

1 **Grey Matter Age Prediction as a Biomarker for Risk of Dementia: A Population-based**

2 **Study**

3 [authors list]

4 Johnny Wang*^{1,2}, Maria J. Knol*³, Aleksei Tiulpin⁴, Florian Dubost¹, Marleen de Bruijne^{1,5},

5 Meike W. Vernooij^{3,6}, Hieab H.H. Adams^{3,6}, M. Arfan Ikram³, Wiro J. Niessen**^{1,6,7} and

6 Gennady V. Roshchupkin**^{1,3,6}

7 **Affiliations:**

8 ¹ Department of Medical Informatics, Erasmus MC University Medical Center, Rotterdam, The
9 Netherlands

10 ² Mechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University
11 of Technology, Delft, The Netherlands

12 ³ Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands

13 ⁴ Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland

14 ⁵ Department of Computer Science, University of Copenhagen, Copenhagen, Denmark

15 ⁶ Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam,
16 The Netherlands

17 ⁷ Imaging Physics, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands

18 * These authors contributed equally to this work

19 ** These authors jointly supervised the work

20 **Subtitle:** A Population-Based Study

21 **Word count manuscript:** 3011

22 **References:** 30

23 **Figures:** 2

24 **Tables:** 3

25 **Supplementary texts:** 5

26 **Supplementary tables:** 1

27 **Supplementary figures:** 5

28 ***Correspondence:**

29 G.V. Roshchupkin PhD, Department of Epidemiology, Department of Medical Informatics,

30 Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center

31 Dr. Molewaterplein 50, 3015 GE, Rotterdam, the Netherlands.

32 **E-mail:** g.roshchupkin@erasmusmc.nl

33 **Key Points**

34 *Question:* Is the gap between brain age predicted from MRI and chronological age associated
35 with incident dementia in a general population of Dutch adults?

36 *Findings:* Brain age was predicted using a deep learning model, using MRI-derived grey matter
37 density maps. In a population based study including 5496 participants, the observed gap was
38 significantly associated with the risk of dementia.

39 *Meaning:* The gap between MRI-brain predicted and chronological age is potentially a biomarker
40 for dementia risk screening.

41

42 **Abstract**

43 *Importance:* The gap between predicted brain age using magnetic resonance imaging (MRI) and
44 chronological age may serve as biomarker for early-stage neurodegeneration and potentially as a
45 risk indicator for dementia. However, owing to the lack of large longitudinal studies, it has been
46 challenging to validate this link.

47 *Objective:* We aimed to investigate the utility of such a gap as a risk biomarker for incident
48 dementia in a general Dutch population, using a deep learning approach for predicting brain age
49 based on MRI-derived grey matter maps.

50 *Design:* Data was collected from participants of the cohort-based Rotterdam Study who
51 underwent brain magnetic resonance imaging between 2006 and 2015. This study was performed
52 in a longitudinal setting and all participant were followed up for incident dementia until 2016.

53 *Setting:* The Rotterdam Study is a prospective population-based study, initiated in 1990 in the
54 suburb Ommoord of in Rotterdam, the Netherlands.

55 *Participants:* At baseline, 5496 dementia- and stroke-free participants (mean age 64.67 ± 9.82 ,
56 54.73% women) were scanned and screened for incident dementia. During 6.66 ± 2.46 years of
57 follow-up, 159 people developed dementia.

58 *Main outcomes and measures:* We built a convolutional neural network (CNN) model to predict
59 brain age based on its MRI. Model prediction performance was measured in mean absolute error
60 (MAE). Reproducibility of prediction was tested using the intraclass correlation coefficient
61 (ICC) computed on a subset of 80 subjects. Logistic regressions and Cox proportional hazards
62 were used to assess the association of the age gap with incident dementia, adjusted for years of

63 education, ApoE ϵ 4 allele carriership, grey matter volume and intracranial volume. Additionally,
64 we computed the attention maps of CNN, which shows which brain regions are important for age
65 prediction.

66 *Results:* MAE of brain age prediction was 4.45 ± 3.59 years and ICC was 0.97 (95% confidence
67 interval CI=0.96-0.98). Logistic regression and Cox proportional hazards models showed that the
68 age gap was significantly related to incident dementia (odds ratio OR=1.11 and 95% confidence
69 intervals CI=1.05-1.16; hazard ratio HR=1.11 and 95% CI=1.06-1.15, respectively). Attention
70 maps indicated that grey matter density around the amygdalae and hippocampi primarily drive
71 the age estimation.

72 *Conclusion and relevance:* We show that the gap between predicted and chronological brain age
73 is a biomarker associated with risk of dementia development. This suggests that it can be used as
74 a biomarker, complimentary to those that are known, for dementia risk screening.

75 **Keywords:** Deep Learning; age prediction; biomarker; dementia; magnetic resonance imaging;
76 brain; voxel-based morphometry; survival analysis.

77

78 **1. Introduction**

79 The human brain continuously changes throughout the entire lifespan. These changes partially
80 reflect a normal aging process and are not necessarily pathological¹. However,
81 neurodegenerative diseases, including dementia, also affect brain structure and function^{2,3}.
82 Therefore, a better understanding and modeling of normal brain aging can help to disentangle
83 these two processes and improve the detection of early-stage neurodegeneration.

84 Age prediction models based on brain magnetic resonance imaging (MRI) are a popular trend in
85 neuroscience^{4–7}. The difference between predicted and chronological age is thought to serve as
86 an important biomarker reflecting pathological processes in the brain. Several recent studies
87 showed the relation between accelerated brain aging and various disorders, such as Alzheimer's
88 disease (AD), schizophrenia, epilepsy or diabetes^{7–9}.

89 In recent years, convolutional neural networks (CNN) have become the methodology of choice
90 for analyzing medical images. These models are able to learn complex relations between input
91 data and desired outcomes. Recent studies were able to demonstrate that CNN models can
92 outperform complex machine learning models in brain MRI-based age prediction^{5,6}.

93 Although cross-sectional studies have suggested that the gap between predicted and
94 chronological age may serve as a biomarker for dementia diagnosis, it remains unclear whether
95 this is also the case for the years preceding dementia diagnosis^{5,7}. Longitudinal studies
96 examining the link between such a gap and incident dementia are lacking and are crucial for
97 validation of this biomarker for early-stage neurodegeneration detection. Using a deep learning
98 (DL) model, we investigated the association of the grey matter (GM) age gap with incident
99 dementia in a large population-based sample of middle-aged and elderly subjects.

100 **2. Methods**

101 *2.1 Study Population*

102 Data was acquired from the Rotterdam Study, an ongoing population-based cohort study among
103 the inhabitants of Ommoord, a suburb of Rotterdam, the Netherlands¹⁰. The cohort started in
104 January 1990 (n=7983) and was extended in February 2000 (n=3011) and February 2006
105 (n=3932). Follow-up examinations take place every 3 to 4 years. MRI was implemented in 2005,
106 and 5912 persons scanned until 2015 were eligible for this study. We excluded individuals with
107 incomplete acquisitions, scans with artifacts hampering automated processing, participants with
108 MRI-defined cortical infarcts and participants with dementia or stroke at the time of scanning
109 (**Supplementary figure 1**). This resulted in 5656 subjects to be included in this study. The
110 Rotterdam Study has been approved by the Medical Ethics Committee of the Erasmus MC and
111 by the Ministry of Health, Welfare and Sport of the Netherlands, implementing the Wet
112 Bevolkingsonderzoek ERGO (Population Studies Act: Rotterdam Study). All participants
113 provided written informed consent to participate in the study and to obtain information from their
114 treating physicians.

115 *2.2 Image processing*

116 A 1.5 tesla GE Signa Excite MRI scanner was used to acquire multi-parametric MRI brain data,
117 as previously reported¹⁰. Voxel-based morphometry (VBM) was performed according to an
118 optimized VBM protocol as was previously described^{11,12}. First, all T1-weighted images were
119 segmented into supratentorial GM, white matter (WM), and cerebrospinal fluid (CSF) using a
120 previously described *k*-nearest neighbor algorithm, which was trained on six manually labeled
121 atlases¹³. FMRIB's Software Library (FSL) software was used for VBM data processing¹⁴. All

122 GM density maps were non-linearly registered to the standard Montreal Neurological Institute
123 (MNI) GM probability template, with a 1x1x1 mm³ voxel resolution.

