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ABSTRACT

Chromatin structure has a major influence on the cell-specific density of somatic
mutations along the cancer genome. Here, we present a pan-cancer study in which we
searched for the putative cancer cell-of-origin of 2,550 whole genomes, representing 32
cancer types by matching their mutational landscape to the regional patterns of
chromatin modifications ascertained in 104 normal tissue types. We found that, in
almost all cancer types, the cell-of-origin can be predicted solely from their DNA
sequences. Our analysis validated the hypothesis that high-grade serous ovarian
cancer originates in the fallopian tube and identified distinct origins of breast cancer
subtypes. We also demonstrated that the technique is equally capable of identifying the
cell-of-origin for a series of 2,044 metastatic samples from 22 of the tumor types
available as primaries. Moreover, cancer drivers, whether inherited or acquired, reside
in active chromatin regions in the respective cell-of-origin. Taken together, our findings
highlight that many somatic mutations accumulate while the chromatin structure of the
cell-of-origin is maintained and that this historical record, captured in the DNA, can be

used to identify the often elusive cancer cell-of-origin.
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INTRODUCTION

One important, but largely unanswered, question in cancer biology is the identity of the
normal cell (i.e., cell-of-origin, COQO) from which the tumor is derived. While tumor
morphology usually bears some resemblance to the originating tissue, histological
similarity is often too broad a parameter to distinguish between molecularly and
clinically distinct cancer subtypes’. Accordingly, knowledge of the precise nature of the
cancer cell type of origin can help better understand the potential of certain normal cell
types to transform and initiate cancer, as well as the association of the COO with tumor
subtypes and treatment sensitivities. Current knowledge of the cancer COO is mostly
based on mouse models*®. However, studies that use human tissue are particularly
valuable since they directly capture the neoplastic process and overcome limitations

introduced by interspecies differences®.

It is well established that neoplastic transformation is driven by somatic mutations®. A
subset of mutations is present at the time of initial cancer growth and common to all
cancer cells (‘clonal’). Alterations in genes (‘drivers’) critical to the development of
cancer arise on a background of random mutations (‘passengers’) that accumulate over
time. It has been found that the set of driver genes vary substantially across tumor
typesa. Likewise the phenotypic effects of defects in most inherited cancer susceptibility
genes (e.g., BRCA1/2 genes) are limited to specific tissue types’. Both these

observations suggest a cell type-specific vulnerability to mutations.
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One major determinant of a cell phenotype is its chromatin structure, which differs
considerably across tissue types and cell differentiation stages®®. The chromatin
structure, in turn, is governed by epigenetic processes, including DNA and histone
modifications, which greatly influence the rate at which background mutations

accumulate in the cell.

In our previous proof-of-concept study1°, we developed a framework for understanding
how different epigenetic features are associated with mutagenesis in a cell type-specific
manner. This work described a method that quantifies the ability to predict the
mutational density along the cancer genome from the profile of epigenetic modifications
in normal cell types. Two main observations were used to guide our discovery: (i)
mutations are not evenly distributed along chromosomes and across tumor types'"'%;
and (ii) mutation densities are associated with regional histone modifications, DNA

accessibility and DNA replication timing'"'3°.

In the present study, we applied our method to identify the likely COO across multiple
cancer types and asked whether the characterization of cancer origins from the
distribution of somatic mutations is universally applicable to all common cancer types
and subtypes. The availability of the large compendium of tumor mutation and normal
chromatin data enabled us to extend our previous investigation in three key aspects: (i)
to quadruple the number of cancer types from 8 to 32 and increase more than tenfold
the number of individual samples analyzed from 173 to 2,550; (ii) to include tumors

known to develop along a metaplasia-carcinoma sequence (i.e., conversion of one
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differentiated cell type into another differentiated cell type before becoming a bona fide
cancer); and (iii) to study cancers that arise in the same organ but manifest as distinct
subtypes. In addition, we demonstrate that the chromatin structure of the COO can also
be detected by analyzing the mutational distribution in metastases, a result that can
have clinical implications. Finally, we show that there is an association between regions
of open chromatin in the relevant COO and genomic loci of cancer risk alleles and

somatic driver genes.
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RESULTS

To search for the COO across a broad panel of tumor types, we utilized the
ICGC/TCGA Pan-cancer Analysis of Whole Genomes (PCAWG) mutation data'® across
2,550 samples from 32 cancer types (Fig. 1 left, Extended Data Table 1).
Furthermore, we gathered 98 complete chromatin profiles of normal tissue types from
the Roadmap Epigenomics Consortium'’, the Encyclopedia of DNA Elements
(ENCODE"®) and the International Human Epigenome Consortium (IHEC'®) as well as 6

partial profiles from additional publications®®?'

. Overall, ChlP-sequencing (ChlP-seq)
data were available for 104 normal tissue types including distinct cellular differentiation
stages from the brain, blood, breast and prostate (Fig. 1 right, Extended Data Fig. 1,

Extended Data Table 2). For our main analysis we chose six histone modifications due

to their broad availability across almost all tissue types (see Methods for details).

The number of individual tumors varied across cancer types, from a minimum of 10
samples for acute myeloid leukemia (Myeloid—AML) to a maximum of 314 samples for
hepatocellular carcinoma (Liver-HCC). Likewise, the mutational burden varied across
cancer types from a high mutational burden in melanoma to a low mutational burden in
non-diffuse glioma. To account for these differences in sampling and mutational burden
between cancer types, we aggregated the somatic mutation data across all samples
from a given cancer type and generated an ‘aggregated tumor profile’ per tumor type.
However, to quantify certain aspects of our analysis, we also used individual tumors

when appropriate.
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Figure 1. Overview of tumor and normal tissue types. Schematic illustrations depict the
anatomical sites of 32 cancer types (left) and 104 normal tissue types (right), color-coded
according to Extended Data Tables 1, 2. Blank spaces throughout the cartoons depict
unavailability of appropriate data. Cases with biological replicates are indicated by an asterisk
with numbers depicting each individual replicate; organs for which epigenetic features are
available of the respective tumor type are marked with a hashtag. The best-matched normal
tissue type for each tumor type as detected by Random Forest regression is indicated by
joined lines. Random Forest regression was additionally performed on a subset of tissues for
high-grade serous Ovary-AdenoCA and Prost-AdenoCA identifying a best match on a more
detailed level. Abbreviations: VHMEC, variant human mammary epithelial cells; Pr, primary; Th
cells, T helper cells; PB, peripheral blood; CB; cord blood; HSC, hematopoietic stem cells;
MSC, mesenchymal stem cells; PMA, phorbol myristate acetate; NK cells, natural killer cells;
Treg cells, regulatory T cells.
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Based on our earlier work'®, we used random forest regression to model the distribution
of somatic mutations in 1Mb windows based on the density of ChlP-seq reads derived
from each of the normal tissues. To quantify the accuracy of our models, we measured
the correlation between the number of predicted and observed mutations (R® or %
variance explained). While previously we trained one multivariate model with the
chromatin marks from all tissue types and identified the most significant coefficient, here
we trained, for each tumor type, 98 different models using the chromatin profiles of each
normal tissue type. We then determined the candidate COO by identifying the model
with the best predictive power. To train the models, we used the same six core ChIP-
seq tracks available for all Roadmap and IHEC tissues to ensure comparability between
models and cancer types. This modified approach allowed us to add additional normal
tissue types and easily identify the best-matching tissue. For example, the two best-
matching chromatin profiles for uterine adenocarcinoma (Uterus-AdenoCA) are derived
from endometrial cells (follicular and secretory), and the best-matching normal tissue for

pancreatic ductal adenocarcinoma (Panc-AdenoCA) is stomach mucosa (Fig. 2).

