

RUNNING TITLE: IL-1 β polygenic score and hippocampal volume.

A GWAS-Derived Polygenic Score for Interleukin-1 β is Associated with Hippocampal Volume in Two Samples

Reut Avinun¹, Adam Nevo², Annchen R. Knodt¹, Maxwell L. Elliott¹, and Ahmad R. Hariri¹

¹*Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, NC, USA*

²*Cardiothoracic Division, Department of Surgery, Duke University Medical Center, Durham, NC, USA*

Corresponding Author: Reut Avinun, Ph.D., Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Gray Building 2020 West Main St, Ste 0030 Durham, NC 27705. Email: reut.avinun@duke.edu

Number of words: abstract (174), text (3,070).

1

Abstract

2 Accumulating research suggests that the pro-inflammatory cytokine interleukin-1 β
3 (IL-1 β) has a modulatory effect on the hippocampus, a brain structure important for
4 learning and memory as well as linked with both psychiatric and neurodegenerative
5 disorders. Here, we use an imaging genetics strategy to test an association between an
6 IL-1 β polygenic score, derived from summary statistics of a recent genome-wide
7 association study (GWAS) of circulating cytokines, and hippocampal volume, in two
8 independent samples. In the first sample of 512 non-Hispanic Caucasian university
9 students (274 women, mean age 19.78 ± 1.24 years) from the Duke Neurogenetics
10 Study, we identified a significant positive correlation between higher polygenic
11 scores, which presumably reflect higher circulating IL-1 β levels, and average
12 hippocampal volume. This positive association was successfully replicated in a
13 second sample of 7,960 white British volunteers (4,158 women, mean age 62.63 ± 7.45
14 years) from the UK Biobank. Collectively, our results suggest that a functional
15 GWAS-derived score of IL-1 β blood circulating levels affects hippocampal volume,
16 and lend further support in humans, to the link between IL-1 β and the structure of the
17 hippocampus.

18

19 **Keywords:** Interleukin-1 β ; inflammation; immune system; structural MRI;
20 hippocampus; endophenotype; volume; polygenic score; genes.

21

22

Introduction

23 The hippocampus, a key brain structure supporting learning and memory, has been
24 implicated in the pathophysiology of both psychiatric and neurodegenerative
25 disorders. For example, smaller hippocampal volume has been noted in schizophrenia
26 (van Erp et al., 2016), depression (Schmaal et al., 2016), and bipolar disorder (Hibar
27 et al., 2016), as well as in neurodegenerative disorders such as Alzheimer's disease
28 (Bobinski et al., 1999). More broadly, smaller hippocampal volume has been
29 associated with poorer cognitive function in healthy adults (Zhu et al., 2017). Thus,
30 advancing the understanding of the factors that contribute to individual differences in
31 hippocampal volume, can shed light on both normal and abnormal function.

32 It is now clear that inflammation has far-reaching modulatory effects on the
33 central nervous system (Miller et al., 2013; Yirmiya and Goshen, 2011). Amongst
34 these, the pro-inflammatory cytokine interleukin (IL)-1 β may be particularly
35 important for understanding hippocampal structure. First, receptors for IL-1 β are
36 highly expressed in the dentate gyrus (Ban et al., 1991; Loddick et al., 1998). Second,
37 IL-1 β has been shown to affect neurogenesis, synaptic strengthening, and long term
38 potentiation (Avital et al., 2003; Bellinger et al., 1993; Goshen et al., 2008; Green and
39 Nolan, 2012; Katsuki et al., 1990), which are all processes that can affect
40 hippocampal volume. For example, in animal models, interrupting IL-1 β signaling,
41 by a deletion of IL-1 receptor type 1 or by administration of IL-1 receptor antagonist,
42 blocks the antineurogenic effect of stress on the hippocampus. In contrast, increasing
43 IL-1 β signaling, by exogenous administration of this cytokine, mimics the effect of
44 stress, and decreases hippocampal cell proliferation (Koo and Duman, 2008). In
45 humans, Zunszain et al., (2012) demonstrated that IL-1 β directly inhibits neurogenesis
46 in hippocampal progenitor cells in vitro.

47 Despite the vast literature demonstrating the effects of IL-1 β on hippocampal
48 volume and studies showing that IL-1 β levels are moderately to highly heritable
49 (Brodin et al., 2015; De Craen et al., 2005), to our knowledge, the genetic influences
50 of IL-1 β on hippocampal volume in humans have only been previously shown in one
51 candidate gene study (Raz et al., 2015). In a sample of 80 individuals, Raz et al. found
52 that the T allele of the single nucleotide polymorphism (SNP) rs16944 in the IL-1 β
53 gene was associated with smaller hippocampal volume. Notably however, candidate
54 gene studies suffer from low replicability rates (e.g., Avinun et al., 2018), and more

55 specifically, findings regarding the biological functionality of rs16944 have not been
56 consistent across studies (e.g., Chen et al., 2006; Iacoviello et al., 2005).

