

1 **Molecular framework for TIR1/AFB-Aux/IAA-dependent auxin sensing controlling
2 adventitious rooting in Arabidopsis**

3 Abdellah Lakehal^{1#}, Salma Chaabouni^{1#}, Emilie Cavel^{1,a}, Rozenn Le Hir², Alok Ranjan¹, Zahra
4 Raneshan^{1,3}, Ondřej Novák⁴, Daniel I. Păcurar¹, Irene Perrone^{1,b}, François Jobert^{5,c}, Laurent
5 Gutierrez⁵, Laszlo Bakò¹ and Catherine Bellini^{1,2 *}

6

7 ¹ Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90736
8 Umeå, Sweden

9 ² Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000
10 Versailles, France

11 ³ Department of Biology, Faculty of Science, Shahid Bahonar University, Kerman, Iran

12 ⁴ Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of
13 Experimental Botany, The Czech Academy of Sciences, 78371 Olomouc, Czech Republic

14 ⁵ Centre de Ressources Régionales en Biologie Moléculaire (CRRBM), Université de Picardie
15 Jules Verne, 80039 Amiens, France

16

17 [#] These two authors equally contributed to the work.

18 ^a Present address: Centre de Ressources Régionales en Biologie Moléculaire (CRRBM),
19 Université de Picardie Jules Verne, 80039 Amiens, France

20 ^b Present address: Institute for Sustainable Plant Protection, National Research Council of Italy,
21 Turin, Italy

22 ^c Present address: Umeå Plant Science Centre, Department of Forest Genetics and Plant
23 Physiology, SLU, SE-90736 Umeå, Sweden

24

25 ^{*} To whom correspondence should be addressed:

26 Pr Catherine Bellini (Catherine.Bellini@umu.se)

27 Umeå Plant Science Centre, Department of Plant Physiology,
28 Umeå University, SE-90736 Umeå, Sweden

29 Phone: +46907869624

30

31 **Short title:** TIR1/AFBs, AuxIAAs and adventitious rooting

32 **ABSTRACT**

33 In *Arabidopsis thaliana*, canonical auxin-dependent gene regulation is mediated by 23
34 transcription factors from the AUXIN RESPONSE FACTOR (ARF) family interacting with 29
35 auxin/indole acetic acid repressors (Aux/IAA), themselves forming coreceptor complexes with
36 one of six TRANSPORT INHIBITOR1/AUXIN-SIGNALLING F-BOX (TIR1/AFB)
37 PROTEINS. Different combinations of co-receptors drive specific sensing outputs, allowing
38 auxin to control a myriad of processes. Considerable efforts have been made to discern the
39 specificity of auxin action. However, owing to a lack of obvious phenotype in single loss-of-
40 function mutants in *Aux/IAA* genes, most genetic studies have relied on gain-of-function
41 mutants, which are highly pleiotropic. Using loss-of-function mutants, we show that three
42 Aux/IAA proteins interact with ARF6 and/or ARF8, which we have previously shown to be
43 positive regulators of AR formation upstream of jasmonate, and likely repress their activity.
44 We also demonstrate that *TIR1* and *AFB2* are positive regulators of adventitious root formation
45 and suggest a dual role for TIR1 in the control of JA biosynthesis and conjugation, as revealed
46 by upregulation of several JA biosynthesis genes in the *tir1-1* mutant. We propose that in the
47 presence of auxin, TIR1 and AFB2 form specific sensing complexes with IAA6, IAA9 and/or
48 IAA17 that modulate JA homeostasis to control AR initiation.

49

50 **Key words:** TIR1/AFB, AuxIAA, jasmonate, adventitious roots, *Arabidopsis*

51

52

53 **INTRODUCTION**

54 In *Arabidopsis thaliana*, auxin-dependent gene regulation is mediated by the 23 members of
55 the AUXIN RESPONSE FACTOR (ARF) family of transcription factors, which can either
56 activate or repress transcription (Chapman and Estelle, 2009; Guilfoyle and Hagen, 2007).
57 Interaction studies have shown that most of the 29 auxin/indole-3-acetic acid (Aux/IAA)
58 inducible proteins can interact with ARF activators (Guilfoyle and Hagen, 2007; Vernoux et
59 al., 2011). Aux/IAAs mediate recruitment of the TOPLESS corepressor (Szemenyei et al.,
60 2008) and act as repressors of transcription of auxin-responsive genes. When the auxin level
61 rises, it triggers interaction of the two components of the auxin co-receptor complex, an F-box
62 protein from the TRANSPORT INHIBITOR1/AUXIN-SIGNALLING F-BOX PROTEIN
63 (TIR1/AFB) family and an Aux/IAA protein, promoting ubiquitination and 26S-mediated
64 degradation of the latter. Degradation of the Aux/IAA protein releases the ARF activity and
65 subsequent activation of the auxin response genes (Wang and Estelle, 2014; Weijers and
66 Wagner, 2016). TIR1/AFBs show different affinities for the same Aux/IAA (Calderon
67 Villalobos et al., 2012; Parry et al., 2009), suggesting that different combinations of TIR1/AFB
68 receptors may partially account for the diversity of auxin response. In addition, it has been
69 shown that most Aux/IAAs can interact with many Aux/IAAs and ARFs in a combinatorial
70 manner, increasing the diversity of possible auxin signaling pathways that control many aspects
71 of plant development and physiology (Boer et al., 2014; Guilfoyle and Hagen, 2012; Korasick
72 et al., 2014; Nanao et al., 2014; Vernoux et al., 2011; Weijers et al., 2005). Several studies have
73 suggested specialized functions for some of the ARF and IAA combinations during embryo
74 development (Hamann et al., 2002), lateral root (LR) development (De Rybel et al., 2010; De
75 Smet et al., 2010; Fukaki et al., 2002; Lavenus et al., 2013; Tatematsu et al., 2004),
76 phototropism (Sun et al., 2013) and fruit development (Wang et al., 2005). However, most of
77 these studies involved characterization of gain-of-function stabilizing mutations, which limited
78 identification of more specialized functions for individual Aux/IAA genes. To date, genetic
79 investigations of Aux/IAA genes have been hampered by the lack of obvious phenotype in the
80 loss-of-function mutants (Overvoorde et al., 2005). Nevertheless, recent careful
81 characterization of a few of the mutants identified more precise functions in primary or LR
82 development for *IAA3* or *IAA8* (Arase et al., 2012; Dello Ioio et al., 2008) or in the response to
83 environmental stresses for *IAA3*, *IAA5*, *IAA6* and *IAA19* (Orosa-Puente et al., 2018; Shani et
84 al., 2017).

85 To decipher the role of auxin in the control of adventitious root (AR) development, which is a
86 complex trait with high phenotypic plasticity (Bellini et al., 2014; Geiss et al., 2009), we

87 previously identified a regulatory module composed of three *ARF* genes (two activators *ARF6*
88 and *ARF8*, and one repressor *ARF17*) and their regulatory microRNAs (miR167 and miR160)
89 (Gutierrez et al., 2009). These genes display overlapping expression domains, interact
90 genetically and regulate each other's expression at transcriptional and post-transcriptional levels
91 by modulating the availability of their regulatory microRNAs miR160 and miR167 (Gutierrez
92 et al., 2009). The three ARFs control the expression of three auxin inducible *Gretchen Hagen*
93 3 (*GH3*) genes encoding acyl-acid-amido synthetases (GH3.3, GH3.5 and GH3.6) that
94 inactivate jasmonic acid (JA), an inhibitor of AR initiation in *Arabidopsis* hypocotyls
95 ((Gutierrez et al., 2012) and Supplemental Figure 1A). In a yeast two-hybrid system, *ARF6* and
96 *ARF8* proteins were shown to interact with almost all Aux/IAA proteins (Vernoux et al., 2011).
97 Therefore, we propose a model in which increased auxin levels facilitate formation of a
98 coreceptor complex with at least one *TIR1*/*AFB* protein and subsequent degradation of
99 Aux/IAAs (Supplemental Figure 1B), thereby releasing the activity of *ARF6* and *ARF8* and the
100 transcription of *GH3* genes. In the present work, we describe identification of members of the
101 potential co-receptor complexes involved in this pathway. Using loss-of-function mutants, we
102 demonstrate that *TIR1* and *AFB2* are positive regulators, whereas *IAA6*, *IAA9* and *IAA17* are
103 negative regulators of AR formation. We suggest that *TIR1* and *AFB2* form co-receptor
104 complexes with at least three Aux/IAA proteins (*IAA6*, *IAA9* and *IAA17*), which negatively
105 control *GH3.3*, *GH3.5* and *GH3.6* expression by repressing the transcriptional activity of *ARF6*
106 and *ARF8*, thereby modulating JA homeostasis and consequent AR initiation. In addition, we
107 show that several genes involved in JA biosynthesis are upregulated in the *tir1-1* mutant,
108 suggesting a probable dual role of *TIR1* in both the biosynthesis and conjugation of jasmonate.
109

110 RESULTS

111 **TIR1 and AFB2 but not other AFB proteins control adventitious root initiation in** 112 ***Arabidopsis* hypocotyls**

113 To assess the potential contributions of different TIR/AFB proteins to regulation of
114 adventitious rooting in *Arabidopsis*, we analyzed AR formation in *tir1-1*, *afb1-3*, *afb2-3*, *afb3-*
115 *4*, *afb4-8*, *afb5-5* single knockout (KO) mutants and double mutants using previously described
116 conditions ((Gutierrez et al., 2009; Sorin et al., 2005) and Figure 1A). The average number of
117 ARs developed by *afb1-3*, *afb3-4*, *afb4-8*, *afb5-5* single mutants and *afb4-8afb5-5* double
118 mutants did not differ significantly from the average number developed by wild-type seedlings
119 (Figure 1A). These results suggest that AFB1, AFB3, AFB4 and AFB5 do not play a significant
120 role in AR initiation. In contrast, *tir1-1* and *afb2-3* single mutants produced 50% fewer ARs

121 than the wild-type plants and the *tir1-1afb2-3* double mutant produced even fewer, indicating
122 an additive effect of the mutations (Figure 1A). The *afb1-3afb2-3* and *afb2-3afb3-4* double
123 mutants retained the same phenotype as the *afb2-3* single mutant, confirming a minor role, if
124 any, of AFB1 and AFB3 in AR initiation. We also checked the root phenotype of the *tir1-1* and
125 *afb2-3* single mutants and *tir1-1afb2-3* double mutant under the growth conditions used. No
126 significant differences were observed in the primary root length (Supplemental Figure 1A), but
127 the number of LRs was slightly but significantly decreased in both the *tir1-1* and *afb2-3* single
128 mutants and dramatically decreased in the double mutant (Supplemental Figure 1B), as already
129 shown by others (Dharmasiri et al., 2005b; Parry et al., 2009). This resulted in a reduction of
130 the LR density in all genotypes (Supplemental Figure 1C), confirming the additive and
131 pleiotropic role of the TIR1 and AFB2 proteins.

132

133 **TIR1 and AFB2 proteins are expressed in young seedlings during AR initiation**

134 To analyze the expression pattern of the TIR1 and AFB2 proteins during the early stages
135 of AR initiation and development, plants expressing the translational fusions *pTIR:cTIR1:GUS*
136 or *pAFB2:cAFB2:GUS* were grown as previously described (Gutierrez et al., 2009). At time 0
137 (T0), i.e., in etiolated seedlings just before transfer to the light, the TIR1:GUS and AFB2:GUS
138 proteins were strongly expressed in the root apical meristem, apical hook and cotyledons.
139 Interestingly AFB2:GUS was also detected in the vascular system of the root and the hypocotyl,
140 whereas TIR1:GUS was not detectable in those organs (Figure 1B). Nine hours after transfer
141 to the light, TIR1:GUS protein disappeared from the cotyledons but was still strongly expressed
142 in the shoot and root meristems. Its expression was increased slightly in the upper part of the
143 hypocotyl. In contrast, AFB2:GUS was still highly detectable in the shoot and root meristems,
144 cotyledons and vascular system of the root. In addition, its expression was induced throughout
145 almost the entire hypocotyl (Figure 1B). Seventy-two hours after transfer to the light,
146 TIR1:GUS and AFB2:GUS showed almost the same expression pattern, which was reminiscent
147 of that previously described in light grown seedlings (Parry et al., 2009). None of the proteins
148 were detectable in the cotyledons. However, they were present in the shoot meristem and young
149 leaves and the apical root meristem. In the hypocotyl and root, the TIR1:GUS and AFB2:GUS
150 proteins were mainly detectable in the AR and LR primordia (Figure 1B).

