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Key Points

Question: Is the gap between brain age predicted from MRI and chronological age associated

with incident dementia in a general population of Dutch adults?

Findings: Brain age was predicted using a deep learning model, using MRI-derived grey matter
density maps. In a population based study including 5496 participants, the observed gap was

significantly associated with the risk of dementia.

Meaning: The gap between MRI-brain predicted and chronological age is potentially a biomarker

for dementia risk screening.
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Abstract

Importance: The gap between predicted brain age using magnetic resonance imaging (MRI) and
chronological age may serve as biomarker for early-stage neurodegeneration and potentially as a
risk indicator for dementia. However, owing to the lack of large longitudinal studies, it has been

challenging to validate this link.

Objective: We aimed to investigate the utility of such a gap as a risk biomarker for incident
dementia in a general Dutch population, using a deep learning approach for predicting brain age

based on MRI-derived grey matter maps.

Design: Data was collected from participants of the cohort-based Rotterdam Study who
underwent brain magnetic resonance imaging between 2006 and 2015. This study was performed

in a longitudinal setting and all participant were followed up for incident dementia until 2016.

Setting: The Rotterdam Study is a prospective population-based study, initiated in 1990 in the

suburb Ommoord of in Rotterdam, the Netherlands.

Participants: At baseline, 5496 dementia- and stroke-free participants (mean age 64.67+9.82,
54.73% women) were scanned and screened for incident dementia. During 6.66+2.46 years of

follow-up, 159 people developed dementia.

Main outcomes and measures: We built a convolutional neural network (CNN) model to predict
brain age based on its MRI. Model prediction performance was measured in mean absolute error
(MAE). Reproducibility of prediction was tested using the intraclass correlation coefficient
(ICC) computed on a subset of 80 subjects. Logistic regressions and Cox proportional hazards

were used to assess the association of the age gap with incident dementia, adjusted for years of
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education, ApoEe4 allele carriership, grey matter volume and intracranial volume. Additionally,
we computed the attention maps of CNN, which shows which brain regions are important for age

prediction.

Results: MAE of brain age prediction was 4.45+3.59 years and ICC was 0.97 (95% confidence
interval CI=0.96-0.98). Logistic regression and Cox proportional hazards models showed that the
age gap was significantly related to incident dementia (odds ratio OR=1.11 and 95% confidence
intervals CI=1.05-1.16; hazard ratio HR=1.11 and 95% CI=1.06-1.15, respectively). Attention
maps indicated that grey matter density around the amygdalae and hippocampi primarily drive

the age estimation.

Conclusion and relevance: We show that the gap between predicted and chronological brain age
is a biomarker associated with risk of dementia development. This suggests that it can be used as

a biomarker, complimentary to those that are known, for dementia risk screening.

Keywords: Deep Learning; age prediction; biomarker; dementia; magnetic resonance imaging;

brain; voxel-based morphometry; survival analysis.
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1. Introduction

The human brain continuously changes throughout the entire lifespan. These changes partially
reflect a normal aging process and are not necessarily pathological'. However,
neurodegenerative diseases, including dementia, also affect brain structure and function®”.
Therefore, a better understanding and modeling of normal brain aging can help to disentangle

these two processes and improve the detection of early-stage neurodegeneration.

Age prediction models based on brain magnetic resonance imaging (MRI) are a popular trend in
neuroscience’ . The difference between predicted and chronological age is thought to serve as
an important biomarker reflecting pathological processes in the brain. Several recent studies
showed the relation between accelerated brain aging and various disorders, such as Alzheimer’s

disease (AD), schizophrenia, epilepsy or diabetes’ .

In recent years, convolutional neural networks (CNN) have become the methodology of choice
for analyzing medical images. These models are able to learn complex relations between input
data and desired outcomes. Recent studies were able to demonstrate that CNN models can

outperform complex machine learning models in brain MRI-based age prediction’®.