The best-matching cell type for most cancer types is the expected normal cellular
counterpart

By applying our methodology, we identified the best-matching normal cell type (of the
98) to each of the aggregated mutational profiles of 32 tumor types. In 23 of the 32
tumor types, we matched the chromatin profiles of their expected normal cellular
counterparts (e.g., melanoma best matched melanocytes) We found that the best-

matched normal cellular counterpart explained significantly more variance than the next-
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Figure 2. The chromatin composition of the COO is a major determinant of cancer
mutation distribution and provides insights regarding tumor origins. (a,e) Cartoons
depict our strategy using normal chromatin profiles and cancer mutation profiles in Uterus-
AdenoCA and Panc-AdenoCA. (b,f) Mutation counts of aggregated tumor profiles in 1Mb
windows are shown alongside six histone modification profiles derived from the respective best
match (in normalized reverse scale; peaks correspond to less accessible chromatin and vice
versa). (c,g) Random Forest regression was used to predict the tumor mutation distribution
from chromatin marks of normal cells. Scatterplots show the correlation between observed
mutation counts and those predicted from chromatin marks. The overall prediction accuracy is
reported by the average R? value between the predicted and observed mutation profiles across
the 10-fold cross validation. (d,h) For each cancer type, individual models were trained on
chromatin marks from 98 cell types. The cell type that fit the model with the highest prediction
accuracy was defined as the best match. Solid horizontal lines indicate performance of the
second-best model based on chromatin marks from histologically unrelated cells; dashed
horizontal lines depict the variance explained based on chromatin marks that represent the
median tissue. Bars are colored according to Extended Data Table 2. The right-hand
(secondary) axis shows the robust z-score.

best histologically unrelated cell type in 20 out of the 23 tumor types (all p-values <

0.03, WMW test; solid lines in Fig. 3a, Extended Data Fig. 2, Extended Data Table 1).

Not all best-matched models (among the 23 tumor types) had the same predictive
power, with variance explained ranging between 19 and 87% (median = 69.6%, 95% CI:
51-69%). Consistent with our previous work'® the overall mutation frequency in the
aggregated profile greatly influenced the ability to build an accurate model. Aggregated
profiles with above the median mutation frequency (= 184/Mb) typically had above the
median variance explained (262%; p = 0.01, Fisher's exact test). We next checked
whether the clonal status of mutations had an influence on the variance explained. First,
we compared predictions based only on the clonal mutations® (on average 70.8% of
somatic mutations) to predictions based on all the mutations (clonal and sub-clonal) and

found similar values of variance explained (Extended Data Fig. 3a). However, when we
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contrasted predictions based on clonal mutations to predictions based on sub-clonal
mutations (controlling for the number of mutations), the variance explained by the
models that used clonal mutations was typically significantly higher than those based on
sub-clonal mutations, suggesting that earlier somatic mutations are that ones that

capture the information about the COO (Extended Data Fig. 3b).

After analyzing tumor types based on their aggregated tumor profiles, we tested
whether the COO discovered above for the 23 tumor types could also be identified
using individual tumors, even in the setting of far fewer mutations available for modeling
(Fig. 3b). Gratifyingly, the COO determined by the aggregated tumor profile was among
the top three best matches for more than 50% of individual tumors in 15/23 cancer
types (Extended Data Fig. 4). As expected, these 15 tumor types were enriched with
tumors containing higher mutation frequencies (p = 1.2x102°, WMW test; Extended
Data Fig. 5). Likewise, a larger number of individual tumors matched the expected
normal cell in tumor types with higher variance explained when using the aggregated
tumor profiles (r = 0.59, p = 4x10™, Pearson correlation coefficient; Extended Data Fig.
6). Taken together, our data indicate that the memory of historical cell lineage is
retained by the tumor and can be discovered from the somatic mutation density of

tumors identifying the often elusive cancer COO.
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Figure 3

Analysis of primaries from the PCAWG cohort
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Figure 3. Chromatin marks predict tumor origins for aggregated and individual tumor
mutation profiles. (a) For each cancer type, we trained models on histone modifications
from 98 normal cell types to predict the mutation density in 1Mb windows of aggregated
tumor profiles. Bar plots show the variance explained by the best performing model,
identified via ten-fold cross validation. Solid vertical lines indicate performance of the second-
best model based on chromatin marks from histologically unrelated cells; dashed vertical
lines depict the variance explained based on chromatin marks that represent the median
tissue. The grey area indicates + Median Absolute Deviation (MAD). Bars are colored
according to the best match. Symbols identify types of best matches. (b) Barplots show the
proportion of individual tumors (red) in which the prediction on an individual level matches
the prediction based on aggregated tumor profiles. In some cases, chromatin profiles were

grouped (see Methods, Extended Data Fig. 1) 13
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Histologically related tissue types serve as a proxy for the cell-of-origin

Next, we sought to understand and define the cellular origins of the remaining 9 tumor
types (out of the aggregated 32) that did not match their expected normal cellular
counterpart. In 5 of the 9 tumor types, our analysis indicated that the best match was a
histologically related (or ‘proxy’) tissue type (Fig. 3a), consistent with the previous
observation of similar chromatin profiles'’. The three squamous differentiated tumor
types cervix (Cervix—SCC), head and neck (Head-SCC) and lung (Lung-SCC) do not
have a direct normal tissue counterpart Roadmap, ENCODE or IHEC projects.
However, their best match is another squamous-lined tissue, the esophagus that we did
have epigenetic profiles for (Extended Data Fig. 2). This convergence is consistent
with previous reports of similar molecular profiles including expression, copy number
changes and mutations, for these tumor types and the observation that more molecular
features are shared across squamous tumors than with adenocarcinomas that arise in

2324 | ikewise, the mesenchymal tumor type liposarcoma

their respective organs
(SoftTissue-LipoSarc), which not have a direct counterpart (adipose tissue) in our data
set, best matched the right atrium, another mesenchymal cell type. Thus, we are able to
identify a normal cell type that is related to the expected COO in cases wherein the

exact normal cell type did not exist in our data set of normal tissues, but a closely

related tissue was available.
Fallopian tube best matches high-grade serous ovarian cancer

Of particular interest was our finding in high-grade serous ovarian cancer (Ovary-