124 A spatial modulation procedure was used to avoid differences in absolute GM volume due to the
125 registration. This involved multiplying voxel density values by the Jacobian determinants
126 estimated during spatial normalization. We did not apply smoothing. While VBM smoothing
127 procedures increase the signal to noise ratio, they can affect the features which the network
128 learns from GM.

129 Intracranial volume (ICV) estimates were obtained by summing total GM, WM and CSF
130 volumes.

131 *Dementia assessment*

132 All participants were monitored for dementia at baseline and following visits to the study center
133 using the Mini-Mental State Examination (MMSE) and the Geriatric Mental State (GMS)
134 organic level. Further investigation was initiated for participants who scored lower than 26 for
135 their MMSE or above 0 for their GMS¹⁵. Additionally, the entire cohort was continuously
136 checked for dementia through electronic linkage between the study center and medical records
137 from general practitioners and the regional institute for outpatient mental health care. Available
138 information on cognitive testing and clinical neuroimaging was used when required for diagnosis
139 of dementia subtype. Final diagnosis was established by a consensus panel led by a consultant
140 neurologist, according to a standard criteria for dementia (using the Third Revised Edition of the
141 Diagnostic and Statistical Manual of Mental Disorders (DSM-III-R))^{16,17}. Until January 1st 2016,
142 92% of the potential person-time follow-up was complete. Participants were censored at date of
143 dementia diagnosis, death or loss to follow-up, or at January 1st 2016, whichever came first. Of

144 5496 subjects included in this analysis, 159 developed dementia within 10 years of follow-up
145 (mean follow-up time 4.34±2.25 years).

146 *Other measurements*

147 ApoE ϵ 4 carriership was determined using a polymerase chain reaction (PCR) on coded
148 deoxyribonucleic acid (DNA) samples. If these values were missing, Haplotype Reference
149 Consortium (HRC) imputed genotype values for rs7412 and rs429358 were used to define the
150 ApoE ϵ 4 carrier status. Measurements on more characteristics are described in **Supplementary**
151 **Methods 1.**

152 *2.3 Deep Learning model*

153 A full description of the applied DL model is presented in the **Supplementary Methods 2**.
154 Briefly, a DL model takes a set of inputs and respective outputs from a training set and finds an
155 optimal non-linear relation between them. A CNN is a class of DL techniques which takes in
156 multi-dimensional images as model input. These networks are generally used with a variety of
157 different techniques and algorithms, which together define how the model optimizes the input-
158 output relationship^{18,19}. We describe this in details in the model architecture.

159 Our 3-dimensional (3D) regression CNN model is designed to predict brain age using 3D GM
160 density maps from VBM as input. It is inspired by ConvNet²⁰ and Deep CNN¹⁹, as shown in
161 **Supplementary Figure 2**. Besides GM brain images, we provide information about the sex of
162 the subject. This allows the network to adjust for GM differences between male and female
163 subjects.

164 The dataset, excluding subjects with incident dementia, was randomly split into three sets:
165 training (3688 subjects), validation (1099 subjects) and test (550 subjects). Subjects with incident
166 dementia (159 subjects) were put in a fourth independent dataset. The CNN was trained using the
167 training set as described in **Supplementary Methods 3**. For training we used all available scans
168 for each subjects. Prediction accuracy was assessed on the test set. Model accuracy was
169 measured based on the absolute gap, or mean absolute error (MAE) of prediction, i.e. the
170 difference between model output and real chronological age (gap = $\text{age}_{\text{brain,predicted}} -$
171 $\text{age}_{\text{chronological}}$).

172 *Attention mapping*

173 We retrieved attention maps from the trained networks using Gradient-weighted Class Activation
174 Mapping (Grad-CAM)²¹. Attention maps show which areas on subject GM image are more
175 important for age prediction. Attention map intensity values were normalized to range 0-1, where
176 1 indicates the value for areas most associated with the network's decision. We expanded the
177 Grad-CAM visualization technique to a 3-dimensional space.

178 Attention maps were computed for every individual. Since all brain images were registered to the
179 same template space, a global average voxel-wise attention map could be made over attention
180 maps of all subjects to obtain a global attention map for the age prediction network.

181 We computed the change in attention map over age per voxel, to investigate the change in
182 regions predictive for brain age between age groups. To this end, for each voxel, a linear
183 regression from age to attention map value was performed, resulting in a line of which the slope
184 represents the increase in attention map value with age for the given voxel.

185 *2.4 Statistical analysis*

186 Reproducibility of the CNN age prediction was quantified using the intraclass correlation
187 coefficient (ICC(3,1)), computed on a subset of 80 persons out of the test set who were scanned
188 twice with a time interval of one to nine weeks²².

189 In order to be able to compare our findings with previous studies, logistic regression models and
190 Cox proportional hazards models were used to assess the association between the age gap and
191 the incidence of dementia. We adjusted the regression models for biomarkers, which are known
192 for their relation with dementia: age and sex (model I); additionally GM volume and ICV (model
193 II); and years of education and APOE ϵ 4 carriership (model III)^{23,24}. The logistic regression
194 model used the occurrence of dementia-development during follow-up as output. The
195 proportional hazards and linearity assumption were met for the Cox proportional hazards models.
196 Python and R were used to perform the statistical analyses²⁵⁻²⁸.

197 **3. Results**

198 The study population characteristics are described in **Table 1**. The algorithm was trained and
199 validated on random subsets of subjects with mean age 66.09 ± 10.76 years and 55% females;
200 and mean age 64.84 ± 9.69 years and 54% females, respectively. The following results are
201 reported for the test set (mean age 64.85 ± 10.82 years and 55% females).

202 *3.1 Network performance*

203 The overall performance measured on the test set was $MAE = 4.45 \pm 3.59$ years (**Figure 1**), with a
204 correlation between chronological and predicted brain age of 0.85 (p-value= 4.76×10^{-156}). A
205 reproducibility score of $ICC = 0.97$ (95% confidence interval CI 0.96-0.98) was achieved. No
206 significant difference in prediction was found between male and female subjects (p-value=0.34),
207 detailed numbers are provided in **Supplementary Text 1**.

208 *Attention map*

209 **Supplementary Figure 5** shows the global attention map of the test set, indicating the areas
210 contributing to age prediction in bright color, as well as the increase of attention map values over
211 age. We found that the amygdala and hippocampus are not only important for predicting brain
212 age, but that these regions also grow more important with increasing chronological age, which is
213 shown in **Supplementary Figure 5B**. A quantitative analysis per brain region is presented in
214 **Table 2**, which shows that highest mean intensities were computed for the nucleus accumbens
215 (0.89) and amygdala (0.71). Highest intensity quintiles were computed for the nucleus
216 accumbens (0.99), amygdala (0.98) and subcallosal area (0.98).

217 *3.2 Logistic regression*

218 We computed a logistic regression for the three models, as shown in **Table 3**. The age gap was
219 significantly associated with dementia incidence while age, sex, education years, GM and ICV
220 volume and the ApoE ε 4 allele carriership were included in the model, with model III: odds ratio
221 OR=1.11 (95% CI 1.05-1.16) per year age gap.

222 *3.3 Survival analysis*

223 As shown in **Table 3** and **Figure 2**, the age gap was significantly associated with the incidence
224 of dementia, with model III hazard ratio HR=1.11 (95% CI 1.06-1.15) per year age gap. These
225 associations were similar in a subsample with a follow-up time for indecent dementia of more
226 than 5 years, model III HR=1.09 (95% CI 1.02-1.17) per year age gap.

227 *3.4 Gap-associated features*

228 **Supplementary Table 1** shows a list of features that can affect the brain pathology and may be
229 associated with the gap⁹. Significantly lower values were found for GM volume in the highest
230 quintile. However, systolic blood pressure and mild cognitive impairment were already only
231 nominally significant, after Bonferroni correction.

232

233 **4 Discussion**

234 In a large sample of community-dwelling middle-aged and older adults, using a DL model for
235 brain age prediction on MRI-derived grey matter tissue density, we found that the gap between
236 predicted brain age and chronological age was related to an increased risk of dementia,
237 independent of standard established risk factors for dementia.

