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ABSTRACT 

Chromatin structure has a major influence on the cell-specific density of somatic 

mutations along the cancer genome. Here, we present a pan-cancer study in which we 

searched for the putative cancer cell-of-origin of 2,550 whole genomes, representing 32 

cancer types by matching their mutational landscape to the regional patterns of 

chromatin modifications ascertained in 104 normal tissue types. We found that, in 

almost all cancer types, the cell-of-origin can be predicted solely from their DNA 

sequences. Our analysis validated the hypothesis that high-grade serous ovarian 

cancer originates in the fallopian tube and identified distinct origins of breast cancer 

subtypes. We also demonstrated that the technique is equally capable of identifying the 

cell-of-origin for a series of 2,044 metastatic samples from 22 of the tumor types 

available as primaries. Moreover, cancer drivers, whether inherited or acquired, reside 

in active chromatin regions in the respective cell-of-origin. Taken together, our findings 

highlight that many somatic mutations accumulate while the chromatin structure of the 

cell-of-origin is maintained and that this historical record, captured in the DNA, can be 

used to identify the often elusive cancer cell-of-origin. 
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INTRODUCTION 

One important, but largely unanswered, question in cancer biology is the identity of the 

normal cell (i.e., cell-of-origin, COO) from which the tumor is derived. While tumor 

morphology usually bears some resemblance to the originating tissue, histological 

similarity is often too broad a parameter to distinguish between molecularly and 

clinically distinct cancer subtypes1. Accordingly, knowledge of the precise nature of the 

cancer cell type of origin can help better understand the potential of certain normal cell 

types to transform and initiate cancer, as well as the association of the COO with tumor 

subtypes and treatment sensitivities. Current knowledge of the cancer COO is mostly 

based on mouse models2,3. However, studies that use human tissue are particularly 

valuable since they directly capture the neoplastic process and overcome limitations 

introduced by interspecies differences4. 

  

It is well established that neoplastic transformation is driven by somatic mutations5. A 

subset of mutations is present at the time of initial cancer growth and common to all 

cancer cells (‘clonal’). Alterations in genes (‘drivers’) critical to the development of 

cancer arise on a background of random mutations (‘passengers’) that accumulate over 

time. It has been found that the set of driver genes vary substantially across tumor 

types6. Likewise the phenotypic effects of defects in most inherited cancer susceptibility 

genes (e.g., BRCA1/2 genes) are limited to specific tissue types7. Both these 

observations suggest a cell type-specific vulnerability to mutations.  
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One major determinant of a cell phenotype is its chromatin structure, which differs 

considerably across tissue types and cell differentiation stages8,9. The chromatin 

structure, in turn, is governed by epigenetic processes, including DNA and histone 

modifications, which greatly influence the rate at which background mutations 

accumulate in the cell. 

 

In our previous proof-of-concept study10, we developed a framework for understanding 

how different epigenetic features are associated with mutagenesis in a cell type-specific 

manner. This work described a method that quantifies the ability to predict the 

mutational density along the cancer genome from the profile of epigenetic modifications 

in normal cell types. Two main observations were used to guide our discovery: (i) 

mutations are not evenly distributed along chromosomes and across tumor types11,12; 

and (ii) mutation densities are associated with regional histone modifications, DNA 

accessibility and DNA replication timing11,13-15.  

  

In the present study, we applied our method to identify the likely COO across multiple 

cancer types and asked whether the characterization of cancer origins from the 

distribution of somatic mutations is universally applicable to all common cancer types 

and subtypes. The availability of the large compendium of tumor mutation and normal 

chromatin data enabled us to extend our previous investigation in three key aspects: (i) 

to quadruple the number of cancer types from 8 to 32 and increase more than tenfold 

the number of individual samples analyzed from 173 to 2,550; (ii) to include tumors 

known to develop along a metaplasia-carcinoma sequence (i.e., conversion of one 
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differentiated cell type into another differentiated cell type before becoming a bona fide 

cancer); and (iii) to study cancers that arise in the same organ but manifest as distinct 

subtypes. In addition, we demonstrate that the chromatin structure of the COO can also 

be detected by analyzing the mutational distribution in metastases, a result that can 

have clinical implications. Finally, we show that there is an association between regions 

of open chromatin in the relevant COO and genomic loci of cancer risk alleles and 

somatic driver genes. 
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RESULTS 

To search for the COO across a broad panel of tumor types, we utilized the 

ICGC/TCGA Pan-cancer Analysis of Whole Genomes (PCAWG) mutation data16 across 

2,550 samples from 32 cancer types (Fig. 1 left, Extended Data Table 1). 

Furthermore, we gathered 98 complete chromatin profiles of normal tissue types from 

the Roadmap Epigenomics Consortium17, the Encyclopedia of DNA Elements 

(ENCODE18) and the International Human Epigenome Consortium (IHEC19) as well as 6 

partial profiles from additional publications20,21. Overall, ChIP-sequencing (ChIP-seq) 

data were available for 104 normal tissue types including distinct cellular differentiation 

stages from the brain, blood, breast and prostate (Fig. 1 right, Extended Data Fig. 1, 

Extended Data Table 2). For our main analysis we chose six histone modifications due 

to their broad availability across almost all tissue types (see Methods for details). 

 

The number of individual tumors varied across cancer types, from a minimum of 10 

samples for acute myeloid leukemia (Myeloid−AML) to a maximum of 314 samples for 

hepatocellular carcinoma (Liver-HCC). Likewise, the mutational burden varied across 

cancer types from a high mutational burden in melanoma to a low mutational burden in 

non-diffuse glioma. To account for these differences in sampling and mutational burden 

between cancer types, we aggregated the somatic mutation data across all samples 

from a given cancer type and generated an ‘aggregated tumor profile’ per tumor type. 

However, to quantify certain aspects of our analysis, we also used individual tumors 

when appropriate. 
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Figure 1. Overview of tumor and normal tissue types. Schematic illustrations depict the 
anatomical sites of 32 cancer types (left) and 104 normal tissue types (right), color-coded 
according to Extended Data Tables 1, 2. Blank spaces throughout the cartoons depict 
unavailability of appropriate data. Cases with biological replicates are indicated by an asterisk 
with numbers depicting each individual replicate; organs for which epigenetic features are 
available of the respective tumor type are marked with a hashtag. The best-matched normal 
tissue type for each tumor type as detected by Random Forest regression is indicated by 
joined lines. Random Forest regression was additionally performed on a subset of tissues for 
high-grade serous Ovary-AdenoCA and Prost-AdenoCA identifying a best match on a more 
detailed level. Abbreviations: vHMEC, variant human mammary epithelial cells; Pr, primary; Th 
cells, T helper cells; PB, peripheral blood; CB; cord blood; HSC, hematopoietic stem cells; 
MSC, mesenchymal stem cells; PMA, phorbol myristate acetate; NK cells, natural killer cells; 
Treg cells, regulatory T cells. 
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Based on our earlier work10, we used random forest regression to model the distribution 

of somatic mutations in 1Mb windows based on the density of ChIP-seq reads derived 

from each of the normal tissues. To quantify the accuracy of our models, we measured 

the correlation between the number of predicted and observed mutations (R2 or % 

variance explained). While previously we trained one multivariate model with the 

chromatin marks from all tissue types and identified the most significant coefficient, here 

we trained, for each tumor type, 98 different models using the chromatin profiles of each 

normal tissue type. We then determined the candidate COO by identifying the model 

with the best predictive power. To train the models, we used the same six core ChIP-

seq tracks available for all Roadmap and IHEC tissues to ensure comparability between 

models and cancer types. This modified approach allowed us to add additional normal 

tissue types and easily identify the best-matching tissue. For example, the two best-

matching chromatin profiles for uterine adenocarcinoma (Uterus-AdenoCA) are derived 

from endometrial cells (follicular and secretory), and the best-matching normal tissue for 

pancreatic ductal adenocarcinoma (Panc-AdenoCA) is stomach mucosa (Fig. 2).  

