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Key Points 33 

Question: Is the gap between brain age predicted from MRI and chronological age associated 34 

with incident dementia in a general population of Dutch adults? 35 

Findings: Brain age was predicted using a deep learning model, using MRI-derived grey matter 36 

density maps. In a population based study including 5496 participants, the observed gap was 37 

significantly associated with the risk of dementia.  38 

Meaning: The gap between MRI-brain predicted and chronological age is potentially a biomarker 39 

for dementia risk screening. 40 

  41 
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Abstract  42 

Importance: The gap between predicted brain age using magnetic resonance imaging (MRI) and 43 

chronological age may serve as biomarker for early-stage neurodegeneration and potentially as a 44 

risk indicator for dementia. However, owing to the lack of large longitudinal studies, it has been 45 

challenging to validate this link. 46 

Objective: We aimed to investigate the utility of such a gap as a risk biomarker for incident 47 

dementia in a general Dutch population, using a deep learning approach for predicting brain age 48 

based on MRI-derived grey matter maps. 49 

Design: Data was collected from participants of the cohort-based Rotterdam Study who 50 

underwent brain magnetic resonance imaging between 2006 and 2015. This study was performed 51 

in a longitudinal setting and all participant were followed up for incident dementia until 2016. 52 

Setting: The Rotterdam Study is a prospective population-based study, initiated in 1990 in the 53 

suburb Ommoord of in Rotterdam, the Netherlands. 54 

Participants: At baseline, 5496 dementia- and stroke-free participants (mean age 64.67±9.82, 55 

54.73% women) were scanned and screened for incident dementia. During 6.66±2.46 years of 56 

follow-up, 159 people developed dementia.  57 

Main outcomes and measures: We built a convolutional neural network (CNN) model to predict 58 

brain age based on its MRI. Model prediction performance was measured in mean absolute error 59 

(MAE). Reproducibility of prediction was tested using the intraclass correlation coefficient 60 

(ICC) computed on a subset of 80 subjects. Logistic regressions and Cox proportional hazards 61 

were used to assess the association of the age gap with incident dementia, adjusted for years of 62 
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education, ApoEε4 allele carriership, grey matter volume and intracranial volume. Additionally, 63 

we computed the attention maps of CNN, which shows which brain regions are important for age 64 

prediction. 65 

Results: MAE of brain age prediction was 4.45±3.59 years and ICC was 0.97 (95% confidence 66 

interval CI=0.96-0.98). Logistic regression and Cox proportional hazards models showed that the 67 

age gap was significantly related to incident dementia (odds ratio OR=1.11 and 95% confidence 68 

intervals CI=1.05-1.16; hazard ratio HR=1.11 and 95% CI=1.06-1.15, respectively). Attention 69 

maps indicated that grey matter density around the amygdalae and hippocampi primarily drive 70 

the age estimation.  71 

Conclusion and relevance: We show that the gap between predicted and chronological brain age 72 

is a biomarker associated with risk of dementia development. This suggests that it can be used as 73 

a biomarker, complimentary to those that are known, for dementia risk screening. 74 

Keywords: Deep Learning; age prediction; biomarker; dementia; magnetic resonance imaging; 75 

brain; voxel-based morphometry; survival analysis. 76 

  77 
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1. Introduction  78 

The human brain continuously changes throughout the entire lifespan. These changes partially 79 

reflect a normal aging process and are not necessarily pathological1. However, 80 

neurodegenerative diseases, including dementia, also affect brain structure and function2,3. 81 

Therefore, a better understanding and modeling of normal brain aging can help to disentangle 82 

these two processes and improve the detection of early-stage neurodegeneration.   83 

Age prediction models based on brain magnetic resonance imaging (MRI) are a popular trend in 84 

neuroscience4–7.  The difference between predicted and chronological age is thought to serve as 85 

an important biomarker reflecting pathological processes in the brain. Several recent studies 86 

showed the relation between accelerated brain aging and various disorders, such as Alzheimer’s 87 

disease (AD), schizophrenia, epilepsy or diabetes7–9.  88 

In recent years, convolutional neural networks (CNN) have become the methodology of choice 89 

for analyzing medical images. These models are able to learn complex relations between input 90 

data and desired outcomes. Recent studies were able to demonstrate that CNN models can 91 

outperform complex machine learning models in brain MRI-based age prediction5,6. 92 