57 Polygenic scores that aggregate information from across the genome to
58 summarize genome-wide genetic influences on an outcome of interest, have been
59 successfully used in previous research to model individual differences (e.g.,
60 Domingue et al., 2015; Domingue et al., 2017; Stephan et al., 2018). A recent study
61 conducted separate genome-wide analyses of circulating blood levels of 41 cytokines,
62 including IL-1 β , in up to 8,293 adult Finns from three independent population cohorts
63 (Ahola-Olli et al., 2017). Here, we used summary statistics from this GWAS to
64 generate polygenic scores to model potential individual differences in circulating
65 levels of IL-1 β . There are two main advantages to this approach: 1) whole genome
66 data is more available to researchers than measures of IL-1 β levels in blood and/or
67 cerebrospinal fluid, and consequently findings with genetic scores can be more easily
68 replicated and extended; and 2) the use of genetic data supports causal inference
69 more than direct measures of IL-1 β levels.

70 Based on the available literature, we hypothesized that higher polygenic IL-1 β
71 scores, which putatively index higher circulating levels of the pro-inflammatory
72 cytokine, would be associated with smaller hippocampal volume. We tested our
73 hypothesis in two independent samples: 1) 512 non-Hispanic Caucasian university
74 students from the Duke Neurogenetics Study; and 2) 7,960 adult white British
75 volunteers from the UK Biobank.

76

77 **Materials and methods**

78 *Participants*

79 Our first sample consisted of 512 self-reported non-Hispanic Caucasian participants
80 (274 women, mean age 19.78 \pm 1.24 years) from the Duke Neurogenetics Study (DNS)
81 for whom there was complete data on genotypes, structural MRI, and all covariates
82 detailed below. All procedures were approved by the Duke University Medical Center
83 Institutional Review Board, and participants provided informed written consent before
84 study initiation. All participants were free of the following study exclusions: 1)
85 medical diagnoses of cancer, stroke, diabetes requiring insulin treatment, chronic
86 kidney or liver disease, or lifetime history of psychotic symptoms; 2) use of
87 psychotropic, glucocorticoid, or hypolipidemic medication; and 3) conditions
88 affecting cerebral blood flow and metabolism (e.g., hypertension).

89 Current and lifetime DSM-IV Axis I or select Axis II disorders (antisocial
90 personality disorder and borderline personality disorder), were assessed with the
91 electronic Mini International Neuropsychiatric Interview (Lecrubier et al., 1997) and
92 Structured Clinical Interview for the DSM-IV Axis II subtests (First et al., 1997),
93 respectively. Of the 512 participants with data included in our analyses, 114
94 individuals had at least one DSM-IV diagnosis. Importantly, neither current nor
95 lifetime diagnosis were an exclusion criterion, as the DNS seeks to establish broad
96 variability in multiple behavioral phenotypes related to psychopathology. However,
97 no participants, regardless of diagnosis, were taking any psychoactive medication
98 during or at least 14 days prior to their participation.

99 Our second sample, consisted of 7,960 white British participants (4,158
100 women, mean age 62.63 ± 7.45 years), with complete genotype, structural MRI, and
101 covariate data from the UK Biobank (www.ukbiobank.ac.uk; Sudlow et al., 2015),
102 which includes over 500,000 participants, between the ages of 40 and 69 years, who
103 were recruited within the UK between 2006 and 2010. The UK Biobank study has
104 been approved by the National Health Service Research Ethics Service (reference:
105 11/NW/0382), and our analyses were conducted under UK Biobank application
106 28174.

107

108 *Socioeconomic status (SES)*

109 Prior research has reported associations between SES and brain volume (Hackman et
110 al., 2010). In the DNS, we controlled for possible SES effects using the "social
111 ladder" instrument (Adler et al., 2000), which asks participants to rank themselves
112 relative to other people in the United States (or their origin country) on a scale from
113 0–10, with people who are best off in terms of money, education, and respected jobs,
114 at the top (10) and people who are worst off at the bottom (0).

115 In the UK Biobank, we used the Townsend deprivation index, which was
116 assessed at recruitment, as a means to control for SES. The Townsend deprivation
117 index is a composite measure of deprivation based on unemployment, non-car
118 ownership, non-home ownership, and household overcrowding. It was calculated
119 before participants joined the UK Biobank and was based on the preceding national
120 census data, with each participant assigned a score corresponding to the postcode of
121 their home dwelling. Scoring was reversed so that high values represented high SES.

122

123 *Body mass index (BMI)*

124 Prior research has reported associations between BMI and brain volume (Gunstad et
125 al., 2008). In both DNS and UK Biobank samples, BMI was calculated based on the
126 height and weight of the participants. In the DNS, this calculation was based on
127 imperial system values (pounds/inches²*703), while in the UK Biobank the metric
128 system was used (kg/m²). For the UK Biobank we used the BMI from the imaging
129 assessment visit.

130

131 *Recent life stress*

132 Prior research has reported associations between stress and hippocampal volume
133 (Lupien et al., 2009). In the DNS, we controlled for the effects of life stress during the
134 year prior to assessment using a summation of 38 negatively valenced items (as
135 described in Avinun et al., 2017; Nikolova et al., 2012) from the Life Events Scale for
136 Students (LESS; Clements and Turpin, 1996).

137 In the UK Biobank, life stress during the two years prior to imaging was
138 assessed based on a count of 6 stressful events (illness of participant, illness of a close
139 relative, death of a partner/spouse, death of a close relative, marital
140 separation/divorce, and financial difficulties).