151

152 **TIR1 likely controls both JA biosynthesis and conjugation, whereas AFB2 preferentially 153 controls JA conjugation during adventitious root initiation**

154 Based on our model (Supplemental Figure 1A and B), one would expect to see

155 downregulation of the *GH3.3*, *GH3.5* and *GH3.6* genes in the *tir1-1*, *afb2-3* single mutants and
156 *tir1-1afb2-3* double mutant. Therefore, we analyzed the relative transcript amount of the three
157 *GH3* genes in these mutants (Figure 1C). *GH3-11/JAR1*, which conjugates JA into its bioactive
158 form jasmonoyl-L-isoleucine (JA-Ile), was used as a control. Its expression was only slightly
159 downregulated in the *afb2-3* single mutant and *tir1-1afb2-3* double mutant at T72 (Figure 1C),
160 whereas expression of the other three *GH3* genes was significantly reduced in the *afb2-3* single
161 mutant and *tir1-1afb2-3* double mutant at all timepoints (Figure 1C). In the *tir1-1* single mutant,
162 only *GH3.3* was significantly downregulated at T0 and slightly downregulated at T72 (Figure
163 1C), but an additive effect of the *tir1-1* mutation on the expression *GH3.3*, *GH3.5* and *GH3.6*
164 was observed in the *tir1-1afb2-3* double mutant at all timepoints (Figure 1C), suggesting a
165 redundant role for TIR1 in the regulation of JA conjugation. Our results suggest that AFB2
166 likely controls AR initiation by regulating JA homeostasis through the *ARF6/ARF8* auxin
167 signaling module (as shown in Supplemental Figure 1) and that TIR1, besides its redundant
168 function in JA conjugation, might have another role in controlling ARI by regulating other
169 hormone biosynthesis and/or signaling cascades. To test this hypothesis, we quantified
170 endogenous free salicylic acid (SA), free IAA, free JA and JA-Ile (Figure 2A to D) in the
171 hypocotyls of wild-type seedlings and seedlings of the *tir1-1*, *afb2-3* single mutants and *tir1-*
172 *1afb2-3* double mutant. No significant differences in SA content were observed between the
173 wild type and mutants (Figure 2A). A slight but significant increase in free IAA content was
174 observed at T0 in all three mutants compared to the wild type (Figure 2B), but only in the *tir1-*
175 *1afb2-3* double mutant at 9 and 72 hours after transfer to the light (Figure 2B). This slight
176 increase in the free IAA content can be explained by feedback regulation as a consequence of
177 downregulation of the auxin signaling pathway in the mutants. At T0 and T9, a significant
178 increase in free JA was observed in both the *tir1-1* and *afb2-3* single mutants compared to the
179 wild type but not in the double mutant *tir1-1afb2-3* (Figure 2C). The bioactive form JA-Ile was
180 significantly accumulated in the single mutants at all three time points but accumulated only at
181 T9 in the double mutant *tir1-1afb2-3* (Figure 2D). The fact that JA and JA-Ile did not
182 accumulate in the double mutant can be explained by negative feedback loop regulation of JA
183 homeostasis. Accumulation of JA and JA-Ile in the *afb2-3* mutant was expected since the three
184 *GH3* conjugating enzymes were found to be downregulated (Figure 1C), but we did not *a priori*
185 expect the same level of accumulation for the *tir1-1* mutant. These results prompted us to check
186 the expression of JA biosynthesis genes in the mutants to investigate the potential role of TIR1
187 and/or AFB2 in the control of JA biosynthesis. The relative transcript amounts of seven key
188 genes involved in JA biosynthesis were analyzed by qRT-PCR in the hypocotyls of wild-type,

189 *tir1-1*, *afb2-3* and *tir1-1afb2-3* seedlings grown under adventitious rooting conditions (Figure
190 2E to G). In etiolated seedlings (T0), *OPCL1*, *OPR3*, *AOC2* were significantly upregulated in
191 the *tir1-1* mutant compared to the wild type, whereas *LOX2* was downregulated. In the *afb2-3*
192 mutant, no significant differences were observed except for *LOX2* and *AOC1*, which were
193 downregulated compared to the wild type. In the double mutant, *LOX2* and *AOC2* were
194 significantly upregulated (Figure 2E). Nine hours after transfer to the light (T9), five (*OPCL1*,
195 *OPR3*, *LOX2*, *AOC2*, *AOC3*) out of the seven biosynthesis genes were significantly upregulated
196 in the single *tir1-1* mutant and four of them (*OPCL1*, *OPR3*, *LOX2*, *AOC2*) were upregulated
197 in the *tir1-1afb2-3* double mutant (Figure 2F). Only *AOC3* and *AOC4* were upregulated in the
198 *afb2-3* mutant at T9 (Figure 2F). At T72, only *LOX2* was significantly upregulated in all three
199 mutants (Figure 2G). In conclusion, expression of JA biosynthesis genes was more significantly
200 upregulated in the single *tir1-1* mutant than in the *afb2-3* mutant during AR initiation.
201 Therefore, we propose that TIR1 and AFB2 control JA homeostasis, with a major role for TIR1
202 in the control of JA biosynthesis and a major role for AFB2 in the control of JA conjugation
203 through the *ARF6/ARF8* auxin signaling module.

204

205 **A subset of Aux/IAA proteins regulate adventitious root initiation in Arabidopsis**
206 **hypocotyls**

207 ARF6 and ARF8 are two positive regulators of AR initiation (Gutierrez et al., 2009;
208 Gutierrez et al., 2012) and their transcriptional activity is known to be regulated by Aux/IAA
209 genes. To gain further insight into the auxin sensing machinery and complete our proposed
210 signaling module involved in AR initiation, we attempted to identify potential Aux/IAA
211 proteins that interact with ARF6 and/or ARF8. In 2011, Vernoux *et al.* (2011) conducted a
212 large-scale analysis of the Aux/IAA-ARF network using a high-throughput yeast two-hybrid
213 approach. They showed that ARF6 and ARF8 belong to a cluster of proteins that can interact
214 with 22 of the 29 Aux/IAA genes (Vernoux et al., 2011). However, this does not help much to
215 restrict the number of genes of interest. Hence, to elucidate which Aux/IAAs can interact with
216 ARF6 and ARF8 during AR formation, we looked at those most expressed in the hypocotyl and
217 assessed the expression of the 29 *Aux/IAA* genes in different organs (cotyledons, hypocotyl and
218 roots) of 7-day-old light-grown seedlings using qRT-PCR (Supplemental Figure 3). With the
219 exception of *IAA15*, we detected a transcript for all *IAA* genes in all organs tested (Supplemental
220 Figure 3). We observed that 18 *IAA* genes were more expressed in the hypocotyl compared to
221 cotyledons or roots (*IAA1*, *IAA2*, *IAA3*, *IAA4*, *IAA5*, *IAA6*, *IAA7*, *IAA8*, *IAA9*, *IAA10*, *IAA13*,
222 *IAA14*, *IAA16*, *IAA19*, *IAA26*, *IAA27*, *IAA30*, *IAA31*), 4 *IAA* genes were more expressed in the

223 hypocotyl and the root (*IAA17*, *IAA20*, *IAA28*, *IAA33*) and 6 genes were more expressed in the
224 cotyledons (*IAA11*, *IAA12*, *IAA18*, *IAA29*, *IAA32*, *IAA34*). To assess the potential contributions
225 of different *IAA* genes in the regulation of AR, we obtained KO mutants available for nine of
226 the *Aux/IAA* genes that displayed high expression in the hypocotyl (*iaa3/shy2-24*, *iaa4-1*, *iaa5-*
227 *1*, *iaa6-1*, *iaa7-1*, *iaa8-1*, *iaa9-1*, *iaa14-1*, *iaa30-1*), two of the genes which had high expression
228 in both the hypocotyl and root (*iaa17-6*, *iaa28-1*, *iaa33-1*) and we added two KO mutants with
229 genes whose expression was lower in the hypocotyl and root (*iaa12-1* and *iaa29-1*).
230 We analyzed AR formation in the *iaa* KO mutants under previously described conditions
231 (Gutierrez et al., 2009; Sorin et al., 2005). Interestingly, six mutants (*iaa5-1*, *iaa6-1*, *iaa7-1*,
232 *iaa8-1*, *iaa9-1* and *iaa17-6*) produced significantly more ARs than the wild type, whereas all
233 the other mutants did not show any significant difference compared to the wild type (Figure
234 3A). The primary root length and LR number were not affected in mutants *iaa5-1*, *iaa6-1* and
235 *iaa8-1* (Supplemental Figure 2D to F), whereas *iaa9-1* and *iaa17-6* showed a slightly shorter
236 primary root and fewer LRs than the wild type (Supplemental Figure 2D and E) but the LR
237 density was not affected (Supplemental Figure 2F). In contrast, *iaa7-1* had a slightly but
238 significantly longer primary root as well as fewer LRs, which led to a slightly but significantly
239 decreased LR density (Supplemental Figure 2F). These results strongly suggest that *IAA5*,
240 *IAA6*, *IAA7*, *IAA8*, *IAA9* and *IAA17* are involved in the control of AR formation and substantiate
241 our hypothesis that only a subset of *Aux/IAA* genes regulate the process of AR formation.
242

243 **IAA6, IAA9 and IAA17 proteins interact with ARF6 and ARF8 proteins**

244 To establish whether these targeted proteins were effective partners of ARF6 and ARF8,
245 we performed co-immunoprecipitation (CoIP) in protoplasts transfection assays. Arabidopsis
246 protoplasts were transfected with plasmids expressing cMyc- or HA-tagged AuxIAA and ARF
247 proteins according to the protocol described in the Materials and Methods (Magyar et al., 2005).
248 The presence of the putative ARF/AuxIAA complex was tested by western blotting with anti-
249 HA or anti-c-Myc antibodies and only interactions with *IAA6*, *IAA9* and *IAA17* were detected
250 (Figure 5A to E): IAA6 and IAA17 interacted with ARF6 and ARF8 (Fig. 5A, B, D and E),
251 whereas IAA9 interacted only with ARF8 (Figure 5C). These results were confirmed by a
252 bimolecular fluorescence complementation (BiFC) assay (Figure 5I to M)
253

254 **ARF6 but not ARF8 can form a homodimer**

255 Recent interaction and crystallization studies have shown that ARF proteins dimerize
256 via their DNA-binding domain (Boer et al., 2014) and interact not only with Aux/IAA proteins

257 but potentially also with themselves or other ARFs *via* their PB1 domain with a certain
258 specificity (Vernoux et al., 2011). Therefore, we also used CoIP and BiFC assays and tagged
259 versions of the ARF6 and ARF8 proteins to check whether they could form homodimers and/or
260 a heterodimer. Our results (Figure 5G, H, O and P) agreed with a previously published yeast
261 two-hybrid interaction study (Vernoux et al., 2011), which showed that ARF6 and ARF8 do
262 not interact to form a heterodimer and that ARF8 does not homodimerize. In contrast, we
263 showed that ARF6 protein can form a homodimer (Figure 5F and N), suggesting that ARF6
264 and ARF8, although redundant in controlling the expression of *GH3.3*, *GH3.5* and *GH3.6* genes
265 (30), might have a specificity of action.

266

267 ***IAA6*, *IAA9* and *IAA17* act redundantly to control adventitious root initiation**

268 Because we found an interaction only with the *IAA6*, *IAA9* and *IAA17* proteins, we
269 continued to characterize the role of their corresponding genes. All three single *iaa* mutants
270 showed a significant and reproducible AR phenotype. Nevertheless, because extensive
271 functional redundancy has been shown among *Aux/IAA* gene family members (Overvoorde et
272 al., 2005), it was important to confirm the phenotype in at least a second allele (Figure 3B). We
273 also generated the double mutants *iaa6-1iaa9-1*, *iaa6-1iaa17-6* and *iaa9-1iaa17-6* and the
274 triple mutant *iaa6-1iaa9-1iaa17-6* and analyzed their phenotype during AR formation (Figure
275 3C). Mutant *iaa4-1* was used as a control showing no AR phenotype. Except for the *iaa6iaa17-6*
276 double mutant, which showed an increased number of AR compared to the single mutants,
277 the other two double mutants were not significantly different from the single mutants (Figure
278 3C). Nevertheless, we observed a significant increase of the AR number in the triple mutants
279 compared to the double mutants, suggesting that these genes act redundantly in the control of
280 AR initiation (Figure 3C) but do not seem to be involved in the control of the PR or LR root
281 growth as shown on (Supplemental Figure 2G-I). We also characterized the expression of *IAA6*,
282 *IAA9* and *IAA17* during the early steps of AR formation using transcriptional fusion constructs
283 containing a β -glucuronidase (GUS) coding sequence fused to the respective promoters. At time
284 T0 (i.e., etiolated seedlings prior to transfer to the light) (Figure 3D), *promIAA6:GUS* was
285 strongly expressed in the hypocotyl, slightly less expressed in the cotyledons and only weakly
286 expressed in the root; *promIAA9:GUS* was strongly expressed in the cotyledons, hook and root
287 tips and slightly less in the hypocotyl and root; *promIAA17:GUS* was strongly expressed in the
288 hypocotyl and root, slightly less in the cotyledons and, interestingly, was excluded from the
289 apical hook (Figure 3D). Forty-eight and seventy-two hours after transfer to the light, a decrease
290 in GUS staining was observed for all the lines (Figure 3F and H), but only for *IAA9* when the

291 seedlings were kept longer in the dark (Figure 3E and G). These results suggest that light
292 negatively regulates the expression of *IAA6* and *IAA17* while the expression of *IAA9* seem to
293 depend on the developmental stage.