238 Our trained CNN model showed a similar performance in age prediction compared to previous
239 studies that use a multimodal data model⁵ and DL-based approach⁶, which achieved
240 performances of MAE=4.29 and MAE=4.16, respectively. Previous studies looked cross-
241 sectionally^{5,6} at the association of the age gap and dementia occurrence, while in the current
242 study we evaluated associations in longitudinal data. As non-reversible pathological changes
243 already occur years prior to diagnosis, identifying early-stage biomarkers for dementia is of
244 importance. The age gap has potential to be utilized alongside other clinical risk factors and
245 biomarkers to separate the population into categories with sufficiently distinct degrees of risk to
246 drive clinical or personal decision-making, e.g. dementia screening and informed life planning.

247 Moreover, we retrieved attention maps from the model, showing which brain regions are most
248 important for age prediction, which also provides insights into processes in aging. Since specific
249 regions were identified on which the model mainly focused, this suggests that the gap holds more
250 specific information than global measures of GM volume when predicting brain age. This was
251 further established by the association found between the gap and incident dementia, which
252 remained significant after adjusting for total GM volume. Based on the attention maps the
253 amygdala and hippocampus in particular proved to be more associated to age prediction, also
254 increasing in attention map intensity with older subjects. This is in accordance to literature where

255 significant negative associations between GM volume and age have been reported for these
256 regions^{2,23}. Atrophy of these two structures has also shown to be more prevalent in dementia
257 patients, including years before diagnosis^{29,30}. A more in depth evaluation of the attention map
258 can be found in **Supplementary text 2**.

259 *Limitations*

260 We were not able to perfectly predict the age for healthy subjects based only on MRI. We
261 assume that due to biological similarity of the brain within a range of several years, there will
262 always be an according level of uncertainty in the age prediction.

263 Furthermore, we excluded subjects with dementia and stroke while training the model, but there
264 are a number of other factors which can influence overall or local GM volume and affect the age
265 prediction and gap (**Supplementary Table 1**). Although only total GM volume differed
266 significantly between subjects with a high versus a low gap, effect estimates of some features
267 differed substantially. Further research is needed to investigate gap-associated features, which
268 may explain gap differences. These features can also introduce bias, which may be solved by
269 adding the information as a covariate to the model. This however requires the respective
270 information on the subjects, which can make the method less accessible for general use.

271 Lastly, the current CNN model is incapable of handling unfamiliar datasets, limiting its practical
272 use. A drawback of CNN's is that the training data should be representative for the data for
273 which the trained network is used. Thus limiting the generalizability of our method. However,
274 this can be addressed by training models on more diverse or new datasets. It would therefore be
275 interesting to extend this model to another dataset and validate its use in a different context

276 **5. Conclusion**

277 We showed that the gap between age predicted from brain MRI and chronological brain age is a
278 biomarker associated with a risk of dementia development. DL visualization allows further
279 investigation of the gap and neurodegeneration with respect to the human brain. This suggests
280 that the age gap may be applicable for dementia risk screening, but there is still room for
281 improvement in accuracy and for further research into the association between gap and dementia
282 compared to other biomarkers.

283

284 **Acknowledgements**

285 Mr. Aleksei Tiulpin was supported by KAUTE foundation.

286 **Financial disclosures**

287 Wiro Niessen is co-founder, scientific lead, and shareholder of Quantib BV. Other authors report
288 no biomedical financial interests

289

290 **6. REFERENCES**

291 1. Vinke, E. J. *et al.* Trajectories of imaging markers in brain aging: The Rotterdam Study.
292 *Neurobiol. Aging* (2018). doi:10.1016/j.neurobiolaging.2018.07.001

293 2. Manard, M., Bahri, M. A., Salmon, E. & Collette, F. Relationship between grey matter
294 integrity and executive abilities in aging. *Brain Res.* **1642**, 562–580 (2016).

295 3. Abbott, A. Dementia: A problem for our age. *Nature* **475**, (2011).

296 4. Franke, K., Luders, E., May, A., Wilke, M. & Gaser, C. Brain maturation: Predicting
297 individual BrainAGE in children and adolescents using structural MRI. *Neuroimage* **63**,
298 1305–1312 (2012).

299 5. Liem, F. *et al.* Predicting brain-age from multimodal imaging data captures cognitive
300 impairment. *Neuroimage* **148**, 179–188 (2017).

301 6. Cole, J. H. *et al.* Predicting brain age with deep learning from raw imaging data results in
302 a reliable and heritable biomarker. *Neuroimage* **163**, 115–124 (2017).

303 7. Kaufmann, T. *et al.* Genetics of brain age suggest an overlap with common brain
304 disorders. *bioRxiv* (2018). doi:10.1101/303164

305 8. Holmes, G. L., Milh, M. D. M. & Dulac, O. *Maturation of the human brain and epilepsy*.
306 *Handbook of Clinical Neurology* **107**, (2012).

307 9. Franke, K., Gaser, C., Manor, B. & Novak, V. Advanced BrainAGE in older adults with
308 type 2 diabetes mellitus. *Front. Aging Neurosci.* **5**, (2013).

309 10. Ikram, M. A. *et al.* The Rotterdam Scan Study: design update 2016 and main findings.

310 *Eur. J. Epidemiol.* **30**, 1299–1315 (2015).

311 11. Good, C. D. *et al.* A voxel-based morphometric study of ageing in 465 normal adult
312 human brains. *Neuroimage* **14**, 21–36 (2001).

313 12. Roshchupkin, G. V. *et al.* Fine-mapping the effects of Alzheimer's disease risk loci on
314 brain morphology. *Neurobiol. Aging* **48**, 204–211 (2016).

315 13. Vrooman, H. A. *et al.* Multi-spectral brain tissue segmentation using automatically trained
316 k-Nearest-Neighbor classification. *Neuroimage* **37**, 71–81 (2007).

317 14. Smith, S. M. & Nichols, T. E. Threshold-free cluster enhancement: Addressing problems
318 of smoothing, threshold dependence and localisation in cluster inference. *Neuroimage* **44**,
319 83–98 (2009).

320 15. Mutlu, U. *et al.* Association of Retinal Neurodegeneration on Optical Coherence
321 Tomography With Dementia. *JAMA Neurol.* 1–8 (2018).
322 doi:10.1001/jamaneurol.2018.1563

323 16. McKhann, G. *et al.* Clinical diagnosis of Alzheimer's disease. *Neurology* **34**, 939 (1984).

324 17. Román, G. *et al.* Vascular dementia: diagnostic criteria for research studies. *Neurology* **43**,
325 250–260 (1993).

326 18. LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to
327 document recognition. *Proc. IEEE* **86**, 2278–2323 (1998).

328 19. Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet Classification with Deep
329 Convolutional Neural Networks. *Adv. Neural Inf. Process. Syst.* 1–9 (2012).

330 doi:<http://dx.doi.org/10.1016/j.protcy.2014.09.007>

331 20. Simonyan, K. & Zisserman, A. Very Deep Convolutional Networks for Large-Scale
332 Image Recognition. *arXiv Prepr.* 1–10 (2014). doi:[10.1016/j.infsof.2008.09.005](https://doi.org/10.1016/j.infsof.2008.09.005)

333 21. Selvaraju, R. R. *et al.* Grad-CAM: Visual Explanations from Deep Networks via Gradient-
334 Based Localization. *Proc. IEEE Int. Conf. Comput. Vis.* **2017–Octob**, 618–626 (2017).

335 22. Shrout, P. E. & Fleiss, J. L. Intraclass correlations: Uses in assessing rater reliability.
336 *Psychol. Bull.* **86**, 420–428 (1979).

337 23. Matsuda, H. Voxel-based Morphometry of Brain MRI in Normal Aging and Alzheimer's
338 Disease. *Aging Dis.* **4**, 29–37 (2013).

339 24. Roses, A. D. & Saunders, A. M. APOE is a major susceptibility gene for Alzheimer's
340 disease. *Curr. Opin. Biotechnol.* **5**, 663–667 (1994).

341 25. Rossum, G. Van & Drake, F. L. Python Reference Manual. *Python Software Foundation*
342 (2001). Available at: <http://www.python.org>.

343 26. Ascher, D., Dubois, P., Hinsen, K., Hugunin, J. & Oliphant, T. Numerical Python.
344 *Lawrence Livermore National Laboratory* (2001). Available at:
345 <http://www.pfdubois.com/numpy/>.