141

142 *Race/Ethnicity*

143 Because self-reported race and ethnicity are not always an accurate reflection of
144 genetic ancestry, an analysis of identity by state of whole-genome SNPs was
145 performed in PLINK (Purcell et al., 2007). The first two multidimensional scaling
146 components within the non-Hispanic Caucasian subgroup were used as covariates in
147 analyses of data from the DNS. The decision to use only the first two components was
148 based on an examination of a scree plot of the variance explained by each component.

149 For analyses of data from the UK Biobank, only those who were ‘white
150 British’ based on both self-identification and a principal components analysis of
151 genetic ancestry were included. Additionally, the first 10 multidimensional scaling
152 components received from the UK biobank’s team were included as covariates as
153 previously done (e.g., Whalley et al., 2016).

154

155 *Genotyping*

156 In the DNS, DNA was isolated from saliva using Oragene DNA self-collection kits
157 (DNA Genotek) customized for 23andMe (www.23andme.com). DNA extraction and
158 genotyping were performed through 23andMe by the National Genetics Institute
159 (NGI), a CLIA-certified clinical laboratory and subsidiary of Laboratory Corporation
160 of America. One of two different Illumina arrays with custom content was used to
161 provide genome-wide SNP data, the HumanOmniExpress (N=326) or
162 HumanOmniExpress-24 (N=186; Do et al., 2011; Eriksson et al., 2010; Tung et al.,
163 2011).

164 In the UK Biobank, samples were genotyped using either the UK BiLEVE
165 (N=775) or the UK Biobank axiom (N=7,185) array. Details regarding the UK
166 Biobank's quality control can be found elsewhere (Bycroft et al., 2017).

167

168 *Quality control and polygenic scoring*

169 For genetic data from both the DNS and UK Biobank, PLINK v1.90 (Purcell et al.,
170 2007) was used to perform quality control analyses and exclude SNPs or individuals
171 based on the following criteria: missing genotype rate per individual $> .10$, missing
172 rate per SNP $> .10$, minor allele frequency $< .01$, and Hardy-Weinberg equilibrium
173 $p < 1e-6$. Additionally, in the UK Biobank, quality control variables that were provided
174 with the dataset were used to exclude participants based on a sex mismatch (genetic
175 sex different from reported sex), a genetic relatedness to another participant, and
176 outliers for heterozygosity or missingness.

177 Polygenic scores were calculated using PLINK's (Purcell et al., 2007) "--score"
178 command based on published SNP-level summary statistics from a recent GWAS that
179 included IL-1 β blood levels as an outcome of interest (Ahola-Olli et al., 2017). SNPs
180 from the IL-1 β GWAS were matched with SNPs from the DNS and UK Biobank
181 datasets. For each SNP the number of the alleles (0, 1, or 2) associated with IL-1 β
182 blood levels was multiplied by the effect estimated in the GWAS. The polygenic
183 score for each individual was an average of weighted IL-1 β -associated alleles. All
184 SNPs that could be matched with SNPs from the DNS or UK biobank were used
185 regardless of effect size and significance in the original GWAS, as previously
186 recommended and shown to be effective (Dudbridge, 2013; Ware et al., 2017). A
187 total of 441,939 SNPs in the DNS and 645,022 SNPs in the UK Biobank were
188 included in the respective polygenic scores. The approach described here for the

189 calculation of the polygenic score was successfully used in previous studies (e.g.,
190 Domingue et al., 2015; Domingue et al., 2017; Stephan et al., 2018).

191

192 *Structural MRI*

193 In the DNS, data were collected at the Duke-UNC Brain Imaging and Analysis Center
194 using one of two identical research-dedicated GE MR750 3T scanners (General
195 Electric Healthcare, Little Chalfont, United Kingdom) equipped with high-power
196 high-duty cycle 50-mT/m gradients at 200 T/m/s slew rate, and an eight-channel head
197 coil for parallel imaging at high bandwidth up to 1 MHz. T1-weighted images were
198 obtained using a 3D Ax FSPGR BRAVO with the following parameters: TR = 8.148
199 ms; TE = 3.22 ms; 162 axial slices; flip angle, 12°; FOV, 240 mm; matrix =256×256;
200 slice thickness = 1 mm with no gap; and total scan time = 4 min and 13 s.

201 To generate regional measures of brain volume, anatomical images for each
202 subject were first skull-stripped using ANTs (Klein et al., 2009), then submitted to
203 Freesurfer's (Version 5.3) recon-all with the “-noskullstrip” option (Dale et al., 1999;
204 Fischl et al., 1999), using an x86_64 linux cluster running Scientific Linux. The gray
205 and white matter boundaries determined by recon-all were visually inspected using
206 FreeSurfer QA Tools (<https://surfer.nmr.mgh.harvard.edu/fswiki/QATools>) and
207 determined to be sufficiently accurate for all subjects. Volume measures for the
208 hippocampus from each participant's aseg.stats file were averaged across
209 hemispheres. Estimated Total Intracranial Volume (eTIV) was used to quantify
210 intracranial volume (ICV).