Although cross-sectional studies have suggested that the gap between predicted and
chronological age may serve as a biomarker for dementia diagnosis, it remains unclear whether
this is also the case for the years preceding dementia diagnosis™’. Longitudinal studies
examining the link between such a gap and incident dementia are lacking and are crucial for
validation of this biomarker for early-stage neurodegeneration detection. Using a deep learning
(DL) model, we investigated the association of the grey matter (GM) age gap with incident

dementia in a large population-based sample of middle-aged and elderly subjects.
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2. Methods

2.1 Study Population

Data was acquired from the Rotterdam Study, an ongoing population-based cohort study among
the inhabitants of Ommoord, a suburb of Rotterdam, the Netherlands'®. The cohort started in
January 1990 (n=7983) and was extended in February 2000 (n=3011) and February 2006
(n=3932). Follow-up examinations take place every 3 to 4 years. MRI was implemented in 2005,
and 5912 persons scanned until 2015 were eligible for this study. We excluded individuals with
incomplete acquisitions, scans with artifacts hampering automated processing, participants with
MRI-defined cortical infarcts and participants with dementia or stroke at the time of scanning
(Supplementary figure 1). This resulted in 5656 subjects to be included in this study. The
Rotterdam Study has been approved by the Medical Ethics Committee of the Erasmus MC and
by the Ministry of Health, Welfare and Sport of the Netherlands, implementing the Wet
Bevolkingsonderzoek ERGO (Population Studies Act: Rotterdam Study). All participants
provided written informed consent to participate in the study and to obtain information from their

treating physicians.
2.2 Image processing

A 1.5 tesla GE Signa Excite MRI scanner was used to acquire multi-parametric MRI brain data,
as previously reported'’. Voxel-based morphometry (VBM) was performed according to an

optimized VBM protocol as was previously described''"'?

. First, all T1-weighted images were
segmented into supratentorial GM, white matter (WM), and cerebrospinal fluid (CSF) using a

previously described k-nearest neighbor algorithm, which was trained on six manually labeled

atlases'’. FMRIB’s Software Library (FSL) software was used for VBM data processing'®. All
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GM density maps were non-linearly registered to the standard Montreal Neurological Institute

(MNI) GM probability template, with a 1x1x1 mm’ voxel resolution.

A spatial modulation procedure was used to avoid differences in absolute GM volume due to the
registration. This involved multiplying voxel density values by the Jacobian determinants
estimated during spatial normalization. We did not apply smoothing. While VBM smoothing
procedures increase the signal to noise ratio, they can affect the features which the network

learns from GM.

Intracranial volume (ICV) estimates were obtained by summing total GM, WM and CSF

volumes.
Dementia assessment

All participants were monitored for dementia at baseline and following visits to the study center
using the Mini-Mental State Examination (MMSE) and the Geriatric Mental State (GMS)
organic level. Further investigation was initiated for participants who scored lower than 26 for
their MMSE or above 0 for their GMS'”. Additionally, the entire cohort was continuously
checked for dementia through electronic linkage between the study center and medical records
from general practitioners and the regional institute for outpatient mental health care. Available
information on cognitive testing and clinical neuroimaging was used when required for diagnosis
of dementia subtype. Final diagnosis was established by a consensus panel led by a consultant
neurologist, according to a standard criteria for dementia (using the Third Revised Edition of the
Diagnostic and Statistical Manual of Mental Disorders (DSM-III-R))'*!”. Until January 1* 2016,
92% of the potential person-time follow-up was complete. Participants were censored at date of

dementia diagnosis, death or loss to follow-up, or at January 1st 2016, whichever came first. Of
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5496 subjects included in this analysis, 159 developed dementia within 10 years of follow-up

(mean follow-up time 4.3442.25 years).
Other measurements

ApoEe4 carriership was determined using a polymerase chain reaction (PCR) on coded
deoxyribonucleic acid (DNA) samples. If these values were missing, Haplotype Reference
Consortium (HRC) imputed genotype values for rs7412 and rs429358 were used to define the
ApoEe4 carrier status. Measurements on more characteristics are described in Supplementary

Methods 1.
2.3 Deep Learning model

A full description of the applied DL model is presented in the Supplementary Methods 2.
Briefly, a DL model takes a set of inputs and respective outputs from a training set and finds an
optimal non-linear relation between them. A CNN is a class of DL techniques which takes in
multi-dimensional images as model input. These networks are generally used with a variety of
different techniques and algorithms, which together define how the model optimizes the input-

18,19

output relationship = . We describe this in details in the model architecture.