346 27. Chollet, F. Keras. *Github repository* (2015). Available at:
347 <https://github.com/fchollet/keras>.

348 28. R Core Team. R: A language and environment for statistical computing. *R Foundation for*
349 *Statistical Computing* Available at: <http://www.r-project.org/>.

350 29. Aylward, E. H. *et al.* MRI volumes of the hippocampus and amygdala in adults with
351 Down's syndrome with and without dementia. *Am. J. Psychiatry* (1999).
352 doi:10.1176/ajp.156.4.564

353 30. Wachinger, C., Salat, D. H., Weiner, M. & Reuter, M. Whole-brain analysis reveals
354 increased neuroanatomical asymmetries in dementia for hippocampus and amygdala.
355 *Brain* (2016). doi:10.1093/brain/aww243

356

357 **Figure legend:**

358 • **Figure 1:** Performance of CNN on test dataset.

359 • **Figure 2:** Adjusted survival curves for dementia-free probability by age gap.

360

361 **Table 1.** Characteristics of data sets derived from the population-based Rotterdam Study.

	Train	Validation	Test**	Incident dementia**
N _{subj}	3688	1099	550	159
N _{img}	5865	2353	550	159
Mean age* (years \pm sd)	66.09 \pm 10.76	64.84 \pm 9.69	64.85 \pm 10.82	77.33 \pm 7.15
Sex proportion* (female/male)	0.55/0.45	0.54/0.46	0.55/0.45	0.58/0.42
Education* (years \pm sd)	12.64 \pm 3.89	12.63 \pm 3.81	12.58 \pm 4.00	11.43 \pm 3.57
GM volume* (liters \pm sd)	0.60 \pm 0.06	0.60 \pm 0.06	0.60 \pm 0.06	0.55 \pm 0.05
ICV* (liters \pm sd)	1.48 \pm 0.16	1.47 \pm 0.16	1.48 \pm 0.16	1.45 \pm 0.17
ApoE4 carriership* (0/1/2)	0.72/0.26/0.02	0.72/0.25/0.02	0.74/0.23/0.03	0.57/0.36/0.06
Follow-up time* (years \pm sd)	5.42 \pm 2.81	4.93 \pm 2.80	6.68 \pm 2.29	4.29 \pm 2.26

* Values are based on N_{img}.

** Selection only includes baseline image of subjects.

Abbreviations: number of subjects (N_{subj}); number of images (N_{img}); grey matter (GM); intracranial volume (ICV)

362

363 **Table 2.** Quantitative analysis of the attention map per brain region. Mean and fifth quintile
 364 (lower boundary) of attention map intensity per brain region are listed. Brain regions are grouped
 365 by lobes.

Brain region	Size (voxels)	Attention map Intensity	
		Mean	5th quartile
Temporal Lobe			
Amygdala	4,398	0.71	0.98
Hippocampus	6,687	0.61	0.80
Anterior temporal lobe medial part	22,842	0.54	0.78
Superior temporal gyrus, anterior part	14,369	0.54	0.74
Lateral occipitotemporal gyrus (gyrus fusiformis)	12,908	0.53	0.62
Posterior temporal lobe	143,237	0.52	0.68
Superior temporal gyrus, central part	42,794	0.52	0.68
Gyri parahippocampalis et ambiens	13,767	0.51	0.63
Medial and inferior temporal gyri	55,102	0.50	0.68
Anterior temporal lobe lateral part	11,999	0.49	0.65
Insula and Cingulate gyri			
Cingulate gyrus anterior part (supragenual)	24,751	0.53	0.63
Cingulate gyrus posterior part	24,235	0.52	0.64
Insula	44,328	0.51	0.64
Frontal Lobe			
Subcallosal area	788	0.70	0.98
Posterior orbital gyrus	15,061	0.54	0.72
Straight gyrus (gyrus rectus)	11,826	0.54	0.67
Inferior frontal gyrus	55,754	0.53	0.72
Superior frontal gyrus	166,766	0.52	0.77
Precentral gyrus	106,145	0.52	0.77
Medial orbital gyrus	18,554	0.52	0.77
Pre-subgenual anterior cingulate gyrus	2,451	0.52	0.61
Middle frontal gyrus	161,999	0.51	0.74
Anterior orbital gyrus	19,514	0.51	0.73
Lateral orbital gyrus	11,112	0.51	0.77
Subgenual anterior cingulate gyrus	4,287	0.50	0.71
Occipital Lobe			
Cuneus	28,209	0.57	0.67
Lingual gyrus	36,627	0.55	0.65
Lateral remainder of occipital lobe	131,852	0.54	0.73
Parietal Lobe			
Superior parietal gyrus	130,908	0.54	0.74
Remainder of parietal lobe (including supramarginal and angular gyrus)	131,972	0.52	0.75
Postcentral gyrus	89,087	0.52	0.74
Central Structures			
Nucleus accumbens	888	0.89	0.99
Thalamus	20,953	0.61	0.79
Putamen	14,502	0.60	0.74
Pallidum (globus pallidus)	3,835	0.58	0.69
Caudate nucleus	12,229	0.56	0.67

367 **Table 3.** Association of gap between brain age and chronological age with incident dementia
368 assessed by logistic regression and Cox proportional hazards models, both in the total study
369 sample and in a subsample with a minimum follow-up time of 5 years.

Model	Logistic Regression			Cox Regression		
	n/N	OR (95% CI)	p-value	n/N	HR (95% CI)	p-value
Total sample						
Model I	159/1808	1.15 (1.10-1.20)	2.67×10^{-10}	159/1808	1.15 (1.11-1.20)	1.02×10^{-12}
Model II	154/1790	1.11 (1.06-1.16)	2.57×10^{-5}	154/1790	1.11 (1.07-1.16)	4.59×10^{-7}
Model III	150/1714	1.11 (1.05-1.16)	4.80×10^{-5}	150/1714	1.11 (1.06-1.15)	1.23×10^{-6}
Sample follow-up time > 5 years						
Model I	62/1366	1.11 (1.04-1.18)	1.26×10^{-3}	62/1366	1.13 (1.06-1.20)	1.38×10^{-4}
Model II	60/1352	1.09 (1.02-1.16)	1.43×10^{-2}	60/1352	1.10 (1.03-1.17)	3.20×10^{-3}
Model III	58/1305	1.09 (1.01-1.16)	2.08×10^{-2}	58/1305	1.09 (1.02-1.17)	7.24×10^{-3}

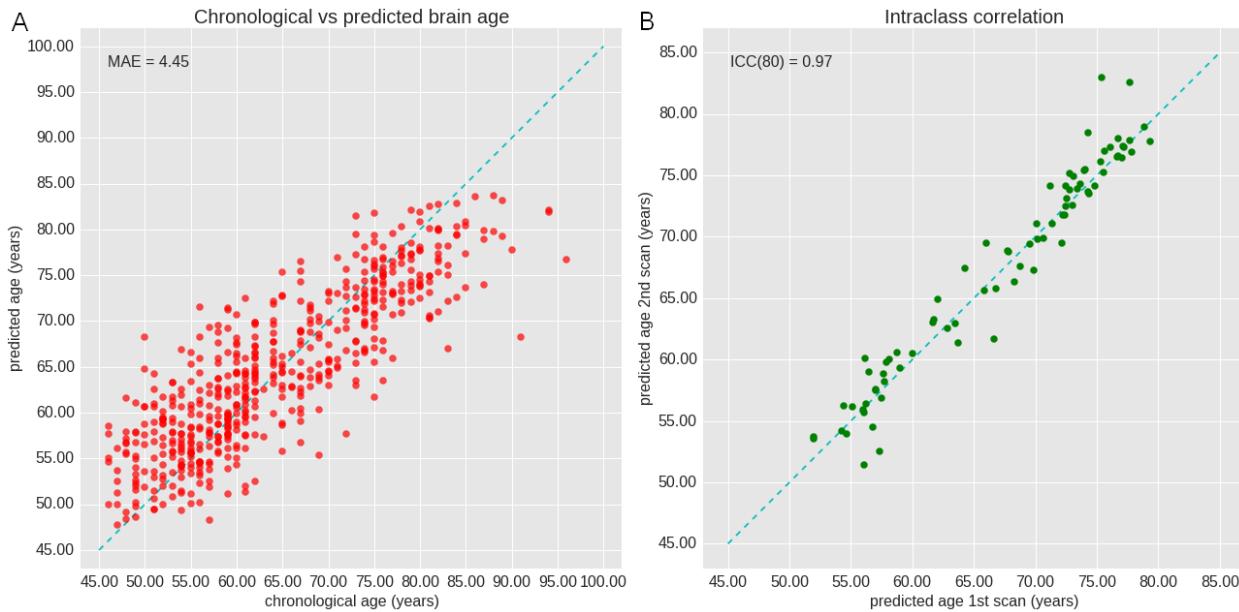
Model I: age + sex.