  

The best-matching cell type for most cancer types is the expected normal cellular 

counterpart 

By applying our methodology, we identified the best-matching normal cell type (of the 

98) to each of the aggregated mutational profiles of 32 tumor types. In 23 of the 32 

tumor types, we matched the chromatin profiles of their expected normal cellular 

counterparts (e.g., melanoma best matched melanocytes) We found that the best-

matched normal cellular counterpart explained significantly more variance than the next- 
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best histologically unrelated cell type in 20 out of the 23 tumor types (all p-values < 

0.03, WMW test; solid lines in Fig. 3a, Extended Data Fig. 2, Extended Data Table 1).  

 

Not all best-matched models (among the 23 tumor types) had the same predictive 

power, with variance explained ranging between 19 and 87% (median = 69.6%, 95% CI: 

51-69%). Consistent with our previous work10 the overall mutation frequency in the 

aggregated profile greatly influenced the ability to build an accurate model. Aggregated 

profiles with above the median mutation frequency (≥ 184/Mb) typically had above the 

median variance explained (≥62%; p = 0.01, Fisher's exact test). We next checked 

whether the clonal status of mutations had an influence on the variance explained. First, 

we compared predictions based only on the clonal mutations22 (on average 70.8% of 

somatic mutations) to predictions based on all the mutations (clonal and sub-clonal) and 

found similar values of variance explained (Extended Data Fig. 3a). However, when we 

Figure 2. The chromatin composition of the COO is a major determinant of cancer 
mutation distribution and provides insights regarding tumor origins. (a,e) Cartoons 
depict our strategy using normal chromatin profiles and cancer mutation profiles in Uterus-
AdenoCA and Panc-AdenoCA. (b,f) Mutation counts of aggregated tumor profiles in 1Mb 
windows are shown alongside six histone modification profiles derived from the respective best 
match (in normalized reverse scale; peaks correspond to less accessible chromatin and vice 
versa). (c,g) Random Forest regression was used to predict the tumor mutation distribution 
from chromatin marks of normal cells. Scatterplots show the correlation between observed 
mutation counts and those predicted from chromatin marks. The overall prediction accuracy is 
reported by the average R2 value between the predicted and observed mutation profiles across 
the 10-fold cross validation. (d,h) For each cancer type, individual models were trained on 
chromatin marks from 98 cell types. The cell type that fit the model with the highest prediction 
accuracy was defined as the best match. Solid horizontal lines indicate performance of the 
second-best model based on chromatin marks from histologically unrelated cells; dashed 
horizontal lines depict the variance explained based on chromatin marks that represent the 
median tissue. Bars are colored according to Extended Data Table 2. The right-hand 
(secondary) axis shows the robust ẑ-score.  
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contrasted predictions based on clonal mutations to predictions based on sub-clonal 

mutations (controlling for the number of mutations), the variance explained by the 

models that used clonal mutations was typically significantly higher than those based on 

sub-clonal mutations, suggesting that earlier somatic mutations are that ones that 

capture the information about the COO (Extended Data Fig. 3b).  

 

After analyzing tumor types based on their aggregated tumor profiles, we tested 

whether the COO discovered above for the 23 tumor types could also be identified 

using individual tumors, even in the setting of far fewer mutations available for modeling 

(Fig. 3b). Gratifyingly, the COO determined by the aggregated tumor profile was among 

the top three best matches for more than 50% of individual tumors in 15/23 cancer 

types (Extended Data Fig. 4). As expected, these 15 tumor types were enriched with 

tumors containing higher mutation frequencies (p = 1.2x10-26, WMW test; Extended 

Data Fig. 5). Likewise, a larger number of individual tumors matched the expected 

normal cell in tumor types with higher variance explained when using the aggregated 

tumor profiles (r = 0.59, p = 4x10-4, Pearson correlation coefficient; Extended Data Fig. 

6). Taken together, our data indicate that the memory of historical cell lineage is 

retained by the tumor and can be discovered from the somatic mutation density of 

tumors identifying the often elusive cancer COO. 
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Figure 3. Chromatin marks predict tumor origins for aggregated and individual tumor 
mutation profiles. (a) For each cancer type, we trained models on histone modifications 
from 98 normal cell types to predict the mutation density in 1Mb windows of aggregated 
tumor profiles. Bar plots show the variance explained by the best performing model, 
identified via ten-fold cross validation. Solid vertical lines indicate performance of the second-
best model based on chromatin marks from histologically unrelated cells; dashed vertical 
lines depict the variance explained based on chromatin marks that represent the median 
tissue. The grey area indicates ± Median Absolute Deviation (MAD). Bars are colored 
according to the best match. Symbols identify types of best matches. (b) Barplots show the 
proportion of individual tumors (red) in which the prediction on an individual level matches 
the prediction based on aggregated tumor profiles. In some cases, chromatin profiles were 
grouped (see Methods, Extended Data Fig. 1)  
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Histologically related tissue types serve as a proxy for the cell-of-origin  

Next, we sought to understand and define the cellular origins of the remaining 9 tumor 

types (out of the aggregated 32) that did not match their expected normal cellular 

counterpart. In 5 of the 9 tumor types, our analysis indicated that the best match was a 

histologically related (or ‘proxy’) tissue type (Fig. 3a), consistent with the previous 

observation of similar chromatin profiles17. The three squamous differentiated tumor 

types cervix (Cervix−SCC), head and neck (Head-SCC) and lung (Lung-SCC) do not 

have a direct normal tissue counterpart Roadmap, ENCODE or IHEC projects. 

However, their best match is another squamous-lined tissue, the esophagus that we did 

have epigenetic profiles for (Extended Data Fig. 2). This convergence is consistent 

with previous reports of similar molecular profiles including expression, copy number 

changes and mutations, for these tumor types and the observation that more molecular 

features are shared across squamous tumors than with adenocarcinomas that arise in 

their respective organs23,24. Likewise, the mesenchymal tumor type liposarcoma 

(SoftTissue-LipoSarc), which not have a direct counterpart (adipose tissue) in our data 

set, best matched the right atrium, another mesenchymal cell type. Thus, we are able to 

identify a normal cell type that is related to the expected COO in cases wherein the 

exact normal cell type did not exist in our data set of normal tissues, but a closely 

related tissue was available. 