294

295 ***IAA6, IAA9 and IAA17 negatively control expression of GH3.3, GH3.5 and GH3.6***

296 In our model, auxin stimulates adventitious rooting by inducing *GH3.3*, *GH3.5* and
297 *GH3.6* gene expression *via* the positive regulators ARF6 and ARF8 (Supplemental Figure 1).
298 Although we confirmed an interaction between *IAA6*, *IAA9* and *IAA17* with ARF6 and/or
299 ARF8, it was important to demonstrate whether disrupting the expression of one of those genes
300 would result in upregulation of *GH3* gene expression. Therefore, we performed qRT-PCR
301 analysis of the relative transcript amounts of the three genes *GH3.3*, *GH3.5*, *GH3.6* in the
302 hypocotyls of single mutants *iaa6-1*, *iaa9-1*, *iaa17-6* first etiolated and then transferred to the
303 light for 72 h. The mutant *iaa4-1*, which had no phenotype affecting AR initiation (Figure 3A),
304 was used as a control. Expression of *GH3.3*, *GH3.5* and *GH3.6* was upregulated in the *iaa9-1*
305 mutant (Figure 4A), whereas only *GH3.3*, *GH3.5* were significantly upregulated in the *iaa6-1*
306 and *iaa17-6* mutant (Figure 4A). In contrast, expression of *GH3.3*, *GH3.5* and *GH3.6* remained
307 unchanged in the *iaa4-1* mutant (Figure 4A). These results confirm that *IAA6*, *IAA9* and
308 *IAA17* are involved in the regulation of adventitious rooting through the modulation of *GH3.3*,
309 *GH3.5* and *GH3.6* expression. To establish whether the *iaa6-1*, *iaa9-1* and *iaa17-6* mutations
310 affected other *GH3* genes, the relative transcript amount of *GH3-10* and *GH3-11* was
311 quantified. Notably, accumulation of *GH3.10* and *GH3.11/JAR1* transcripts was not
312 significantly altered in the *iaa6-1*, *iaa9-1* and *iaa17-6* mutants but *GH3.10* was upregulated in
313 the *iaa4-1* mutant (Figure 4A). We concluded that *IAA6*, *IAA9* and *IAA17* negatively regulate
314 *GH3.3*, *GH3.5* and *GH3.6* expression in the *Arabidopsis* hypocotyl during AR initiation.

315 We also checked a possible compensatory effect induced by the knockout of one the
316 IAA genes. We performed qRT-PCR analysis of the relative transcript amounts of *IAA6*, *IAA9*
317 and *IAA17* genes in the hypocotyl of each single mutant (Figure 4B). Interestingly, a mutation
318 in the *IAA6* gene did not affect the expression of *IAA9* or *IAA17*, whereas *IAA17* was
319 significantly upregulated in the hypocotyls of *iaa9-1* mutant seedlings. *IAA6* was upregulated
320 in the hypocotyl of *iaa17-6* mutant seedlings and a mutation in *IAA4* did not affect the
321 expression of any of the three *IAA* genes of interest (Figure 4B).

322

323 ***ARF6, ARF8 and ARF17 are unstable proteins and their degradation is proteasome***
324 ***dependent***

325 While transfecting *Arabidopsis* protoplasts for CoIP assays with open reading frames
326 encoding individual cMyc- or HA-tagged versions of ARFs and Aux/IAAs, problems were
327 encountered due to instability not only of the tagged Aux/IAA proteins but also of the tagged
328 ARFs. It has previously been reported that like Aux/IAA proteins, ARFs may be rapidly
329 degraded (Salmon et al., 2008). Therefore, we analyzed the degradation of HA₃:ARF6,
330 cMyc₃:ARF8 and HA₃:ARF17. We used HA₃:ARF1, which was previously used as a control
331 (Fig. 6A,E,F) (Salmon et al., 2008). Western blot analysis with protein extracts from transfected
332 protoplasts using anti-HA or anti-cMyc antibodies showed that like ARF1, proteins ARF6,
333 ARF8 and ARF17 were degraded. The HA₃:ARF6 levels decreased dramatically within 30
334 minutes, indicating that ARF6 is a short-lived protein (Figure 6B), while the degradation rate
335 of HA₃:ARF17 was similar to that of HA₃:ARF1 (Figure 6D) and cMyc₃ARF8 appeared more
336 stable (Figure 6C). To verify whether ARF6, ARF8 and ARF17 proteolysis requires activity of
337 the proteasome for proper degradation, transfected protoplasts were incubated for 2 h in the
338 presence or absence of 50 μ M of a cell permeable proteasome-specific inhibitor, Z-Leu-Leu-
339 Leu- CHO aldehyde (MG132), and the extracted proteins were analyzed by immunoblotting
340 (Fig. 6E). The sample incubated with MG132 contained higher levels of HA₃:ARF1,
341 confirming the previously described proteasome-dependent degradation of ARF1 (34), and
342 thereby the efficiency of the treatment. Similarly, HA₃:ARF6, cMyc₃ARF8 and HA₃:ARF17
343 proteins accumulated in protoplasts treated with MG132, indicating that ARF6, ARF8 and
344 ARF17 degradation is also proteasome dependent (Figure 6E). To further determine whether
345 proteasome activity is necessary for ARF6, ARF8 and ARF17 protein degradation *in vivo*, one-
346 week-old transgenic *in vitro* grown *Arabidopsis* seedlings expressing HA₃:ARF1,
347 cMyc₃:ARF6, cMyc₃:ARF8 and cMyc₃:ARF17 were treated with MG132 or DMSO for 2 h
348 prior to protein extraction. After western blotting, we observed that levels of HA₃:ARF1,
349 cMyc₃:ARF6, cMyc₃:ARF8 and cMyc₃:ARF17 were enhanced by the addition MG132,
350 confirming that their degradation is proteasome dependent in planta (Figure 6F).
351

352 DISCUSSION

353 AR formation is a post-embryonic process that is intrinsic to the normal development
354 of monocots. In both monocots and dicots, it can be induced in response to diverse
355 environmental and physiological stimuli or through horticultural practices used for vegetative
356 propagation of many dicotyledonous species (reviewed in (Bellini et al., 2014; Steffens and
357 Rasmussen, 2016)). Vegetative propagation is widely used in horticulture and forestry for
358 amplification of elite genotypes obtained in breeding programs or selected from natural

359 populations. Although this requires effective rooting of stem cuttings, this is often not achieved,
360 and many studies conducted at physiological, biochemical and molecular levels to better
361 understand the entire process have shown that AR formation is a heritable quantitative genetic
362 trait controlled by multiple endogenous and environmental factors. In particular, it has been
363 shown to be controlled by complex hormone cross-talks, in which auxin plays a central role
364 (Lakehal and Bellini, 2019; Pacurar et al., 2014b). The specificity of auxin response is thought
365 to depend on a specific combinatorial suite of ARF–Aux/IAA protein–protein interactions from
366 among the huge number of potential interactions that modulate the auxin response of gene
367 promoters via different affinities and activities (reviewed in (Vernoux et al., 2011; Weijers et
368 al., 2005)). In previous work, we identified a regulatory module composed of three *ARF* genes,
369 two activators (*ARF6* and *ARF8*) and one repressor (*ARF17*), which we showed could control
370 AR formation in *Arabidopsis* hypocotyls (Gutierrez et al., 2009) (Supplemental Figure 1).
371 Recent developments have highlighted the complexity of many aspects of ARF function. In
372 particular, crystallization of the DNA binding domains of ARF1 and ARF5 (Boer et al., 2014)
373 and the C-terminal protein binding domain 1 (PB1) from ARF5 (Nanao et al., 2014) and ARF7
374 (Korasick et al., 2014) has provided insights into the physical aspects of ARF interactions and
375 demonstrated new perspectives for dimerization and oligomerization that impact ARF
376 functional cooperativity (Parcy et al., 2016). Here, we provide evidence that ARF6 can form a
377 homodimer while we could detect neither heterodimerization between ARF6 and ARF8 nor
378 ARF8 homodimerization. How this influences their respective role in the control of AR
379 initiation is not yet known and requires further investigation. Nevertheless, based on a recent
380 structural analysis of other ARFs (Nanao et al., 2014; Parcy et al., 2016), we propose that the
381 ARF6 homodimer would probably target different sites from that of a monomeric ARF8 protein
382 in the *GH3s* promoters, and/or that their respective efficiency of transcriptional regulation
383 would be different, suggesting that one of the two transcription factors might have a prevalent
384 role compared to the other. The prevailing model for auxin-mediated regulation of the
385 Aux/IAA–ARF transcriptional complex is *via* increased Aux/IAA degradation in the presence
386 of auxin, permitting ARF action, possibly through ARF-ARF dimerization, and subsequent
387 auxin-responsive gene regulation (Nanao et al., 2014; Parcy et al., 2016). As a further step of
388 regulation for auxin-responsive gene transcription, it has been suggested that proteasomal
389 degradation of ARF proteins may be as important as that of Aux/IAA proteins to modulate the
390 ratio between ARFs and Aux/IAAs proteins (Salmon et al., 2008). In the present work, we
391 demonstrated that like ARF1 (Salmon et al., 2008), proteins ARF6, ARF8 and ARF17 undergo
392 proteasome dependent degradation. We previously showed that the balance between the two

393 positive regulators ARF6 and ARF8 and the negative regulator ARF17 was important for
394 determining the number of ARs and that this balance was modulated at the post-transcriptional
395 level by the action of the microRNAs miR167 and miR160 (Gutierrez et al., 2009). Here, we
396 suggest that the proteasome dependent degradation of ARF6, ARF8 and ARF17 proteins is an
397 additional level of regulation for modulation of the transcription factor balance during AR
398 formation.

399 ARF6 and ARF8 (but not ARF17) retain PB1 in their structure, which makes them
400 targets of Aux/IAA repressor proteins. Because most previous genetic studies of *Aux/IAA* genes
401 focused on characterization of gain-of-function mutants and there are only a few recent
402 characterizations of KO mutants (Arase et al., 2012; Shani et al., 2017), we attempted to identify
403 potential Aux/IAA partners involved in the control of AR initiation in the *Arabidopsis*
404 hypocotyl. Nevertheless, likely because AR formation is a quantitative trait, we identified six
405 *iaa* KO mutants showing an increased number of ARs. We confirmed direct physical interaction
406 with ARF6 and/or ARF8 for three of them (IAA6, IAA9 and IAA17) and showed significant
407 upregulation of *GH3.3*, *GH3.5* and *GH3.6* expression in the corresponding single KO mutants,
408 confirming that each of the three IAA proteins act as repressors in this pathway. Vernoux *et al.*
409 (2011) also showed interaction between IAA17 and the PB1 domain of ARF6 and ARF8, but
410 in contrast to our results, IAA9 was found to interact with ARF6 and not ARF8. The same study
411 showed interaction of ARF6 and ARF8 with IAA7 and IAA8, which we did not observe when
412 using the full-length proteins. Nevertheless, a KO mutation in *IAA5*, *IAA7* and *IAA8* genes led
413 to a similar phenotype as observed in *iaa6*, *iaa9* and *iaa17* KO mutants. It is therefore possible
414 that IAA5, IAA7 and IAA8 proteins contribute in a combinatorial manner to generate a higher
415 order of oligomerization through interaction with one of the other three Aux/IAA proteins,
416 leading to repression of ARF6 and ARF8 activity. Indeed, Vernoux *et al.* (2011) showed that
417 in the yeast two-hybrid interactome, IAA5, IAA7 and IAA8 interact with IAA6, IAA9 and
418 IAA17. Further, recent work has demonstrated that dimerization of the Aux/IAA repressor with
419 the transcription factor is insufficient to repress the activity and that multimerization is likely
420 to be the mechanism for repressing ARF transcriptional activity (Korasick et al., 2014), which
421 supports our hypothesis. Alternatively, IAA5, IAA7 and IAA8 could contribute to repressing
422 the activity of other ARFs, such as ARF7 and/or ARF19, which have also been shown to be
423 involved in the control of AR formation (Sheng et al., 2017).

424 In addition to Aux/IAA transcriptional repressors and ARF transcription factors,
425 TIR1/AFB F-box proteins are required for a proper auxin regulation of transcription. Several
426 elegant studies have shown that auxin promotes degradation of Aux/IAA proteins through the

427 $SCF^{TIR1/AFB}$ in an auxin-dependent manner (Dharmasiri et al., 2005a; Gray et al., 2001;
428 Kepinski and Leyser, 2005; Ramos et al., 2001; Tan et al., 2007)(40-44). Hence, our model
429 would not be complete without the F-box proteins necessary to release ARF6 and ARF8
430 transcriptional activity. Among the six TIR1/AFB proteins examined, we demonstrated that
431 TIR1 and AFB2 are the main players involved in this process. Both these proteins act by
432 modulating JA homeostasis since an accumulation of JA and JA-Ile was observed in the single
433 mutants. Nevertheless, our results suggest a different and complementary role for TIR1 and
434 AFB2. Indeed, a mutation in the *TIR1* gene did not affect the expression of the three *GH3* genes
435 in the same way as a mutation in the *AFB2* gene but instead mainly affected the expression of
436 genes involved in JA biosynthesis. These results are in agreement with a previous study, which
437 showed that TIR1 controls JA biosynthesis during flower development (Cecchetti et al., 2013).
438 ARF6 and ARF8 have also been shown to be positive regulators of JA biosynthesis during
439 flower development (Nagpal et al., 2005). However, it is unlikely that TIR1 controls JA
440 biosynthesis through ARF6 and/or ARF8 during AR initiation since ARF6 and ARF8 have
441 been shown to be positive regulators of AR initiation upstream of JA signaling (Gutierrez et
442 al., 2009; Gutierrez et al., 2012). We are conscious that both gene expression analysis and
443 hormone quantification were performed on whole hypocotyls, at particular time points and
444 therefore may not fully reflect the dynamic of events in the single cells from which the AR
445 initiate. Both gene expression analysis and hormone quantification were performed on whole
446 hypocotyls, at particular time points and therefore may not reflect the dynamic of events in the
447 single cells from which the AR initiate. Nevertheless, because our previous work had shown a
448 clear correlation between *GH3* gene expression or protein content in the whole hypocotyl and
449 the number of ARs (Pacurar et al., 2014a; Sorin et al., 2006) on a one hand, and that mutants
450 deficient in JA biosynthesis had an increased number of ARs (Gutierrez et al., 2012) on another
451 hand, we would like to propose here a dual role for TIR1 in the control of AR initiation, i.e.,
452 control of JA conjugation through a ARF6/ARF8 signaling module and control of JA
453 biosynthesis through a pathway yet to be identified that would lead to similar amount of
454 endogenous JA and JA isoleucine depending on the developmental stage.
455 In conclusion, we propose that AR initiation in the *Arabidopsis* hypocotyl depends on a
456 regulatory module comprising two F-box proteins (TIR1 and AFB2), at least three Aux/IAA
457 proteins (IAA6, IAA9 and IAA17) and three ARF transcriptional regulators (ARF6, ARF8 and
458 ARF17), which control AR initiation by modulating JA homeostasis (Figure 7).
459
460