Our 3-dimensional (3D) regression CNN model is designed to predict brain age using 3D GM
density maps from VBM as input. It is inspired by ConvNet*” and Deep CNN", as shown in
Supplementary Figure 2. Besides GM brain images, we provide information about the sex of
the subject. This allows the network to adjust for GM differences between male and female

subjects.
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The dataset, excluding subjects with incident dementia, was randomly split into three sets:
training (3688 subjects), validation (1099 subjects) and test (550 subjects). Subjects with incident
dementia (159 subjects) were put in a fourth independent dataset. The CNN was trained using the
training set as described in Supplementary Methods 3. For training we used all available scans
for each subjects. Prediction accuracy was assessed on the test set. Model accuracy was
measured based on the absolute gap, or mean absolute error (MAE) of prediction, i.e. the

difference between model output and real chronological age (gap = agebrain,predicted —

agechronological) .
Attention mapping

We retrieved attention maps from the trained networks using Gradient-weighted Class Activation
Mapping (Grad-CAM)?*!. Attention maps show which areas on subject GM image are more
important for age prediction. Attention map intensity values were normalized to range 0-1, where
1 indicates the value for areas most associated with the network’s decision. We expanded the

Grad-CAM visualization technique to a 3-dimensional space.

Attention maps were computed for every individual. Since all brain images were registered to the
same template space, a global average voxel-wise attention map could be made over attention

maps of all subjects to obtain a global attention map for the age prediction network.

We computed the change in attention map over age per voxel, to investigate the change in
regions predictive for brain age between age groups. To this end, for each voxel, a linear
regression from age to attention map value was performed, resulting in a line of which the slope

represents the increase in attention map value with age for the given voxel.

2.4 Statistical analysis

10
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Reproducibility of the CNN age prediction was quantified using the intraclass correlation
coefficient (ICC(3,1)), computed on a subset of 80 persons out of the test set who were scanned

twice with a time interval of one to nine weeks>>.

In order to be able to compare our findings with previous studies, logistic regression models and
Cox proportional hazards models were used to assess the association between the age gap and
the incidence of dementia. We adjusted the regression models for biomarkers, which are known
for their relation with dementia: age and sex (model I); additionally GM volume and ICV (model
I1); and years of education and APOEe4 carriership (model II1)****. The logistic regression
model used the occurrence of dementia-development during follow-up as output. The
proportional hazards and linearity assumption were met for the Cox proportional hazards models.

Python and R were used to perform the statistical analyses® >".

11
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3. Results

The study population characteristics are described in Table 1. The algorithm was trained and
validated on random subsets of subjects with mean age 66.09+10.76 years and 55% females;
and mean age 64.84+9.69 years and 54% females, respectively. The following results are

reported for the test set (mean age 64.85+10.82 years and 55% females).
3.1 Network performance

The overall performance measured on the test set was MAE=4.45+3.59 years (Figure 1), with a
correlation between chronological and predicted brain age of 0.85 (p-value=4.76x10"°). A
reproducibility score of ICC=0.97 (95% confidence interval CI 0.96-0.98) was achieved. No
significant difference in prediction was found between male and female subjects (p-value=0.34),

detailed numbers are provided in Supplementary Text 1.
Attention map

Supplementary Figure 5 shows the global attention map of the test set, indicating the areas
contributing to age prediction in bright color, as well as the increase of attention map values over
age. We found that the amygdala and hippocampus are not only important for predicting brain
age, but that these regions also grow more important with increasing chronological age, which is
shown in Supplementary Figure 5B. A quantitative analysis per brain region is presented in
Table 2, which shows that highest mean intensities were computed for the nucleus accumbens
(0.89) and amygdala (0.71). Highest intensity quintiles were computed for the nucleus

accumbens (0.99), amygdala (0.98) and subcallosal area (0.98).