 

Fallopian tube best matches high-grade serous ovarian cancer 

Of particular interest was our finding in high-grade serous ovarian cancer (Ovary-

AdenoCA). When using the original 98 tissue types, the best match was endometrial 
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epithelium (next-best unrelated tissue: right atrium; p = 0.007, WMW test; Fig. 3a). This 

finding piqued our interest because, from an embryologic standpoint, the endometrium 

and fallopian tubes both arise from the Müllerian ducts, while the ovaries develop 

separately from mesodermal epithelium on the urogenital ridges. To further probe this 

observation we applied our methodology to epigenetic data recently generated for 

ovarian surface and fallopian tube epithelial cells20. Since only a restricted number of 

ChIP-seq experiments was available for these tissue types, we ran our model using the 

three histone marks available for 99 tissue types. Using the expanded set of normal 

tissues, fallopian tube epithelium became the best match to high-grade serous Ovary-

AdenoCA, and explained significantly more variance than the second-best match (fetal 

kidney; p = 0.00098; Fig. 4a). In addition, we interrogated individual high-grade serous 

ovarian cancer tumors and found that the majority (95 of 110 samples, 86%) best 

matched fallopian tube epithelium (variance explained: median, 9%; range, 1-37%). As 

few as 16 tumors best-matched the epithelium of the ovary (variance explained: 

median, 1.7%; range, 0.6-23%). However, the difference between the best match and 

the second-best match was more pronounced in tumors in which the fallopian tube 

epithelium was the predicted COO (Fig. 4b). Our finding supports the unconfirmed 

hypothesis that secretory epithelial cells of the distal fallopian tube represent the COO 

of high-grade serous Ovary-AdenoCA25-27 and not the epithelium of the ovaries28. In 

contrast to previous work in this area, our approach can associate high-grade serous 

Ovary-AdenoCA with the epithelium of the fallopian tube without specifying pre-invasive 

lesions. The true identity of the precursors in the fallopian tube have been the source of 

a persisting paradox in that pre-invasive lesions occur with high frequency early on in 
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the course of the disease but with low frequency in advanced stages, prompting the 

concept of ‘precursor escape’ in which tumors do not arise from pathologically suspect 

pre-invasive lesions, but from normal-looking early serous precursors arising within the 

fallopian tube that are shed from the fallopian tube early. In light of these observations, 

our finding, directly pointing to the fallopian tube epithelium, provide additional 

orthogonal support. 

 

  

 
 
Figure 4. High-grade serous ovarian cancer best matches fallopian tube epithelium. (a) 
Random Forest regression models for the prediction of mutation density in 1Mb windows of 
aggregated tumor profiles of high-grade serous Ovary-AdenoCA were trained on an extended 
set of 99 tissues for which three ChIP-seq experiments were available. The best match was 
identified corresponding to the model with the highest prediction accuracy; p-values were 
obtained using the paired Wilcoxon-Mann-Whitney test for the comparison of R2 values from the 
10-fold cross validation (***, p < 0.001; dots represent ten-fold cross-validation values). (b) 
Random Forest regression models for individual high-grade serous Ovary-AdenoCA tumors 
were trained on fallopian tube epithelium and three different ovarian surface epithelia. Color 
indicates the best match. Depicted is the difference of the means of the R squared values from 
the 10-fold cross validation and the error of this difference calculated from the standard error of 
the means. 
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Gastric mucosa is the best-matched cell type of origin for gastrointestinal tumors 

that develop through a metaplastic intermediate 

Finally, in the 4 remaining cancer types (out of the aggregated 32), the COO matched 

neither the normal cellular counterpart nor any histologically related cell. In three of 

these types, the COO supports the idea of the tumor arising from an intermediate step 

of metaplasia, a process in which mature cells from a given tissue are replaced by 

mature cells from another, typically adjacent, tissue (Fig. 3a). In the case of esophageal 

adenocarcinoma (Eso-AdenoCA), a cancer of epithelial origin, the best match was 

stomach mucosa and not the potentially more related esophageal tissue type (p = 

0.00098) or any other gastrointestinal mucosa (best hit: rectal mucosa; p = 0.00098; 

Extended Data Fig. 2). This was observed for the aggregated tumor profiles for Eso-

AdenoCA and almost all individual Eso-AdenoCA tumors (88 of 97 tumors; Fig. 3b).  

 

Our finding is consistent with the accepted model that Eso-AdenoCA development 

involves an intermediate step of metaplasia, known as Barrett’s esophagus (BE), in 

which adult esophageal squamous epithelium changes to columnar epithelium (similar 

in histological appearance to the lining of the stomach)29. Accordingly, the epithelium of 

BE has been found to exhibit a gastric differentiation program30,31. To further test 

whether the distribution of somatic mutations in BE reflect the COO, we analyzed 23 

patient-matched pairs of BE and Eso-AdenoCA32. In agreement with previous similar 

analysis33, stomach mucosa was the best match for both BE and Eso-AdenoCA in 21 of 

the 23 pairs. Typically, the variance explained in the Eso-AdenoCA samples was higher 

than in the matching BE cases, likely due to the increased number of mutations. 
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However, we saw a significant correlation between the variance explained in both 

samples of the pairs (r = 0.44, p = 0.037, Pearson correlation coefficient; Extended 

Data Fig. 7). Together, these findings highlight a close relationship between BE and 

Eso-AdenoCA and suggest that Eso-AdenoCA may acquire most of its mutations during 

the metaplastic state of BE. 

 

We identified 2 additional gastrointestinal tumor types (Panc–AdenoCA and biliary 

adenocarcinoma [Biliary–AdenoCA]) in which the best-matched cell type was stomach 

mucosa suggesting a metaplastic intermediate step. In Panc-AdenoCA, the variance 

explained was significantly higher in models of stomach mucosa than pancreatic tissue 

(enriched for acinar cells; p = 0.00098, WMW test) and to the second-best 

gastrointestinal tissue (duodenum mucosa; p = 0.00098). These data support the 

current thinking that ‘acinar-to-ductal’ metaplasia (ADM) is the initial morphologic 

change towards Panc-AdenoCA and that this loss of acinar differentiation induces 

stomach-specific gene expression34,35. Similar results were found in Biliary-AdenoCA, 

where the variance explained was significantly higher in models of stomach mucosa 

than the second-best gastrointestinal tissue (duodenum mucosa; p = 0.00098). 

 

We are left with one tumor type, bladder transitional cell carcinoma (Bladder-TCC), 

whose best match was also stomach mucosa. Our chromatin data set did not include all 

potentially relevant normal cell types across the 4 cancer types (i.e., enriched cell 

subtypes such as ductal pancreatic cells and esophageal mucosa as well as the direct 

normal cell counterparts cholangiocytes and bladder transitional cells). Despite these 
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limitations, we observed a significant difference between stomach mucosa and the 

second-best tissue for all gastrointestinal tumor types but not Bladder-TCC (second 

best: rectal mucosa; p = 0.54; Extended Data Fig. 8). Likewise, a considerable fraction 

of individual gastrointestinal tumors best matched stomach mucosa – Eso-AdenoCA (88 

out of 97, 91%) and Panc-AdenoCA (165 out of 232, 71%) – while only 1 out of 23 

individual Bladder-TCC samples (4.3%) best matched stomach mucosa. These 

observations suggest that the gastrointestinal cancer types are different from Bladder-

TCC in that they may have undergone metaplasia. In the case of Bladder-TCC however 

we may simply be lacking the chromatin data from the most appropriate normal tissue 

type.  

 

Collectively, our results reveal that most mutations across the broad landscape of 

different tumor types occur during a time when the chromatin organization of the cells is 

still similar to the COO. Of note, we found that using an alternative regression method 

leads to quantitatively and qualitatively similar results (see Extended Data Information 

for details; Extended Data Fig. 9a,b; Extended Data Table 1).  