461 **MATERIALS AND METHODS**

462

463 **Plant material and growth conditions**

464 The single mutants *tir1-1*, *afb1-3*, *afb2-3*, *afb3-4*, *afb4-8* and *afb5-5*, multiple mutants *tir1-1afb2-3*, *afb2-3afb3-4*, *afb4-8afb5-5* and, translational fusion lines *tir1-1pTIR1:cTIR1-GUS* and *afb2-3pAFB2:cAFB2-GUS* were described in (Parry et al., 2009). Seeds of the mutants and transgenic lines were provided by Prof. Mark Estelle (UCSD, San Diego, CA, USA). The *iaa* T-DNA insertion mutants used in this study are listed in Supplemental Table 1. All the mutants were provided by the Nottingham Arabidopsis Stock Centre, except *iaa3/shy2-24*, which was provided by Prof. Jason Reed (UNC, Chapel Hill, NC, USA). The mutant lines *iaa4-1*, *iaa5-1*, *iaa6-1*, *iaa8-1*, *iaa9-1*, *iaa11-1*, *iaa12-1*, *iaa14-1*, *iaa17-6* and *iaa33-1* were previously described in (Overvoorde et al., 2005). The *Arabidopsis thaliana* ecotype Columbia-0 (Col-0) was used as the wild type and background for all the mutants and transgenic lines, except *iaa3/shy2-24*, which had a Landsberg *erecta* (Ler) background. Growth conditions and adventitious rooting experiments were performed as previously described (Gutierrez et al., 2009; Sorin et al., 2005).

477

478 **Hormone profiling experiment**

479 Hypocotyls from the wild type Col-0, single mutants *tir1-1* and *afb2-3* and double mutant *tir1-1afb2-3* were collected from seedlings grown as described in (Gutierrez et al., 2012). Samples 480 were prepared from six biological replicates; for each, at least 2 technical replicates were used. 481 Endogenous levels of free IAA, SA and JA as well as the conjugated form of JA, JA-Ile, were 482 determined in 20 mg of hypocotyls according to the method described in (Flokova et al., 2014). 483 The phytohormones were extracted using an aqueous solution of methanol (10% MeOH/H₂O, 484 v/v). To validate the LC-MS method, a cocktail of stable isotope-labeled standards was added 485 with the following composition: 5 pmol of [¹³C₆]IAA, 10 pmol of [²H₆]JA, [²H₂]JA-Ile and 20 486 pmol of [²H₄]SA (all from Olchemim Ltd, Czech Republic) per sample. The extracts were 487 purified using Oasis HLB columns (30 mg/1 ml, Waters) and targeted analytes were eluted 488 using 80% MeOH. Eluent containing neutral and acidic compounds was gently evaporated to 489 dryness under a stream of nitrogen. Separation was performed on an Acquity UPLC® System 490 (Waters, Milford, MA, USA) equipped with an Acquity UPLC BEH C18 column (100 x 2.1 491 mm, 1.7 μ m; Waters), and the effluent was introduced into the electrospray ion source of a 492 triple quadrupole mass spectrometer Xevo™ TQ-S MS (Waters). 493

494

495 **RNA isolation and cDNA Synthesis**

496 RNAs from the hypocotyls of Col-0 and the mutants were prepared as described by (Gutierrez
497 et al., 2009; Gutierrez et al., 2012). The resulting RNA preparations were treated with DNaseI
498 using a DNasefree Kit (Ambion) and cDNA was synthesized by reverse transcribing 2 µg of total
499 RNA using SuperScript III reverse transcriptase (ThermoFisher Scientific;
500 <https://www.thermofisher.com>) with 500 ng of oligo(dT)18 primer according to the
501 manufacturer's instructions. The reaction was stopped by incubation at 70°C for 10 min, and
502 then the reaction mixture was treated with RNaseH (ThermoFisher Scientific;
503 <https://www.thermofisher.com>) according to the manufacturer's instructions. All cDNA
504 samples were tested by PCR using specific primers flanking an intron sequence to confirm the
505 absence of genomic DNA contamination.

506

507 **Quantitative RT-PCR experiments**

508 Transcript levels were assessed in three independent biological replicates by real-time qRT-
509 PCR), in assays with triplicate reaction mixtures (final volume 20 µl) containing 5 µl of cDNA,
510 0.5 µM of both forward and reverse primers and 1 X FastStart SYBR Green Master mix
511 (Roche). Steady state levels of transcripts were quantified using primers listed in Supplemental
512 Table 2. *APT1* and *TIP41* had previously been validated as the most stably expressed genes
513 among 11 tested in our experimental procedures and were used to normalize the qRT-PCR data
514 (Gutierrez et al., 2009). The normalized expression patterns obtained using the reference genes
515 were similar. Therefore, only data normalized with *TIP41* are shown. The CT (crossing
516 threshold value) and PCR efficiency (E) values were used to calculate expression using the
517 formula $E_T^{(CT\ WT - CT\ M)} / E_R^{(CT\ WT - CT\ M)}$, where T is the target gene, R is the reference gene,
518 M refers to cDNA from the mutant line and WT refers to cDNA from the wild type. Data for
519 the mutants were presented relative to those of the wild type, the calibrator.

520

521 **Heatmap of *AUXIAA* gene expression**

522 *AUXIAA* gene expression values were obtained as described previously in different organs
523 (cotyledons, hypocotyls and roots). The *AUXIAA* expression values for hypocotyls and roots
524 were calculated relative to those of the cotyledon samples as calibrator and set as 1. These
525 values were subsequently used to build a cluster heatmap using Genesis software
526 (<http://www.mybiosoftware.com/genesis-1-7-6-cluster-analysis-microarray-data.html>)(Sturn
527 et al., 2002). Genes with similar expression levels between organs were clustered based on

528 Pearson's correlation. Correlation values near 1 indicated a strong positive correlation between
529 two genes.

530

531 **Tagged protein constructs**

532 Epitope-tagged versions of ARF6, ARF8, ARF17, IAA5, IAA6, IAA7, IAA8, IAA9 and IAA17
533 proteins were produced in pRT104-3xHA and pRT104-3xMyc plasmids (Fulop et al., 2005).
534 All plasmids displayed a 35S promoter sequence upstream of the multi-cloning site. The open
535 reading frames of *ARF6*, *ARF8*, *ARF17*, *IAA5*, *IAA6*, *IAA7*, *IAA8*, *IAA9* and *IAA17* were
536 amplified from cDNA from 7-day-old *Arabidopsis* seedlings using Finnzyme's Phusion high-
537 fidelity DNA polymerase protocol with gene-specific primers listed in *SI Appendix* Table S3.
538 For the bimolecular functional complementation assay (BiFC), the open reading frames of
539 *ARF6*, *ARF8*, *IAA6*, *IAA9* and *IAA17* were amplified with gene-specific primers carrying BgIII
540 or KpnI restriction sites to facilitate subsequent cloning (*SI Appendix* Table S4). The products
541 obtained after PCR were digested with BgIII and KpnI prior to ligation into pSAT-nEYFP and
542 pSAT-cEYFP plasmids (Citovsky et al., 2006) that had previously been cut open with the same
543 enzymes. All constructs were verified by sequencing.

544

545 **Protoplast production and transformation**

546 Protoplasts from *Arabidopsis* cell culture or 14-day-old *Arabidopsis* seedlings were prepared
547 and transfected as previously described (Meskiene et al., 2003; Zhai et al., 2009). For CoIP, 10^5
548 protoplasts from the *Arabidopsis* cell culture were transfected with 5 to 7.5 μ g of each construct.
549 For BiFC assays, *Arabidopsis* mesophyll protoplasts were co-transfected with 10 μ g of each
550 construct. The protoplasts were imaged by confocal laser scanning microscopy after 24 hours
551 of incubation in the dark at room temperature.

552

553 **Co-immunoprecipitation**

554 For testing protein interactions, co-transfected protoplasts were extracted in lysis buffer
555 containing 25 mM Tris-HCl, pH 7.8, 10 mM MgCl₂, 75 mM NaCl, 5 mM EGTA, 60 mM β -
556 glycerophosphate, 1 mM dithiothreitol, 10% glycerol, 0.2% Igepal CA-630 and Protein
557 Inhibitor Cocktail (Sigma-Aldrich; <http://www.sigmaaldrich.com/>). The cell suspension was
558 frozen in liquid nitrogen and then thawed on ice and centrifuged for 5 min at 150 g. The
559 resulting supernatant was mixed with 1.5 μ l of anti-Myc antibody (9E10, Covance;
560 <http://www.covance.com/>) or 2 μ l of anti-HA antibody (16B12, Covance;
561 <http://www.covance.com/>) for 2 h at 4°C on a rotating wheel. Immunocomplexes were

562 captured on 10 µl of Protein G-Sepharose beads, washed three times in 25 mM sodium
563 phosphate, 5% glycerol and 0.2% Igepal CA-630 buffer and then eluted by boiling with 40 µl
564 of SDS sample buffer. The presence of immunocomplexes was assessed by probing protein gel
565 blots with either anti-HA (3F10, Sigma/Roche; <http://www.sigmaldrich.com/>) or anti-Myc
566 antibody (9E10, Covance; <http://www.covance.com/>) at 1:2000 dilution.

567

568 **Cycloheximide or proteasome inhibitor treatment of transfected protoplasts**

569 Sixteen hours after protoplast transfection, cycloheximide (CHX) (SigmaAldrich;
570 <http://www.sigmaldrich.com/>) was added to a final concentration of 200 µg/ml in the
571 protoplast growth medium and the protoplasts were incubated for 0, 0.5, 1, 1.5 and 2 h.
572 Afterwards, the protoplasts were harvested and the proteins extracted and analyzed by SDS-
573 PAGE and western blotting.

574 The proteasome inhibitor MG132 (SigmaAldrich; <http://www.sigmaldrich.com/>) was applied
575 at a concentration of 50 µM 16 h after protoplasts transfection. After 2 h incubation, the
576 protoplasts were harvested and the proteins were extracted and analyzed by SDS-PAGE and
577 western blotting. The plasmid expressing *HA₃-ARF1* was described in (Salmon et al., 2008) and
578 kindly provided by Prof. Judy Callis (UC, Davis, CA, USA).

579

580 **Proteasome inhibition in planta**

581 Seeds from *Arabidopsis* lines expressing *HA₃:ARF1*, *cMyc₃:ARF6*, *cMyc₃:ARF8* and
582 *cMyc₃:ARF17* were sterilized and sown *in vitro* as previously described (Sorin et al., 2005).
583 Plates were incubated at 4°C for 48 h for stratification and transferred to the light for 16 h at a
584 temperature of 20°C to induce germination. The plates were then wrapped in aluminum foil
585 and kept until the hypocotyl of the seedlings reached on average 6 mm. The plates were then
586 transferred back to the light for 6 days. On day 6, the seedlings were transferred to liquid growth
587 medium (GM). On day 7, the GM was removed and fresh GM without (DMSO control) or with
588 MG132 (SigmaAldrich, <http://www.sigmaldrich.com/>) at a final concentration of 100 µM was
589 added, and the seedlings incubated for a further 2 h. After incubation, the GM liquid culture
590 was removed, and proteins were extracted and analyzed by SDS-PAGE and western blotting.
591 The *Arabidopsis* line expressing *HA₃-ARF1* was described in (Salmon et al., 2008) and kindly
592 provided by Prof. Judy Callis (UC, Davis, CA, USA).

593

594 **Analysis of promoter activity**

595 A 1-kb-long fragment upstream from the start codon of *IAA6*, *IAA9* and *IAA17* was amplified
596 by applying PCR to Col-0 genomic DNA. The primer sequences used are listed in *SI Appendix*
597 Table S5. The amplified fragments were cloned using a pENTR/D-TOPO cloning kit
598 (ThermoFisher Scientific; <https://www.thermofisher.com>) and transferred into the pKGWFS7
599 binary vector (Karimi et al., 2002) using a Gateway LR Clonase enzyme mix (ThermoFisher
600 Scientific; <https://www.thermofisher.com>) according to the manufacturer's instructions.
601 Transgenic Arabidopsis plants expressing the *promIAA6:GUS*, *promIAA9:GUS* and
602 *promIAA17:GUS* fusion were generated by *Agrobacterium tumefaciens* mediated floral dipping
603 and the expression pattern was checked in the T2 progeny of several independent transgenic
604 lines. Histochemical assays of GUS expression were performed as previously described (Sorin
605 et al., 2005).

606

607 **Confocal laser scanning microscopy**

608 For the BIFC assay, images of fluorescent protoplasts were obtained with a Leica TCS-SP2-
609 AOBS spectral confocal laser scanning microscope equipped with a Leica HC PL APO x 20
610 water immersion objective. YFP and chloroplasts were excited with the 488 nm line of an argon
611 laser (laser power 35%). Fluorescence emission was detected over the range 495 to 595 nm for
612 the YFP construct and 670 to 730 nm for chloroplast autofluorescence. Images were recorded
613 and processed using LCS software version 2.5 (Leica Microsystems). Images were cropped
614 using Adobe Photoshop CS2 and assembled using Adobe Illustrator CS2 software (Abode,
615 <http://www.abode.com>).