AdenoCA). When using the original 98 tissue types, the best match was endometrial
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epithelium (next-best unrelated tissue: right atrium; p = 0.007, WMW test; Fig. 3a). This
finding piqued our interest because, from an embryologic standpoint, the endometrium
and fallopian tubes both arise from the Mdullerian ducts, while the ovaries develop
separately from mesodermal epithelium on the urogenital ridges. To further probe this
observation we applied our methodology to epigenetic data recently generated for
ovarian surface and fallopian tube epithelial cells®®. Since only a restricted number of
ChIP-seq experiments was available for these tissue types, we ran our model using the
three histone marks available for 99 tissue types. Using the expanded set of normal
tissues, fallopian tube epithelium became the best match to high-grade serous Ovary-
AdenoCA, and explained significantly more variance than the second-best match (fetal
kidney; p = 0.00098; Fig. 4a . In addition, we interrogated individual high-grade serous
ovarian cancer tumors and found that the majority (95 of 110 samples, 86%) best
matched fallopian tube epithelium (variance explained: median, 9%; range, 1-37%). As
few as 16 tumors best-matched the epithelium of the ovary (variance explained:
median, 1.7%; range, 0.6-23%). However, the difference between the best match and
the second-best match was more pronounced in tumors in which the fallopian tube
epithelium was the predicted COO (Fig. 4b). Our finding supports the unconfirmed

hypothesis that secretory epithelial cells of the distal fallopian tube represent the COO

A25-27 28. In

of high-grade serous Ovary-AdenoC and not the epithelium of the ovaries
contrast to previous work in this area, our approach can associate high-grade serous
Ovary-AdenoCA with the epithelium of the fallopian tube without specifying pre-invasive

lesions. The true identity of the precursors in the fallopian tube have been the source of

a persisting paradox in that pre-invasive lesions occur with high frequency early on in
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the course of the disease but with low frequency in advanced stages, prompting the
concept of ‘precursor escape’ in which tumors do not arise from pathologically suspect
pre-invasive lesions, but from normal-looking early serous precursors arising within the
fallopian tube that are shed from the fallopian tube early. In light of these observations,

our finding, directly pointing to the fallopian tube epithelium, provide additional

orthogonal support.

High-grade serous ovarian cancer

H3Kame3 i
Hakz7me3 [ 8 T

e = Fallopian tube epithelium

Ovarian surface epithelium

‘mlmwmwmwmmwm

Ovary-AdenoCA samples (n=110)
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Figure 4. High-grade serous ovarian cancer best matches fallopian tube epithelium. (a)
Random Forest regression models for the prediction of mutation density in 1Mb windows of
aggregated tumor profiles of high-grade serous Ovary-AdenoCA were trained on an extended
set of 99 tissues for which three ChlP-seq experiments were available. The best match was
identified corresponding to the model with the highest prediction accuracy; p-values were
obtained using the paired Wilcoxon-Mann-Whitney test for the comparison of R? values from the
10-fold cross validation (***, p < 0.001; dots represent ten-fold cross-validation values). (b)
Random Forest regression models for individual high-grade serous Ovary-AdenoCA tumors
were trained on fallopian tube epithelium and three different ovarian surface epithelia. Color
indicates the best match. Depicted is the difference of the means of the R squared values from
the 10-fold cross validation and the error of this difference calculated from the standard error of
the means.
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Gastric mucosa is the best-matched cell type of origin for gastrointestinal tumors
that develop through a metaplastic intermediate

Finally, in the 4 remaining cancer types (out of the aggregated 32), the COO matched
neither the normal cellular counterpart nor any histologically related cell. In three of
these types, the COO supports the idea of the tumor arising from an intermediate step
of metaplasia, a process in which mature cells from a given tissue are replaced by
mature cells from another, typically adjacent, tissue (Fig. 3a). In the case of esophageal
adenocarcinoma (Eso-AdenoCA), a cancer of epithelial origin, the best match was
stomach mucosa and not the potentially more related esophageal tissue type (p =
0.00098) or any other gastrointestinal mucosa (best hit: rectal mucosa; p = 0.00098;
Extended Data Fig. 2). This was observed for the aggregated tumor profiles for Eso-

AdenoCA and almost all individual Eso-AdenoCA tumors (88 of 97 tumors; Fig. 3b).

Our finding is consistent with the accepted model that Eso-AdenoCA development
involves an intermediate step of metaplasia, known as Barrett's esophagus (BE), in
which adult esophageal squamous epithelium changes to columnar epithelium (similar
in histological appearance to the lining of the stomach)®. Accordingly, the epithelium of
BE has been found to exhibit a gastric differentiation program®°*'. To further test
whether the distribution of somatic mutations in BE reflect the COO, we analyzed 23
patient-matched pairs of BE and Eso-AdenoCA*. In agreement with previous similar
analysis®®, stomach mucosa was the best match for both BE and Eso-AdenoCA in 21 of
the 23 pairs. Typically, the variance explained in the Eso-AdenoCA samples was higher

than in the matching BE cases, likely due to the increased number of mutations.
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However, we saw a significant correlation between the variance explained in both
samples of the pairs (r = 0.44, p = 0.037, Pearson correlation coefficient; Extended
Data Fig. 7). Together, these findings highlight a close relationship between BE and
Eso-AdenoCA and suggest that Eso-AdenoCA may acquire most of its mutations during

the metaplastic state of BE.

We identified 2 additional gastrointestinal tumor types (Panc-AdenoCA and biliary
adenocarcinoma [Biliary—AdenoCA]) in which the best-matched cell type was stomach
mucosa suggesting a metaplastic intermediate step. In Panc-AdenoCA, the variance
explained was significantly higher in models of stomach mucosa than pancreatic tissue
(enriched for acinar cells; p = 0.00098, WMW test) and to the second-best
gastrointestinal tissue (duodenum mucosa; p = 0.00098). These data support the
current thinking that ‘acinar-to-ductal’ metaplasia (ADM) is the initial morphologic
change towards Panc-AdenoCA and that this loss of acinar differentiation induces
stomach-specific gene expression®***. Similar results were found in Biliary-AdenoCA,
where the variance explained was significantly higher in models of stomach mucosa

than the second-best gastrointestinal tissue (duodenum mucosa; p = 0.00098).

We are left with one tumor type, bladder transitional cell carcinoma (Bladder-TCC),
whose best match was also stomach mucosa. Our chromatin data set did not include all
potentially relevant normal cell types across the 4 cancer types (i.e., enriched cell
subtypes such as ductal pancreatic cells and esophageal mucosa as well as the direct

normal cell counterparts cholangiocytes and bladder transitional cells). Despite these
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limitations, we observed a significant difference between stomach mucosa and the
second-best tissue for all gastrointestinal tumor types but not Bladder-TCC (second
best: rectal mucosa; p = 0.54; Extended Data Fig. 8). Likewise, a considerable fraction
of individual gastrointestinal tumors best matched stomach mucosa — Eso-AdenoCA (88
out of 97, 91%) and Panc-AdenoCA (165 out of 232, 71%) — while only 1 out of 23
individual Bladder-TCC samples (4.3%) best matched stomach mucosa. These
observations suggest that the gastrointestinal cancer types are different from Bladder-
TCC in that they may have undergone metaplasia. In the case of Bladder-TCC however

we may simply be lacking the chromatin data from the most appropriate normal tissue

type.