211 In the UK Biobank, imaging data were collected on a Siemens Skyra 3T, with
212 a standard Siemens 32-channel RF receive head coil, and preprocessed with FSL
213 packages (the FMRIB Software Library; Jenkinson et al., 2012). Segmentation of T1-
214 weighted structural images into subcortical structures was done using FIRST
215 (FMRIB's Integrated Registration and Segmentation Tool; Patenaude et al., 2011).
216 Here as well, left and right hippocampal volumes were averaged to create a mean
217 volume variable. ICV was estimated based on the sum of white matter, gray matter
218 and ventricular cerebrospinal fluid volumes. Further details for the UK Biobank
219 imaging protocol can be found at <http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=1977>.

221

222 *Statistical analyses*

223 Mplus version 7 (Muthén and Muthén, 2007) was used to conduct linear regression
224 analyses. In both samples the covariates of no interest included: participants' sex
225 (coded as 0=males, 1=females), age (in the DNS 18-22 years were coded as 1-5),
226 ethnicity components, BMI, SES, recent life stress, and intracranial volume. The IL-
227 1 β score, intracranial volume, and hippocampal volume were standardized to improve
228 interpretability. Maximum likelihood estimation with robust standard errors, which is
229 robust to non-normality, was used in the regression analyses. Standardized results are
230 presented.

231

232 **Results**

233 Descriptive statistics for study variables and correlations are presented in Table 1 and
234 Table 2, respectively. Interestingly, the IL-1 β score was positively associated with
235 SES in both samples, therefore the findings below are reported with and without SES
236 as a covariate to avoid multicollinearity. The polygenic scores did not differ between
237 men and women (DNS: $F[1, 510] = .642, p=.42$; UK Biobank: $[1, 7958] =$
238 $.021, p=.88$).

239 The Analysis in the DNS sample revealed that IL-1 β polygenic scores
240 significantly predicted hippocampal volume, so that scores that were associated with
241 higher IL-1 β levels, were associated with larger volume (without SES: $\beta=.078,$
242 $SE=.037, p=.036$; with SES: $\beta=.075, SE=.037, p=.044$). Of the covariates, only ICV
243 was significantly associated with hippocampal volume ($\beta=.626, SE=.044, p<.001$). In
244 the UK Biobank analysis, IL-1 β polygenic score was also positively and significantly
245 associated with hippocampal volume (without SES: $\beta=.023, SE=.010, p=.020$; with
246 SES: $\beta=.022, SE=.010, p=.021$). Of the covariates, other than ICV ($\beta=.425, SE=.014,$
247 $p<.001$), both age ($\beta=-.177, SE=.010, p<.001$) and stress ($\beta=-.025, SE=.010, p=.010$)
248 negatively predicted hippocampal volume.

249 As post-hoc analyses we tested each hemisphere separately with the same
250 covariates, including SES. In the DNS the effect was stronger and only significant in
251 the left hippocampus (LEFT: $\beta=.109, SE=.039, p=.005$; RIGHT: $\beta=.024, SE=.036,$
252 $p=.503$). In the UK biobank, the effect was also only significant in the left
253 hippocampus (LEFT: $\beta=.022, SE=.010, p=.025$; RIGHT: $\beta=.018, SE=.010, p=.072$).

254 Additionally, in the DNS we were able to test whether a DSM-IV diagnosis, as
255 indicated by a clinical interview, affected the findings. With the addition of a variable
256 indicating a DSM-IV diagnosis (0-no diagnosis; 1-at least one DSM-IV diagnosis) as

257 a covariate, the positive association of the IL-1 β polygenic score with hippocampal
258 volume remained significant ($\beta=.074$, SE=.037, p=.047).

259

260 Discussion

261 Here we report that a polygenic score for circulating levels of the pro-inflammatory
262 cytokine IL-1 β , based on summary statistics from a recent GWAS, is associated with
263 hippocampal volume in two independent samples: the DNS, which consists of high-
264 functioning 18-22 year old university students, and the UK biobank, which consists of
265 45-78 year old volunteers. Contrary to our hypothesis, which was based on previous
266 research demonstrating that high IL-1 β levels suppress neurogenesis (Goshen et al.,
267 2008; Koo and Duman, 2008; Zunszain et al., 2012), we found that higher IL-1 β
268 polygenic scores, which putatively index increased levels of this pro-inflammatory
269 cytokine, were associated in both samples with larger hippocampal volume.

270 While IL-1 β may adversely affect neurogenesis, it has been shown to increase
271 gliogenesis (Chen et al., 2013; Crampton et al., 2012). In other words, IL-1 β has been
272 shown to reduce neurogenesis, not by increasing cell death, but by affecting cell fate
273 determination and promoting the differentiation of neural progenitor cells into glial
274 cells (Crampton et al., 2012). Additional processes that may explain the observed
275 positive association between IL-1 β polygenic scores and hippocampal volume, are the
276 effects of IL-1 β on long term potentiation (LTP; Avital et al., 2003) and dendritic
277 spine size (Goshen et al., 2009). Mice with impaired IL-1 signaling are characterized
278 by deficits in memory function, reduced LTP, and reduced dendritic spine size (Avital
279 et al., 2003; Goshen et al., 2008; Goshen et al., 2007; Yirmiya et al., 2002),
280 suggesting that certain levels of IL-1 β are required for normal brain function. It is
281 possible that the higher levels of IL-1 β , as modeled by the polygenic score, are within
282 an optimal range that leads to an advantageous function of this cytokine in promoting
283 synaptic integrity and plasticity. Further studies, combining genetic, immune, and
284 structural brain measurements during various stages in development are needed to
285 shed light on the processes that may underlie the positive association between IL-1 β
286 polygenic scores and hippocampal volume.