Although cross-sectional studies have suggested that the gap between predicted and 93 

chronological age may serve as a biomarker for dementia diagnosis, it remains unclear whether 94 

this is also the case for the years preceding dementia diagnosis5,7. Longitudinal studies 95 

examining the link between such a gap and incident dementia are lacking and are crucial for 96 

validation of this biomarker for early-stage neurodegeneration detection. Using a deep learning 97 

(DL) model, we investigated the association of the grey matter (GM) age gap with incident 98 

dementia in a large population-based sample of middle-aged and elderly subjects.  99 
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2. Methods 100 

2.1 Study Population  101 

Data was acquired from the Rotterdam Study, an ongoing population-based cohort study among 102 

the inhabitants of Ommoord, a suburb of Rotterdam, the Netherlands10. The cohort started in 103 

January 1990 (n=7983) and was extended in February 2000 (n=3011) and February 2006 104 

(n=3932). Follow-up examinations take place every 3 to 4 years. MRI was implemented in 2005, 105 

and 5912 persons scanned until 2015 were eligible for this study. We excluded individuals with 106 

incomplete acquisitions, scans with artifacts hampering automated processing, participants with 107 

MRI-defined cortical infarcts and participants with dementia or stroke at the time of scanning 108 

(Supplementary figure 1). This resulted in 5656 subjects to be included in this study. The 109 

Rotterdam Study has been approved by the Medical Ethics Committee of the Erasmus MC and 110 

by the Ministry of Health, Welfare and Sport of the Netherlands, implementing the Wet 111 

Bevolkingsonderzoek ERGO (Population Studies Act: Rotterdam Study). All participants 112 

provided written informed consent to participate in the study and to obtain information from their 113 

treating physicians.  114 

2.2 Image processing 115 

A 1.5 tesla GE Signa Excite MRI scanner was used to acquire multi-parametric MRI brain data, 116 

as previously reported10. Voxel-based morphometry (VBM) was performed according to an 117 

optimized VBM protocol as was previously described11,12. First, all T1-weighted images were 118 

segmented into supratentorial GM, white matter (WM), and cerebrospinal fluid (CSF) using a 119 

previously described k-nearest neighbor algorithm, which was trained on six manually labeled 120 

atlases13. FMRIB’s Software Library (FSL) software was used for VBM data processing14. All 121 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 12, 2019. ; https://doi.org/10.1101/518506doi: bioRxiv preprint 

https://doi.org/10.1101/518506
http://creativecommons.org/licenses/by-nd/4.0/


8 
 

GM density maps were non-linearly registered to the standard Montreal Neurological Institute 122 

(MNI) GM probability template, with a 1x1x1 mm3 voxel resolution.  123 

A spatial modulation procedure was used to avoid differences in absolute GM volume due to the 124 

registration. This involved multiplying voxel density values by the Jacobian determinants 125 

estimated during spatial normalization. We did not apply smoothing. While VBM smoothing 126 

procedures increase the signal to noise ratio, they can affect the features which the network 127 

learns from GM.  128 

Intracranial volume (ICV) estimates were obtained by summing total GM, WM and CSF 129 

volumes.  130 

Dementia assessment  131 

All participants were monitored for dementia at baseline and following visits to the study center 132 

using the Mini-Mental State Examination (MMSE) and the Geriatric Mental State (GMS) 133 

organic level. Further investigation was initiated for participants who scored lower than 26 for 134 

their MMSE or above 0 for their GMS15. Additionally, the entire cohort was continuously 135 

checked for dementia through electronic linkage between the study center and medical records 136 

from general practitioners and the regional institute for outpatient mental health care. Available 137 

information on cognitive testing and clinical neuroimaging was used when required for diagnosis 138 

of dementia subtype. Final diagnosis was established by a consensus panel led by a consultant 139 

neurologist, according to a standard criteria for dementia (using the Third Revised Edition of the 140 

Diagnostic and Statistical Manual of Mental Disorders (DSM-III-R))16,17. Until January 1st 2016, 141 

92% of the potential person-time follow-up was complete. Participants were censored at date of 142 

dementia diagnosis, death or loss to follow-up, or at January 1st 2016, whichever came first. Of 143 
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5496 subjects included in this analysis, 159 developed dementia within 10 years of follow-up 144 

(mean follow-up time 4.34±2.25 years). 145 

Other measurements 146 

ApoEε4 carriership was determined using a polymerase chain reaction (PCR) on coded 147 

deoxyribonucleic acid (DNA) samples. If these values were missing, Haplotype Reference 148 