Model II: model I + grey matter volume + intracranial volume.

Model III: model II + years of education + APOE ϵ 4 carrier status.

Abbreviations: confidence interval (CI); odds ratio (OR); hazard ratio (HR); number of cases (n); total number of participants (N).

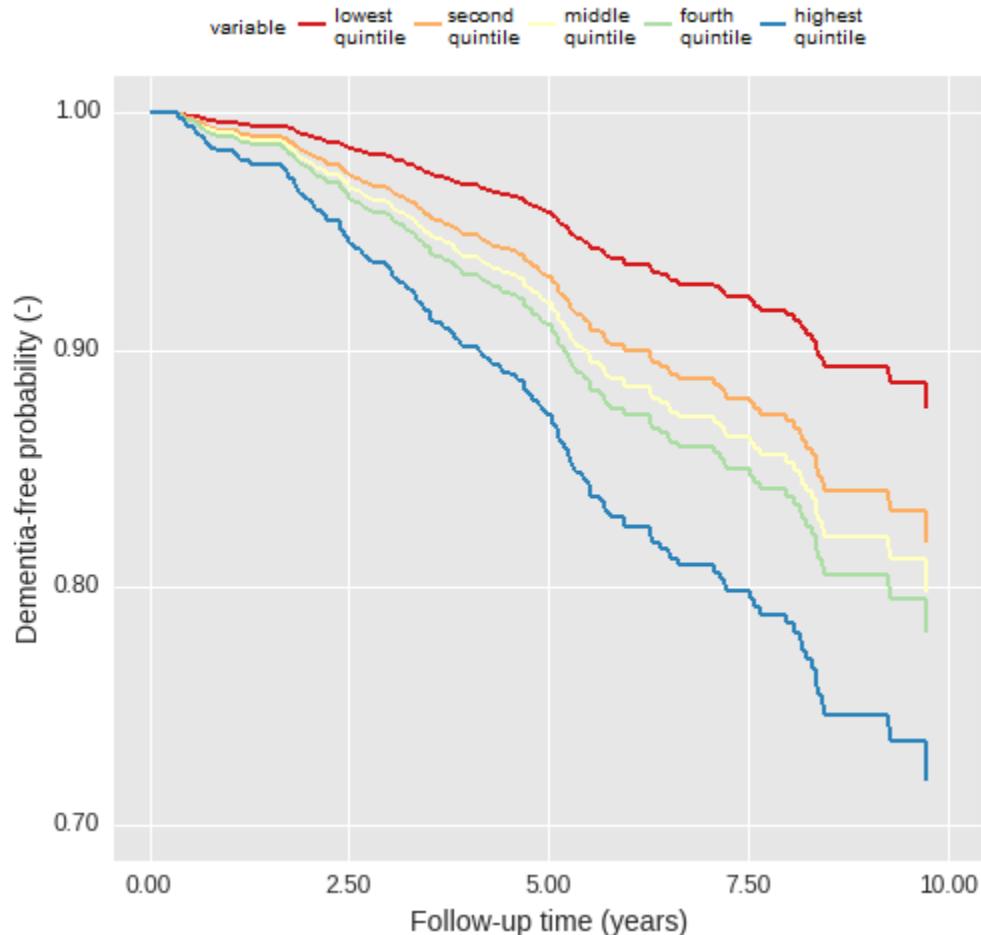
370



371

372 **Figure 1.** Performance of CNN on test dataset. **(A)** The plot depicts chronological age (x-axis)
373 and brain-predicted age (y-axis) with mean absolute error (MAE). The dashed line indicates the
374 ideal case $x=y$. **(B)** The figure shows reproducibility of the CNN performance. Scan 1 and 2 are
375 taken with one to nine weeks interval. The dashed line indicates a perfect reproducibility and
376 consistent predicting of the network.

377



378

379 **Figure 2.** Adjusted survival curves for dementia-free probability by age gap. Dementia-free
380 probability is presented over time for participants with different age gap values, divided into
381 quintiles. Lower gap values correspond to chronological ages surpassing brain age, whereas
382 higher gap values correspond to chronological ages that are lower than the brain age. Plots are
383 based on Cox proportional hazards models, adjusted for age, sex, total grey matter volume,
384 intracranial volume, years of education and ApoE ϵ 4 carriership status, using a marginal
385 approach.

386

1 **SUPPLEMENTARY MATERIAL**

2 **Grey Matter Age Prediction as a Biomarker for Risk of Dementia: A Population-based**
3 **Study**

4

5 **Content:**

6 • **Supplementary Methods 1:** Measurements of characteristics

7 • **Supplementary Methods 2:** Deep learning and convolutional neural networks

8 • **Supplementary Methods 3:** Network training

9 • **Supplementary Text 1:** Sex covariate effect on CNN model performance

10 • **Supplementary Text 2:** Important regions attention map

11 • **Supplementary Table 1.** Characteristics of subjects with the lowest quintile age gap values
12 compared to the highest quintile age gap values.

13 • **Supplementary Figure 1:** Flowchart showing the number of excluded participants per
14 category.

15 • **Supplementary Figure 2:** Graphical representation of the network architecture.

16 • **Supplementary Figure 3:** The probability density of the gap value for male and female
17 subjects.

18 • **Supplementary Figure 4:** Effect of adding sex as a covariate to the model on the gap value
19 distribution.

20 • **Supplementary Figure 5.** Grad-CAM attention map intensity per voxel overlaid on a brain
21 template.

22 ***CORRESPONDENCE:**

23 G.V. Roshchupkin PhD, Department of Epidemiology, Department of Medical Informatics,

24 Department of Radiology and Nuclear Medicine, Erasmus Medical Center

25 Dr. Molewaterplein 50, 3015 GE, Rotterdam, the Netherlands.

26 **E-mail:** g.roshchupkin@erasmusmc.nl

27 *Supplementary methods 1: Measurements of characteristics*

28 Mild cognitive impairment (MCI) was assessed in individuals over the age of 60 years, for which
29 both subjective and objective cognitive deficits were required. An objective cognitive deficit was
30 based on a cut-off of 1.5 standard deviations below the Rotterdam Study age- and education-
31 specific means in three cognitive domains, i.e. the memory, information processing speed and
32 executive functioning domain. Subjective cognitive deficits were defined as having answered yes
33 to any of six questions regarding difficulties in memory (difficulties finding words, or
34 remembering plans) or daily functioning (difficulties managing finances, getting dressed, or
35 using the phone).

36 Systolic and diastolic blood pressure was measured twice in the right arm in sitting position after
37 five minutes of rest, of which the average was used. Body mass index (BMI) was defined as
38 weight in kilograms (kg) divided by height in meters squared (m^2). Participants were asked by
39 interview whether they were a current or past smoker, which was used to define their smoking
40 status. Glucose, total cholesterol and HDL cholesterol were measured in blood of the fasting
41 state.

42

43 *Supplementary methods 2: Deep learning and convolutional neural networks*

44 Deep learning techniques require a set of input and respective output to find and optimize a non-
45 linear relation between the two. By providing data to a set of algorithms, the method is able to
46 train a by the user designed model. Generally, the user designs the model architecture by
47 selecting the model components. Subsequently, the machine learning method iteratively adjusts
48 the model parameters according to that iteration's trained model performance, to create an
49 optimized model using backpropagation by supervised or unsupervised learning^{1,2}. By letting the
50 model itself choose which relevant features to extract from the input, deep learning facilitates the
51 model to freely search the input-space and find the most important, possibly new, input features.

52 Convolutional neural networks (CNNs) are a subset amongst deep learning techniques. They
53 allow multi-dimensional input images and inspect these inputs by scanning them for relevant
54 information^{3,4}. Deep learning and CNN models have been rising in popularity and have been
55 actively studied in recent years, reaching state-of-the-art performances in many applications
56 amongst which medical imaging⁵⁻⁷.