 

Chromatin differences between cell differentiation states in a single tissue help to 

decipher the precise cell subtype of origin 

With the COO identified for almost all (31/32) aggregated cancer types, we next tested 

whether our method was powerful enough to delineate the COO on a finer scale by 

matching the COO to different tumor subtypes of the same lineage. Here, we focused 

on brain, blood, breast and prostate cancers. 
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Within the brain, different cell types, including neuronal and glia cells, have been 

identified at different differentiation stages. Our analysis nominated neurospheres, but 

not mature brain regions, as the best match across all gliomas (glioblastoma, CNS-

GBM; oligodendroglioma, CNS-Oligo; pilocytic astrocytoma, CNS-PiloAstro). In 

contrast, medulloblastoma (CNS-Medullo) best matched the germinal matrix, a fetal 

brain region that gives rise to neuronal cells but not neurospheres (p = 0.0046; 

Extended Data Fig. 10). Neurospheres currently represent the best model of neural 

stem cells (NSCs)36 and our findings are in line with the current hypothesis that 

undifferentiated NSCs and more committed progenitor cells give rise to all above-

mentioned gliomas37-40. Of note, our findings also recapitulate the historical 

understanding of the distinct COOs for gliomas and CNS-Medullo wherein gliomas were 

thought to derive from	 glia cells, while CNS-Medullo was believed to derive from 

neuronal-type cells41,42. Further support for our findings comes from single-cell 

transcriptomics of the developing mouse brain showing that CNS-Medullo tumors mirror 

primitive cells in the neuronal lineage that are found in the germinal matrix but are all-

but-gone at birth43. 

 

Similar to the nervous system,	 the differentiation cascade of the hematopoietic system 

is particularly well-understood, giving rise to distinct cancer subtypes. Accordingly, we 

next searched for the COO of different hematopoietic neoplasms, including tumors 

originating from B cells (chronic lymphocytic leukemia, CLL; B cell Non-Hodgkin’s 

Lymphoma, BNHL) and myeloid cells (acute myeloid leukemia, AML; myeloproliferative 
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neoplasm, MPN). Aggregated tumor profiles of myeloid tumors best matched CD34+ 

hematopoietic stem cells (HSCs) while B cell tumors best matched CD19+ B cells 

(compared to next-best non-hematopoietic tissue: AML, p = 0.006; MPN, p = 0.001; 

CLL, p = 0.00098; BHNL, p = 0.001; Extended Data Fig. 11a). Consistently, most 

individual samples best matched the same cell type as the aggregated profiles 

(Extended Data Fig. 11b). This is in accordance with the understanding that B cell 

tumors develop late during B cell differentiation (i.e., in cells that already express 

CD1944). In contrast myeloid leukemic transformation primarily occurs in multipotent or 

granulocyte macrophage progenitors, both of which express CD34, the marker for 

HSCs45.  

 

Breast cancer also has several different subtypes that arise from within the same 

tissue46. Four main ‘intrinsic’ molecular subtypes have been identified by gene 

expression profiling: luminal A, luminal B, HER2-enriched and basal-like47. Epithelial cell 

types from the duct-lobular unit of the mammary gland include luminal and basal cells, 

which both derive from mammary stem cells (MaSCs) via different progressively 

committed progenitors48. We used chromatin profiles generated from four subsets of 

normal breast cells, isolated via two cell-surface markers: (i) one subset that includes 

MaSCs, basal progenitors and basal mature cells (CD49f+ EPCAMlow/-); (ii) luminal 

progenitors (CD49f+ EPCAMhigh); (iii) luminal mature cells (CD49f- EPCAMhigh); and (iv) 

stromal cells (CD49f- EPCAM-)49. Aggregated tumor profiles of Breast-AdenoCA best 

matched mature luminal cells (Fig. 3a). Similarly, the analysis of pre-invasive disease 

found mature luminal cells to be the best match of DCIS (ductal carcinoma in situ; 10% 
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variance explained), further confirming our findings (data not shown; n = 3). Principal 

component analysis (PCA) of the mutation profiles significantly separated basal-like and 

non-basal subtypes into two distinct clusters, suggesting that the origin of each of these 

clusters is different (p = 1x10-67, Fisher's exact test; Extended Data Fig. 12a). 

Accordingly, we discovered that mutation profiles of basal-like breast tumors matched 

best to breast luminal progenitors (all p-values < 0.003, WMW test) while luminal A, 

luminal B and HER2-enriched subtypes matched best to mature luminal cells (all p-

values < 0. 001; Fig. 5a). We confirmed our results using an additional independent 

data set of 274 breast cancer whole-genome sequences (Fig. 5b)50. Our finding held 

true even when we divided patients according to subtype and ancestry, albeit with lower 

variance explained in the smaller sub-cohorts compared to the aggregated breast 

cancer analysis (Extended Data Fig. 12b,c). African-American females have been 

found to exhibit a higher prevalence of basal-like breast tumors51. This higher 

susceptibility to basal-like subtypes has been suggested to be influenced by a higher 

basal to luminal cell ratio in African-American women52. In contrast to this hypothesis, 

Figure 5. Breast cancer subtypes arise in different mammary cell types. (a, b) Random 
Forest regression models for the prediction of mutation density in 1Mb windows of aggregated 
tumor profiles of distinct molecular breast cancer subtypes were trained on chromatin data from 
four normal mammary cell types. Using two independent data sets, the best match for each 
subtype was determined, corresponding to the model with the highest prediction accuracy; p-
values were obtained using the paired Wilcoxon-Mann-Whitney test for the comparison of R2 
values from the 10-fold cross validation (**, p < 0.01; ***, p < 0.001; dots represent ten-fold 
cross-validation values). (c) A subset of 58 breast cancer samples with HRD was analyzed for 
their best matching normal cell using chromatin profiles from four normal breast cells. Colors 
indicate the number of tumors that best match one of the mammary cell subtypes. (d) 
Schematic representation of the mammary epithelial cell hierarchy and its association with 
distinct breast cell types. Only breast cancer subtypes and normal mammary cells available in 
our cohort are depicted. The expression of selected cell surface markers represents the 
markers used for isolating normal breast cell subpopulations. 
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our results suggest that basal-like breast tumors originate from luminal progenitors 

independent of ethnicity. 

  

Next, we asked whether our COO results of breast cancer depend on specific genetic 

events. We therefore aggregated tumors according to their type of homologous 

recombination deficiency (HRD; see Extended Data Information). All 34 HRD-

associated basal-like breast cancers best matched luminal progenitors, regardless of 

BRCA1, BRCA2 or RAD51C53 inactivation (Extended Data Fig. 13). Likewise all 26 

HRD-associated luminal A/B and HER-2 enriched subtypes best matched mature 

luminal cells, again irrespective of the inactivated HR gene. We found similar results 

when analyzing individual tumors: most basal-like tumors (19/34, 55.9%) best matched 

luminal progenitors while the majority of LumA/B and HER-2 enriched tumors (15/24, 

62.5%) best-matched luminal mature cells (Fig. 5c). Although different breast cancer 

subtypes are associated with different HRD mechanisms, we found that the HRD event 

was not influenced by the COO. 