Consortium (HRC) imputed genotype values for rs7412 and rs429358 were used to define the 149 

ApoEε4 carrier status. Measurements on more characteristics are described in Supplementary 150 

Methods 1. 151 

2.3 Deep Learning model 152 

A full description of the applied DL model is presented in the Supplementary Methods 2. 153 

Briefly, a DL model takes a set of inputs and respective outputs from a training set and finds an 154 

optimal non-linear relation between them. A CNN is a class of DL techniques which takes in 155 

multi-dimensional images as model input. These networks are generally used with a variety of 156 

different techniques and algorithms, which together define how the model optimizes the input-157 

output relationship18,19. We describe this in details in the model architecture. 158 

Our 3-dimensional (3D) regression CNN model is designed to predict brain age using 3D GM 159 

density maps from VBM as input. It is inspired by ConvNet20 and Deep CNN19, as shown in 160 

Supplementary Figure 2. Besides GM brain images, we provide information about the sex of 161 

the subject. This allows the network to adjust for GM differences between male and female 162 

subjects.  163 
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The dataset, excluding subjects with incident dementia, was randomly split into three sets: 164 

training (3688 subjects), validation (1099 subjects) and test (550 subjects). Subjects with incident 165 

dementia (159 subjects) were put in a fourth independent dataset. The CNN was trained using the 166 

training set as described in Supplementary Methods 3. For training we used all available scans 167 

for each subjects. Prediction accuracy was assessed on the test set. Model accuracy was 168 

measured based on the absolute gap, or mean absolute error (MAE) of prediction, i.e. the 169 

difference between model output and real chronological age (gap = agebrain,predicted – 170 

agechronological).  171 

Attention mapping 172 

We retrieved attention maps from the trained networks using Gradient-weighted Class Activation 173 

Mapping (Grad-CAM)21. Attention maps show which areas on subject GM image are more 174 

important for age prediction. Attention map intensity values were normalized to range 0-1, where 175 

1 indicates the value for areas most associated with the network’s decision. We expanded the 176 

Grad-CAM visualization technique to a 3-dimensional space.  177 

Attention maps were computed for every individual. Since all brain images were registered to the 178 

same template space, a global average voxel-wise attention map could be made over attention 179 

maps of all subjects to obtain a global attention map for the age prediction network.  180 

We computed the change in attention map over age per voxel, to investigate the change in 181 

regions predictive for brain age between age groups. To this end, for each voxel, a linear 182 

regression from age to attention map value was performed, resulting in a line of which the slope 183 

represents the increase in attention map value with age for the given voxel. 184 

2.4 Statistical analysis 185 
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Reproducibility of the CNN age prediction was quantified using the intraclass correlation 186 

coefficient (ICC(3,1)), computed on a subset of 80 persons out of the test set who were scanned 187 

twice with a time interval of one to nine weeks22.  188 

In order to be able to compare our findings with previous studies, logistic regression models and 189 

Cox proportional hazards models were used to assess the association between the age gap and 190 

the incidence of dementia. We adjusted the regression models for biomarkers, which are known 191 

for their relation with dementia: age and sex (model I); additionally GM volume and ICV (model 192 

II); and years of education and APOEε4 carriership (model III)23,24. The logistic regression 193 

model used the occurrence of dementia-development during follow-up as output. The 194 

proportional hazards and linearity assumption were met for the Cox proportional hazards models. 195 

Python and R were used to perform the statistical analyses25–28.   196 
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3. Results 197 

The study population characteristics are described in Table 1. The algorithm was trained and 198 

validated on random subsets of subjects with mean age 66.09±10.76 years and 55% females; 199 

and mean age 64.84±9.69 years and 54% females, respectively. The following results are 200 

reported for the test set (mean age 64.85±10.82 years and 55% females). 201 

3.1 Network performance 202 

The overall performance measured on the test set was MAE=4.45±3.59 years (Figure 1), with a 203 

correlation between chronological and predicted brain age of 0.85 (p-value=4.76x10-156). A 204 

reproducibility score of ICC=0.97 (95% confidence interval CI 0.96-0.98) was achieved. No 205 

significant difference in prediction was found between male and female subjects (p-value=0.34), 206 

detailed numbers are provided in Supplementary Text 1. 207 

Attention map 208 

Supplementary Figure 5 shows the global attention map of the test set, indicating the areas 209 

contributing to age prediction in bright color, as well as the increase of attention map values over 210 

age. We found that the amygdala and hippocampus are not only important for predicting brain 211 

age, but that these regions also grow more important with increasing chronological age, which is 212 

shown in Supplementary Figure 5B. A quantitative analysis per brain region is presented in 213 