57 CNNs regard an image as a field of numerical values, view small portions of this image
58 (receptive field) and perform multiplications with a weight-matrix (filter) to extract certain
59 information (feature) from this portion. By inspecting the entire image using this filter in a grid-
60 wise manner, the filter extracts specific information which is then saved to a new matrix or
61 image (feature map). Repeating this process for the resulting feature maps, the network
62 iteratively refines or searches for more information inside of the image that is relevant to the
63 output.

64 These convolutional layers (CONV layers) are then typically combined with a variety of
65 different techniques and algorithms that allow the network to appropriately extract the
66 information from the input. Commonly used techniques are rectified linear units activation
67 (ReLU), max-pooling layers (MP), fully connected layers (FC), batch normalization and
68 dropout^{4,7}.

69

70 *Supplementary methods 3: Network training*

71 The CNN has been trained using the data from the training set of 3688 subjects. Here, over- and
72 undersampling had been applied to the training set. Thus, effectively data of 3688 subjects was
73 used out of 3848 available subjects available for the training set, to distribute the samples more
74 evenly over the age range of the population ($N_{img,train_balanced}=8060$ images, mean age
75 $68.52\pm13.71\text{sd}$). To avoid overfitting on the training set and to improve overall model
76 performance, data augmentation was also applied during training⁸. Data augmentation included
77 random small translations and mirroring in planes. We also used follow-up MRI scans of each
78 subject as a ‘natural data augmentation’ technique.

79 The best model was selected based on its performance on the validation set. Here the
80 performance is measured as the model accuracy based on the root mean squared error (RMSE) of
81 the gap, as RMSE penalizes outliers more than MAE.

82

83 *Supplementary text 1: Sex covariate effect on CNN model performance*

84 We can consider a split evaluation between male and female subjects. **Supplementary Figure 3**
85 shows the network found no significant difference between the two groups ($p=0.34$). By
86 including sex as a covariate, the covariate can reduce the difference in resulting age predictions
87 between male and female subjects.

88 The trained model was able to reduce prediction error and correct for male and female biases
89 observed in the image by the model. By including the additional input of sex, the model is able to
90 prevent over- and under prediction for male and female ages, respectively, as shown in
91 **Supplementary Figure 4**. Here we present the performance in gap on male and female subjects,
92 both early adapted models were trained under the same training settings and used the exact same
93 training and validation sample sets. The model that includes the additional input of the subject's
94 respective sex, was able to reduce the overall gap between male and female subjects to be
95 insignificant ($p\text{-value}=0.23$). This also brought the mean gap for males and females closer to zero
96 (one-sample t-test: $p_{\text{male}}=0.88$ and $p_{\text{female}}=0.05$).

97

98 *Supplementary text 2: Important regions attention map*

99 Although aging affects the entire GM volume in the brain, as shown in **Supplementary Figure**
100 **5**, significant negative association between GM volume and age have been reported for several
101 specific brain regions, i.e. a reduction in GM volume with age^{9,10}. According to literature^{9,10} the
102 insula, superior temporal areas and multiple gyri have shown significant age-related GM volume
103 differences. However, due to the large size of most of these regions often only parts of these
104 region were highlighted by the network. Interestingly, brain structures affected by age with
105 higher p-value in literature^{9,10}, were also more highlighted by the network, e.g.: caudate nucleus,
106 amygdala, hippocampus and thalamus.

107

108 *Supplementary references:*

109 1. Sathya R, Abraham A. Comparison of Supervised and Unsupervised Learning Algorithms
110 for Pattern Classification. *Int J Adv Res Artif Intell.* 2013;2(2):34-38.
111 doi:10.14569/IJARAI.2013.020206.

112 2. Xinghuo Yu, M. Onder Efe and OK. A General Backpropagation Algorithm for
113 Feedforward Neural Networks Learning. *IEEE Trans Neural Networks.* 2002;13(1):251-
114 254.

115 3. LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document
116 recognition. *Proc IEEE.* 1998;86(11):2278-2323. doi:10.1109/5.726791.

117 4. Krizhevsky A, Sutskever I, Hinton GE. ImageNet Classification with Deep Convolutional
118 Neural Networks. *Adv Neural Inf Process Syst.* 2012:1-9.
119 doi:<http://dx.doi.org/10.1101/1524.09.007>.

120 5. Xue-Wen Chen, Xiaotong Lin. Big Data Deep Learning: Challenges and Perspectives.
121 *IEEE Access.* 2014;2:514-525. doi:10.1109/ACCESS.2014.2325029.

122 6. İşin A, Direkoglu C, Şah M. Review of MRI-based Brain Tumor Image Segmentation
123 Using Deep Learning Methods. *Procedia Comput Sci.* 2016;102(August):317-324.
124 doi:10.1016/j.procs.2016.09.407.

125 7. Ker J, Wang L, Rao J, Lim T. Deep Learning Applications in Medical Image Analysis.
126 *IEEE Access.* 2018;1-1. doi:10.1109/ACCESS.2017.2788044.

127 8. Perez L, Wang J. The Effectiveness of Data Augmentation in Image Classification using
128 Deep Learning. 2017. <http://arxiv.org/abs/1712.04621>.

129 9. Manard M, Bahri MA, Salmon E, Collette F. Relationship between grey matter integrity
130 and executive abilities in aging. *Brain Res.* 2016;1642:562-580.
131 doi:10.1016/j.brainres.2016.04.045.

132 10. Matsuda H. Voxel-based Morphometry of Brain MRI in Normal Aging and Alzheimer's
133 Disease. *Aging Dis.* 2013;4(1):29-37.

134 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3570139/>&tool=pmcentrez&re
135 ndertype=abstract.

136

137 **Supplementary Table 1.** Characteristics of subjects with the 5-year age-stratified lowest quintile
138 age gap values compared to the 5-year age-stratified highest quintile age gap values.