 

In addition to our analysis of ductal carcinoma, we also sought to understand the origins 

of lobular cancer (Breast-LobularCA). Both entities are assumed to derive from the 

mammary duct-lobular unit but are distinct in terms of their molecular and histological 

features54. Until now no conclusive reports on the COO of Breast-LobularCA have been 

published. We found that Breast-LobularCA matched best to mature luminal cells 

(Extended Data Fig. 12d), a finding that concurs with the observation that up to 72% of 

lobular tumors are classified as the molecular subtypes luminal A/B55. 
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Like the breast, the prostate is a hormone-regulated, two-layered glandular organ 

comprising luminal and basal cells. We differentiated between these two main cell types 

using ChIP-seq data from 3D organoid luminal and basal cell cultures, isolated via two 

cell surface markers from normal tissue: CD26 to enrich for luminal cells, and CD49f to 

enrich for basal cells21,56. Only two histone modifications were evaluated for the 

organoids, and we ran our model on 13 tissue types for which those marks were 

available. The best match for prostate adenocarcinoma (Prost-AdenoCA) was prostate 

bulk representing a primary tissue. Luminal cells explained less variance than bulk 

primary tissue but not significantly lower. In contrast, basal cells explained significantly 

less variance (p-value = 0.02, WMW test; Extended Data Fig. 14a) suggesting that 

luminal cells are the COO of Prost-AdenoCA (Extended Data Fig. 14b). Our finding of 

the lack of a significant difference also points out that organoid-derived cells maintain a 

chromatin structure highly comparable to primary tissue which is not the case for cell 

lines57. Furthermore, we used epigenetic data from two additional prostate cancer 

organoids58. One was derived from an androgen receptor (AR)-independent 

basal/mesenchymal prostate cancer phenotype (PCa1) and one from an AR-dependent 

luminal phenotype (PCa2). However, we found that they both explained less variance 

than normal prostate cells. This suggests that the chromatin structure evolves 

significantly during tumorigenesis and that most of the somatic mutations occurred 

before this change. 
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Overall, our findings in cancer subtypes demonstrate the power of our method for 

inferring COOs from distinct differentiation states along the same cell hierarchy. 

 

The cell-of-origin captures important features of cancer biology  

To further support our findings of the COO and to highlight the biological relevance to 

tumorigenesis we performed three types of orthogonal analyses. First, we investigated 

GWAS hits in estrogen receptor negative (ERneg) and positive (ERpos) breast cancer 

subtypes to estimate the influence of the cellular context on the effect size of single-

nucleotide polymorphisms (SNPs) to heritability. Second, we used metastatic samples 

to determine whether they still preserve molecular echoes of the COO. Lastly, we 

evaluated driver mutations to study whether the COO can explain differences in the 

oncogene and tumor suppressor composition across cancer types. 

 

Germline risk alleles for breast cancer reside in active chromatin regions of the 

cell-of-origin 

Genome-wide association studies (GWAS) for breast cancer risk have identified 107 

independent loci59. Since we have epigenetic data for different breast cell subtypes 

(from progenitors to mature cells), we wanted to assess additional evidence from risk 

GWAS for the best matching cell type of origin. To this end, we explored whether 

GWAS heritability for ERneg and ERpos breast cancer were enriched in active 

enhancer/transcription regions (peaks of H3K27ac) of the different cell types. H3K27ac 

peaks were selected for two reasons: (i) they are generally enriched across complex 

disease60; and (ii) highly enriched with GWAS hits for prostate cancer61. Indeed, we 
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found the largest enrichment of ERneg breast cancer heritability for luminal progenitors 

followed by luminal mature cells (9.8× and 9.5×; all p-values < 0.02, Z-test; Extended 

Data Fig. 15 and Extended Data Table 3). In ERpos breast cancer, luminal breast cell 

types also showed a high enrichment of heritability (progenitor, 13.3×; mature cell, 

12.6×; all p-values < 0.0005), though not the highest of all cell types tested. These 

differences may reflect the fact that high-penetrance mutations are associated with 

ERneg breast cancer while most of the susceptibility loci show a stronger association 

with ERpos disease62. Of note, in both ERneg and ERpos tumors, the basal and the 

stromal breast cell types explained considerably less heritability than the luminal cell 

types (Extended Data Fig. 15). Previous analysis of GWAS heritability based on 

H3K4me1 regions of a different breast cell type (myoepithelium) achieved a poorer 

enrichment of 6.7-fold compared to ~13-fold using our suggested COO63. Overall, our 

findings indicate that active enhancer/transcription regions of the COO are highly 

enriched with GWAS heritability, thereby highlighting the tissue specificity of those 

genes and the significance of the cellular context. Such effects could help in localizing 

GWAS associations to the most likely cell type-specific regulatory features. 

 

Metastatic samples allow the identification of their originating tissue types 

With the exception of Skin-Melanoma samples, which are largely metastatic in origin, 

almost all of the tumors in the PCAWG data set are primaries (Extended Data Table 1). 

To extend our method further we profiled 2,044 metastatic samples (HMF metastases)64 

from 22 of the tumor types available as primaries in the PCAWG data set (Extended 

Data Table 4). 
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Fascinatingly, we found that the power of our method for inferring COOs is similar 

across primary and metastatic disease (Fig. 6a). Analogous to our analysis of primaries 

the same COO was detected in almost all types of metastatic disease. In only two 

endocrine tumor types (Panc-Endocrine and Thy-AdenoCa) did unrelated cell types 

show the highest variance explained. This is most likely due to a smaller sample size 

leading to a reduced power to detect in cancer types with an already low mutation 

frequency. Similar to our findings in primaries, fallopian tube epithelium showed the 

highest prediction accuracy in high-grade serous Ovary-AdenoCA giving additional 

evidence that the fallopian tube serves as the COO (next best: colonic mucosa; p = 

0.00098, WMW test; Extended Fig. 16a). Metastatic breast cancer subtypes were 

classified according to their expression of hormone receptors. Analogous to our results 

when using Prediction Analysis of Microarray 50 (PAM50)-grouped primaries, we 

observed that triple negative breast cancer best matched luminal progenitors (all p-

values p < 0.02; Extended Fig. 16b), while all other subtypes best matched luminal 

mature cells (all p-values < 0.03). Overall, the analysis of metastases provided 

independent validation for our findings in primaries. Although the epigenetic landscape 

changes after oncogenic transformation65 our data suggest that new mutational events 

and processes that may evolve during late tumorigenesis do not override the original 

information reflecting the normal tissue (Fig. 6b). 
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The cellular context of driver genes highlights tissue specificity 

In our main analysis, we found that the chromatin structure of the COO is highly 

associated with the acquisition of somatic mutations. In parallel to the overall mutational 

landscape, alterations in cancer genes have been found to be tissue specific. While 

some driver genes are altered across tumor types, most are mutated in only a restricted 

set of tumor types. Alterations in driver genes are expected to be positively selected in 

cells in which they are transcribed and hence have open chromatin. We therefore 

hypothesized that the COO chromatin landscape offers a cell type-specific fertile ground 

at sites of high transcriptional activity for the acquisition of cancer type-specific driver 

mutations.  