Table 2, which shows that highest mean intensities were computed for the nucleus accumbens 214 

(0.89) and amygdala (0.71). Highest intensity quintiles were computed for the nucleus 215 

accumbens (0.99), amygdala (0.98) and subcallosal area (0.98). 216 

3.2 Logistic regression 217 
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We computed a logistic regression for the three models, as shown in Table 3. The age gap was 218 

significantly associated with dementia incidence while age, sex, education years, GM and ICV 219 

volume and the ApoEε4 allele carriership were included in the model, with model III: odds ratio 220 

OR=1.11 (95% CI 1.05-1.16) per year age gap. 221 

3.3 Survival analysis  222 

As shown in Table 3 and Figure 2, the age gap was significantly associated with the incidence 223 

of dementia, with model III hazard ratio HR=1.11 (95% CI 1.06-1.15) per year age gap. These 224 

associations were similar in a subsample with a follow-up time for indecent dementia of more 225 

than 5 years, model III HR=1.09 (95% CI 1.02-1.17) per year age gap. 226 

3.4 Gap-associated features 227 

Supplementary Table 1 shows a list of features that can affect the brain pathology and may be 228 

associated with the gap9. Significantly lower values were found for GM volume in the highest 229 

quintile. However, systolic blood pressure and mild cognitive impairment were already only 230 

nominally significant, after Bonferroni correction. 231 

  232 
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4 Discussion 233 

In a large sample of community-dwelling middle-aged and older adults, using a DL model for 234 

brain age prediction on MRI-derived grey matter tissue density, we found that the gap between 235 

predicted brain age and chronological age was related to an increased risk of dementia, 236 

independent of standard established risk factors for dementia.  237 

Our trained CNN model showed a similar performance in age prediction compared to previous 238 

studies that use a multimodal data model5 and DL-based approach6, which achieved 239 

performances of MAE=4.29 and MAE=4.16, respectively. Previous studies looked cross-240 

sectionally5,6 at the association of the age gap and dementia occurrence, while in the current 241 

study we evaluated associations in longitudinal data. As non-reversible pathological changes 242 

already occur years prior to diagnosis, identifying early-stage biomarkers for dementia is of 243 

importance. The age gap has potential to be utilized alongside other clinical risk factors and 244 

biomarkers to separate the population into categories with sufficiently distinct degrees of risk to 245 

drive clinical or personal decision-making, e.g. dementia screening and informed life planning. 246 

Moreover, we retrieved attention maps from the model, showing which brain regions are most 247 

important for age prediction, which also provides insights into processes in aging. Since specific 248 

regions were identified on which the model mainly focused, this suggests that the gap holds more 249 

specific information than global measures of GM volume when predicting brain age. This was 250 

further established by the association found between the gap and incident dementia, which 251 

remained significant after adjusting for total GM volume. Based on the attention maps the 252 

amygdala and hippocampus in particular proved to be more associated to age prediction, also 253 

increasing in attention map intensity with older subjects. This is in accordance to literature where 254 
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significant negative associations between GM volume and age have been reported for these 255 

regions2,23. Atrophy of these two structures  has also shown to be more prevalent in dementia 256 

patients, including years before diagnosis 29,30. A more in depth evaluation of the attention map 257 

can be found in Supplementary text 2. 258 

Limitations  259 

We were not able to perfectly predict the age for healthy subjects based only on MRI. We 260 

assume that due to biological similarity of the brain within a range of several years, there will 261 

always be an according level of uncertainty in the age prediction. 262 

Furthermore, we excluded subjects with dementia and stroke while training the model, but there 263 

are a number of other factors which can influence overall or local GM volume and affect the age 264 

prediction and gap (Supplementary Table 1). Although only total GM volume differed 265 

significantly between subjects with a high versus a low gap, effect estimates of some features 266 

differed substantially. Further research is needed to investigate gap-associated features, which 267 

may explain gap differences. These features can also introduce bias, which may be solved by 268 

adding the information as a covariate to the model. This however requires the respective 269 

information on the subjects, which can make the method less accessible for general use. 270 