287 In addition to our primary analyses of IL-1 β polygenic scores and hippocampal
288 volume, we observed a weak positive correlation between IL-1 β scores and SES in
289 both the DNS and UK Biobank samples. This positive correlation is also surprising,
290 as lower SES has been associated with higher levels of inflammation (Loucks et al.,

291 2010). Of note, this association is usually interpreted as an effect of SES on
292 inflammation. However, our current observation suggests the opposite direction may
293 also be possible (i.e., inflammation affecting SES), and may be of interest to future
294 research on SES and environmental risk. As noted above, however, we have no data
295 on circulating cytokines and the directionality of these links is speculative.

296 Although our study has several strengths, including the use of two independent
297 samples with markedly different characteristics (e.g., young university students versus
298 older community volunteers) and a GWAS-derived functionally informed polygenic
299 score, it is not without limitations. First, our analyses and findings are restricted to
300 non-Hispanic Caucasians. Future studies are necessary to determine whether the IL-
301 1 β polygenic score can be generalized to other racial and ethnic populations. Second,
302 we did not examine specific hippocampal subregions, such as the dentatge gyrus,
303 which may exhibit preferential sensitivity to variability in IL-1 β signaling (Ban et al.,
304 1991; Loddick et al., 1998). Such subregional analyses require higher resolution
305 structural data. Lastly, as cytokine levels were not measured in our samples, we were
306 not able to validate the functionality of the IL-1 β score or examine how it correlates
307 with other pro-inflammatory markers. These limitations notwithstanding, our results
308 further support the association between IL-1 β levels and hippocampal volume in
309 humans and motivate additional research on the links between the IL-1 β polygenic
310 score, inflammation, and brain volume.

311

ACKNOWLEDGEMENTS AND DISCLOSURES

313 We thank the Duke Neurogenetics Study participants, the staff of the Laboratory of
314 NeuroGenetics, and Emily Drabant Conley of 23andMe, Inc. We would also like to
315 thank Dr. Megan Cooke for commenting on an early draft of the manuscript. The
316 Duke Neurogenetics Study received support from Duke University as well as US-
317 National Institutes of Health grants R01DA033369 and R01DA031579. RA, ARK,
318 and ARH received further support from US-National Institutes of Health grant
319 R01AG049789. MLE was supported by the National Science Foundation Graduate
320 Research Fellowship under Grant No. NSF DGE-1644868. The Brain Imaging and
321 Analysis Center was supported by the Office of the Director, National Institutes of
322 Health under Award Number S10OD021480. Lastly, we would like to thank the UK
323 Biobank participants and the UK Biobank team.

324

325 **Conflict of interest:** The authors declare no competing financial or other interests.

326

327 **Author contributions:** RA, AN, and AH designed research; AK, and AH performed
328 research; RA, AK, and ME analyzed data; RA, AN, AK, ME, and AH, wrote the
329 paper.

330

331

REFERENCES

332

333 Adler, N.E., Epel, E.S., Castellazzo, G., Ickovics, J.R., 2000. Relationship of
334 subjective and objective social status with psychological and physiological
335 functioning: Preliminary data in healthy, White women. *Health Psychol.* 19, 586.

336 Ahola-Olli, A.V., Würtz, P., Havulinna, A.S., Aalto, K., Pitkänen, N., Lehtimäki, T.,
337 Kähönen, M., Lyytikäinen, L.-P., Raitoharju, E., Seppälä, I., 2017. Genome-wide
338 association study identifies 27 loci influencing concentrations of circulating cytokines
339 and growth factors. *The American Journal of Human Genetics* 100, 40-50.

340 Avinun, R., Nevo, A., Knodt, A.R., Elliott, M.L., Hariri, A.R., 2018. Replication in
341 Imaging Genetics: The Case of Threat-Related Amygdala Reactivity. *Biol. Psychiatry*
342 84, 148-159.

343 Avinun, R., Nevo, A., Knodt, A.R., Elliott, M.L., Radtke, S.R., Brigidi, B.D., Hariri,
344 A.R., 2017. Reward-Related Ventral Striatum Activity Buffers against the Experience
345 of Depressive Symptoms Associated with Sleep Disturbances. *J. Neurosci.* 37, 9724-
346 9729.

347 Avital, A., Goshen, I., Kamsler, A., Segal, M., Iverfeldt, K., Richter-Levin, G.,
348 Yirmiya, R., 2003. Impaired interleukin-1 signaling is associated with deficits in
349 hippocampal memory processes and neural plasticity. *Hippocampus* 13, 826-834.

350 Ban, E., Milon, G., Prudhomme, N., Fillion, G., Haour, F., 1991. Receptors for
351 interleukin-1 (α and β) in mouse brain: Mapping and neuronal localization in
352 hippocampus. *Neuroscience* 43, 21-30.

353 Bellinger, F.P., Madamba, S., Siggins, G.R., 1993. Interleukin 1 β inhibits synaptic
354 strength and long-term potentiation in the rat CA1 hippocampus. *Brain research* 628,
355 227-234.