Collectively, our results reveal that most mutations across the broad landscape of
different tumor types occur during a time when the chromatin organization of the cells is
still similar to the COO. Of note, we found that using an alternative regression method
leads to quantitatively and qualitatively similar results (see Extended Data Information

for details; Extended Data Fig. 9a,b; Extended Data Table 1).

Chromatin differences between cell differentiation states in a single tissue help to
decipher the precise cell subtype of origin

With the COO identified for almost all (31/32) aggregated cancer types, we next tested
whether our method was powerful enough to delineate the COO on a finer scale by
matching the COO to different tumor subtypes of the same lineage. Here, we focused

on brain, blood, breast and prostate cancers.
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Within the brain, different cell types, including neuronal and glia cells, have been
identified at different differentiation stages. Our analysis nominated neurospheres, but
not mature brain regions, as the best match across all gliomas (glioblastoma, CNS-
GBM; oligodendroglioma, CNS-Oligo; pilocytic astrocytoma, CNS-PiloAstro). In
contrast, medulloblastoma (CNS-Medullo) best matched the germinal matrix, a fetal
brain region that gives rise to neuronal cells but not neurospheres (p = 0.0046;
Extended Data Fig. 10). Neurospheres currently represent the best model of neural
stem cells (NSCs)* and our findings are in line with the current hypothesis that
undifferentiated NSCs and more committed progenitor cells give rise to all above-
mentioned gliomas®“°. Of note, our findings also recapitulate the historical
understanding of the distinct COOs for gliomas and CNS-Medullo wherein gliomas were
thought to derive from glia cells, while CNS-Medullo was believed to derive from

neuronal-type cells*"*2.

Further support for our findings comes from single-cell
transcriptomics of the developing mouse brain showing that CNS-Medullo tumors mirror
primitive cells in the neuronal lineage that are found in the germinal matrix but are all-

but-gone at birth*.

Similar to the nervous system, the differentiation cascade of the hematopoietic system
is particularly well-understood, giving rise to distinct cancer subtypes. Accordingly, we
next searched for the COO of different hematopoietic neoplasms, including tumors
originating from B cells (chronic lymphocytic leukemia, CLL; B cell Non-Hodgkin’s

Lymphoma, BNHL) and myeloid cells (acute myeloid leukemia, AML; myeloproliferative
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neoplasm, MPN). Aggregated tumor profiles of myeloid tumors best matched CD34"
hematopoietic stem cells (HSCs) while B cell tumors best matched CD19" B cells
(compared to next-best non-hematopoietic tissue: AML, p = 0.006; MPN, p = 0.001;
CLL, p = 0.00098; BHNL, p = 0.001; Extended Data Fig. 11a). Consistently, most
individual samples best matched the same cell type as the aggregated profiles
(Extended Data Fig. 11b). This is in accordance with the understanding that B cell
tumors develop late during B cell differentiation (i.e., in cells that already express
CD19*). In contrast myeloid leukemic transformation primarily occurs in multipotent or
granulocyte macrophage progenitors, both of which express CD34, the marker for

HSCs™*.

Breast cancer also has several different subtypes that arise from within the same
tissue’®. Four main ‘intrinsic’ molecular subtypes have been identified by gene
expression profiling: luminal A, luminal B, HER2-enriched and basal-like*’. Epithelial cell
types from the duct-lobular unit of the mammary gland include luminal and basal cells,
which both derive from mammary stem cells (MaSCs) via different progressively
committed progenitors*®. We used chromatin profiles generated from four subsets of
normal breast cells, isolated via two cell-surface markers: (i) one subset that includes
MaSCs, basal progenitors and basal mature cells (CD49f" EPCAM°*"); (ii) luminal
progenitors (CD49f" EPCAM™"); (iii) luminal mature cells (CD49f EPCAM™"); and (iv)
stromal cells (CD49f EPCAM)*. Aggregated tumor profiles of Breast-AdenoCA best
matched mature luminal cells (Fig. 3a). Similarly, the analysis of pre-invasive disease

found mature luminal cells to be the best match of DCIS (ductal carcinoma in situ; 10%
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Figure 5. Breast cancer subtypes arise in different mammary cell types. (a, b) Random
Forest regression models for the prediction of mutation density in 1Mb windows of aggregated
tumor profiles of distinct molecular breast cancer subtypes were trained on chromatin data from
four normal mammary cell types. Using two independent data sets, the best match for each
subtype was determined, corresponding to the model with the highest prediction accuracy; p-
values were obtained using the paired Wilcoxon-Mann-Whitney test for the comparison of R?
values from the 10-fold cross validation (**, p < 0.01; ***, p < 0.001; dots represent ten-fold
cross-validation values). (c) A subset of 58 breast cancer samples with HRD was analyzed for
their best matching normal cell using chromatin profiles from four normal breast cells. Colors
indicate the number of tumors that best match one of the mammary cell subtypes. (d)
Schematic representation of the mammary epithelial cell hierarchy and its association with
distinct breast cell types. Only breast cancer subtypes and normal mammary cells available in
our cohort are depicted. The expression of selected cell surface markers represents the
markers used for isolating normal breast cell subpopulations.

variance explained), further confirming our findings (data not shown; n = 3). Principal
component analysis (PCA) of the mutation profiles significantly separated basal-like and
non-basal subtypes into two distinct clusters, suggesting that the origin of each of these
clusters is different (p = 1x10°, Fisher's exact test; Extended Data Fig. 12a).
Accordingly, we discovered that mutation profiles of basal-like breast tumors matched
best to breast luminal progenitors (all p-values < 0.003, WMW test) while luminal A,
luminal B and HERZ2-enriched subtypes matched best to mature luminal cells (all p-
values < 0. 001; Fig. 5a). We confirmed our results using an additional independent
data set of 274 breast cancer whole-genome sequences (Fig. 5b)*°. Our finding held
true even when we divided patients according to subtype and ancestry, albeit with lower
variance explained in the smaller sub-cohorts compared to the aggregated breast
cancer analysis (Extended Data Fig. 12b,c). African-American females have been
found to exhibit a higher prevalence of basal-like breast tumors®'. This higher
susceptibility to basal-like subtypes has been suggested to be influenced by a higher

basal to luminal cell ratio in African-American women®2. In contrast to this hypothesis,
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our results suggest that basal-like breast tumors originate from luminal progenitors

independent of ethnicity.

Next, we asked whether our COO results of breast cancer depend on specific genetic
events. We therefore aggregated tumors according to their type of homologous
recombination deficiency (HRD; see Extended Data Information). All 34 HRD-
associated basal-like breast cancers best matched luminal progenitors, regardless of
BRCA1, BRCA2 or RAD51C® inactivation (Extended Data Fig. 13). Likewise all 26
HRD-associated luminal A/B and HER-2 enriched subtypes best matched mature
luminal cells, again irrespective of the inactivated HR gene. We found similar results
when analyzing individual tumors: most basal-like tumors (19/34, 55.9%) best matched
luminal progenitors while the majority of LumA/B and HER-2 enriched tumors (15/24,
62.5%) best-matched luminal mature cells (Fig. 5¢). Although different breast cancer
subtypes are associated with different HRD mechanisms, we found that the HRD event

was not influenced by the COO.