616

617 **ACKNOWLEDGMENTS**

618 The authors would like to thank Prof. Mark Estelle (UCSD, San Diego, CA, USA) and Prof
619 Jason Reed (UNC, Chapel Hill, NC, USA) for providing seeds of single and multiple mutants.
620 The authors also thank Prof. Judy Callis (UC, Davis, CA, USA) for providing Arabidopsis line
621 and the plasmid expressing *HA3-ARF1*. We also thank Hana Martinková for help with
622 phytohormone analyses. This work was supported by the Swedish Research Council (VR), the
623 Swedish Research Council for Research and Innovation for Sustainable Growth (VINNOVA),
624 the K. & A. Wallenberg Foundation, the Carl Trygger Foundation, the Carl Kempe Foundation,
625 the University of Picardie Jules Verne, the Regional Council of Picardie, the European Regional
626 Development Fund, and the Ministry of Education, Youth and Sports of the Czech Republic
627

628 (European Regional Development Fund-Project “Plants as a tool for sustainable global
629 development” no. CZ.02.1.01/0.0/0.0/16_019/0000827).

630

631 **ATHORS CONTRIBUTION**

632 A.L. and S.C. contributed equally to this work.

633 A.L., S.C., E.C., R.L.H., Z.R., O.N., F.J., D.I.P., I.P., A.R., L.G., L.B. performed or contributed
634 to the experiments. C.B., A.L., S.C. and E.C. designed the research and analyzed the data. C.B.
635 conceptualized and supervised the overall project. C.B. wrote the article with input from A.L..

636 All authors read and commented on the manuscript.

637

638

639

640 **REFERENCES**

641

642 **Arase, F., Nishitani, H., Egusa, M., Nishimoto, N., Sakurai, S., Sakamoto, N., and**
643 **Kaminaka, H.** (2012). IAA8 involved in lateral root formation interacts with the TIR1
644 auxin receptor and ARF transcription factors in *Arabidopsis*. *PLoS One* **7**:e43414.

645 **Bellini, C., Pacurar, D.I., and Perrone, I.** (2014). Adventitious roots and lateral roots:
646 similarities and differences. *Annu. Rev. Plant Biol.* **65**:639-666.

647 **Boer, D.R., Freire-Rios, A., van den Berg, W.A., Saaki, T., Manfield, I.W., Kepinski, S.,**
648 **Lopez-Vidrieo, I., Franco-Zorrilla, J.M., de Vries, S.C., Solano, R., et al.** (2014).
649 Structural basis for DNA binding specificity by the auxin-dependent ARF transcription
650 factors. *Cell* **156**:577-589.

651 **Calderon Villalobos, L.I., Lee, S., De Oliveira, C., Ivetac, A., Brandt, W., Armitage, L.,**
652 **Sheard, L.B., Tan, X., Parry, G., Mao, H., et al.** (2012). A combinatorial TIR1/AFB-
653 Aux/IAA co-receptor system for differential sensing of auxin. *Nat. Chem. Biol.* **8**:477-
654 485.

655 **Cecchetti, V., Altamura, M.M., Brunetti, P., Petrocelli, V., Falasca, G., Ljung, K.,**
656 **Costantino, P., and Cardarelli, M.** (2013). Auxin controls *Arabidopsis* anther
657 dehiscence by regulating endothecium lignification and jasmonic acid biosynthesis. *Plant*
658 *J.* **74**:411-422.

659 **Chapman, E.J., and Estelle, M.** (2009). Mechanism of auxin-regulated gene expression in
660 plants. *Annu. Rev. Genet.* **43**:265-285.

661 **Citovsky, V., Lee, L.Y., Vyas, S., Glick, E., Chen, M.H., Vainstein, A., Gafni, Y., Gelvin,**
662 **S.B., and Tzfira, T.** (2006). Subcellular localization of interacting proteins by
663 bimolecular fluorescence complementation in planta. *J. Mol. Biol.* **362**:1120-1131.

664 **De Rybel, B., Vassileva, V., Parizot, B., Demeulenaere, M., Grunewald, W., Audenaert,**
665 **D., Van Campenhout, J., Overvoorde, P., Jansen, L., Vanneste, S., et al.** (2010). A
666 novel aux/IAA28 signaling cascade activates GATA23-dependent specification of lateral
667 root founder cell identity. *Curr. Biol.* **20**:1697-1706.

668 **De Smet, I., Lau, S., Voss, U., Vanneste, S., Benjamins, R., Rademacher, E.H., Schlereth,**
669 **A., De Rybel, B., Vassileva, V., Grunewald, W., et al.** (2010). Bimodular auxin
670 response controls organogenesis in *Arabidopsis*. *Proc. Natl. Acad. Sci. U S A* **107**:2705-
671 2710.

672 **Dello Ioio, R., Nakamura, K., Moubayidin, L., Perilli, S., Taniguchi, M., Morita, M.T.,**
673 **Aoyama, T., Costantino, P., and Sabatini, S.** (2008). A genetic framework for the
674 control of cell division and differentiation in the root meristem. *Science* **322**:1380-1384.

675 **Dharmasiri, N., Dharmasiri, S., and Estelle, M.** (2005a). The F-box protein TIR1 is an auxin
676 receptor. *Nature* **435**:441-445.

677 **Dharmasiri, N., Dharmasiri, S., Weijers, D., Lechner, E., Yamada, M., Hobbie, L.,**
678 **Ehrismann, J.S., Jurgens, G., and Estelle, M.** (2005b). Plant development is regulated
679 by a family of auxin receptor F box proteins. *Dev. Cell.* **9**:109-119.

680 **Flokova, K., Tarkowska, D., Miersch, O., Strnad, M., Wasternack, C., and Novak, O.**
681 (2014). UHPLC-MS/MS based target profiling of stress-induced phytohormones.
682 *Phytochemistry* **105**:147-157.

683 **Fukaki, H., Tameda, S., Masuda, H., and Tasaka, M.** (2002). Lateral root formation is
684 blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of
685 *Arabidopsis*. *Plant J.* **29**:153-168.

686 **Fulop, K., Pettko-Szandtner, A., Magyar, Z., Miskolczi, P., Kondorosi, E., Dudits, D., and**
687 **Bako, L.** (2005). The *Medicago* CDKC;1-CYCLINT;1 kinase complex phosphorylates
688 the carboxy-terminal domain of RNA polymerase II and promotes transcription. *Plant J.*
689 **42**:810-820.

690 **Geiss, G., Gutierrez, L., and Bellini, C.** (2009). Adventitious root formation: new insights
691 and perspective. In: *Root Development - Annual Plant Reviews* --Beeckman, T., ed.
692 London: A John Wiley & Sons, Ltd. 127-156.

693 **Gray, W.M., Kepinski, S., Rouse, D., Leyser, O., and Estelle, M.** (2001). Auxin regulates
694 SCF(TIR1)-dependent degradation of AUX/IAA proteins. *Nature* **414**:271-276.

695 **Guilfoyle, T.J., and Hagen, G.** (2007). Auxin response factors. *Curr. Opin. Plant Biol.* **10**:453-
696 460.

697 **Guilfoyle, T.J., and Hagen, G.** (2012). Getting a grasp on domain III/IV responsible for Auxin
698 Response Factor-IAA protein interactions. *Plant Sci.* **190**:82-88.

699 **Gutierrez, L., Bussell, J.D., Pacurar, D.I., Schwambach, J., Pacurar, M., and Bellini, C.**
700 (2009). Phenotypic plasticity of adventitious rooting in *Arabidopsis* is controlled by
701 complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA
702 abundance. *Plant Cell* **21**:3119-3132.

703 **Gutierrez, L., Mongelard, G., Flokova, K., Pacurar, D.I., Novak, O., Staswick, P.,**
704 **Kowalczyk, M., Pacurar, M., Demailly, H., Geiss, G., et al.** (2012). Auxin controls

705 Arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis. *Plant*
706 *Cell* **24**:2515-2527.

707 **Hamann, T., Benkova, E., Baurle, I., Kientz, M., and Jurgens, G.** (2002). The Arabidopsis
708 BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-
709 mediated embryo patterning. *Genes Dev.* **16**:1610-1615.

710 **Karimi, M., Inze, D., and Depicker, A.** (2002). GATEWAY vectors for Agrobacterium-
711 mediated plant transformation. *Trends Plant Sci.* **7**:193-195.

712 **Kepinski, S., and Leyser, O.** (2005). The Arabidopsis F-box protein TIR1 is an auxin receptor.
713 *Nature* **435**:446-451.

714 **Korasick, D.A., Westfall, C.S., Lee, S.G., Nanao, M.H., Dumas, R., Hagen, G., Guilfoyle,**
715 **T.J., Jez, J.M., and Strader, L.C.** (2014). Molecular basis for AUXIN RESPONSE
716 FACTOR protein interaction and the control of auxin response repression. *Proc. Natl.*
717 *Acad. Sci. U S A* **111**:5427-5432.

718 **Lakehal, A., and Bellini, C.** (2019). Control of adventitious root formation: insights into
719 synergistic and antagonistic hormonal interactions. *Physiol Plant.* **165**:90-100.

720 **Lavenus, J., Goh, T., Roberts, I., Guyomarc'h, S., Lucas, M., De Smet, I., Fukaki, H.,**
721 Beeckman, T., Bennett, M., and Laplaze, L. (2013). Lateral root development in
722 Arabidopsis: fifty shades of auxin. *Trends Plant Sci.* **18**:450-458.

723 **Magyar, Z., De Veylder, L., Atanassova, A., Bako, L., Inze, D., and Bogre, L.** (2005). The
724 role of the Arabidopsis E2FB transcription factor in regulating auxin-dependent cell
725 division. *Plant Cell* **17**:2527-2541.

726 **Meskiene, I., Baudouin, E., Schweighofer, A., Liwosz, A., Jonak, C., Rodriguez, P.L.,**
727 **Jelinek, H., and Hirt, H.** (2003). Stress-induced protein phosphatase 2C is a negative
728 regulator of a mitogen-activated protein kinase. *J. Biol. Chem.* **278**:18945-18952.

729 **Nagpal, P., Ellis, C.M., Weber, H., Ploense, S.E., Barkawi, L.S., Guilfoyle, T.J., Hagen,**
730 **G., Alonso, J.M., Cohen, J.D., Farmer, E.E., et al.** (2005). Auxin response factors
731 ARF6 and ARF8 promote jasmonic acid production and flower maturation. *Development*
732 **132**:4107-4118.

733 **Nanao, M.H., Vinos-Poyo, T., Brunoud, G., Thevenon, E., Mazzoleni, M., Mast, D., Laine,**
734 **S., Wang, S., Hagen, G., Li, H., et al.** (2014). Structural basis for oligomerization of
735 auxin transcriptional regulators. *Nat. Commun.* **5**:3617.

736 **Orosa-Puente, B., Leftley, N., von Wangenheim, D., Banda, J., Srivastava, A.K., Hill, K.,**
737 **Truskina, J., Bhosale, R., Morris, E., Srivastava, M., et al.** (2018). Root branching

738 toward water involves posttranslational modification of transcription factor ARF7.
739 *Science* **362**:1407-1410.

740 **Overvoorde, P.J., Okushima, Y., Alonso, J.M., Chan, A., Chang, C., Ecker, J.R., Hughes,**
741 **B., Liu, A., Onodera, C., Quach, H., et al.** (2005). Functional genomic analysis of the
742 AUXIN/INDOLE-3-ACETIC ACID gene family members in *Arabidopsis thaliana*. *Plant*
743 *Cell* **17**:3282-3300.

744 **Pacurar, D.I., Pacurar, M.L., Bussell, J.D., Schwambach, J., Pop, T.I., Kowalczyk, M.,**
745 **Gutierrez, L., Cavel, E., Chaabouni, S., Ljung, K., et al.** (2014a). Identification of new
746 adventitious rooting mutants amongst suppressors of the *Arabidopsis thaliana* superroot2
747 mutation. *J Exp Bot* **65**:1605-1618.

748 **Pacurar, D.I., Perrone, I., and Bellini, C.** (2014b). Auxin is a central player in the hormone
749 cross-talks that control adventitious rooting. *Physiol. Plant.* **151**:83-96.

750 **Parcy, F., Vernoux, T., and Dumas, R.** (2016). A Glimpse beyond Structures in Auxin-
751 Dependent Transcription. *Trends Plant Sci.* **21**:574-583.

752 **Parry, G., Calderon-Villalobos, L.I., Prigge, M., Peret, B., Dharmasiri, S., Itoh, H.,**
753 **Lechner, E., Gray, W.M., Bennett, M., and Estelle, M.** (2009). Complex regulation of
754 the TIR1/AFB family of auxin receptors. *Proc. Natl. Acad. Sci. U S A* **106**:22540-22545.

755 **Ramos, J.A., Zenser, N., Leyser, O., and Callis, J.** (2001). Rapid degradation of
756 auxin/indoleacetic acid proteins requires conserved amino acids of domain II and is
757 proteasome dependent. *Plant Cell* **13**:2349-2360.

758 **Salmon, J., Ramos, J., and Callis, J.** (2008). Degradation of the auxin response factor ARF1.
759 *Plant J.* **54**:118-128.