356 Bobinski, M., De Leon, M., Wegiel, J., Desanti, S., Convit, A., Saint Louis, L.,
357 Rusinek, H., Wisniewski, H., 1999. The histological validation of post mortem
358 magnetic resonance imaging-determined hippocampal volume in Alzheimer's disease.
359 *Neuroscience* 95, 721-725.

360 Brodin, P., Jojic, V., Gao, T., Bhattacharya, S., Angel, C.J.L., Furman, D., Shen-Orr,
361 S., Dekker, C.L., Swan, G.E., Butte, A.J., 2015. Variation in the human immune
362 system is largely driven by non-heritable influences. *Cell* 160, 37-47.

363 Bycroft, C., Freeman, C., Petkova, D., Band, G., Elliott, L.T., Sharp, K., Motyer, A.,
364 Vukcevic, D., Delaneau, O., O'Connell, J., 2017. Genome-wide genetic data on~
365 500,000 UK Biobank participants. *bioRxiv*, 166298.

366 Chen, E., Xu, D., Lan, X., Jia, B., Sun, L., C Zheng, J., Peng, H., 2013. A novel role
367 of the STAT3 pathway in brain inflammation-induced human neural progenitor cell
368 differentiation. *Curr. Mol. Med.* 13, 1474-1484.

369 Chen, H., Wilkins, L.M., Aziz, N., Cannings, C., Wyllie, D.H., Bingle, C., Rogus, J.,
370 Beck, J.D., Offenbacher, S., Cork, M.J., 2006. Single nucleotide polymorphisms in
371 the human interleukin-1B gene affect transcription according to haplotype context.
372 *Hum. Mol. Genet.* 15, 519-529.

373 Clements, K., Turpin, G., 1996. The life events scale for students: validation for use
374 with British samples. *Pers. Individ. Dif.* 20, 747-751.

375 Crampton, S.J., Collins, L.M., Toulouse, A., Nolan, Y.M., O'Keeffe, G.W., 2012.
376 Exposure of foetal neural progenitor cells to IL-1 β impairs their proliferation and
377 alters their differentiation—a role for maternal inflammation? *J. Neurochem.* 120, 964-
378 973.

379 Dale, A.M., Fischl, B., Sereno, M.I., 1999. Cortical surface-based analysis: I.
380 Segmentation and surface reconstruction. *Neuroimage* 9, 179-194.

381 De Craen, A., Posthuma, D., Remarque, E., Van Den Biggelaar, A., Westendorp, R.,
382 Boomsma, D., 2005. Heritability estimates of innate immunity: an extended twin
383 study. *Genes Immun.* 6, 167.

384 Do, C.B., Tung, J.Y., Dorfman, E., Kiefer, A.K., Drabant, E.M., Francke, U.,
385 Mountain, J.L., Goldman, S.M., Tanner, C.M., Langston, J.W., 2011. Web-based
386 genome-wide association study identifies two novel loci and a substantial genetic
387 component for Parkinson's disease. *PLoS Genet.* 7, e1002141.

388 Domingue, B.W., Belsky, D.W., Conley, D., Harris, K.M., Boardman, J.D., 2015.
389 Polygenic influence on educational attainment: New evidence from the National

390 Longitudinal Study of Adolescent to Adult Health. AERA open 1,
391 2332858415599972.

392 Domingue, B.W., Liu, H., Okbay, A., Belsky, D.W., 2017. Genetic heterogeneity in
393 depressive symptoms following the death of a spouse: Polygenic score analysis of the
394 US Health and Retirement Study. Am. J. Psychiatry 174, 963-970.

395 Dudbridge, F., 2013. Power and predictive accuracy of polygenic risk scores. PLoS
396 Genet. 9, e1003348.

397 Eriksson, N., Macpherson, J.M., Tung, J.Y., Hon, L.S., Naughton, B., Saxonov, S.,
398 Avey, L., Wojcicki, A., Pe'er, I., Mountain, J., 2010. Web-based, participant-driven
399 studies yield novel genetic associations for common traits. PLoS Genet. 6, e1000993.

400 First, M.B., Gibbon, M., Spitzer, R.L., Williams, J.B.W., Benjamin, L.S., 1997.
401 Structured Clinical Interview for DSM-IV Axis II Personality Disorders, (SCID-II).
402 American Psychiatric Press, Washington, DC.

403 Fischl, B., Sereno, M.I., Dale, A.M., 1999. Cortical surface-based analysis: II:
404 inflation, flattening, and a surface-based coordinate system. Neuroimage 9, 195-207.

405 Goshen, I., Avital, A., Kreisel, T., Licht, T., Segal, M., Yirmiya, R., 2009.
406 Environmental enrichment restores memory functioning in mice with impaired IL-1
407 signaling via reinstatement of long-term potentiation and spine size enlargement. The
408 Journal of neuroscience: the official journal of the Society for Neuroscience 29, 3395-
409 3403.

410 Goshen, I., Kreisel, T., Licht, T., Weidenfeld, J., Ben-Hur, T., Yirmiya, R., 2008.
411 Brain interleukin-1 mediates chronic stress-induced depression in mice via
412 adrenocortical activation and hippocampal neurogenesis suppression. Mol. Psychiatry
413 13, 717.