 

We analyzed 78 individual genes that were mutated in >2% of patients and located in 

the 1Mb windows not removed due to mappability (median 8%, range 2-86%) and 

identified either as significantly mutated in PCAWG66 or previously shown to be 

Figure 6. The cell type of origin can be inferred from metastatic cancer samples. (a, left) 
Models were trained on histone modifications from 98 normal cell types to predict the mutation 
density aggregated metastatic cancer profiles. Bar plots show the variance explained by the 
best-performing model, identified via ten-fold cross validation. Solid vertical lines indicate 
performance of the second-best model based on chromatin marks from histologically unrelated 
cells; dashed vertical lines depict the variance explained based on chromatin marks that 
represent the median tissue. The grey area indicates ± Median Absolute Deviation (MAD). 
Bars are colored according to the best match. Symbols identify types of best matches. 
Abbreviations: Mes, Mesenchymal tumors; Hem/Lymph, Hematopoietic and lymphoid tissue. 
(a, right) Bar plots depict the proportion of individual metastatic samples (red) in which the 
prediction on an individual level matches the prediction of the aggregated metastatic cancer 
profile. In some cases, chromatin profiles were grouped (see Methods, Extended Data Fig. 
1). (b) Schematic illustrations depict the qualitative change of the cell type-specific chromatin 
state from normal to cancer (top), cell type-specific chromatin and mutation profiles alongside 
germline risk alleles along one genomic region (middle) and the accumulation of somatic 
mutations throughout the human lifespan (bottom). Blue color indicates a normal cell state, red 
color indicates a cancerous cell state. 
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drivers67.	 These 78 genes were mutated in 24 tumor types, with most of them (42 

genes) only in one tumor type. Across all tumor types, we observed 225 alterations in 

these genes (Extended Data Fig. 17).		

	

Next, we inferred the regional transcriptional activity in a 1Mb window around the driver 

genes by counting ChIP-seq reads of three activating chromatin marks (H3K4me1, 

H3K4me3 and H3K36me3) for each tissue type. For each chromatin mark, we then 

compared the number of reads in the COO to the other tissue types and determined 

whether it is an outlier (see Methods, Extended Data Information). Altogether, we 

found 105 regions with outlier activity in the COO associated with each of the tumor 

types.	

 

In the next step, we searched for co-occurrence of tumor type-specific driver gene and 

COO outlier activity. Supporting our hypothesis, we observed a significant enrichment of 

driver genes in chromatin regions with outlier activity in their COO: 29 pairs affecting 23 

genes (p = 6.9x10-6, Fisher's exact test; Extended Data Fig. 17). Even when controlling 

for the total number of outliers in each tissue and each gene, we found that the overlap 

between outliers and drivers was significantly larger than expected by chance (29 vs. an 

average of 19, p = 0.0004, permutation test). 

  

To further understand this observation, we gathered functional and biological 

annotations from the literature for 18 of the 23 (78%) drivers and found 4 of them to 

contribute to tissue homeostatic processes and 14 to be crucial for development and 
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differentiation of their corresponding COO (see Extended Data Information for details). 

This suggests that a subset of the drivers not only confers a selective growth advantage 

in their mutant form but also have major cell type-specific regulatory functions in the 

COO.  

 

In addition, we observed that the COOs of B cell-derived tumors (Lymph-BNHL, Lymph-

CLL) and Breast-AdenoCA showed an exceptionally high number of regions with outlier 

chromatin activity (74 of the 105 outlier regions in these three tumor types vs. 31 in the 

others). This significant enrichment of outlier activity (p = 2.2x10-16, Fisher's exact test) 

paralleled a significant enrichment of driver genes in these outlier regions (11 of the 29 

pairs in these three vs. 18 in others; p = 0.0004). B cells and mammary cells have been 

reported to have a high turnover rate68,69, suggesting that cell proliferation of the COO 

could influence the risk of acquiring driver mutations. Two previous studies support this 

hypothesis: (i) mathematical modeling correlated the number of cell divisions with the 

overall cancer risk70; and (ii) the frequency of actively cycling normal breast cells was 

reported to be associated with higher breast cancer risk71.  

 

Overall, our data suggest that COO-specific chromatin sites of high transcriptional 

activity are associated with mutations in driver genes in a cell context-dependent 

manner. Despite an overall lower abundance of somatic mutations in these regions, we 

assume the enrichment of drivers due to the positive selection of genes that play an 

important functional and physiological role. By differentiating subclasses of driver 

genes, our approach helps to better understand the potential contribution of the COO to 
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tumor initiation. In addition, our approach of focusing on active regions in the COO 

could guide the search for new tumor-specific drivers, including non-coding genes in 

enhancer/promoter regions.  
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DISCUSSION 

Understanding the dynamics of tumor formation by studying the genomics of advanced 

tumors at diagnosis is a challenge due to the acquired plasticity that typically masks 

features of the originating tissue. However, we found footprints of early tumorigenesis in 

the COO that are preserved in the tumor genome. We took advantage of the correlation 

between chromatin marks and mutational profiles, which reflect transcriptional activity. 

Typically, decreased mutation frequencies are observed in open, transcriptionally active 

chromatin, likely due to more efficient DNA repair or fewer errors in earlier replication 

regions72,73.  

 

One key finding in this study is that the mutational landscape is significantly influenced 

by the normal cellular context of the COO. This observation is in accordance with 

previous results in single neurons showing that the density of somatic mutations varies 

according to the originating brain region74. Our data imply that most somatic mutations 

detected in tumors arise at a time when the chromatin state still resembles the normal 

cell (either in normal cells or early in tumor progression). This observation is supported 

by a previous study estimating that at least half of a tumor’s mutations occurred before 

the onset of neoplasia75. The concept that most mutations happen before tumor 

initiation is further reinforced by the higher prediction accuracy of clonal compared to 

sub-clonal mutations. Since the epigenetic landscape of tumors is distinct from that of 

their originating normal cells65,76,77 mutations that were acquired earlier can be better 

explained by the chromatin structure of the COO. This is not the case for copy number 

changes, as these typically occur synchronously with oncogenic transformation. 
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Our findings help to better understand the biology of cancer. The identification of the 

fallopian tube epithelium as the COO for almost all high-grade serous Ovary-AdenoCA 

tumors without the use of precursor lesions serves as additional evidence in the debate 

regarding the origin of ovarian cancer. Generally, by matching the cancer genome 

directly to normal chromatin profiles, we bypassed the necessity of pre-invasive disease 

for identifying cancer origins. Moreover, in cases in which we analyzed mutational 

profiles in precursor lesions (DCIS and BE) we found that they matched the same COO 

as their invasive counterparts. While it is difficult to causally connect pre-invasive 

lesions to the later appearing invasive cancer, our findings point towards a common 

origin and thereby support a multistep model of cancer development. Our result that 

Prost-AdenoCA matches the chromatin state of organoids derived from normal cells 

equally well as primary prostate tissue suggests that these model systems provide good 

approximations of the COO and might accurately reflect the characteristics of cells in 

vivo.  

