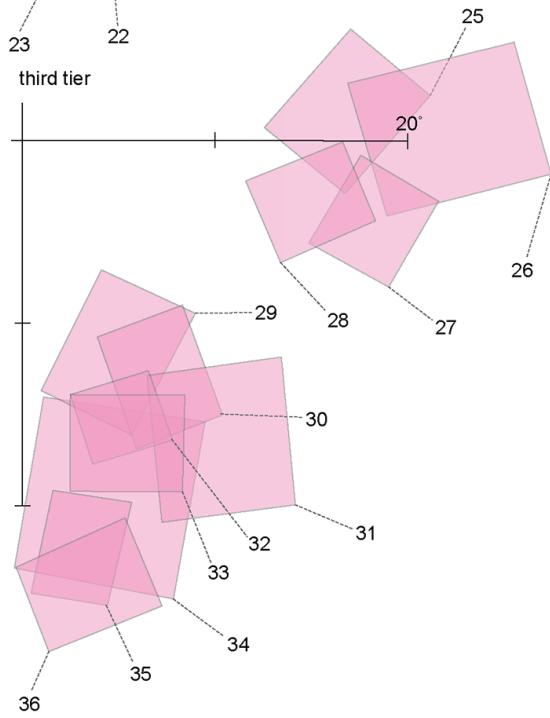
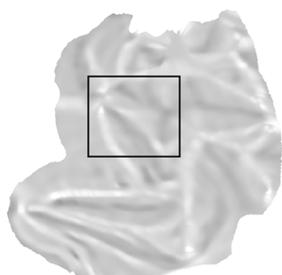
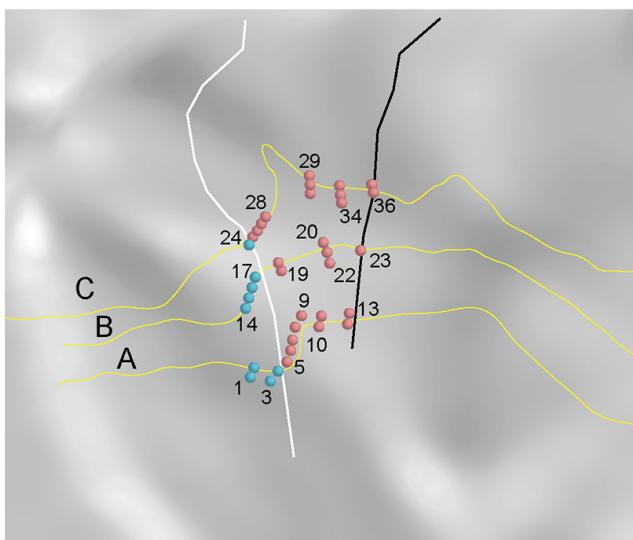
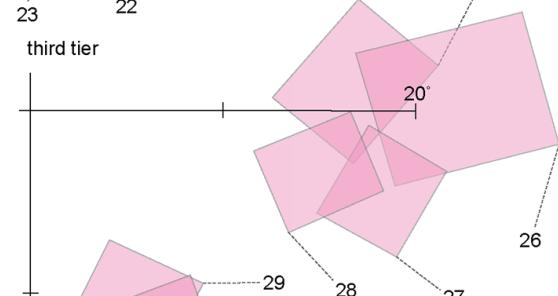
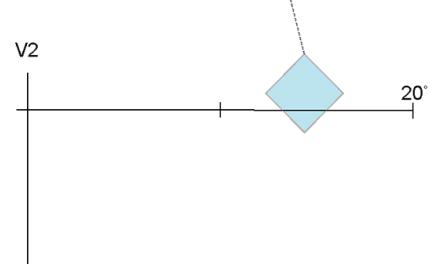
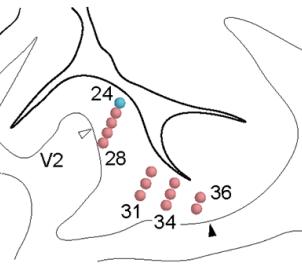
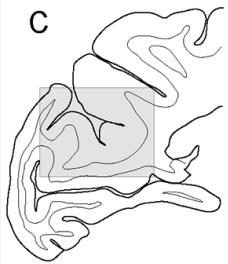
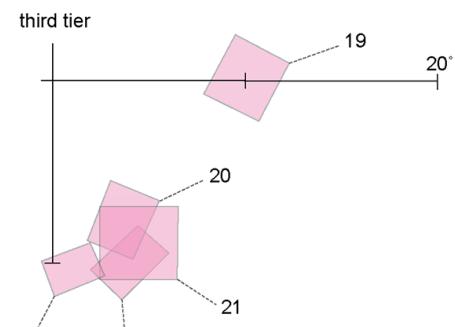
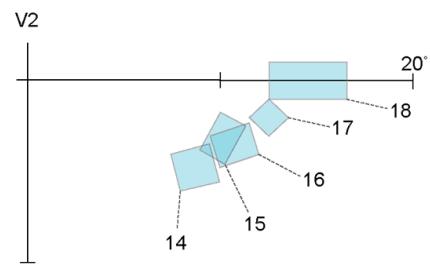
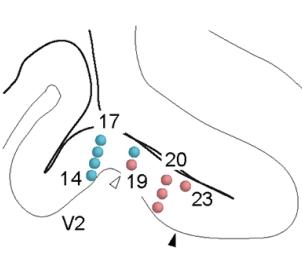
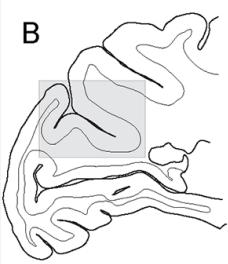
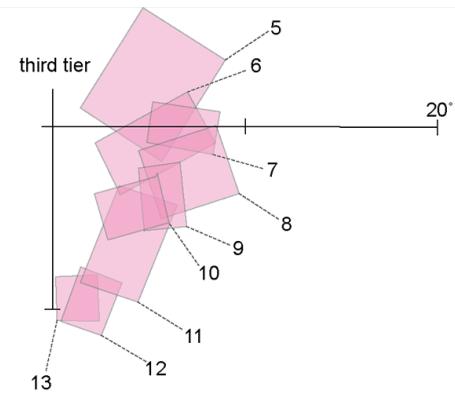
606