414 Goshen, I., Kreisel, T., Ounallah-Saad, H., Renbaum, P., Zalzstein, Y., Ben-Hur, T.,
415 Levy-Lahad, E., Yirmiya, R., 2007. A dual role for interleukin-1 in hippocampal-
416 dependent memory processes. Psychoneuroendocrinology 32, 1106-1115.

417 Green, H., Nolan, Y., 2012. Unlocking mechanisms in interleukin-1 β -induced
418 changes in hippocampal neurogenesis—a role for GSK-3 β and TLX. Translational
419 Psychiatry 2, e194.

420 Gunstad, J., Paul, R.H., Cohen, R.A., Tate, D.F., Spitznagel, M.B., Grieve, S.,
421 Gordon, E., 2008. Relationship between body mass index and brain volume in healthy
422 adults. *Int. J. Neurosci.* 118, 1582-1593.

423 Hackman, D.A., Farah, M.J., Meaney, M.J., 2010. Socioeconomic status and the
424 brain: mechanistic insights from human and animal research. *Nature Reviews
425 Neuroscience* 11, 651.

426 Hibar, D., Westlye, L.T., van Erp, T.G., Rasmussen, J., Leonardo, C.D., Faskowitz, J.,
427 Haukvik, U.K., Hartberg, C.B., Doan, N.T., Agartz, I., 2016. Subcortical volumetric
428 abnormalities in bipolar disorder. *Mol. Psychiatry* 21, 1710.

429 Iacoviello, L., Di Castelnuovo, A., Gattone, M., Pezzini, A., Assanelli, D., Lorenzet,
430 R., Del Zotto, E., Colombo, M., Napoleone, E., Amore, C., 2005. Polymorphisms of
431 the interleukin-1 β gene affect the risk of myocardial infarction and ischemic stroke at
432 young age and the response of mononuclear cells to stimulation in vitro. *Arterioscler.
433 Thromb. Vasc. Biol.* 25, 222-227.

434 Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M., 2012.
435 FSL. *Neuroimage* 62, 782-790.

436 Katsuki, H., Nakai, S., Hirai, Y., Akaji, K.-i., Kiso, Y., Satoh, M., 1990. Interleukin-
437 1 β inhibits long-term potentiation in the CA3 region of mouse hippocampal slices.
438 *European journal of pharmacology* 181, 323-326.

439 Klein, A., Andersson, J., Ardekani, B.A., Ashburner, J., Avants, B., Chiang, M.-C.,
440 Christensen, G.E., Collins, D.L., Gee, J., Hellier, P., 2009. Evaluation of 14 nonlinear
441 deformation algorithms applied to human brain MRI registration. *Neuroimage* 46,
442 786-802.

443 Koo, J.W., Duman, R.S., 2008. IL-1 β is an essential mediator of the antineurogenic
444 and anhedonic effects of stress. *Proc. Natl. Acad. Sci. U. S. A.* 105, 751-756.

445 Lecrubier, Y., Sheehan, D.V., Weiller, E., Amorim, P., Bonora, I., Sheehan, K.H.,
446 Janavs, J., Dunbar, G.C., 1997. The Mini International Neuropsychiatric Interview
447 (MINI). A short diagnostic structured interview: reliability and validity according to
448 the CIDI. *Eur. Psychiatry* 12, 224-231.

449 Loddick, S., Liu, C., Takao, T., Hashimoto, K., De Souza, E., 1998. Interleukin-1
450 receptors: cloning studies and role in central nervous system disorders. *Brain Res.*
451 *Brain Res. Rev.* 26, 306.

452 Loucks, E.B., Pilote, L., Lynch, J.W., Richard, H., Almeida, N.D., Benjamin, E.J.,
453 Murabito, J.M., 2010. Life course socioeconomic position is associated with
454 inflammatory markers: the Framingham Offspring Study. *Soc. Sci. Med.* 71, 187-195.

455 Lupien, S.J., McEwen, B.S., Gunnar, M.R., Heim, C., 2009. Effects of stress
456 throughout the lifespan on the brain, behaviour and cognition. *Nature Reviews
457 Neuroscience* 10, 434.

458 Miller, A.H., Haroon, E., Raison, C.L., Felger, J.C., 2013. Cytokine targets in the
459 brain: impact on neurotransmitters and neurocircuits. *Depress. Anxiety* 30, 297-306.

460 Muthén, L.K., Muthén, B.O., 2007. *Mplus User's Guide*. Los Angeles, CA: Muthén
461 & Muthén.

462 Nikolova, Y.S., Bogdan, R., Brigidi, B.D., Hariri, A.R., 2012. Ventral striatum
463 reactivity to reward and recent life stress interact to predict positive affect. *Biol.
464 Psychiatry* 72, 157-163.

465 Patenaude, B., Smith, S.M., Kennedy, D.N., Jenkinson, M., 2011. A Bayesian model
466 of shape and appearance for subcortical brain segmentation. *Neuroimage* 56, 907-922.

467 Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A., Bender, D.,
468 Maller, J., Sklar, P., De Bakker, P.I., Daly, M.J., 2007. PLINK: a tool set for whole-
469 genome association and population-based linkage analyses. *The American Journal of
470 Human Genetics* 81, 559-575.

471 Raz, N., Daugherty, A.M., Bender, A.R., Dahle, C.L., Land, S., 2015. Volume of the
472 hippocampal subfields in healthy adults: differential associations with age and a pro-
473 inflammatory genetic variant. *Brain Struct. Funct.* 220, 2663-2674.