Lastly, the current CNN model is incapable of handling unfamiliar datasets, limiting its practical 271 

use. A drawback of CNN’s is that the training data should be representative for the data for 272 

which the trained network is used. Thus limiting the generalizability of our method. However, 273 

this can be addressed by training models on more diverse or new datasets. It would therefore be 274 

interesting to extend this model to another dataset and validate its use in a different context 275 

5. Conclusion 276 
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We showed that the gap between age predicted from brain MRI and chronological brain age is a 277 

biomarker associated with a risk of dementia development. DL visualization allows further 278 

investigation of the gap and neurodegeneration with respect to the human brain. This suggests 279 

that the age gap may be applicable for dementia risk screening, but there is still room for 280 

improvement in accuracy and for further research into the association between gap and dementia 281 

compared to other biomarkers. 282 
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Figure legend: 357 

• Figure 1: Performance of CNN on test dataset. 358 

• Figure 2: Adjusted survival curves for dementia-free probability by age gap. 359 
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Table 1. Characteristics of data sets derived from the population-based Rotterdam Study. 361 

  362 

 Train Validation Test** Incident dementia** 

Nsubj 3688 1099 550 159 

Nimg 5865 2353 550 159 

Mean age* (years±sd) 66.09±10.76 64.84±9.69 64.85±10.82 77.33±7.15 

Sex proportion* (female/male) 0.55/0.45 0.54/0.46 0.55/0.45 0.58/0.42 

Education* (years±sd) 12.64±3.89 12.63±3.81 12.58±4.00 11.43±3.57 

GM volume* (liters±sd) 0.60±0.06 0.60±0.06 0.60±0.06 0.55±0.05 

ICV* (liters±sd) 1.48±0.16 1.47±0.16 1.48±0.16 1.45±0.17 

ApoE4 carriership* (0/1/2) 0.72/0.26/0.02 0.72/0.25/0.02 0.74/0.23/0.03 0.57/0.36/0.06 

Follow-up time* (years±sd) 5.42 ±2.81 4.93±2.80 6.68±2.29 4.29±2.26 

* Values are based on Nimg. 
** Selection only includes baseline image of subjects. 
Abreviations: number of subjects (Nsubj); number of images (Nimg); grey matter (GM); intracranial volume (ICV) 
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Table 2. Quantitative analysis of the attention map per brain region. Mean and fifth quintile 363 

(lower boundary) of attention map intensity per brain region are listed. Brain regions are grouped 364 

by lobes. 365 

Brain region Size (voxels) Attention map Intensity 
Mean 5th quartile 

 

Temporal Lobe 
Amygdala 4,398 0.71 0.98 
Hippocampus 6,687 0.61 0.80 
Anterior temporal lobe medial part 22,842 0.54 0.78 
Superior temporal gyrus, anterior part 14,369 0.54 0.74 
Lateral occipitotemporal gyrus (gyrus fusiformis) 12,908 0.53 0.62 
Posterior temporal lobe 143,237 0.52 0.68 
Superior temporal gyrus, central part 42,794 0.52 0.68 
Gyri parahippocampalis et ambiens 13,767 0.51 0.63 
Medial and inferior temporal gyri 55,102 0.50 0.68 
Anterior temporal lobe lateral part 11,999 0.49 0.65 

 
Insula and Cingulate gyri 
Cingulate gyrus anterior part (supragenual) 24,751 0.53 0.63 
Cingulate gyrus posterior part 24,235 0.52 0.64 
Insula 44,328 0.51 0.64 

 
Frontal Lobe 
Subcallosal area 788 0.70 0.98 
Posterior orbital gyrus 15,061 0.54 0.72 
Straight gyrus (gyrus rectus) 11,826 0.54 0.67 
Inferior frontal gyrus 55,754 0.53 0.72 
Superior frontal gyrus 166,766 0.52 0.77 
Precentral gyrus 106,145 0.52 0.77 
Medial orbital gyrus 18,554 0.52 0.77 
Pre-subgenual anterior cingulate gyrus 2,451 0.52 0.61 
Middle frontal gyrus 161,999 0.51 0.74 
Anterior orbital gyrus 19,514 0.51 0.73 
Lateral orbital gyrus 11,112 0.51 0.77 
Subgenual anterior cingulate gyrus 4,287 0.50 0.71 

 
Occipital Lobe 
Cuneus 28,209 0.57 0.67 
Lingual gyrus 36,627 0.55 0.65 
Lateral remainder of occipital lobe 131,852 0.54 0.73 