3.2 Logistic regression

12
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We computed a logistic regression for the three models, as shown in Table 3. The age gap was
significantly associated with dementia incidence while age, sex, education years, GM and ICV
volume and the ApoEe4 allele carriership were included in the model, with model III: odds ratio

OR=I1.11 (95% CI 1.05-1.16) per year age gap.
3.3 Survival analysis

As shown in Table 3 and Figure 2, the age gap was significantly associated with the incidence
of dementia, with model III hazard ratio HR=1.11 (95% CI 1.06-1.15) per year age gap. These
associations were similar in a subsample with a follow-up time for indecent dementia of more

than 5 years, model IIl HR=1.09 (95% CI 1.02-1.17) per year age gap.
3.4 Gap-associated features

Supplementary Table 1 shows a list of features that can affect the brain pathology and may be
associated with the gapg. Significantly lower values were found for GM volume in the highest
quintile. However, systolic blood pressure and mild cognitive impairment were already only

nominally significant, after Bonferroni correction.

13
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4 Discussion

In a large sample of community-dwelling middle-aged and older adults, using a DL model for
brain age prediction on MRI-derived grey matter tissue density, we found that the gap between
predicted brain age and chronological age was related to an increased risk of dementia,

independent of standard established risk factors for dementia.

Our trained CNN model showed a similar performance in age prediction compared to previous
studies that use a multimodal data model’ and DL-based approach®, which achieved
performances of MAE=4.29 and MAE=4.16, respectively. Previous studies looked cross-
sectionally™® at the association of the age gap and dementia occurrence, while in the current
study we evaluated associations in longitudinal data. As non-reversible pathological changes
already occur years prior to diagnosis, identifying early-stage biomarkers for dementia is of
importance. The age gap has potential to be utilized alongside other clinical risk factors and
biomarkers to separate the population into categories with sufficiently distinct degrees of risk to

drive clinical or personal decision-making, e.g. dementia screening and informed life planning.

Moreover, we retrieved attention maps from the model, showing which brain regions are most
important for age prediction, which also provides insights into processes in aging. Since specific
regions were identified on which the model mainly focused, this suggests that the gap holds more
specific information than global measures of GM volume when predicting brain age. This was
further established by the association found between the gap and incident dementia, which
remained significant after adjusting for total GM volume. Based on the attention maps the
amygdala and hippocampus in particular proved to be more associated to age prediction, also

increasing in attention map intensity with older subjects. This is in accordance to literature where

14
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significant negative associations between GM volume and age have been reported for these
regions”®. Atrophy of these two structures has also shown to be more prevalent in dementia
patients, including years before diagnosis *’~°. A more in depth evaluation of the attention map

can be found in Supplementary text 2.
Limitations

We were not able to perfectly predict the age for healthy subjects based only on MRI. We
assume that due to biological similarity of the brain within a range of several years, there will

always be an according level of uncertainty in the age prediction.

Furthermore, we excluded subjects with dementia and stroke while training the model, but there
are a number of other factors which can influence overall or local GM volume and affect the age
prediction and gap (Supplementary Table 1). Although only total GM volume differed
significantly between subjects with a high versus a low gap, effect estimates of some features
differed substantially. Further research is needed to investigate gap-associated features, which
may explain gap differences. These features can also introduce bias, which may be solved by
adding the information as a covariate to the model. This however requires the respective

information on the subjects, which can make the method less accessible for general use.

Lastly, the current CNN model is incapable of handling unfamiliar datasets, limiting its practical
use. A drawback of CNN’s is that the training data should be representative for the data for
which the trained network is used. Thus limiting the generalizability of our method. However,
this can be addressed by training models on more diverse or new datasets. It would therefore be

interesting to extend this model to another dataset and validate its use in a different context

5. Conclusion

15
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We showed that the gap between age predicted from brain MRI and chronological brain age is a
biomarker associated with a risk of dementia development. DL visualization allows further
investigation of the gap and neurodegeneration with respect to the human brain. This suggests
that the age gap may be applicable for dementia risk screening, but there is still room for
improvement in accuracy and for further research into the association between gap and dementia

compared to other biomarkers.
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357  Figure legend:

358 e Figure 1: Performance of CNN on test dataset.
359 e Figure 2: Adjusted survival curves for dementia-free probability by age gap.
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361  Table 1. Characteristics of data sets derived from the population-based Rotterdam Study.