In addition to our analysis of ductal carcinoma, we also sought to understand the origins
of lobular cancer (Breast-LobularCA). Both entities are assumed to derive from the
mammary duct-lobular unit but are distinct in terms of their molecular and histological
features®. Until now no conclusive reports on the COO of Breast-LobularCA have been
published. We found that Breast-LobularCA matched best to mature luminal cells
(Extended Data Fig. 12d), a finding that concurs with the observation that up to 72% of

lobular tumors are classified as the molecular subtypes luminal A/B*°.
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Like the breast, the prostate is a hormone-regulated, two-layered glandular organ
comprising luminal and basal cells. We differentiated between these two main cell types
using ChIP-seq data from 3D organoid luminal and basal cell cultures, isolated via two
cell surface markers from normal tissue: CD26 to enrich for luminal cells, and CD49f to
enrich for basal cells?”*®. Only two histone modifications were evaluated for the
organoids, and we ran our model on 13 tissue types for which those marks were
available. The best match for prostate adenocarcinoma (Prost-AdenoCA) was prostate
bulk representing a primary tissue. Luminal cells explained less variance than bulk
primary tissue but not significantly lower. In contrast, basal cells explained significantly
less variance (p-value = 0.02, WMW test; Extended Data Fig. 14a) suggesting that
luminal cells are the COO of Prost-AdenoCA (Extended Data Fig. 14b). Our finding of
the lack of a significant difference also points out that organoid-derived cells maintain a
chromatin structure highly comparable to primary tissue which is not the case for cell
lines®”. Furthermore, we used epigenetic data from two additional prostate cancer
organoids®®. One was derived from an androgen receptor (AR)-independent
basal/mesenchymal prostate cancer phenotype (PCa1) and one from an AR-dependent
luminal phenotype (PCa2). However, we found that they both explained less variance
than normal prostate cells. This suggests that the chromatin structure evolves
significantly during tumorigenesis and that most of the somatic mutations occurred

before this change.
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Overall, our findings in cancer subtypes demonstrate the power of our method for

inferring COOs from distinct differentiation states along the same cell hierarchy.

The cell-of-origin captures important features of cancer biology

To further support our findings of the COO and to highlight the biological relevance to
tumorigenesis we performed three types of orthogonal analyses. First, we investigated
GWAS hits in estrogen receptor negative (ERneg) and positive (ERpos) breast cancer
subtypes to estimate the influence of the cellular context on the effect size of single-
nucleotide polymorphisms (SNPs) to heritability. Second, we used metastatic samples
to determine whether they still preserve molecular echoes of the COO. Lastly, we
evaluated driver mutations to study whether the COO can explain differences in the

oncogene and tumor suppressor composition across cancer types.

Germline risk alleles for breast cancer reside in active chromatin regions of the
cell-of-origin

Genome-wide association studies (GWAS) for breast cancer risk have identified 107
independent loci®®. Since we have epigenetic data for different breast cell subtypes
(from progenitors to mature cells), we wanted to assess additional evidence from risk
GWAS for the best matching cell type of origin. To this end, we explored whether
GWAS heritability for ERneg and ERpos breast cancer were enriched in active
enhancer/transcription regions (peaks of H3K27ac) of the different cell types. H3K27ac
peaks were selected for two reasons: (i) they are generally enriched across complex

disease®; and (i) highly enriched with GWAS hits for prostate cancer®'. Indeed, we
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found the largest enrichment of ERneg breast cancer heritability for luminal progenitors
followed by luminal mature cells (9.8x and 9.5x; all p-values < 0.02, Z-test; Extended
Data Fig. 15 and Extended Data Table 3). In ERpos breast cancer, luminal breast cell
types also showed a high enrichment of heritability (progenitor, 13.3x; mature cell,
12.6x; all p-values < 0.0005), though not the highest of all cell types tested. These
differences may reflect the fact that high-penetrance mutations are associated with
ERneg breast cancer while most of the susceptibility loci show a stronger association
with ERpos disease®®. Of note, in both ERneg and ERpos tumors, the basal and the
stromal breast cell types explained considerably less heritability than the luminal cell
types (Extended Data Fig. 15). Previous analysis of GWAS heritability based on
H3K4me1 regions of a different breast cell type (myoepithelium) achieved a poorer
enrichment of 6.7-fold compared to ~13-fold using our suggested COO®. Overall, our
findings indicate that active enhancer/transcription regions of the COO are highly
enriched with GWAS heritability, thereby highlighting the tissue specificity of those
genes and the significance of the cellular context. Such effects could help in localizing

GWAS associations to the most likely cell type-specific regulatory features.

Metastatic samples allow the identification of their originating tissue types

With the exception of Skin-Melanoma samples, which are largely metastatic in origin,
almost all of the tumors in the PCAWG data set are primaries (Extended Data Table 1).
To extend our method further we profiled 2,044 metastatic samples (HMF metastases)®*

from 22 of the tumor types available as primaries in the PCAWG data set (Extended

Data Table 4).
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Fascinatingly, we found that the power of our method for inferring COOs is similar
across primary and metastatic disease (Fig. 6a). Analogous to our analysis of primaries
the same COO was detected in almost all types of metastatic disease. In only two
endocrine tumor types (Panc-Endocrine and Thy-AdenoCa) did unrelated cell types
show the highest variance explained. This is most likely due to a smaller sample size
leading to a reduced power to detect in cancer types with an already low mutation
frequency. Similar to our findings in primaries, fallopian tube epithelium showed the
highest prediction accuracy in high-grade serous Ovary-AdenoCA giving additional

evidence that the fallopian tube serves as the COO (next best: colonic mucosa; p =

0.00098, WMW test; Extended Fig. 16a). Metastatic breast cancer subtypes were
classified according to their expression of hormone receptors. Analogous to our results
when using Prediction Analysis of Microarray 50 (PAMS50)-grouped primaries, we
observed that triple negative breast cancer best matched luminal progenitors (all p-
values p < 0.02; Extended Fig. 16b), while all other subtypes best matched luminal
mature cells (all p-values < 0.03). Overall, the analysis of metastases provided
independent validation for our findings in primaries. Although the epigenetic landscape
changes after oncogenic transformation®® our data suggest that new mutational events
and processes that may evolve during late tumorigenesis do not override the original

information reflecting the normal tissue (Fig. 6b).
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Figure 6. The cell type of origin can be inferred from metastatic cancer samples. (a, left)
Models were trained on histone modifications from 98 normal cell types to predict the mutation
density aggregated metastatic cancer profiles. Bar plots show the variance explained by the
best-performing model, identified via ten-fold cross validation. Solid vertical lines indicate
performance of the second-best model based on chromatin marks from histologically unrelated
cells; dashed vertical lines depict the variance explained based on chromatin marks that
represent the median tissue. The grey area indicates + Median Absolute Deviation (MAD).
Bars are colored according to the best match. Symbols identify types of best matches.
Abbreviations: Mes, Mesenchymal tumors; Hem/Lymph, Hematopoietic and lymphoid tissue.
(a, right) Bar plots depict the proportion of individual metastatic samples (red) in which the
prediction on an individual level matches the prediction of the aggregated metastatic cancer
profile. In some cases, chromatin profiles were grouped (see Methods, Extended Data Fig.
1). (b) Schematic illustrations depict the qualitative change of the cell type-specific chromatin
state from normal to cancer (top), cell type-specific chromatin and mutation profiles alongside
germline risk alleles along one genomic region (middle) and the accumulation of somatic
mutations throughout the human lifespan (bottom). Blue color indicates a normal cell state, red
color indicates a cancerous cell state.