 
Parietal Lobe 
Superior parietal gyrus 130,908 0.54 0.74 
Remainder of parietal lobe (including supramarginal and angular gyrus) 131,972 0.52 0.75 
Postcentral gyrus 89,087 0.52 0.74 

 
Central Structures 
Nucleus accumbens 888 0.89 0.99 
Thalamus 20,953 0.61 0.79 
Putamen 14,502 0.60 0.74 
Pallidum (globus pallidus) 3,835 0.58 0.69 
Caudate nucleus 12,229 0.56 0.67 
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Table 3. Association of gap between brain age and chronological age with incident dementia 367 

assessed by logistic regression and Cox proportional hazards models, both in the total study 368 

sample and in a subsample with a minimum follow-up time of 5 years. 369 

 Logistic Regression   Cox Regression 

Model n/N OR (95% CI) p-value   n/N HR (95% CI) p-value 

Total sample 

Model I 159/1808 1.15 (1.10-1.20) 2.67 x 10-10   159/1808 1.15 (1.11-1.20) 1.02 x 10-12 

Model II 154/1790 1.11 (1.06-1.16) 2.57 x 10-5   154/1790 1.11 (1.07-1.16) 4.59 x 10-7 

Model III 150/1714 1.11 (1.05-1.16) 4.80 x 10-5   150/1714 1.11 (1.06-1.15) 1.23 x 10-6 

Sample follow-up time > 5 years 

Model I 62/1366 1.11 (1.04-1.18) 1.26 x 10-3   62/1366 1.13 (1.06-1.20) 1.38 x 10-4 

Model II 60/1352 1.09 (1.02-1.16) 1.43 x 10-2   60/1352 1.10 (1.03-1.17) 3.20 x 10-3 

Model III 58/1305 1.09 (1.01-1.16) 2.08 x 10-2   58/1305 1.09 (1.02-1.17) 7.24 x 10-3 

Model I: age + sex. 
Model II: model I + grey matter volume + intracranial volume.  
Model III: model II + years of education + APOEε4 carrier status. 
Abbreviations: confidence interval (CI); odds ratio (OR); hazard ratio (HR); number of cases (n); total number of participants (N). 
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 371 

Figure 1. Performance of CNN on test dataset. (A) The plot depicts chronological age (x-axis) 372 

and brain-predicted age (y-axis) with mean absolute error (MAE). The dashed line indicates the 373 

ideal case x=y. (B) The figure shows reproducibility of the CNN performance. Scan 1 and 2 are 374 

taken with one to nine weeks interval. The dashed line indicates a perfect reproducibility and 375 

consistent predicting of the network.  376 

  377 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 12, 2019. ; https://doi.org/10.1101/518506doi: bioRxiv preprint 

https://doi.org/10.1101/518506
http://creativecommons.org/licenses/by-nd/4.0/


26 
 

 378 

Figure 2. Adjusted survival curves for dementia-free probability by age gap. Dementia-free 379 

probability is presented over time for participants with different age gap values, divided into 380 

quintiles. Lower gap values correspond to chronological ages surpassing brain age, whereas 381 

higher gap values correspond to chronological ages that are lower than the brain age. Plots are 382 

based on Cox proportional hazards models, adjusted for age, sex, total grey matter volume, 383 

intracranial volume, years of education and ApoEε4 carriership status, using a marginal 384 

approach. 385 
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Supplementary methods 1: Measurements of characteristics 27 

Mild cognitive impairment (MCI) was assessed in individuals over the age of 60 years, for which 28 

both subjective and objective cognitive deficits were required. An objective cognitive deficit was 29 

based on a cut-off of 1.5 standard deviations below the Rotterdam Study age- and education-30 

specific means in three cognitive domains, i.e. the memory, information processing speed and 31 

executive functioning domain. Subjective cognitive deficits were defined as having answered yes 32 

to any of six questions regarding difficulties in memory (difficulties finding words, or 33 

remembering plans) or daily functioning (difficulties managing finances, getting dressed, or 34 

using the phone). 35 

Systolic and diastolic blood pressure was measured twice in the right arm in sitting position after 36 

five minutes of rest, of which the average was used. Body mass index (BMI) was defined as 37 

weight in kilograms (kg) divided by height in meters squared (m2). Participants were asked by 38 

interview whether they were a current or past smoker, which was used to define their smoking 39 

status. Glucose, total cholesterol and HDL cholesterol were measured in blood of the fasting 40 

state.  41 
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Supplementary methods 2: Deep learning and convolutional neural networks 43 