Train Validation Test** Incident dementia**
Naubj 3688 1099 550 159
Nime 5865 2353 550 159
Mean age* (years+sd) 66.09+10.76 64.84+9.69 64.85+10.82 77.33+7.15
Sex proportion* (female/male) 0.55/0.45 0.54/0.46 0.55/0.45 0.58/0.42
Education* (yearstsd) 12.64+3.89 12.63+3.81 12.58+4.00 11.4343.57
GM volume* (literssd) 0.60+0.06 0.60+0.06 0.60+0.06 0.55+0.05
ICV* (liters+sd) 1.48+0.16 1.47+0.16 1.48+0.16 1.45+0.17
ApoE4 carriership* (0/1/2) 0.72/0.26/0.02 0.72/0.25/0.02 0.74/0.23/0.03 0.57/0.36/0.06
Follow-up time* (years+sd) 5.42 £2.81 4.93+2.80 6.68+2.29 4.29+2.26

* Values are based on Nipg.
** Selection only includes baseline image of subjects.
Abreviations: number of subjects (Ngu;); number of images (Nin,); grey matter (GM); intracranial volume (ICV)
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363  Table 2. Quantitative analysis of the attention map per brain region. Mean and fifth quintile
364  (lower boundary) of attention map intensity per brain region are listed. Brain regions are grouped

365 by lobes.

Brain region Size (voxels) Attention map Intensity
Mean Sth quartile
Temporal Lobe

Amygdala 4,398 0.71 0.98
Hippocampus 6,687 0.61 0.80
Anterior temporal lobe medial part 22,842 0.54 0.78
Superior temporal gyrus, anterior part 14,369 0.54 0.74
Lateral occipitotemporal gyrus (gyrus fusiformis) 12,908 0.53 0.62
Posterior temporal lobe 143,237 0.52 0.68
Superior temporal gyrus, central part 42,794 0.52 0.68
Gyri parahippocampalis et ambiens 13,767 0.51 0.63
Medial and inferior temporal gyri 55,102 0.50 0.68
Anterior temporal lobe lateral part 11,999 0.49 0.65

Insula and Cingulate gyri

Cingulate gyrus anterior part (supragenual) 24,751 0.53 0.63
Cingulate gyrus posterior part 24,235 0.52 0.64
Insula 44,328 0.51 0.64
Frontal Lobe
Subcallosal area 788 0.70 0.98
Posterior orbital gyrus 15,061 0.54 0.72
Straight gyrus (gyrus rectus) 11,826 0.54 0.67
Inferior frontal gyrus 55,754 0.53 0.72
Superior frontal gyrus 166,766 0.52 0.77
Precentral gyrus 106,145 0.52 0.77
Medial orbital gyrus 18,554 0.52 0.77
Pre-subgenual anterior cingulate gyrus 2,451 0.52 0.61
Middle frontal gyrus 161,999 0.51 0.74
Anterior orbital gyrus 19,514 0.51 0.73
Lateral orbital gyrus 11,112 0.51 0.77
Subgenual anterior cingulate gyrus 4,287 0.50 0.71
Occipital Lobe
Cuneus 28,209 0.57 0.67
Lingual gyrus 36,627 0.55 0.65
Lateral remainder of occipital lobe 131,852 0.54 0.73
Parietal Lobe
Superior parietal gyrus 130,908 0.54 0.74
Remainder of parietal lobe (including supramarginal and angular gyrus) 131,972 0.52 0.75
Postcentral gyrus 89,087 0.52 0.74

Central Structures

Nucleus accumbens 888 0.89 0.99
Thalamus 20,953 0.61 0.79
Putamen 14,502 0.60 0.74
Pallidum (globus pallidus) 3,835 0.58 0.69
Caudate nucleus 12,229 0.56 0.67
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367  Table 3. Association of gap between brain age and chronological age with incident dementia
368  assessed by logistic regression and Cox proportional hazards models, both in the total study

369  sample and in a subsample with a minimum follow-up time of 5 years.