The cellular context of driver genes highlights tissue specificity

In our main analysis, we found that the chromatin structure of the COO is highly
associated with the acquisition of somatic mutations. In parallel to the overall mutational
landscape, alterations in cancer genes have been found to be tissue specific. While
some driver genes are altered across tumor types, most are mutated in only a restricted
set of tumor types. Alterations in driver genes are expected to be positively selected in
cells in which they are transcribed and hence have open chromatin. We therefore
hypothesized that the COO chromatin landscape offers a cell type-specific fertile ground
at sites of high transcriptional activity for the acquisition of cancer type-specific driver

mutations.

We analyzed 78 individual genes that were mutated in >2% of patients and located in
the 1Mb windows not removed due to mappability (median 8%, range 2-86%) and

identified either as significantly mutated in PCAWG®® or previously shown to be
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drivers®”. These 78 genes were mutated in 24 tumor types, with most of them (42
genes) only in one tumor type. Across all tumor types, we observed 225 alterations in

these genes (Extended Data Fig. 17).

Next, we inferred the regional transcriptional activity in a 1Mb window around the driver
genes by counting ChlP-seq reads of three activating chromatin marks (H3K4me1,
H3K4me3 and H3K36me3) for each tissue type. For each chromatin mark, we then
compared the number of reads in the COO to the other tissue types and determined
whether it is an outlier (see Methods, Extended Data Information). Altogether, we
found 105 regions with outlier activity in the COO associated with each of the tumor

types.

In the next step, we searched for co-occurrence of tumor type-specific driver gene and
COO outlier activity. Supporting our hypothesis, we observed a significant enrichment of
driver genes in chromatin regions with outlier activity in their COO: 29 pairs affecting 23
genes (p = 6.9x10°, Fisher's exact test; Extended Data Fig. 17). Even when controlling
for the total number of outliers in each tissue and each gene, we found that the overlap
between outliers and drivers was significantly larger than expected by chance (29 vs. an

average of 19, p = 0.0004, permutation test).
To further understand this observation, we gathered functional and biological

annotations from the literature for 18 of the 23 (78%) drivers and found 4 of them to

contribute to tissue homeostatic processes and 14 to be crucial for development and
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differentiation of their corresponding COO (see Extended Data Information for details).
This suggests that a subset of the drivers not only confers a selective growth advantage
in their mutant form but also have major cell type-specific regulatory functions in the

COO.

In addition, we observed that the COOs of B cell-derived tumors (Lymph-BNHL, Lymph-
CLL) and Breast-AdenoCA showed an exceptionally high number of regions with outlier
chromatin activity (74 of the 105 outlier regions in these three tumor types vs. 31 in the
others). This significant enrichment of outlier activity (p = 2.2x10™'®, Fisher's exact test)
paralleled a significant enrichment of driver genes in these outlier regions (11 of the 29
pairs in these three vs. 18 in others; p = 0.0004). B cells and mammary cells have been

reported to have a high turnover rate®°°

, suggesting that cell proliferation of the COO
could influence the risk of acquiring driver mutations. Two previous studies support this
hypothesis: (i) mathematical modeling correlated the number of cell divisions with the

overall cancer risk’®; and (ii) the frequency of actively cycling normal breast cells was

reported to be associated with higher breast cancer risk’".

Overall, our data suggest that COO-specific chromatin sites of high transcriptional
activity are associated with mutations in driver genes in a cell context-dependent
manner. Despite an overall lower abundance of somatic mutations in these regions, we
assume the enrichment of drivers due to the positive selection of genes that play an
important functional and physiological role. By differentiating subclasses of driver

genes, our approach helps to better understand the potential contribution of the COO to
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tumor initiation. In addition, our approach of focusing on active regions in the COO

could guide the search for new tumor-specific drivers, including non-coding genes in

enhancer/promoter regions.
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DISCUSSION

Understanding the dynamics of tumor formation by studying the genomics of advanced
tumors at diagnosis is a challenge due to the acquired plasticity that typically masks
features of the originating tissue. However, we found footprints of early tumorigenesis in
the COO that are preserved in the tumor genome. We took advantage of the correlation
between chromatin marks and mutational profiles, which reflect transcriptional activity.
Typically, decreased mutation frequencies are observed in open, transcriptionally active
chromatin, likely due to more efficient DNA repair or fewer errors in earlier replication

regions’?"*,

One key finding in this study is that the mutational landscape is significantly influenced
by the normal cellular context of the COOQO. This observation is in accordance with
previous results in single neurons showing that the density of somatic mutations varies
according to the originating brain region’. Our data imply that most somatic mutations
detected in tumors arise at a time when the chromatin state still resembles the normal
cell (either in normal cells or early in tumor progression). This observation is supported
by a previous study estimating that at least half of a tumor’s mutations occurred before
the onset of neoplasia’. The concept that most mutations happen before tumor
initiation is further reinforced by the higher prediction accuracy of clonal compared to
sub-clonal mutations. Since the epigenetic landscape of tumors is distinct from that of

their originating normal cells®7677

mutations that were acquired earlier can be better
explained by the chromatin structure of the COOQO. This is not the case for copy number

changes, as these typically occur synchronously with oncogenic transformation.
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Our findings help to better understand the biology of cancer. The identification of the
fallopian tube epithelium as the COO for almost all high-grade serous Ovary-AdenoCA
tumors without the use of precursor lesions serves as additional evidence in the debate
regarding the origin of ovarian cancer. Generally, by matching the cancer genome
directly to normal chromatin profiles, we bypassed the necessity of pre-invasive disease
for identifying cancer origins. Moreover, in cases in which we analyzed mutational
profiles in precursor lesions (DCIS and BE) we found that they matched the same COO
as their invasive counterparts. While it is difficult to causally connect pre-invasive
lesions to the later appearing invasive cancer, our findings point towards a common
origin and thereby support a multistep model of cancer development. Our result that
Prost-AdenoCA matches the chromatin state of organoids derived from normal cells
equally well as primary prostate tissue suggests that these model systems provide good
approximations of the COO and might accurately reflect the characteristics of cells in

Vivo.