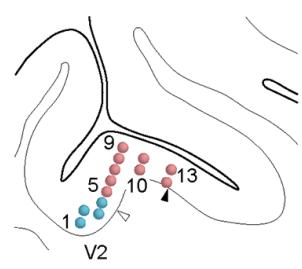
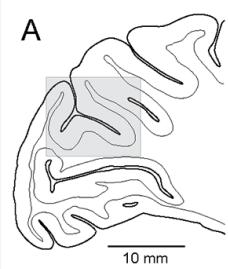

607 **Figure 9:** Summary view of the organization of dorsomedial third tier cortex according to
608 present results. **Left:** schematic view of the macaque brain with the sulci partially opened,


Visual maps in macaque dorsomedial cortex










609 showing the location of the areas V6 (pink) and POm (yellow). The – and + signs indicate
610 representations of the lower and upper quadrants, respectively, red lines indicate
611 representations of the vertical meridian, and green lines indicate representations of the
612 horizontal meridian. **Right:** unfolded representation of the dorsomedial cortex. Areas V6 and
613 POm are shown with the same conventions. Isoeccentricity lines are shown in blue. The
614 question marks near the lateral end of V6 indicate the likelihood that a representation of the
615 central part of the upper quadrant in this location, similar to that found in New World
616 monkeys, which could complement the upper quadrant representation in V6 (see also Galletti
617 et al. 1999; Rosa and Tweedale 2001).









618



619 **Figure 10: A-H:** parasagittal sections showing the extent of the redefined area V6 according
620 to the present results (pink). For comparison, the left and right columns show drawings of
621 sections from previous publications showing the extents of areas V3 (Felleman and Van
622 Essen 1997), V6 (Galletti et al. 1999, 2001) and PO (Colby et al. 1988). The presently
623 redefined V6 overlaps extensively with the cortex occupied by these areas recognized by
624 previous studies.