Logistic Regression Cox Regression
Model n/N OR (95% CI) p-value n/N HR (95% CI) p-value
Total sample
Model I 159/1808 1.15 (1.10-1.20) 2.67x1071° 159/1808 1.15 (1.11-1.20) 1.02x 102
Model 11 154/1790 1.11 (1.06-1.16) 2.57x 107 154/1790 1.11 (1.07-1.16) 4.59x 107
Model 11T 150/1714 1.11 (1.05-1.16) 4.80x 107 150/1714 1.11 (1.06-1.15) 1.23x 10
Sample follow-up time > 5 years
Model I 62/1366 1.11 (1.04-1.18) 1.26x 107 62/1366 1.13 (1.06-1.20) 1.38x10*
Model 11 60/1352 1.09 (1.02-1.16) 1.43 x 107 60/1352 1.10 (1.03-1.17) 320x 107
Model 111 58/1305 1.09 (1.01-1.16) 2.08 x 107 58/1305 1.09 (1.02-1.17) 7.24x 107

Model I: age + sex.

Model II: model I + grey matter volume + intracranial volume.

Model III: model II + years of education + APOEg4 carrier status.

Abbreviations: confidence interval (CI); odds ratio (OR); hazard ratio (HR); number of cases (n); total number of participants (N).
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372 Figure 1. Performance of CNN on test dataset. (A) The plot depicts chronological age (x-axis)

373 and brain-predicted age (y-axis) with mean absolute error (MAE). The dashed line indicates the
374  ideal case x=y. (B) The figure shows reproducibility of the CNN performance. Scan 1 and 2 are
375 taken with one to nine weeks interval. The dashed line indicates a perfect reproducibility and

376  consistent predicting of the network.
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Figure 2. Adjusted survival curves for dementia-free probability by age gap. Dementia-free
probability is presented over time for participants with different age gap values, divided into
quintiles. Lower gap values correspond to chronological ages surpassing brain age, whereas
higher gap values correspond to chronological ages that are lower than the brain age. Plots are
based on Cox proportional hazards models, adjusted for age, sex, total grey matter volume,
intracranial volume, years of education and ApoEe4 carriership status, using a marginal

approach.
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SUPPLEMENTARY MATERIAL

Grey Matter Age Prediction as a Biomarker for Risk of Dementia: A Population-based

Study

Content:

e Supplementary Methods 1: Measurements of characteristics

¢ Supplementary Methods 2: Deep learning and convolutional neural networks

e Supplementary Methods 3: Network training

e Supplementary Text 1: Sex covariate effect on CNN model performance

e Supplementary Text 2: Important regions attention map

e Supplementary Table 1. Characteristics of subjects with the lowest quintile age gap values
compared to the highest quintile age gap values.

e Supplementary Figure 1: Flowchart showing the number of excluded participants per
category.

e Supplementary Figure 2: Graphical representation of the network architecture.

¢ Supplementary Figure 3: The probability density of the gap value for male and female
subjects.

e Supplementary Figure 4: Effect of adding sex as a covariate to the model on the gap value
distribution.

¢ Supplementary Figure 5. Grad-CAM attention map intensity per voxel overlaid on a brain
template.
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Supplementary methods 1: Measurements of characteristics

Mild cognitive impairment (MCI) was assessed in individuals over the age of 60 years, for which
both subjective and objective cognitive deficits were required. An objective cognitive deficit was
based on a cut-off of 1.5 standard deviations below the Rotterdam Study age- and education-
specific means in three cognitive domains, i.e. the memory, information processing speed and
executive functioning domain. Subjective cognitive deficits were defined as having answered yes
to any of six questions regarding difficulties in memory (difficulties finding words, or
remembering plans) or daily functioning (difficulties managing finances, getting dressed, or

using the phone).

Systolic and diastolic blood pressure was measured twice in the right arm in sitting position after
five minutes of rest, of which the average was used. Body mass index (BMI) was defined as
weight in kilograms (kg) divided by height in meters squared (m?). Participants were asked by
interview whether they were a current or past smoker, which was used to define their smoking
status. Glucose, total cholesterol and HDL cholesterol were measured in blood of the fasting

state.
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Supplementary methods 2: Deep learning and convolutional neural networks

Deep learning techniques require a set of input and respective output to find and optimize a non-
linear relation between the two. By providing data to a set of algorithms, the method is able to
train a by the user designed model. Generally, the user designs the model architecture by
selecting the model components. Subsequently, the machine learning method iteratively adjusts
the model parameters according to that iteration’s trained model performance, to create an
optimized model using backpropagation by supervised or unsupervised learning'~. By letting the
model itself choose which relevant features to extract from the input, deep learning facilitates the

model to freely search the input-space and find the most important, possibly new, input features.