Another novel finding from the present work is the discovery that stomach-like mucosa
serves as the preferred representative proxy for different metaplasia phenotypes in the
gastrointestinal tract. Our findings are particularly important to understand the debated
origin of Panc-AdenoCA’®. The pancreas consists of three functionally distinct, but
anatomically interwoven cell populations: islet or endocrine cells (~2.4% of pancreatic
area), exocrine acinar cells (~86%), and exocrine ductal cells (~1.1%)"°. Although

debated, the current hypothesis is that Panc-AdenoCA develops from acinar cells
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through a sequence of acinar-to-ductal metaplasia (ADM) followed by pancreatic
intraepithelial neoplasia (PanIN)**. There is a large body of evidence that both
metaplastic cell types acquire gastric cell features®®%8!. Additional support comes from
the embryonic development of the gastrointestinal tract. The pancreas forms because
Hedgehog signaling is suppressed; when not suppressed, Hedgehog drives the
endoderm to intestine transition. Hedgehog signaling is upregulated in Panc-AdenoCA
and points towards a close relationship between gastric epithelium and the COO of
Panc-AdenoCA®. Our results are consistent with these observations and indicate that
most mutations in Panc-AdenoCA occur in a cell state that resembles stomach mucosa
(most likely a metaplastic state) and not in acinar cells (represented by native

pancreatic tissue, and only the 10" best match).

One main conclusion from this study is that cancers from the same organ but of distinct
subtypes can be matched to different COOs. In particular, we study the COO of breast
cancer subtypes. There are three hypotheses about the origins of breast cancer: (i) the
MaSC is the COO of all subtypes®?; (ii) basal stem/progenitor cells give rise to basal-like
cancers and luminal progenitors to luminal tumors®*; and (iii) all breast cancer subtypes
derive from cell types along the luminal differentiation hierarchy83. Since previous
conclusions were drawn from murine experiments, our analysis of human tumors yields
valuable insights given the morphogenetic differences between the mouse and human
mammary glands®®. Here, using our method of integrating chromatin state with
mutational density, we found data that support the hypothesis that basal-like tumors

originate from luminal progenitors and all other subtypes from mature luminal cells, a
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finding consistent with previous gene expression profiles®®. We also found that the
association of breast cancer subtypes with their corresponding COOs is not influenced
by the specific HR-inactivation event. This result is supported by previous data showing
that functionally disabling BRCA1 in luminal progenitors, but not in mature luminal or

basal cells, gives rise to basal-like breast cancer®®

. Together, our data are in
accordance with the concept that the COO helps in dictating the cancer type that

eventually occurs even in the presence of the same genetic event.

While almost all aggregated tumor mutation profiles matched their direct cellular
counterpart or a close proxy, many individual tumors (depending on the cancer type) did
not have enough mutations to distinguish the COO from other cell types. In some tumor
types, such as blood cancers, the chromatin profiles of the different COOs are highly
similar to each other; hence, a larger number of mutations is required to distinguish
between individual cancers from the same lineage. Furthermore, chromatin
modifications were primarily derived from bulk normal tissues that are heterogeneous.
Chromatin marks were available for enriched cell populations only in a few cases (e.g.,
breast and prostate cell subtypes). Despite the heterogeneity of bulk normal tissue that
can mask the features of the COO, most cancer types matched their expected normal
cell counterpart. This suggests that an enrichment of the COO in the normal tissues is
sufficient for being identified by our approach. One limitation of our study is that the
current data do not provide a 1:1 relationship between all cancer types and normal cell
types. In cases in which we did not have chromatin data of the direct normal cellular

counterpart, an appropriate COO could often only be reached as a proxy (e.g.,
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histologically related cells). Accordingly, analyses such as these will benefit from
additional cell type-specific chromatin data, especially when derived from single cells

and/or enriched cell populations.

Our results may have unique clinical implications. We show, for the first time, that most
somatic mutations in metastases reflect the chromatin state of the COO. This finding
can help elucidate the origins of a metastatic lesion, an approach that can be applied to
identify the COO of cancers of unknown primary (CUPs). A precise characterization of
the tumor COO is particularly relevant given recent ‘basket’ trial data, suggesting that
the tumor’s response to treatment depends not only on the oncogenic mutations but
also on the specific cell context of the tumor and/or the COO®. Thus, our findings may

supplement clinical decision-making and improve trial design.

Collectively, our results will help (i) inform the development of animal and cellular
models to understand tumor initiation and progression in greater detail; (ii) enable the
evaluation and development of treatment options that take into account the COO; and

(iiif) focus on the relevant cell type for early detection or prevention of cancer.
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MATERIALS and METHODS

Genomic data

As described previously'®, we divided the human genome (hg19) into 1Mb windows. We
excluded regions overlapping centromeres and telomeres as well as regions with a low
fraction of uniquely mappable bases (<92% of bases within uniquely mapped 36-mers).

This approach resulted in 2,128 1Mb windows, corresponding to ~2.1Gb of DNA.

We obtained whole-genome mutation data for 2,550 cancer genomes, belonging to 32
different tumor types, from PCAWG. Clinical annotations of tumor samples, the
generation of sequencing data, and their analysis through a series of pipelines have
been described in detail’®. The Extended Data Table 1 provides an overview of tumor
samples characteristics relevant for our approach.

We included all cancer types with = 10 individual samples; we excluded all non-
malignant bone tumors and the category ‘epithelioid bone neoplasms’ that summarizes
three cancer types of distinct origins. For each individual cancer sample we calculated
the total number of mutations in each window. Aggregated tumor profiles for each tumor
type were calculated by summing the total number of mutations across all tumors from
that tumor type in each window. Mutation clonality annotation was obtained from

PCAWG?,
In addition, we obtained whole-genome mutation data from a metastatic data set based

on the Hartwig Medical Foundation cohort (HMF metastases) ®. Altogether we

analyzed 2,044 metastatic cancer genomes, belonging to 22 tumor types (Extended

39


https://doi.org/10.1101/517565
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/517565; this version posted January 11, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Data Table 4). We concentrated our analysis on tumor types present in the PCAWG
data set and included all cancer types with = 6 individual samples. In cases with multiple
samples per patient only one tumor (‘A’) was used. Samples lacking mutation counts or
appropriate histological annotations were excluded. We included a limited number of
primary tumors that were not previously surgically removed when the sampling of the

metastatic lesion was not feasible or safe (see Extended Data Table 4 for details).

Chromatin data

We downloaded read alignment information from eight ChlP-Seq experiments against
six active” histone modifications (H3K27ac, histone H3 lysine 27 acetylation;
H3K27me3, histone H3 lysine 27 trimethylation; H3K36me3, histone H3 lysine 36
trimethylation; H3K4me1, histone H3 lysine 4 monomethylation; H3K4me3, histone H3
lysine 4 trimethylation; H3K9ac, histone H3 lysine 9 acetylation) and one repressive
histone modification (H3K9me3, histone H3 lysine 9 trimethylation) as well as the
background sample ‘Input’ (Extended Data Table 2). We obtained data (human primary
cell cultures, enriched cells and bulk tissues) for 87 cell types from the Roadmap
Epigenomics Consortium (release 9)', for kidney, thyroid and prostate from ENCODE'®
and for four breast cell subtypes as well as four endometrial cell types from IHEC'"
(Extended Data Table 2). In addition, four chromatin profiles for fallopian tube and
ovarian surface epithelium as well as four profiles for prostate organoids were gathered
from publications?®?'. Similar to the mutation data, for each of the ChIP-Seq data sets,
we calculated its profile, i.e. the number of reads in the same 1Mb windows as defined