Deep learning techniques require a set of input and respective output to find and optimize a non-44 

linear relation between the two. By providing data to a set of algorithms, the method is able to 45 

train a by the user designed model. Generally, the user designs the model architecture by 46 

selecting the model components. Subsequently, the machine learning method iteratively adjusts 47 

the model parameters according to that iteration’s trained model performance, to create an 48 

optimized model using backpropagation by supervised or unsupervised learning1,2. By letting the 49 

model itself choose which relevant features to extract from the input, deep learning facilitates the 50 

model to freely search the input-space and find the most important, possibly new, input features.  51 

Convolutional neural networks (CNNs) are a subset amongst deep learning techniques. They 52 

allow multi-dimensional input images and inspect these inputs by scanning them for relevant 53 

information3,4. Deep learning and CNN models have been rising in popularity and have been 54 

actively studied in recent years, reaching state-of-the-art performances in many applications 55 

amongst which medical imaging5–7.  56 

CNNs regard an image as a field of numerical values, view small portions of this image 57 

(receptive field) and perform multiplications with a weight-matrix (filter) to extract certain 58 

information (feature) from this portion. By inspecting the entire image using this filter in a grid-59 

wise manner, the filter extracts specific information which is then saved to a new matrix or 60 

image (feature map). Repeating this process for the resulting feature maps, the network 61 

iteratively refines or searches for more information inside of the image that is relevant to the 62 

output.  63 
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These convolutional layers (CONV layers) are then typically combined with a variety of 64 

different techniques and algorithms that allow the network to appropriately extract the 65 

information from the input. Commonly used techniques are rectified linear units activation 66 

(ReLU), max-pooling layers (MP), fully connected layers (FC), batch normalization and 67 

dropout4,7. 68 
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Supplementary methods 3: Network training 70 

The CNN has been trained using the data from the training set of 3688 subjects. Here, over- and 71 

undersampling had been applied to the training set. Thus, effectively data of 3688 subjects was 72 

used out of 3848 available subjects available for the training set, to distribute the samples more 73 

evenly over the age range of the population (Nimg,train_balanced=8060 images, mean age 74 

68.52±13.71sd). To avoid overfitting on the training set and to improve overall model 75 

performance, data augmentation was also applied during training8. Data augmentation included 76 

random small translations and mirroring in planes. We also used follow-up MRI scans of each 77 

subject as a ‘natural data augmentation’ technique. 78 

The best model was selected based on its performance on the validation set. Here the 79 

performance is measured as the model accuracy based on the root mean squared error (RMSE) of 80 

the gap, as RMSE penalizes outliers more than MAE. 81 
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Supplementary text 1: Sex covariate effect on CNN model performance 83 

We can consider a split evaluation between male and female subjects. Supplementary Figure 3 84 

shows the network found no significant difference between the two groups (p=0.34). By 85 

including sex as a covariate, the covariate can reduce the difference in resulting age predictions 86 

between male and female subjects. 87 

The trained model was able to reduce prediction error and correct for male and female biases 88 

observed in the image by the model. By including the additional input of sex, the model is able to 89 

prevent over- and under prediction for male and female ages, respectively, as shown in 90 

Supplementary Figure 4. Here we present the performance in gap on male and female subjects, 91 

both early adapted models were trained under the same training settings and used the exact same 92 

training and validation sample sets. The model that includes the additional input of the subject’s 93 

respective sex, was able to reduce the overall gap between male and female subjects to be 94 

insignificant (p-value=0.23). This also brought the mean gap for males and females closer to zero 95 

(one-sample t-test: pmale=0.88 and pfemale=0.05). 96 
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Supplementary text 2: Important regions attention map 98 

Although aging affects the entire GM volume in the brain, as shown in Supplementary Figure 99 

5, significant negative association between GM volume and age have been reported for several 100 

specific brain regions, i.e. a reduction in GM volume with age9,10. According to literature9,10 the 101 

insula, superior temporal areas and multiple gyri have shown significant age-related GM volume 102 

differences. However, due to the large size of most of these regions often only parts of these 103 

region were highlighted by the network. Interestingly, brain structures affected by age with 104 

higher p-value in literature9,10, were also more highlighted by the network, e.g.: caudate nucleus, 105 

amygdala, hippocampus and thalamus. 106 
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Supplementary Table 1. Characteristics of subjects with the 5-year age-stratified lowest quintile 137 

age gap values compared to the 5-year age-stratified highest quintile age gap values. 138 