760 **Shani, E., Salehin, M., Zhang, Y., Sanchez, S.E., Doherty, C., Wang, R., Mangado, C.C.,**
761 **Song, L., Tal, I., Pisanty, O., et al.** (2017). Plant Stress Tolerance Requires Auxin-
762 Sensitive Aux/IAA Transcriptional Repressors. *Curr. Biol.* **27**:437-444.

763 **Sheng, L., Hu, X., Du, Y., Zhang, G., Huang, H., Scheres, B., and Xu, L.** (2017). Non-
764 canonical WOX11-mediated root branching contributes to plasticity in *Arabidopsis* root
765 system architecture. *Development* **144**:3126-3133.

766 **Sorin, C., Bussell, J.D., Camus, I., Ljung, K., Kowalczyk, M., Geiss, G., McKhann, H.,**
767 **Garcion, C., Vaucheret, H., Sandberg, G., et al.** (2005). Auxin and light control of
768 adventitious rooting in *Arabidopsis* require ARGONAUTE1. *Plant Cell* **17**:1343-1359.

769 **Sorin, C., Negroni, L., Balliau, T., Corti, H., Jacquemot, M.P., Davanture, M., Sandberg,**
770 **G., Zivy, M., and Bellini, C.** (2006). Proteomic analysis of different mutant genotypes

771 of *Arabidopsis* led to the identification of 11 proteins correlating with adventitious root
772 development. *Plant Physiol* **140**:349-364.

773 **Steffens, B., and Rasmussen, A.** (2016). The Physiology of Adventitious Roots. *Plant Physiol*
774 **170**:603-617.

775 **Sturn, A., Quackenbush, J., and Trajanoski, Z.** (2002). Genesis: cluster analysis of
776 microarray data. *Bioinformatics* **18**:207-208.

777 **Sun, J., Qi, L., Li, Y., Zhai, Q., and Li, C.** (2013). PIF4 and PIF5 transcription factors link
778 blue light and auxin to regulate the phototropic response in *Arabidopsis*. *Plant Cell*
779 **25**:2102-2114.

780 **Szemenyei, H., Hannon, M., and Long, J.A.** (2008). TOPLESS mediates auxin-dependent
781 transcriptional repression during *Arabidopsis* embryogenesis. *Science* **319**:1384-1386.

782 **Tan, X., Calderon-Villalobos, L.I., Sharon, M., Zheng, C., Robinson, C.V., Estelle, M.,**
783 **and Zheng, N.** (2007). Mechanism of auxin perception by the TIR1 ubiquitin ligase.
784 *Nature* **446**:640-645.

785 **Tatematsu, K., Kumagai, S., Muto, H., Sato, A., Watahiki, M.K., Harper, R.M., Liscum,**
786 **E., and Yamamoto, K.T.** (2004). MASSGU2 encodes Aux/IAA19, an auxin-regulated
787 protein that functions together with the transcriptional activator NPH4/ARF7 to regulate
788 differential growth responses of hypocotyl and formation of lateral roots in *Arabidopsis*
789 *thaliana*. *Plant Cell* **16**:379-393.

790 **Vernoux, T., Brunoud, G., Farcot, E., Morin, V., Van den Daele, H., Legrand, J., Oliva,**
791 **M., Das, P., Larrieu, A., Wells, D., et al.** (2011). The auxin signalling network translates
792 dynamic input into robust patterning at the shoot apex. *Mol. Syst. Biol.* **7**:508.

793 **Wang, H., Jones, B., Li, Z., Frasse, P., Delalande, C., Regad, F., Chaabouni, S., Latche,**
794 **A., Pech, J.C., and Bouzayen, M.** (2005). The tomato Aux/IAA transcription factor
795 IAA9 is involved in fruit development and leaf morphogenesis. *Plant Cell* **17**:2676-2692.

796 **Wang, R., and Estelle, M.** (2014). Diversity and specificity: auxin perception and signaling
797 through the TIR1/AFB pathway. *Curr. Opin. Plant Biol.* **21**:51-58.

798 **Weijers, D., Sauer, M., Meurette, O., Friml, J., Ljung, K., Sandberg, G., Hooykaas, P.,**
799 **and Offringa, R.** (2005). Maintenance of embryonic auxin distribution for apical-basal
800 patterning by PIN-FORMED-dependent auxin transport in *Arabidopsis*. *Plant Cell*
801 **17**:2517-2526.

802 **Weijers, D., and Wagner, D.** (2016). Transcriptional Responses to the Auxin Hormone. *Annu.*
803 *Rev. Plant Biol.* **67**:539-574.

804 **Zhai, Z., Jung, H.I., and Vatamaniuk, O.K.** (2009). Isolation of protoplasts from tissues of
805 14-day-old seedlings of *Arabidopsis thaliana*. *J. Vis. Exp.* **30**:1149
806
807

808 **FIGURE LEGENDS**

809
810

811 **Figure 1: TIR1 and AFB2 control adventitious root initiation by modulating *GH3.3*,
812 *GH3.5* and *GH3.6* expression**

813 (A) Average numbers of adventitious roots in *tir/afb* mutants. Seedlings were first etiolated in
814 the dark until their hypocotyls were 6 mm long and then transferred to the light for 7 days. Data
815 were obtained from 3 biological replicates; for each, data for at least 30 seedlings were pooled
816 and averaged. Errors bars indicate \pm SE. One-way ANOVA combined with Tukey's multiple
817 comparison post-test indicated that only mutations in the *TIR1* and *AFB2* genes significantly
818 affected the initiation of adventitious roots ($n > 30$; $P < 0.001$).

819 (B) Expression pattern of TIR1 and AFB2 proteins. GUS staining of *tir1-1pTIR1:cTIR1-GUS*
820 and *afb2-3AFB2:cAFB2-GUS* translational fusions (arranged from left to right in each panel)
821 in seedlings grown in the dark until their hypocotyls were 6 mm long (T0) and 9 h (T9) and 72
822 h (T72) after their transfer to the light. (a) and (b) Close-ups from hypocotyl regions shown for
823 T72.

824 (C) Quantification by qRT-PCR of *GH3.3*, *GH3.5* and *GH3.6* transcripts in hypocotyls of *tir1-1*
825 and *afb2-3* single mutants and the *tir1-1afb2-3* double mutant. mRNAs were extracted from
826 hypocotyls of seedlings grown in the dark until the hypocotyl reached 6 mm (T0) and after their
827 transfer to the light for 9 h or 72 h. The gene expression values are relative to the expression in
828 the wild type, for which the value was set to 1. Error bars indicate \pm SE obtained from three
829 independent biological replicates. One-way ANOVA combined with Dunnett's multiple
830 comparison test indicated that in some cases, the relative amount of mRNA was significantly
831 different from the wild type (denoted by *, $P < 0.001$; $n = 3$).

832
833

834 **Figure 2: TIR1 and AFB2 control adventitious root initiation by modulating jasmonate
835 homeostasis**

836 (A) to (D) The endogenous contents of free IAA (D), free SA (B), free JA (C) and JA-Ile (D)
837 were quantified in the hypocotyls of wild type Col-0, single mutants *tir1-1* and *afb2-3* and
838 double mutant *tir1-1afb2-3* seedlings grown in the dark until the hypocotyl reached 6 mm (T0)
839 and after their transfer to the light for 9 h (T9) or 72 h (T72). Error bars indicate \pm SD of six
840 biological replicates. One-way ANOVA combined with Dunnett's multiple comparison test
841 indicated that in some cases, values were significantly different from those of the wild-type
842 Col-0 (denoted by *, $P < 0.05$; $n = 6$).

843 (E) to (G) Relative transcript amount of genes involved in JA biosynthesis (*OPCL1*, *OPR3*,

844 *LOX2, AOC1, AOC2, AOC3, AOC4*). The transcript amount was assessed by qRT-PCR using
845 mRNAs extracted from hypocotyls of seedlings grown in the dark until the hypocotyl reached
846 6 mm (T0) and after their transfer to the light for 9 h (T9) or 72 h (T72). The gene expression
847 values are relative to the expression in the wild type, for which the value was set to 1. Error
848 bars indicate \pm SE obtained from three independent biological replicates. One-way ANOVA
849 combined with the Dunnett's multiple comparison test indicated that in some cases, the relative
850 amount of mRNA was significantly different from the wild type (denoted by *, $P < 0.001$; $n =$
851 3).

852
853 **Figure 3: *IAA6, IAA9* and *IAA17* are involved in the control of adventitious root initiation**
854
855 (A) Average numbers of ARs assessed in 15 *aux/iaa* knockout mutants. (B) Average numbers
856 of ARs in *iaa6-1*, *iaa6-2*, *iaa9-1*, *iaa9-2*, *iaa17-2*, *iaa17-3* and *iaa17-6* mutant alleles. (C)
857 Average numbers of ARs in single *iaa6-1*, *iaa9-1* and *iaa17-6* single, double and triple mutants.
858 (A) to (C) Seedlings were first etiolated in the dark until their hypocotyls were 6 mm long and
859 then transferred to the light for 7 days. Data were obtained from 3 biological replicates; for
860 each, data for at least 30 seedlings were pooled and averaged. Errors bars indicate \pm SE. In (A)
861 and (B), one-way ANOVA combined with Dunnett's multiple comparison post-test indicated
862 that in some cases, differences observed between the mutants and the corresponding wild type
863 were significant (denoted by *, $P < 0.001$, $n > 30$). In (C), one-way ANOVA combined with
864 Tukey's multiple comparison post-test indicated significant differences (denoted by different
865 letters, $P < 0.001$, $n > 30$)

866 (D) to (H) Expression pattern of *IAA6*, *IAA9* and *IAA17* during the initial steps of AR formation.
867 GUS staining of *promIAA6:GUS*, *promIAA9:GUS* and *promIAA17:GUS* (arranged from left to
868 right in each panel) in seedlings grown in the dark until their hypocotyls were 6 mm long (D),
869 after additional 48 h (E) and 72 h (G) after in the dark, and 48 h (F) and 72 h (H) after their
870 transfer to the light. Bars = 5 mm.

871
872 **Figure 4: *IAA6, IAA9* and *IAA17* are involved in the control of adventitious root initiation**
873 **upstream of *GH3.3*, *GH3.5* and *GH3.6***

874 (A) Relative transcript amount of *GH3.3*, *GH3.5*, *GH3.6*, *GH3.10* and *GH3.11* genes in
875 hypocotyls of *iaa4-1*, *iaa6-1*, *iaa9-1* and *iaa17-6* single mutants.
876 (B) Relative transcript amount of *IAA6*, *IAA9* and *IAA17* genes in hypocotyls of *iaa4-1*, *iaa6-1*,
877 *iaa9-1* and *iaa17-6* single mutants.
878 In (A) and (B), mRNAs were extracted from hypocotyls of seedlings grown in the dark until

879 the hypocotyl reached 6 mm and then transferred to the light for 72 h. Gene expression values
880 are relative to expression in the wild type, for which the value was set to 1. Error bars indicate
881 \pm SE obtained from three independent biological replicates. One-way ANOVA combined with
882 Dunnett's multiple comparison test indicated that in some cases, the relative amount of mRNA
883 was significantly different from the wild type (denoted by *, $P < 0.001$; $n = 3$).

884

885 **Figure 5: IAA6, IAA9 and IAA17 repressor proteins physically interact with ARF6 and/or ARF8,
886 while ARF6 interacts with itself to form a homodimer**

887 (A) to (E) Co-immunoprecipitation (CoIP) assay. *Arabidopsis* protoplasts were transfected with
888 a HA₃-tagged version of *IAA6*, *IAA9* or *IAA17* constructs and/or a c-Myc₃-tagged version of
889 *ARF6* or *ARF8* constructs. Proteins were immunoprecipitated with anti-Myc antibodies and
890 submitted to anti-cMyc protein (lower panel) to confirm the presence of the ARF protein and
891 to anti-HA gel-blot analysis to reveal the IAA partner (top panel). HA₃-IAA6-cMyc-ARF6 (A),
892 HA₃-IAA6-cMyc-ARF8 (B), HA₃-IAA9-cMyc-ARF8 (C), HA₃-IAA17-cMyc-ARF6 (D),
893 HA₃-IAA17-cMyc-ARF6 (E).

894 (F) to (H) *Arabidopsis* protoplasts were transfected with HA₃-tagged and c-Myc₃-tagged
895 versions of *ARF6* and/or *ARF8*. Proteins were immunoprecipitated with anti-HA antibodies and
896 submitted to anti-HA protein (top panel) to confirm the presence of the ARF protein and to anti-
897 cMyc antibody to reveal the ARF6 or ARF8 partner (top panel). Only ARF6 homodimer could
898 be detected (F).

899 (I) to (P) Confirmation of the interaction by bimolecular fluorescence complementation
900 experiments (BiFC). Only *Arabidopsis* mesophyll protoplasts with intact plasma membranes,
901 shown with bright-field light microscopy (left photo in each panel), tested positive for the
902 presence of yellow fluorescence, indicating protein-protein interaction due to assembly of the
903 split YFP, shown by confocal microscopy (right photo in each panel). (I) Cotransformation of
904 10 μ g nEYFP-IAA6 and 10 μ g ARF6-cEYFP into protoplasts generated yellow fluorescence
905 (false-colored green) at the nucleus surrounded by chloroplast autofluorescence (false-colored
906 red). Fluorescence was also observed after cotransformation of 10 μ g of nEYFP-IAA6 and
907 cEYFP-ARF8 (J); nEYFP-IAA9 and cEYFP-ARF8 (K); nEYFP-IAA17 and cEYFP-ARF6 (L);
908 nEYFP-IAA17 and cEYFP-ARF8 (M), and nEYFP-ARF6 and cEYFP-ARF6 (N). No
909 fluorescence was detected after cotransformation of 10 μ g of nEYFP-ARF6 and cEYFP-ARF8
910 (O) or nEYFP-ARF8 and cEYFP-ARF8 (P). Bars = 10 μ m.