 

Another novel finding from the present work is the discovery that stomach-like mucosa 

serves as the preferred representative proxy for different metaplasia phenotypes in the 

gastrointestinal tract. Our findings are particularly important to understand the debated 

origin of Panc-AdenoCA78. The pancreas consists of three functionally distinct, but 

anatomically interwoven cell populations: islet or endocrine cells (~2.4% of pancreatic 

area), exocrine acinar cells (~86%), and exocrine ductal cells (~1.1%)79. Although 

debated, the current hypothesis is that Panc-AdenoCA develops from acinar cells 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 11, 2019. ; https://doi.org/10.1101/517565doi: bioRxiv preprint 

https://doi.org/10.1101/517565
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 36	

through a sequence of acinar-to-ductal metaplasia (ADM) followed by pancreatic 

intraepithelial neoplasia (PanIN)34. There is a large body of evidence that both 

metaplastic cell types acquire gastric cell features35,80,81. Additional support comes from 

the embryonic development of the gastrointestinal tract. The pancreas forms because 

Hedgehog signaling is suppressed; when not suppressed, Hedgehog drives the 

endoderm to intestine transition. Hedgehog signaling is upregulated in Panc-AdenoCA 

and points towards a close relationship between gastric epithelium and the COO of 

Panc-AdenoCA82. Our results are consistent with these observations and indicate that 

most mutations in Panc-AdenoCA occur in a cell state that resembles stomach mucosa 

(most likely a metaplastic state) and not in acinar cells (represented by native 

pancreatic tissue, and only the 10th best match).  

 

One main conclusion from this study is that cancers from the same organ but of distinct 

subtypes can be matched to different COOs. In particular, we study the COO of breast 

cancer subtypes. There are three hypotheses about the origins of breast cancer: (i) the 

MaSC is the COO of all subtypes83; (ii) basal stem/progenitor cells give rise to basal-like 

cancers and luminal progenitors to luminal tumors84; and (iii) all breast cancer subtypes 

derive from cell types along the luminal differentiation hierarchy83. Since previous 

conclusions were drawn from murine experiments, our analysis of human tumors yields 

valuable insights given the morphogenetic differences between the mouse and human 

mammary glands85. Here, using our method of integrating chromatin state with 

mutational density, we found data that support the hypothesis that basal-like tumors 

originate from luminal progenitors and all other subtypes from mature luminal cells, a 
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finding consistent with previous gene expression profiles86. We also found that the 

association of breast cancer subtypes with their corresponding COOs is not influenced 

by the specific HR-inactivation event. This result is supported by previous data showing 

that functionally disabling BRCA1 in luminal progenitors, but not in mature luminal or 

basal cells, gives rise to basal-like breast cancer87-89. Together, our data are in 

accordance with the concept that the COO helps in dictating the cancer type that 

eventually occurs even in the presence of the same genetic event. 

 

While almost all aggregated tumor mutation profiles matched their direct cellular 

counterpart or a close proxy, many individual tumors (depending on the cancer type) did 

not have enough mutations to distinguish the COO from other cell types. In some tumor 

types, such as blood cancers, the chromatin profiles of the different COOs are highly 

similar to each other; hence, a larger number of mutations is required to distinguish 

between individual cancers from the same lineage. Furthermore, chromatin 

modifications were primarily derived from bulk normal tissues that are heterogeneous. 

Chromatin marks were available for enriched cell populations only in a few cases (e.g., 

breast and prostate cell subtypes). Despite the heterogeneity of bulk normal tissue that 

can mask the features of the COO, most cancer types matched their expected normal 

cell counterpart. This suggests that an enrichment of the COO in the normal tissues is 

sufficient for being identified by our approach. One limitation of our study is that the 

current data do not provide a 1:1 relationship between all cancer types and normal cell 

types. In cases in which we did not have chromatin data of the direct normal cellular 

counterpart, an appropriate COO could often only be reached as a proxy (e.g., 
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histologically related cells). Accordingly, analyses such as these will benefit from 

additional cell type-specific chromatin data, especially when derived from single cells 

and/or enriched cell populations.  

 

Our results may have unique clinical implications. We show, for the first time, that most 

somatic mutations in metastases reflect the chromatin state of the COO. This finding 

can help elucidate the origins of a metastatic lesion, an approach that can be applied to 

identify the COO of cancers of unknown primary (CUPs). A precise characterization of 

the tumor COO is particularly relevant given recent ‘basket’ trial data, suggesting that 

the tumor’s response to treatment depends not only on the oncogenic mutations but 

also on the specific cell context of the tumor and/or the COO90. Thus, our findings may 

supplement clinical decision-making and improve trial design. 

 

Collectively, our results will help (i) inform the development of animal and cellular 

models to understand tumor initiation and progression in greater detail; (ii) enable the 

evaluation and development of treatment options that take into account the COO; and 

(iii) focus on the relevant cell type for early detection or prevention of cancer.  
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MATERIALS and METHODS 

Genomic data 

As described previously10, we divided the human genome (hg19) into 1Mb windows. We 

excluded regions overlapping centromeres and telomeres as well as regions with a low 

fraction of uniquely mappable bases (<92% of bases within uniquely mapped 36-mers). 

This approach resulted in 2,128 1Mb windows, corresponding to ~2.1Gb of DNA. 

 

We obtained whole-genome mutation data for 2,550 cancer genomes, belonging to 32 

different tumor types, from PCAWG. Clinical annotations of tumor samples, the 

generation of sequencing data, and their analysis through a series of pipelines have 

been described in detail16. The Extended Data Table 1 provides an overview of tumor 

samples characteristics relevant for our approach. 

We included all cancer types with ≥ 10 individual samples; we excluded all non-

malignant bone tumors and the category ‘epithelioid bone neoplasms’ that summarizes 

three cancer types of distinct origins. For each individual cancer sample we calculated 

the total number of mutations in each window. Aggregated tumor profiles for each tumor 

type were calculated by summing the total number of mutations across all tumors from 

that tumor type in each window. Mutation clonality annotation was obtained from 

PCAWG22. 

 

In addition, we obtained whole-genome mutation data from a metastatic data set based 

on the Hartwig Medical Foundation cohort (HMF metastases) 64.  Altogether we 

analyzed 2,044 metastatic cancer genomes, belonging to 22 tumor types (Extended 
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Data Table 4). We concentrated our analysis on tumor types present in the PCAWG 

data set and included all cancer types with ≥ 6 individual samples. In cases with multiple 

samples per patient only one tumor (‘A’) was used. Samples lacking mutation counts or 

appropriate histological annotations were excluded. We included a limited number of 

primary tumors that were not previously surgically removed when the sampling of the 

metastatic lesion was not feasible or safe (see Extended Data Table 4 for details). 

 

Chromatin data 

We downloaded read alignment information from eight ChIP-Seq experiments against 

six active91 histone modifications (H3K27ac, histone H3 lysine 27 acetylation; 

H3K27me3, histone H3 lysine 27 trimethylation; H3K36me3, histone H3 lysine 36 

trimethylation; H3K4me1, histone H3 lysine 4 monomethylation; H3K4me3, histone H3 

lysine 4 trimethylation; H3K9ac, histone H3 lysine 9 acetylation) and one repressive 

histone modification (H3K9me3, histone H3 lysine 9 trimethylation) as well as the 

background sample ‘Input’ (Extended Data Table 2). We obtained data (human primary 

cell cultures, enriched cells and bulk tissues) for 87 cell types from the Roadmap 

Epigenomics Consortium (release 9)17, for kidney, thyroid and prostate from ENCODE18 

and for four breast cell subtypes as well as four endometrial cell types from IHEC19 

(Extended Data Table 2). In addition, four chromatin profiles for fallopian tube and 

ovarian surface epithelium as well as four profiles for prostate organoids were gathered 

from publications20,21. Similar to the mutation data, for each of the ChIP-Seq data sets, 

we calculated its profile, i.e. the number of reads in the same 1Mb windows as defined 

above. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 11, 2019. ; https://doi.org/10.1101/517565doi: bioRxiv preprint 

https://doi.org/10.1101/517565
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 41	