Convolutional neural networks (CNNs) are a subset amongst deep learning techniques. They
allow multi-dimensional input images and inspect these inputs by scanning them for relevant
information®”. Deep learning and CNN models have been rising in popularity and have been
actively studied in recent years, reaching state-of-the-art performances in many applications

amongst which medical imaging ™.

CNNs regard an image as a field of numerical values, view small portions of this image
(receptive field) and perform multiplications with a weight-matrix (filter) to extract certain
information (feature) from this portion. By inspecting the entire image using this filter in a grid-
wise manner, the filter extracts specific information which is then saved to a new matrix or
image (feature map). Repeating this process for the resulting feature maps, the network
iteratively refines or searches for more information inside of the image that is relevant to the

output.
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These convolutional layers (CONV layers) are then typically combined with a variety of
different techniques and algorithms that allow the network to appropriately extract the
information from the input. Commonly used techniques are rectified linear units activation
(ReLU), max-pooling layers (MP), fully connected layers (FC), batch normalization and

dropout™’.
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Supplementary methods 3: Network training

The CNN has been trained using the data from the training set of 3688 subjects. Here, over- and
undersampling had been applied to the training set. Thus, effectively data of 3688 subjects was
used out of 3848 available subjects available for the training set, to distribute the samples more
evenly over the age range of the population (Nimg train_balanced=8060 images, mean age
68.52+13.71sd). To avoid overfitting on the training set and to improve overall model
performance, data augmentation was also applied during training®. Data augmentation included
random small translations and mirroring in planes. We also used follow-up MRI scans of each

subject as a ‘natural data augmentation’ technique.

The best model was selected based on its performance on the validation set. Here the
performance is measured as the model accuracy based on the root mean squared error (RMSE) of

the gap, as RMSE penalizes outliers more than MAE.
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Supplementary text 1: Sex covariate effect on CNN model performance

We can consider a split evaluation between male and female subjects. Supplementary Figure 3
shows the network found no significant difference between the two groups (p=0.34). By
including sex as a covariate, the covariate can reduce the difference in resulting age predictions

between male and female subjects.

The trained model was able to reduce prediction error and correct for male and female biases
observed in the image by the model. By including the additional input of sex, the model is able to
prevent over- and under prediction for male and female ages, respectively, as shown in
Supplementary Figure 4. Here we present the performance in gap on male and female subjects,
both early adapted models were trained under the same training settings and used the exact same
training and validation sample sets. The model that includes the additional input of the subject’s
respective sex, was able to reduce the overall gap between male and female subjects to be
insignificant (p-value=0.23). This also brought the mean gap for males and females closer to zero

(one-sample t-test: pmae=0.88 and premae=0.05).
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Supplementary text 2: Important regions attention map

Although aging affects the entire GM volume in the brain, as shown in Supplementary Figure
5, significant negative association between GM volume and age have been reported for several

10 According to literature”'” the

specific brain regions, i.e. a reduction in GM volume with age
insula, superior temporal areas and multiple gyri have shown significant age-related GM volume
differences. However, due to the large size of most of these regions often only parts of these
region were highlighted by the network. Interestingly, brain structures affected by age with

higher p-value in literature”'?, were also more highlighted by the network, e.g.: caudate nucleus,

amygdala, hippocampus and thalamus.
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137  Supplementary Table 1. Characteristics of subjects with the 5-year age-stratified lowest quintile

138  age gap values compared to the 5-year age-stratified highest quintile age gap values.