911

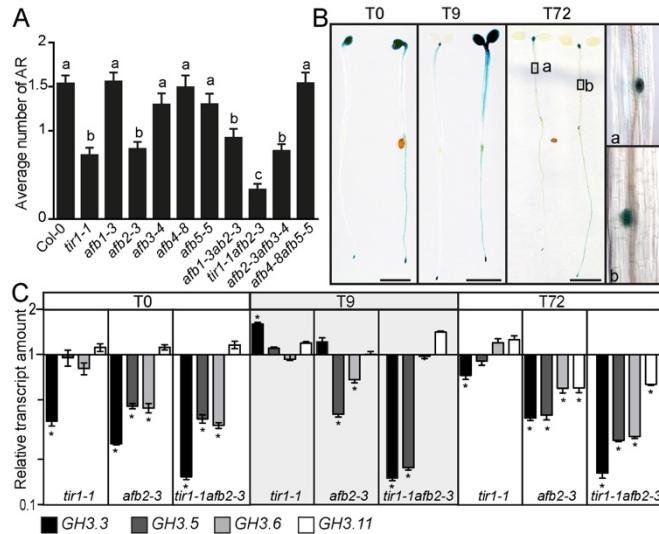
912 **Figure 6: ARF6, ARF8 and ARF17 are unstable proteins whose degradation is**
913 **proteasome dependent**

914 (A) to (D) Degradation kinetics of ARF6, ARF8 and ARF17 proteins. Top panel: representative
915 anti-HA or anti-c-Myc western blot performed on total protein from wild-type Col-0 protoplasts
916 transformed with 5 µg of plasmid DNA expressing HA₃- or cMyc₃- tagged proteins and mock
917 treated with DMSO (-) or treated with 200 µg/ml of cycloheximide. Lower panel: Amido Black
918 staining of the membrane indicating protein loading.

919 (E) Effect of MG132 on the degradation of the tagged ARF proteins in protoplasts. Top panel:
920 representative anti-HA western blot performed on total protein from wild-type Col-0
921 protoplasts transformed with 5 µg of plasmid DNA expressing HA₃- or cMyc₃- ARF6, ARF8
922 and ARF17 or 15 µg of plasmid DNA expressing HA₃-ARF1 treated with MG132 (+) or mock
923 treated with DMSO (-) for 2 h. Lower panel: Amido Black staining of the membrane indicating
924 protein loading.

925 (F) Effect of MG132 on the degradation of the tagged ARF proteins *in Planta*. Top panel:
926 representative western blot performed on total protein extracted from 7-day-old seedlings
927 expressing HA₃-ARF1, Myc₃-ARF6, Myc₃-ARF8 or Myc₃-ARF17 treated with MG132 (+) or
928 mock treated with DMSO (-) for 2 h. Lower panel: Amido Black staining of the membrane
929 indicating protein loading.

930 ImageJ (<https://imagej.nih.gov/ij/>) was used for densitometry imaging to analyze intensity of
931 western blot bands. The ARFs staining intensities were quantified with the area of the major
932 pic of each cMyc- or HA-tagged versions of the proteins (above 100kDa) and divided by the
933 density of the corresponding major loading protein. Relative target protein accumulation at t0
934 for the CHX treatment (A,B,C and D) or no MG132 (E and F) was set to 1 and then compared
935 across all lanes, to assess changes across samples and ARFs stability.


936

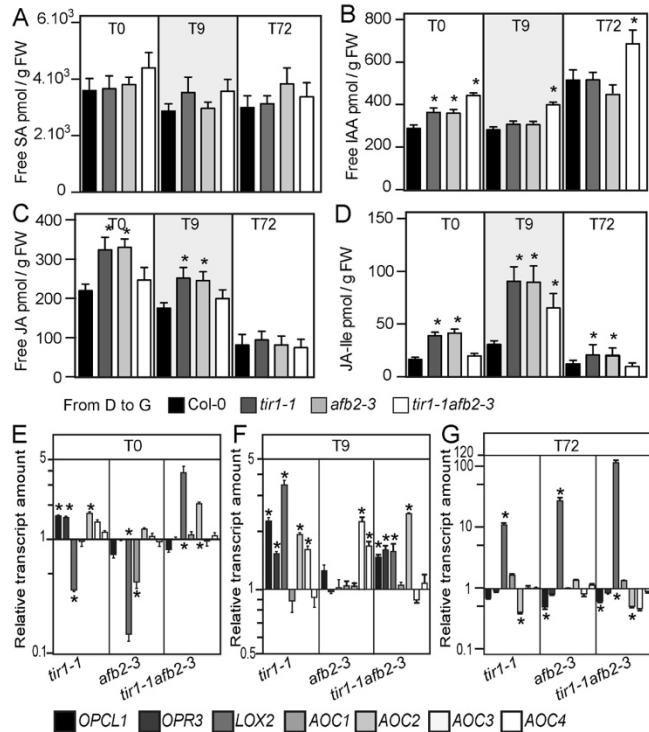
937 **Figure 7: Molecular framework for TIR1/AFB-Aux/IAA-dependent auxin sensing**
938 **controlling adventitious rooting in Arabidopsis**

939 The F-box proteins TIR1 and AFB2 control JA homeostasis by promoting the degradation of
940 IAA6, IAA9 and IAA17 protein that repress the transcriptional activity of ARF6 and ARF8.
941 TIR1 protein has a dual role and also control JA biosynthesis through a pathway yet to be
942 identified.

943

944

945
946


947 **Figure 1: TIR1 and AFB2 control adventitious root initiation by modulating *GH3.3*,
948 *GH3.5* and *GH3.6* expression**

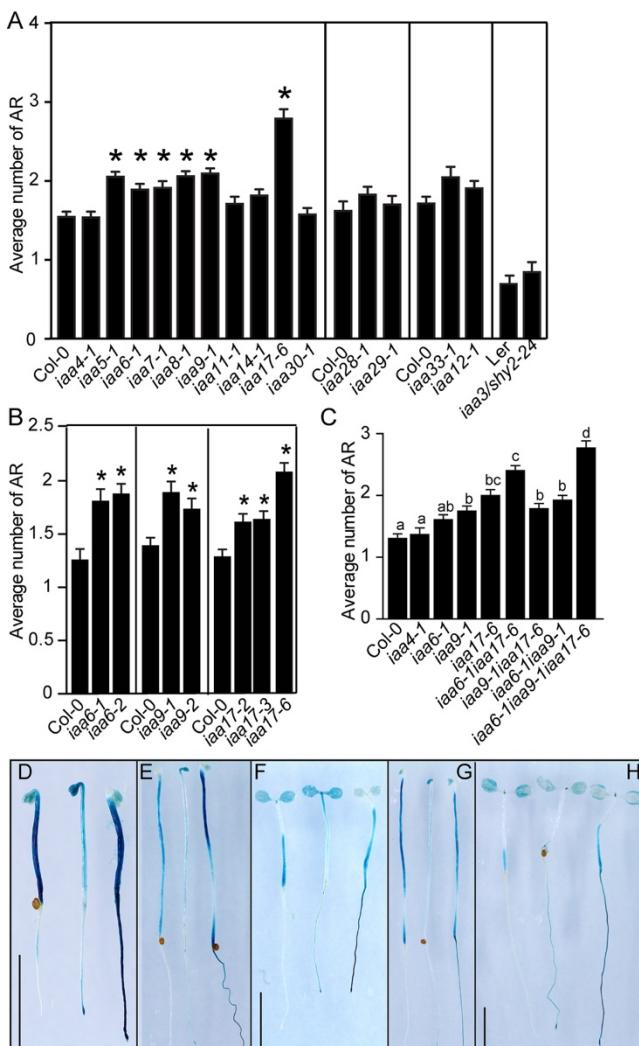
949 (A) Average numbers of adventitious roots in *tir*/*afb* mutants. Seedlings were first etiolated in
950 the dark until their hypocotyls were 6 mm long and then transferred to the light for 7 days. Data
951 were obtained from 3 biological replicates; for each, data for at least 30 seedlings were pooled
952 and averaged. Errors bars indicate \pm SE. One-way ANOVA combined with Tukey's multiple
953 comparison post-test indicated that only mutations in the *TIR1* and *AFB2* genes significantly
954 affected the initiation of adventitious roots ($n > 30$; $P < 0.001$).

955 (B) Expression pattern of TIR1 and AFB2 proteins. GUS staining of *tir1-1pTIR1:cTIR1-GUS*
956 and *afb2-3AFB2:cAFB2-GUS* translational fusions (arranged from left to right in each panel)
957 in seedlings grown in the dark until their hypocotyls were 6 mm long (T0) and 9 h (T9) and 72
958 h (T72) after their transfer to the light. (a) and (b) Close-ups from hypocotyl regions shown for
959 T72.

960 (C) Quantification by qRT-PCR of *GH3.3*, *GH3.5* and *GH3.6* transcripts in hypocotyls of *tir1-1*
961 and *afb2-3* single mutants and the *tir1-1afb2-3* double mutant. mRNAs were extracted from
962 hypocotyls of seedlings grown in the dark until the hypocotyl reached 6 mm (T0) and after their
963 transfer to the light for 9 h or 72 h. The gene expression values are relative to the expression in
964 the wild type, for which the value was set to 1. Error bars indicate \pm SE obtained from three
965 independent biological replicates. One-way ANOVA combined with Dunnett's multiple
966 comparison test indicated that in some cases, the relative amount of mRNA was significantly
967 different from the wild type (denoted by *, $P < 0.001$; $n = 3$).

968
969
970

971
972


973 **Figure 2: TIR1 and AFB2 control adventitious root initiation by modulating jasmonate** 974 **homeostasis**

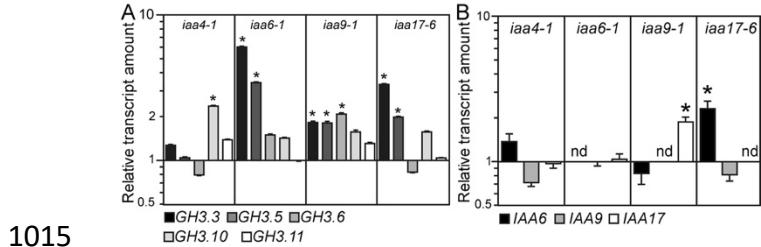
975 (A) to (D) The endogenous contents of free IAA (D), free SA (B), free JA (C) and JA-Ile (D)
976 were quantified in the hypocotyls of wild type Col-0, single mutants *tir1-1* and *afb2-3* and
977 double mutant *tir1-1afb2-3* seedlings grown in the dark until the hypocotyl reached 6 mm (T0)
978 and after their transfer to the light for 9 h (T9) or 72 h (T72). Error bars indicate \pm SD of six
979 biological replicates. One-way ANOVA combined with Dunnett's multiple comparison test
980 indicated that in some cases, values were significantly different from those of the wild-type
981 Col-0 (denoted by *, $P < 0.05$; $n = 6$).

982 (E) to (G) Relative transcript amount of genes involved in JA biosynthesis (*OPCL1*, *OPR3*,
983 *LOX2*, *AOC1*, *AOC2*, *AOC3*, *AOC4*). The transcript amount was assessed by qRT-PCR using
984 mRNAs extracted from hypocotyls of seedlings grown in the dark until the hypocotyl reached
985 6 mm (T0) and after their transfer to the light for 9 h (T9) or 72 h (T72). The gene expression
986 values are relative to the expression in the wild type, for which the value was set to 1. Error
987 bars indicate \pm SE obtained from three independent biological replicates. One-way ANOVA
988 combined with the Dunnett's multiple comparison test indicated that in some cases, the relative
989 amount of mRNA was significantly different from the wild type (denoted by *, $P < 0.001$; $n =$
990 3).

991
992

993

994


995 **Figure 3: *IAA6*, *IAA9* and *IAA17* are involved in the control of adventitious root initiation**

996
997 (A) Average numbers of ARs assessed in 15 *aux/iaa* knockout mutants. (B) Average numbers
998 of ARs in *iaa6-1*, *iaa6-2*, *iaa9-1*, *iaa9-2*, *iaa17-2*, *iaa17-3* and *iaa17-6* mutant alleles. (C)
999 Average numbers of ARs in single *iaa6-1*, *iaa9-1* and *iaa17-6* single, double and triple mutants.
1000 (A) to (C) Seedlings were first etiolated in the dark until their hypocotyls were 6 mm long and
1001 then transferred to the light for 7 days. Data were obtained from 3 biological replicates; for
1002 each, data for at least 30 seedlings were pooled and averaged. Errors bars indicate \pm SE. In (A)
1003 and (B), one-way ANOVA combined with Dunnett's multiple comparison post-test indicated
1004 that in some cases, differences observed between the mutants and the corresponding wild type
1005 were significant (denoted by *, $P < 0.001$, $n > 30$). In (C), one-way ANOVA combined with
1006 Tukey's multiple comparison post-test indicated significant differences (denoted by different
1007 letters, $P < 0.001$, $n > 30$)

1008 (D) to (H) Expression pattern of *IAA6*, *IAA9* and *IAA17* during the initial steps of AR formation.