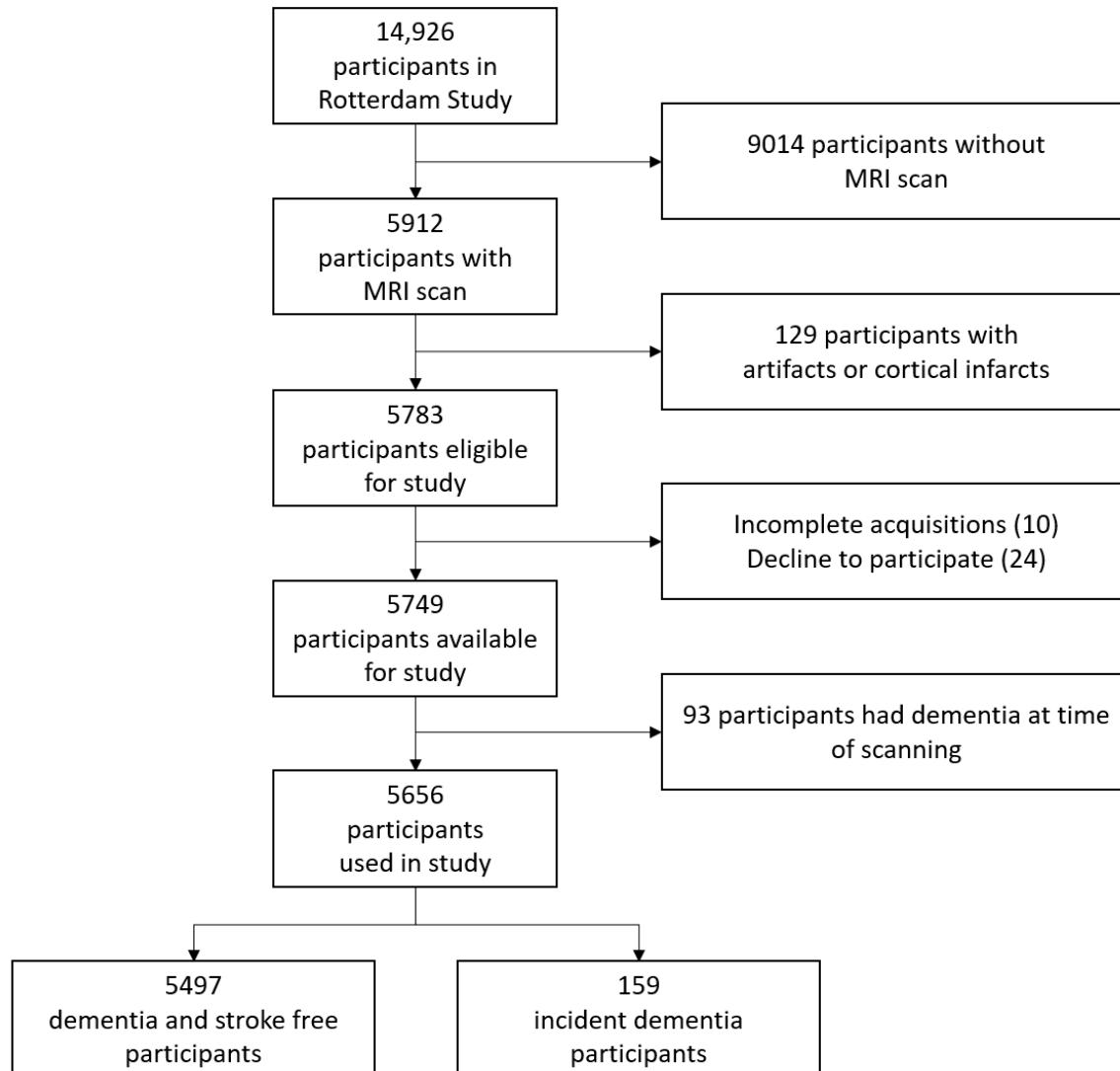
Characteristic	Value lowest quintile (n=340)	Value highest quintile (n=350)	p-value
Age gap (years)	-5.7 ± 3.9	6.9 ± 4.5	<0.001
Grey matter volume (mL)	605 ± 56.9	577.6 ± 56.2	<0.001
Systolic blood pressure (mmHg)	138.9 ± 21.6	143.1 ± 21.0	0.009
Mild cognitive impairment, n (%)	15 (4.4)	31 (8.9)	0.013
Diastolic blood pressure (mmHg)	82.1 ± 10.8	84.1 ± 11.1	0.014
Fasting glucose level (mmol/L)	5.5 ± 1.2	5.7 ± 1.1	0.021
Current or past smoker, n (%)	102 (30.0)	130 (37.1)	0.027
Body mass index (kg/m ²)	27.2 ± 3.9	27.8 ± 4.5	0.043
Mini-Mental State Examination score	28.0 ± 1.8	27.7 ± 2.1	0.095
Total cholesterol (mmol/L)	5.6 ± 1.0	5.5 ± 1.1	0.323
APOE ϵ 4 carrier, n (%)	92 (27.1)	103 (29.4)	0.418
Female, n (%)	187 (55.0)	203 (58.0)	0.428
HDL cholesterol (mmol/L)	1.4 ± 0.4	1.5 ± 0.4	0.549
Age (years)	65.5 ± 10.8	65.3 ± 11.0	0.771
Years of education	12.4 ± 3.8	12.3 ± 4	0.829
Intracranial volume (mL)	1465.8 ± 163.2	1466.3 ± 164.1	0.971

Values are presented in mean ± SD unless stated otherwise.

Abbreviations: number of participants (n); standard deviation (SD).

139

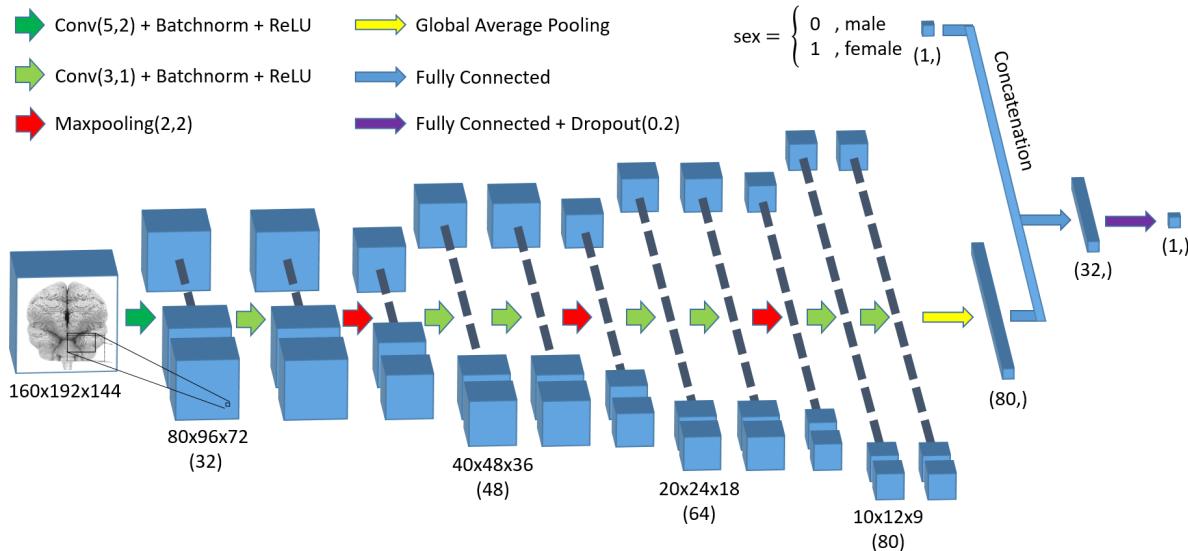
140



141

142 **Supplementary Figure 1.** Flowchart showing the number of excluded participants per category.