Characteristic Value lowest quintile (n=340) Value highest quintile (n=350) p-value
Age gap (years) -5.7+£39 6.9+45 <0.001
Grey matter volume (mL) 605 £ 56.9 577.6 £56.2 <0.001
Systolic blood pressure (mmHg) 138.9£21.6 143.1£21.0 0.009
Mild cognitive impairment, n (%) 15(4.4) 31(8.9) 0.013
Diastolic blood pressure (mmHg) 82.1+10.8 84.1+11.1 0.014
Fasting glucose level (mmol/L) 55+1.2 57+1.1 0.021
Current or past smoker, n (%) 102 (30.0) 130 (37.1) 0.027
Body mass index (kg/m?) 272+39 27.8+4.5 0.043
Mini-Mental State Examination score 28.0+1.8 27.7+2.1 0.095
Total cholesterol (mmol/L) 56%1.0 55+1.1 0.323
APOEc¢4 carrier, n (%) 92 (27.1) 103 (29.4) 0.418
Female, n (%) 187 (55.0) 203 (58.0) 0.428
HDL cholesterol (mmol/L) 14+04 1.5++-04 0.549
Age (years) 65.5+10.8 653+ 11.0 0.771
Years of education 124+3.8 123+4 0.829
Intracranial volume (mL) 1465.8 £163.2 1466.3 = 164.1 0.971

Values are presented in mean £+ SD unless stated otherwise.
Abbreviations: number of participants (n); standard deviation (SD).
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141

142 Supplementary Figure 1. Flowchart showing the number of excluded participants per category.

143

12


https://doi.org/10.1101/518506
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/518506; this version posted January 12, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

» Conv(5,2) + Batchnorm + RelLU ——) Global Average Pooling sex = 0 ,male m
1 ,female (1)

I:> Conv(3,1) + Batchnorm + ReLU m==) Fully Connected

» Maxpooling(2,2) mmm) Fully Connected + Dropout(0.2)

~

160x192x144

(32) 40x48x36

(48) 20x24x18

144

145  Supplementary Figure 2. Graphical representation of the network architecture. The overall

146  approach can be seen as four convolutional blocks ending on a pooling layer, which halves

147  feature map dimensions. Hereafter, global average pooling extracts the final feature maps to a
148  one-dimensional array of a single value per feature map. Fully connected layers are used to

149  propagate to a single regression output. Abbreviations.: kxkxk convolutional layer, with strides of
150  sxsxs (CONV(k,s)); kxkxk max-pooling layer, with strides of sxsxs (Maxpooling(k,s)); batch

151  normalization (Batchnorm); rectified linear unit (ReLU); dropout with probability p

152 (Dropout(p)).
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155  Supplementary Figure 3. The probability density of the gap value (PAD) for male and female
156  subjects. The distribution shows the difference in prediction for these two groups. Distributions
157  are similar as mean Ngemae = 0.51 and variance szemale =5.72 for female, whereas Nmae = 0.04 and
158  6male = 5.69 for male. Resulting t-test showed no significant difference between the two groups

159  as t(550)=-0.96 and p = 0.34.
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162  Supplementary Figure 4. Effect of adding sex as a covariate to the model on the gap value

163  distribution (red=male; blue=female). A comparison of the probability density functions for gap
164  of two early trained models along with their respective t-test results. Both models have the exact
165  same architecture with one the exception. a) Model uses only a single brain-MRI voxels input. b)
166  Model uses two inputs, i.e. brain-MRI voxels and respective sex. Models were trained under the

167  exact same settings.
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169

170  Supplementary Figure 5. Grad-CAM attention map and attention map change overlaid on a
171  brain template. (A) Grad-Cam attention map intensity per voxel. Voxel values in the attention
172 map have been set at 0.65 minimum threshold and capped at 0.95 maximum to exclude

173 background values and focus on more important regions. (B) Increase in attention map intensity
174  over chronological age per voxel. Map include only voxels with a significant increase in voxel

175  values (p<3e¢” after Bonferroni correction by number of GM voxels).
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178  Supplementary Figure 6. Grad-CAM attention map intensity per voxel overlaid on a brain
179  template. Voxel values in the attention map have been set at 0.50 minimum and 1.00 maximum
180  threshold to exclude background values and focus on more highlighted regions, according to

181  normalization around 0.50 in the Grad-CAM implementation.
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