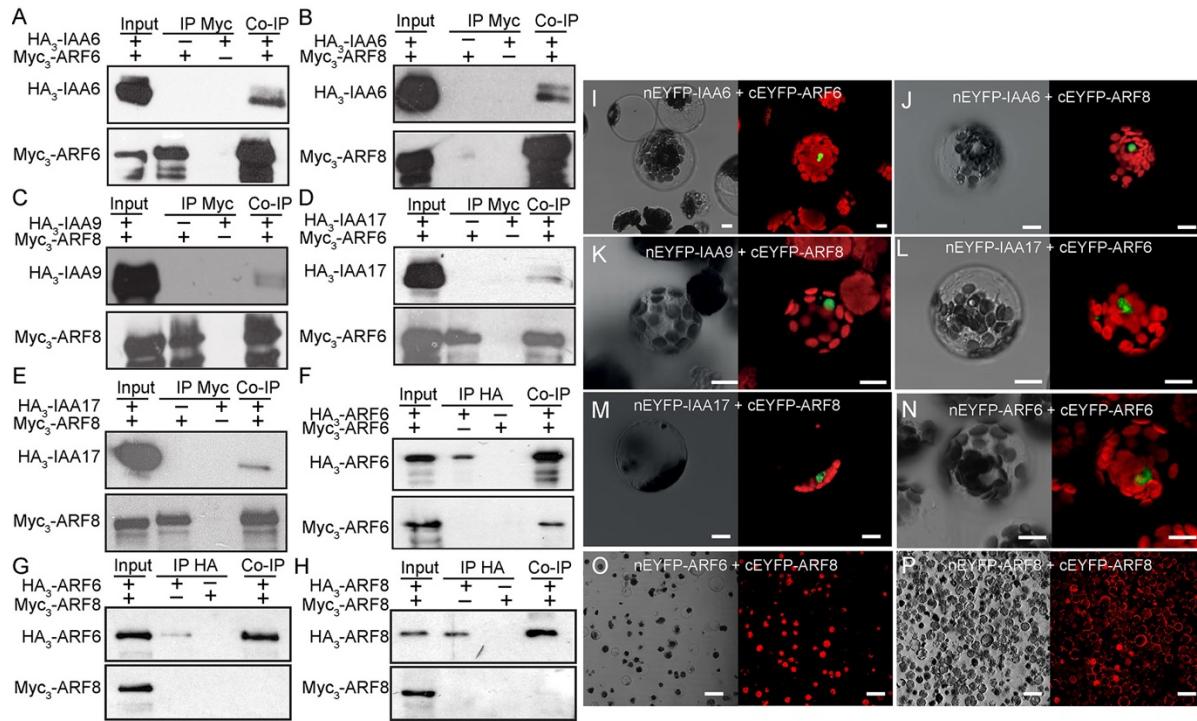
1009 GUS staining of *promIAA6:GUS*, *promIAA9:GUS* and *promIAA17:GUS* (arranged from left to
1010 right in each panel) in seedlings grown in the dark until their hypocotyls were 6 mm long (D),
1011 after additional 48 h (E) and 72 h (G) after in the dark, and 48 h (F) and 72 h (H) after their
1012 transfer to the light. Bars = 5 mm.

1013
1014

1015

1016

1017 **Figure 4: *IAA6*, *IAA9* and *IAA17* are involved in the control of adventitious root initiation**
1018 **upstream of *GH3.3*, *GH3.5* and *GH3.6***


1019 (A) Relative transcript amount of *GH3.3*, *GH3.5*, *GH3.6*, *GH3.10* and *GH3.11* genes in
1020 hypocotyls of *iaa4-1*, *iaa6-1*, *iaa9-1* and *iaa17-6* single mutants.

1021 (B) Relative transcript amount of *IAA6*, *IAA9* and *IAA17* genes in hypocotyls of *iaa4-1*, *iaa6-*
1022 *iaa9-1* and *iaa17-6* single mutants.

1023 In (A) and (B), mRNAs were extracted from hypocotyls of seedlings grown in the dark until
1024 the hypocotyl reached 6 mm and then transferred to the light for 72 h. Gene expression values
1025 are relative to expression in the wild type, for which the value was set to 1. Error bars indicate
1026 \pm SE obtained from three independent biological replicates. One-way ANOVA combined with
1027 Dunnett's multiple comparison test indicated that in some cases, the relative amount of mRNA
1028 was significantly different from the wild type (denoted by *, $P < 0.001$; $n = 3$).

1029

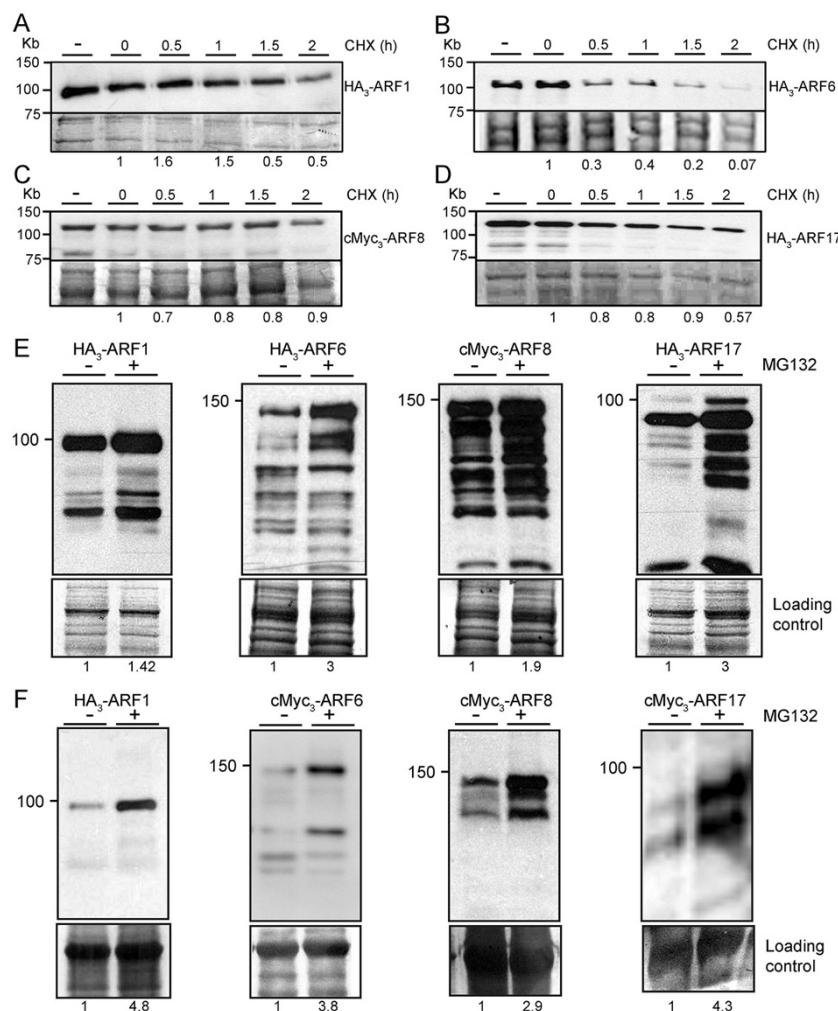
1030

1031

1032

1033 **Figure 5: IAA6, IAA9 and IAA17 repressor proteins physically interact with ARF6 and/or ARF8,
1034 while ARF6 interacts with itself to form a homodimer**

1035 (A) to (E) Co-immunoprecipitation (CoIP) assay. Arabidopsis protoplasts were transfected with
1036 a HA₃-tagged version of *IAA6*, *IAA9* or *IAA17* constructs and/or a c-Myc₃-tagged version of
1037 *ARF6* or *ARF8* constructs. Proteins were immunoprecipitated with anti-Myc antibodies and
1038 submitted to anti-cMyc protein (lower panel) to confirm the presence of the ARF protein and
1039 to anti-HA gel-blot analysis to reveal the IAA partner (top panel). HA₃-IAA6-cMyc-ARF6 (A),
1040 HA₃-IAA6-cMyc-ARF8 (B), HA₃-IAA9-cMyc-ARF8 (C), HA₃-IAA17-cMyc-ARF6 (D),
1041 HA₃-IAA17-cMyc-ARF6 (E).


1042 (F) to (H) Arabidopsis protoplasts were transfected with HA₃-tagged and c-Myc₃-tagged
1043 versions of *ARF6* and/or *ARF8*. Proteins were immunoprecipitated with anti-HA antibodies and
1044 submitted to anti-HA protein (top panel) to confirm the presence of the ARF protein and to anti-
1045 cMyc antibody to reveal the ARF6 or ARF8 partner (top panel). Only ARF6 homodimer could
1046 be detected (F).

1047 (I) to (P) Confirmation of the interaction by bimolecular fluorescence complementation
1048 experiments (BiFC). Only Arabidopsis mesophyll protoplasts with intact plasma membranes,
1049 shown with bright-field light microscopy (left photo in each panel), tested positive for the
1050 presence of yellow fluorescence, indicating protein-protein interaction due to assembly of the
1051 split YFP, shown by confocal microscopy (right photo in each panel). (I) Cotransformation of
1052 10 µg nEYFP-IAA6 and 10 µg ARF6-cEYFP into protoplasts generated yellow fluorescence

1053 (false-colored green) at the nucleus surrounded by chloroplast autofluorescence (false-colored
1054 red). Fluorescence was also observed after cotransformation of 10 μ g of nEYFP-IAA6 and
1055 cEYFP-ARF8 (J); nEYFP-IAA9 and cEYFP-ARF8 (K); nEYFP-IAA17 and cEYFP-ARF6 (L);
1056 nEYFP-IAA17 and cEYFP-ARF8 (M), and nEYFP-ARF6 and cEYFP-ARF6 (N). No
1057 fluorescence was detected after cotransformation of 10 μ g of nEYFP-ARF6 and cEYFP-ARF8
1058 (O) or nEYFP-ARF8 and cEYFP-ARF8 (P). Bars = 10 μ m.
1059
1060

1061

1062

1063

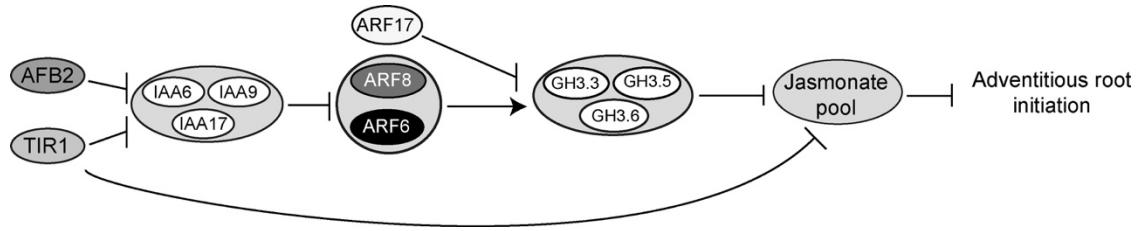
1064 **Figure 6: ARF6, ARF8 and ARF17 are unstable proteins whose degradation is**
1065 **proteasome dependent**

1066 (A) to (D) Degradation kinetics of ARF6, ARF8 and ARF17 proteins. Top panel: representative
1067 anti-HA or anti-c-Myc western blot performed on total protein from wild-type Col-0 protoplasts
1068 transformed with 5 µg of plasmid DNA expressing HA₃- or cMyc3- tagged proteins and mock
1069 treated with DMSO (-) or treated with 200 µg/ml of cycloheximide. Lower panel: Amido Black
1070 staining of the membrane indicating protein loading.

1071 (E) Effect of MG132 on the degradation of the tagged ARF proteins in protoplasts. Top panel:
1072 representative anti-HA western blot performed on total protein from wild-type Col-0
1073 protoplasts transformed with 5 µg of plasmid DNA expressing HA₃- or cMyc3- ARF6, ARF8
1074 and ARF17 or 15 µg of plasmid DNA expressing HA₃-ARF1 treated with MG132 (+) or mock
1075 treated with DMSO (-) for 2 h. Lower panel: Amido Black staining of the membrane indicating
1076 protein loading.

1077 (F) Effect of MG132 on the degradation of the tagged ARF proteins *in Planta*. Top panel:
1078 representative western blot performed on total protein extracted from 7-day-old seedlings
1079 expressing HA₃-ARF1, Myc₃-ARF6, Myc₃-ARF8 or Myc₃-ARF17 treated with MG132 (+) or
1080 mock treated with DMSO (-) for 2 h. Lower panel: Amido Black staining of the membrane
1081 indicating protein loading.

1082 ImageJ (<https://imagej.nih.gov/ij/>) was used for densitometry imaging to analyze intensity of
1083 western blot bands. The ARFs staining intensities were quantified with the area of the major
1084 pic of each cMyc- or HA-tagged versions of the proteins (above 100kDa) and divided by the
1085 density of the corresponding major loading protein. Relative target protein accumulation at t0
1086 for the CHX treatment (A,B,C and D) or no MG132 (E and F) was set to 1 and then compared
1087 across all lanes, to assess changes across samples and ARFs stability.


1088

1089

1090

1091

1092

1093

1094

Figure 7: Molecular framework for TIR1/AFB-Aux/IAA-dependent auxin sensing controlling adventitious rooting in *Arabidopsis*

The F-box proteins TIR1 and AFB2 control JA homeostasis by promoting the degradation of IAA6, IAA9 and IAA17 protein that repress the transcriptional activity of ARF6 and ARF8. TIR1 protein has a dual role and also control JA biosynthesis through a pathway yet to be identified.

1101

1102

1103

1104

1105