 139 

  140 

Characteristic Value lowest quintile (n=340) Value highest quintile (n=350) p-value 

Age gap (years) -5.7 ± 3.9 6.9 ± 4.5 <0.001 

Grey matter volume (mL) 605 ± 56.9 577.6 ± 56.2 <0.001 

Systolic blood pressure (mmHg) 138.9 ± 21.6 143.1 ± 21.0 0.009 

Mild cognitive impairment, n (%) 15 (4.4) 31 (8.9) 0.013 

Diastolic blood pressure (mmHg) 82.1 ± 10.8 84.1 ± 11.1 0.014 

Fasting glucose level (mmol/L)  5.5 ± 1.2 5.7 ± 1.1 0.021 

Current or past smoker, n (%) 102 (30.0) 130 (37.1) 0.027 

Body mass index (kg/m2) 27.2 ± 3.9 27.8 ± 4.5 0.043 

Mini-Mental State Examination score 28.0 ± 1.8 27.7 ± 2.1 0.095 

Total cholesterol (mmol/L) 5.6 ± 1.0 5.5 ± 1.1 0.323 

APOEε4 carrier, n (%) 92 (27.1) 103 (29.4) 0.418 

Female, n (%) 187 (55.0) 203 (58.0) 0.428 

HDL cholesterol (mmol/L) 1.4 ± 0.4 1.5 ± +- 0.4 0.549 

Age (years) 65.5 ± 10.8 65.3 ± 11.0 0.771 

Years of education 12.4 ± 3.8 12.3 ± 4 0.829 

Intracranial volume (mL) 1465.8 ± 163.2 1466.3 ± 164.1 0.971 

Values are presented in mean ± SD unless stated otherwise. 
Abbreviations: number of participants (n); standard deviation (SD). 
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 141 

Supplementary Figure 1. Flowchart showing the number of excluded participants per category.  142 

  143 
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 144 

Supplementary Figure 2. Graphical representation of the network architecture. The overall 145 

approach can be seen as four convolutional blocks ending on a pooling layer, which halves 146 

feature map dimensions. Hereafter, global average pooling extracts the final feature maps to a 147 

one-dimensional array of a single value per feature map. Fully connected layers are used to 148 

propagate to a single regression output. Abbreviations: kxkxk convolutional layer, with strides of 149 

sxsxs (CONV(k,s)); kxkxk max-pooling layer, with strides of sxsxs (Maxpooling(k,s)); batch 150 

normalization (Batchnorm); rectified linear unit (ReLU); dropout with probability p 151 

(Dropout(p)). 152 

  153 
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 154 

Supplementary Figure 3. The probability density of the gap value (PAD) for male and female 155 

subjects. The distribution shows the difference in prediction for these two groups. Distributions 156 

are similar as mean ηfemale = 0.51 and variance σ2
female = 5.72 for female, whereas ηmale = 0.04 and 157 

σ2
male = 5.69 for male. Resulting t-test showed no significant difference between the two groups 158 

as t(550) = -0.96 and p = 0.34. 159 
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 161 

Supplementary Figure 4. Effect of adding sex as a covariate to the model on the gap value 162 

distribution (red=male; blue=female). A comparison of the probability density functions for gap 163 

of two early trained models along with their respective t-test results. Both models have the exact 164 

same architecture with one the exception. a) Model uses only a single brain-MRI voxels input. b) 165 

Model uses two inputs, i.e. brain-MRI voxels and respective sex. Models were trained under the 166 

exact same settings. 167 
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 169 

Supplementary Figure 5. Grad-CAM attention map and attention map change overlaid on a 170 

brain template. (A) Grad-Cam attention map intensity per voxel. Voxel values in the attention 171 

map have been set at 0.65 minimum threshold and capped at 0.95 maximum to exclude 172 

background values and focus on more important regions. (B) Increase in attention map intensity 173 

over chronological age per voxel. Map include only voxels with a significant increase in voxel 174 

values (p<3e-7 after Bonferroni correction by number of GM voxels). 175 
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 177 

Supplementary Figure 6. Grad-CAM attention map intensity per voxel overlaid on a brain 178 

template. Voxel values in the attention map have been set at 0.50 minimum and 1.00 maximum 179 

threshold to exclude background values and focus on more highlighted regions, according to 180 

normalization around 0.50 in the Grad-CAM implementation.  181 
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