above.
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Chromatin modifications were grouped when they were biological replicates or derived
from histologically related tissues to evaluate the best match of individual tumors
(Extended Data Fig. 1). For the following cell types biological replicates were available
and we considered them as one: fibroblast primary cells, melanocyte primary cells,
keratinocytes primary cells, T helper memory cells, T helper naive cells, rectal mucosa,
and endometrial stroma. Likewise, 10 groups were formed from the following
histologically related cells: (i) the ‘brain group’ consists of cells from fetal brain, adult
brain regions and neurospheres; (ii) the ‘bone/soft tissue group’ consists of all
mesenchymal cells throughout the body including muscle and other connective tissues;
(iif) the ‘squamous group’ consists of squamous esophagus and skin keratinocytes; (iv)
the ‘endometrial epithelium group’ consists of EndoFollicular and EndoSecretory cells;
(v) the ‘breast luminal group’ consists of luminal progenitors and mature luminal cells;
(vi) the ‘breast other group’ consists of basal, breast myoepithelial, and breast variant
human mammary epithelial cells; (vii) the ‘T cell group’ consists of all T cells; (viii) the ‘B
cell group’ consists of all B cells; (ix) the ‘HSC cell group’ consists of all HSCs; (x) the
‘blood cell group other’ consists of myeloid cells. In addition, we combined fetal and
adult tissues (lung, thymus and kidney) as well as gastric and stomach mucosa profiles

to represent stomach mucosa.

Random Forest regression analysis

For each of the cancers and the aggregated tumor profiles, we used Random Forest

regression (with 1,000 trees) to predict the mutation density profile using the chromatin
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profiles. For each mutation density profile, we trained 98 separate regression models
using the complete chromatin profiles associated with each of the tissue types. For the
cancer-specific aggregated mutation profiles, we calculated the performance using 10-
fold cross validation (i.e., we divided the 2,128 windows into 10 non-overlapping sets,
trained the model on 9 sets and predicted the number of mutations in the remaining
windows). We additionally identified the best-matching model for each individual cancer
by training 98 regression models, using all windows, and finding the one with highest
prediction accuracy. For each cancer type, we then calculated the proportion of
individual tumor samples in which the best-matching model was either the same as the
presumed COO of the aggregated tumor profile or, in some tumor types, belonged to a
group of histologically related tissue types. We reported the overall prediction accuracy
by calculating the average R? between the predicted and observed profiles across the
10 sets of windows. The analysis was run using the caret and ranger packages in ‘R’.
To demonstrate the robustness of Random Forest regression, we here used different
seeds for random numbers to control for the noise introduced into the model. Using this
approach we did not find qualitatively significant differences in the best matches (data

not shown).

To compare models based on two different chromatin profiles, we used the paired
Wilcoxon-Mann-Whitney (WMW) test between the R? values from ten-fold cross
validation tests. Correlations were analyzed using the Pearson correlation coefficient.
Mutation frequency is given as overall mutation frequency and was determined by

summing up all mutations of all samples of a given tumor type in 1Mb windows.
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We compared the prediction accuracy for clonal and sub-clonal mutations across
cancer types. To assure that differences in prediction accuracy in our models are not
driven by a higher number of clonal mutations, we simulated clonal mutation profiles.
Monte Carlo simulation was used to generate profiles with a total number of clonal
mutations that equals the total number of sub-clonal mutations in each cancer type. In
detail, simulated profiles were generated by a Poisson number generator using rates
that are equal to the normalized profile of clonal mutations multiplied by the total
number of sub-clonal mutations. In addition, the tissue that represents the median
across all tissues and the Median Absolute Deviation (MAD) were determined. For the
comparison of models trained on histone marks from different cell types, the robust -

score was computed®.

Analysis of the chromatin environment of candidate driver genes

Lists of significantly recurrently mutated coding driver genes and previously described
driver genes were provided by the PCAWG Drivers and Functional Interpretation
Group®®’. Of those, 78 drivers were used in our analysis, which are located in the 1Mb

windows that were not removed due to mappability; they resided in 24 tumor types.

To analyze the chromatin context of different driver genes, we used, for each driver, the
number of reads of H3K4me1, H3K4me3 and H3K36me3 in the 1Mb window in which
the gene is located across the core 98 tissue types. For cell types with biological
replicates and groups of histologically related cells (see above), the number of ChIP-

Seq reads was calculated as the median number of reads over all replicates. Square-
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root transformation of data was used. We then compared the number of reads in the
window for the best-matched tissue (i.e., the identified COO) to the other 97 tissues and
considered the gene to have a tissue-specific chromatin environment if it was an outlier
(i.e., above the 1.5*interquartile range from the 75" percentile of the 97 tissues). In
addition, we used the top 1%, top 2.5% and top 5% to define outlier status. By
comparing the same 1Mb window across tissue types, we accounted for possible
variations in the number of binding sites or ChIP affinities®™. We performed a

permutation test with 1,000,000 permutations using the ‘Curveball algorithm’94.

Clustering of individual breast cancer genomes

We performed principal component analysis (PCA) on the mutation profiles of all
individual breast cancer genomes from PCAWG and Nik-Zainal et al.*°. Each tumor was
classified to one of the breast cancer subtypes using RNA expression levels of 50
genes (PAMS50, Prediction Analysis of Microarray 50) taken from the corresponding
literature®®>*. We used k-means clustering (with k=2 and 1-Peason correlation as the
distance metric) to cluster the tumors based on their first two principal coordinates from

mutation counts along 1Mb windows.

Analysis of GWAS heritability

We used stratified linkage disequilibrium score regression (S-LDSC)* to quantify the
enrichment of GWAS heritability in epigenetically active regions (annotations). Briefly,
S-LDSC evaluates the full distribution of GWAS associations (not restricted to

significant SNPs) and infers heritability parameters from the relationship between the

44


https://doi.org/10.1101/517565
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/517565; this version posted January 11, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

effect-size and the LD of each SNP. Annotations that are in LD with higher effect-size
SNPs will be assigned higher heritability and the converse for low effect-size SNPs.

Further details are discussed elsewhere®®®’,

GWAS summary statistics were downloaded from recent studies of ER negative
(N=127,442) and ER positive (N=175,475) breast cancer risk®®. Each study was
restricted to ~1M HapMap3 SNPs that are typically well-imputed across all GWAS
platforms and have been shown to perform well in heritability analyses. We then
included each epigenetic annotation in turn in the S-LDSC model together with the
standard “baseline model” that captures potential confounding factors (generic features
such as coding, promoter and intronic). Enrichment for each annotation was computed
as the % of heritability accounted for by the annotation, divided by the % of SNPs
contained in the annotation, wherein an enrichment of 1.0 is expected under the null.
Statistical significance was assessed by the block jackknife as implemented in S-LDSC.
For context, we evaluated H3K27ac ChlIP-seq calls from ROADMAP'" and breast*® cell
types using the imputed, narrow peaks call-set. To test statistical significance, p-values

were generated from Z-scores.
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