 

Chromatin modifications were grouped when they were biological replicates or derived 

from histologically related tissues to evaluate the best match of individual tumors 

(Extended Data Fig. 1). For the following cell types biological replicates were available 

and we considered them as one: fibroblast primary cells, melanocyte primary cells, 

keratinocytes primary cells, T helper memory cells, T helper naive cells, rectal mucosa, 

and endometrial stroma. Likewise, 10 groups were formed from the following 

histologically related cells: (i) the ‘brain group’ consists of cells from fetal brain, adult 

brain regions and neurospheres; (ii) the ‘bone/soft tissue group’ consists of all 

mesenchymal cells throughout the body including muscle and other connective tissues; 

(iii) the ‘squamous group’ consists of squamous esophagus and skin keratinocytes; (iv) 

the ‘endometrial epithelium group’ consists of EndoFollicular and EndoSecretory cells; 

(v) the ‘breast luminal group’ consists of luminal progenitors and mature luminal cells; 

(vi) the ‘breast other group’ consists of basal, breast myoepithelial, and breast variant 

human mammary epithelial cells; (vii) the ‘T cell group’ consists of all T cells; (viii) the ‘B 

cell group’ consists of all B cells; (ix) the ‘HSC cell group’ consists of all HSCs; (x) the 

‘blood cell group other’ consists of myeloid cells. In addition, we combined fetal and 

adult tissues (lung, thymus and kidney) as well as gastric and stomach mucosa profiles 

to represent stomach mucosa.  

 

Random Forest regression analysis  

For each of the cancers and the aggregated tumor profiles, we used Random Forest 

regression (with 1,000 trees) to predict the mutation density profile using the chromatin 
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profiles. For each mutation density profile, we trained 98 separate regression models 

using the complete chromatin profiles associated with each of the tissue types. For the 

cancer-specific aggregated mutation profiles, we calculated the performance using 10-

fold cross validation (i.e., we divided the 2,128 windows into 10 non-overlapping sets, 

trained the model on 9 sets and predicted the number of mutations in the remaining 

windows). We additionally identified the best-matching model for each individual cancer 

by training 98 regression models, using all windows, and finding the one with highest 

prediction accuracy. For each cancer type, we then calculated the proportion of 

individual tumor samples in which the best-matching model was either the same as the 

presumed COO of the aggregated tumor profile or, in some tumor types, belonged to a 

group of histologically related tissue types. We reported the overall prediction accuracy 

by calculating the average R2 between the predicted and observed profiles across the 

10 sets of windows. The analysis was run using the caret and ranger packages in ‘R’. 

To demonstrate the robustness of Random Forest regression, we here used different 

seeds for random numbers to control for the noise introduced into the model. Using this 

approach we did not find qualitatively significant differences in the best matches (data 

not shown). 

 

To compare models based on two different chromatin profiles, we used the paired 

Wilcoxon-Mann-Whitney (WMW) test between the R2 values from ten-fold cross 

validation tests. Correlations were analyzed using the Pearson correlation coefficient. 

Mutation frequency is given as overall mutation frequency and was determined by 

summing up all mutations of all samples of a given tumor type in 1Mb windows.  
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We compared the prediction accuracy for clonal and sub-clonal mutations across 

cancer types. To assure that differences in prediction accuracy in our models are not 

driven by a higher number of clonal mutations, we simulated clonal mutation profiles. 

Monte Carlo simulation was used to generate profiles with a total number of clonal 

mutations that equals the total number of sub-clonal mutations in each cancer type. In 

detail, simulated profiles were generated by a Poisson number generator using rates 

that are equal to the normalized profile of clonal mutations multiplied by the total 

number of sub-clonal mutations. In addition, the tissue that represents the median 

across all tissues and the Median Absolute Deviation (MAD) were determined. For the 

comparison of models trained on histone marks from different cell types, the robust ẑ-

score was computed92. 

 

Analysis of the chromatin environment of candidate driver genes 

Lists of significantly recurrently mutated coding driver genes and previously described 

driver genes were provided by the PCAWG Drivers and Functional Interpretation 

Group66,67. Of those, 78 drivers were used in our analysis, which are located in the 1Mb 

windows that were not removed due to mappability; they resided in 24 tumor types.  

 

To analyze the chromatin context of different driver genes, we used, for each driver, the 

number of reads of H3K4me1, H3K4me3 and H3K36me3 in the 1Mb window in which 

the gene is located across the core 98 tissue types. For cell types with biological 

replicates and groups of histologically related cells (see above), the number of ChIP-

Seq reads was calculated as the median number of reads over all replicates. Square-
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root transformation of data was used. We then compared the number of reads in the 

window for the best-matched tissue (i.e., the identified COO) to the other 97 tissues and 

considered the gene to have a tissue-specific chromatin environment if it was an outlier 

(i.e., above the 1.5*interquartile range from the 75th percentile of the 97 tissues). In 

addition, we used the top 1%, top 2.5% and top 5% to define outlier status. By 

comparing the same 1Mb window across tissue types, we accounted for possible 

variations in the number of binding sites or ChIP affinities93. We performed a 

permutation test with 1,000,000 permutations using the ‘Curveball algorithm’94. 

 

Clustering of individual breast cancer genomes 

We performed principal component analysis (PCA) on the mutation profiles of all 

individual breast cancer genomes from PCAWG and Nik-Zainal et al.50. Each tumor was 

classified to one of the breast cancer subtypes using RNA expression levels of 50 

genes (PAM50, Prediction Analysis of Microarray 50) taken from the corresponding 

literature50,54. We used k-means clustering (with k=2 and 1-Peason correlation as the 

distance metric) to cluster the tumors based on their first two principal coordinates from 

mutation counts along 1Mb windows.  

 

Analysis of GWAS heritability 

We used stratified linkage disequilibrium score regression (S-LDSC)60 to quantify the 

enrichment of GWAS heritability in epigenetically active regions (annotations). Briefly, 

S-LDSC evaluates the full distribution of GWAS associations (not restricted to 

significant SNPs) and infers heritability parameters from the relationship between the 
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effect-size and the LD of each SNP. Annotations that are in LD with higher effect-size 

SNPs will be assigned higher heritability and the converse for low effect-size SNPs. 

Further details are discussed elsewhere60,61. 

 

GWAS summary statistics were downloaded from recent studies of ER negative 

(N=127,442) and ER positive (N=175,475) breast cancer risk59. Each study was 

restricted to ~1M HapMap3 SNPs that are typically well-imputed across all GWAS 

platforms and have been shown to perform well in heritability analyses. We then 

included each epigenetic annotation in turn in the S-LDSC model together with the 

standard “baseline model” that captures potential confounding factors (generic features 

such as coding, promoter and intronic). Enrichment for each annotation was computed 

as the % of heritability accounted for by the annotation, divided by the % of SNPs 

contained in the annotation, wherein an enrichment of 1.0 is expected under the null. 

Statistical significance was assessed by the block jackknife as implemented in S-LDSC. 

For context, we evaluated H3K27ac ChIP-seq calls from ROADMAP17 and breast49 cell 

types using the imputed, narrow peaks call-set. To test statistical significance, p-values 

were generated from Z-scores.  
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