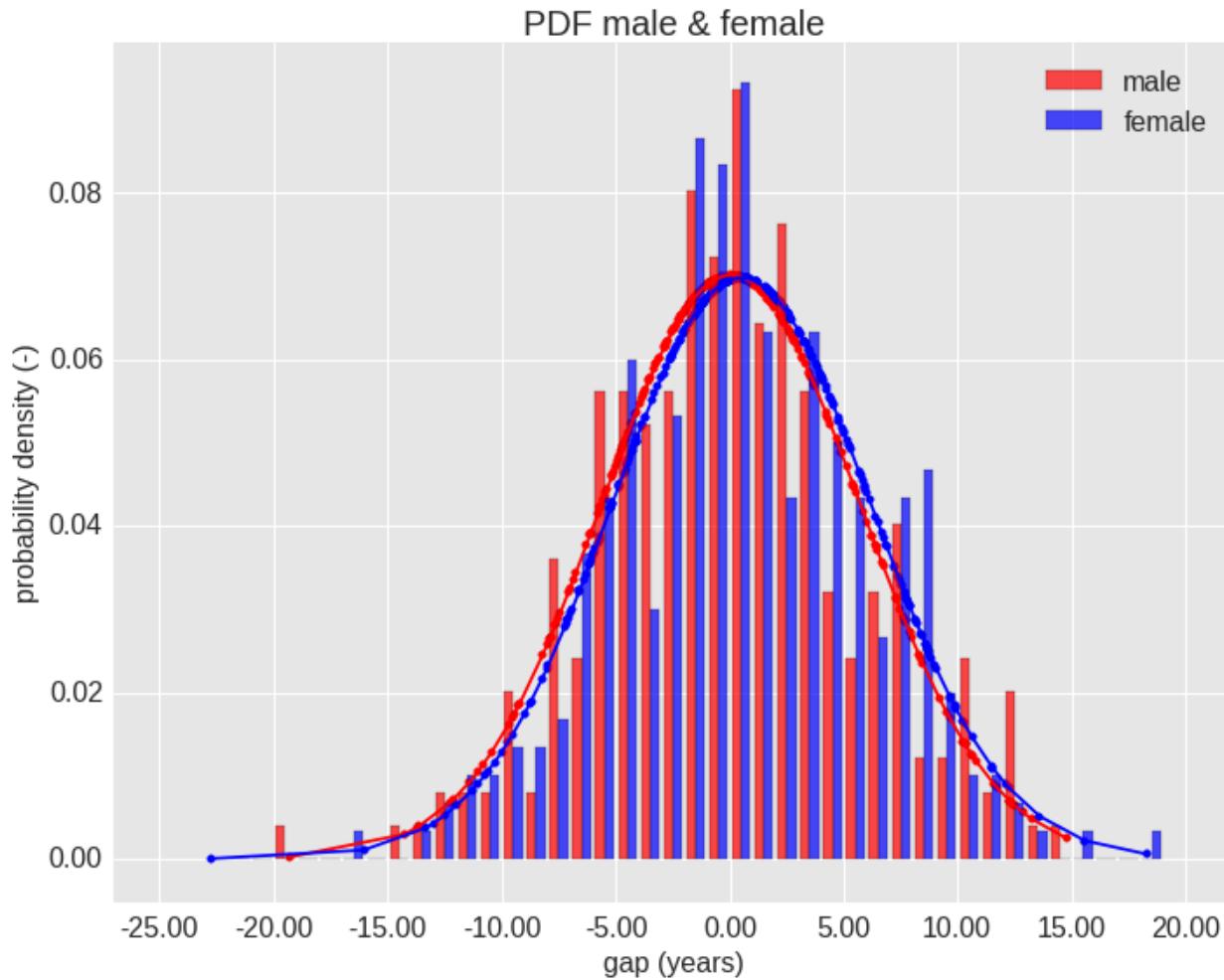
143



144

145 **Supplementary Figure 2.** Graphical representation of the network architecture. The overall
 146 approach can be seen as four convolutional blocks ending on a pooling layer, which halves
 147 feature map dimensions. Hereafter, global average pooling extracts the final feature maps to a
 148 one-dimensional array of a single value per feature map. Fully connected layers are used to
 149 propagate to a single regression output. *Abbreviations:* kxkxk convolutional layer, with strides of
 150 sxsxs (CONV(k,s)); kxkxk max-pooling layer, with strides of sxsxs (Maxpooling(k,s)); batch
 151 normalization (Batchnorm); rectified linear unit (ReLU); dropout with probability p
 152 (Dropout(p)).

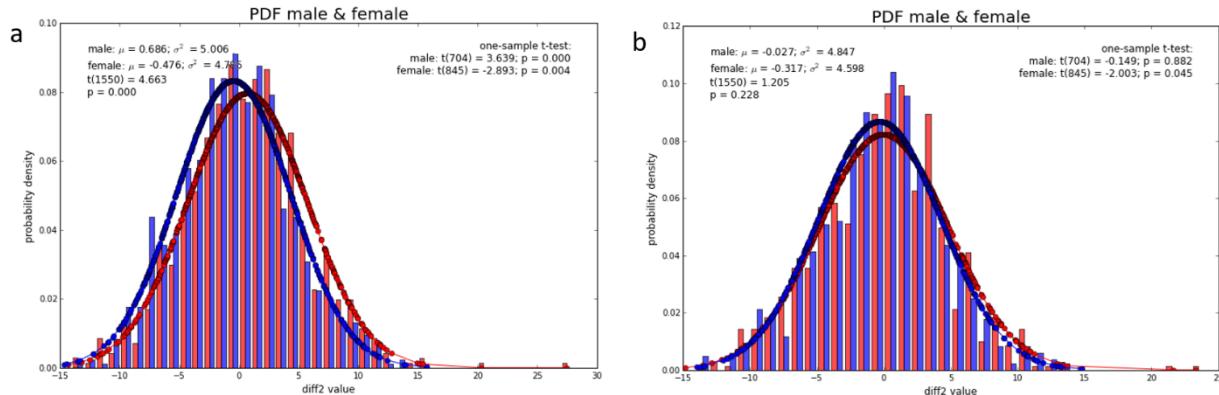
153



154

155 **Supplementary Figure 3.** The probability density of the gap value (PAD) for male and female
156 subjects. The distribution shows the difference in prediction for these two groups. Distributions
157 are similar as mean $\eta_{\text{female}} = 0.51$ and variance $\sigma^2_{\text{female}} = 5.72$ for female, whereas $\eta_{\text{male}} = 0.04$ and
158 $\sigma^2_{\text{male}} = 5.69$ for male. Resulting t-test showed no significant difference between the two groups
159 as $t(550) = -0.96$ and $p = 0.34$.

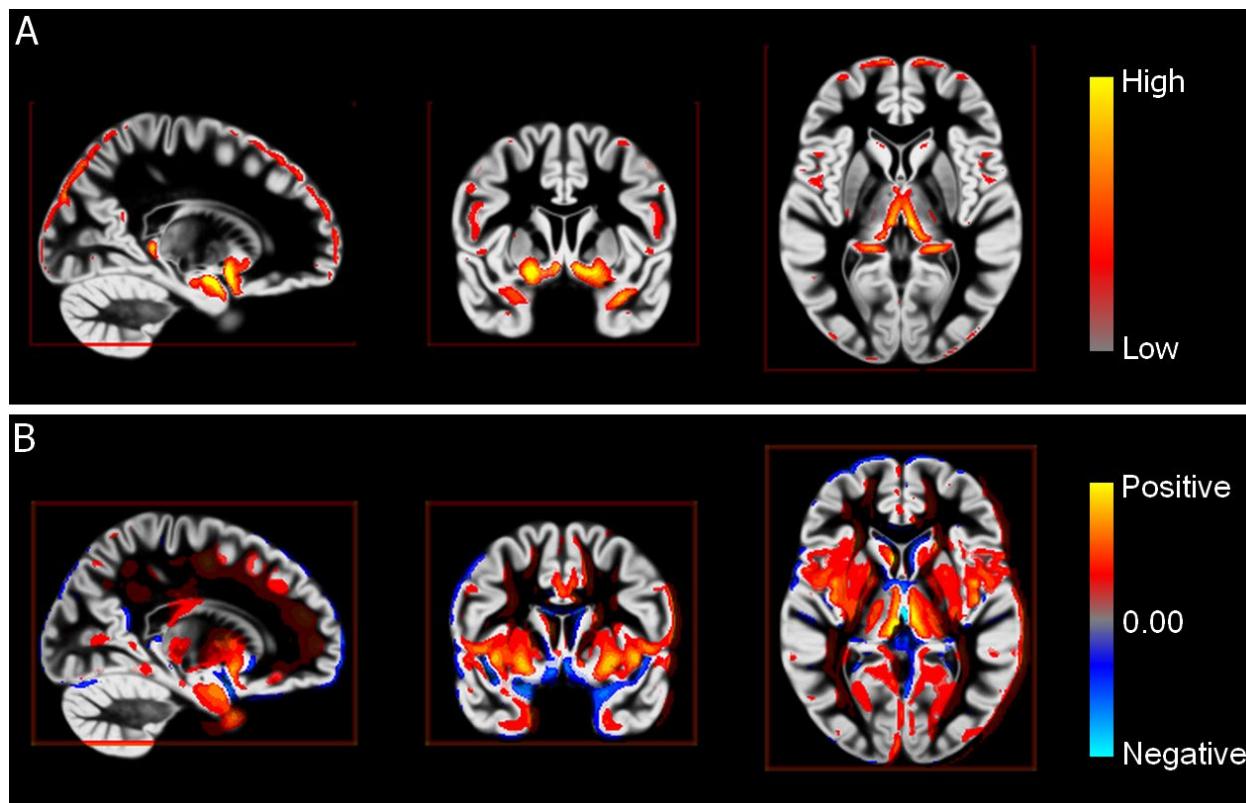
160



161

162 **Supplementary Figure 4.** Effect of adding sex as a covariate to the model on the gap value
163 distribution (red=male; blue=female). A comparison of the probability density functions for gap
164 of two early trained models along with their respective t-test results. Both models have the exact
165 same architecture with one the exception. a) Model uses only a single brain-MRI voxels input. b)
166 Model uses two inputs, i.e. brain-MRI voxels and respective sex. Models were trained under the
167 exact same settings.

168



169

170 **Supplementary Figure 5.** Grad-CAM attention map and attention map change overlaid on a
171 brain template. **(A)** Grad-Cam attention map intensity per voxel. Voxel values in the attention
172 map have been set at 0.65 minimum threshold and capped at 0.95 maximum to exclude
173 background values and focus on more important regions. **(B)** Increase in attention map intensity
174 over chronological age per voxel. Map include only voxels with a significant increase in voxel
175 values ($p < 3e^{-7}$ after Bonferroni correction by number of GM voxels).

176



177

178 **Supplementary Figure 6.** Grad-CAM attention map intensity per voxel overlaid on a brain
179 template. Voxel values in the attention map have been set at 0.50 minimum and 1.00 maximum
180 threshold to exclude background values and focus on more highlighted regions, according to
181 normalization around 0.50 in the Grad-CAM implementation.