474 Schmaal, L., Veltman, D.J., van Erp, T.G., Sämann, P., Frodl, T., Jahanshad, N.,
475 Loehrer, E., Tiemeier, H., Hofman, A., Niessen, W., 2016. Subcortical brain
476 alterations in major depressive disorder: findings from the ENIGMA Major
477 Depressive Disorder working group. *Mol. Psychiatry* 21, 806-812.

478 Stephan, Y., Sutin, A.R., Luchetti, M., Caille, P., Terracciano, A., 2018. Polygenic
479 Score for Alzheimer Disease and cognition: The mediating role of personality. *J.*
480 *Psychiatr. Res.*

481 Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., Downey, P.,
482 Elliott, P., Green, J., Landray, M., 2015. UK biobank: an open access resource for
483 identifying the causes of a wide range of complex diseases of middle and old age.
484 *PLoS Med.* 12, e1001779.

485 Tung, J.Y., Do, C.B., Hinds, D.A., Kiefer, A.K., Macpherson, J.M., Chowdry, A.B.,
486 Francke, U., Naughton, B.T., Mountain, J.L., Wojcicki, A., 2011. Efficient replication
487 of over 180 genetic associations with self-reported medical data. *PLoS ONE* 6,
488 e23473.

489 van Erp, T.G., Hibar, D.P., Rasmussen, J.M., Glahn, D.C., Pearlson, G.D.,
490 Andreassen, O.A., Agartz, I., Westlye, L.T., Haukvik, U.K., Dale, A.M., 2016.
491 Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and
492 2540 healthy controls via the ENIGMA consortium. *Mol. Psychiatry* 21, 547.

493 Ware, E.B., Schmitz, L.L., Faul, J.D., Gard, A., Mitchell, C., Smith, J.A., Zhao, W.,
494 Weir, D., Kardia, S.L., 2017. Heterogeneity in polygenic scores for common human
495 traits. *bioRxiv*, 106062.

496 Whalley, H.C., Adams, M.J., Hall, L., Clarke, T.-K., Fernandez-Pujals, A.M., Gibson,
497 J., Wigmore, E., Hafferty, J., Hagenaars, S.P., Davies, G., 2016. Dissection of major
498 depressive disorder using polygenic risk scores for schizophrenia in two independent
499 cohorts. *Translational Psychiatry* 6, e938.

500 Yirmiya, R., Goshen, I., 2011. Immune modulation of learning, memory, neural
501 plasticity and neurogenesis. *Brain, behavior, and immunity* 25, 181-213.

502 Yirmiya, R., Winocur, G., Goshen, I., 2002. Brain interleukin-1 is involved in spatial
503 memory and passive avoidance conditioning. *Neurobiol. Learn. Mem.* 78, 379-389.

504 Zhu, B., Chen, C., Dang, X., Dong, Q., Lin, C., 2017. Hippocampal subfields'
505 volumes are more relevant to fluid intelligence than verbal working memory.
506 *Intelligence* 61, 169-175.

507 Zunzain, P.A., Anacker, C., Cattaneo, A., Choudhury, S., Musaelyan, K., Myint,
508 A.M., Thuret, S., Price, J., Pariante, C.M., 2012. Interleukin-1 β : a new regulator of

509 the kynurenone pathway affecting human hippocampal neurogenesis.

510 Neuropsychopharmacology 37, 939.

511

512

Table 1. Descriptive statistics of study variables.

	DNS				UK Biobank			
	Min	Max	Mean	SD	Min	Max	Mean	SD
Age	18.00	22.00	19.78	1.24	45.00	78.00	62.63	7.45
BMI	16.30	39.15	22.30	2.84	14.20	53.04	26.67	4.43
Stress	0.00	18.00	2.49	2.25	0.00	4.00	0.49	0.70
SES	2.00	10.00	7.35	1.43	-6.26	9.16	4.97	2.58
Intracranial volume ^	-2.46	3.01	0.00	1.00	-3.02	3.77	0.00	1.00
Hippocampal volume^	-3.89	3.04	0.00	1.00	-4.80	4.54	0.00	1.00
IL-1β polygenic score^	-2.46	2.63	0.00	1.00	-3.63	4.06	0.00	1.00

[^]Standardized values.

Table 2. Correlations between study variables.

	DNS						UK Biobank					
	IL-1B polygenic score	Age	SES	Recent life stress	BMI	ICV	IL-1B polygenic score	Age	SES	Recent life stress	BMI	ICV
IL-1B polygenic score	1						1					
Age	-.008	1					-.021^	1				
SES	.099*	.115**	1				.024*	.083**	1			
Recent life stress	-0.038	-.091*	-.125**	1			0	-.147**	-.068**	1		
BMI	-0.077^	.022	-0.079^	0.017	1		-0.011	-.031**	-0.071**	.077**	1	
ICV	0.03	-.01	.114*	-0.037	.115**	1	0.007	-.163**	0.026*	-0.026*	.067**	1
Hippocampal volume	.097*	0.017	.122**	-0.016	0.075	.645**	.030**	-.241**	0.011	-0.012	.023*	.466**

[^]p<.10, *p<.05, **p<.01