

2 Dietary Vitamin A intakes among Pregnant Women Attending Antenatal Care in
3 Health Facilities: As a connotation for the progress of vitamin A Deficiency in
4 Dessie Town, North East Ethiopia:

5 Zenebech Koricho¹, Gudina Egata Atomssa², Tefera Chane Mekonnen^{3*} and
6 Sisay Eshete Tadesse³

7

8 ¹ Lecturer at Dessie College of Health Science, Dessie, Northern Ethiopia.

9 ² Associate Professor of Public Health at College of Health sciences and Medicine,
10 Haramaya University, Harare, Eastern Ethiopia.

11 ³ Lecturer and Researcher at Department of Public Health, College of Medicine
12 and Health Sciences, Wollo University, Dessie, Northern Ethiopia.

13 *Corresponding Author: Tefera Chane

14

15 Email Address: Zenebech Koricho: zenani71@gmail.com

16 Tefera Chane Mekonnen: teferachane@gmail.com

17 Gudina Egata Atomssa: gudina_egata@yahoo.com

18 Sisay Eshete: sisliyu21@gmail.com

19 Conflict of Interest: Zenebech Koricho: has no conflict of interest

20 Tefera Chane: has no conflict of interest

21 Gudina Egata: has no conflict of interest

22 Sisay Eshete: has no conflict of interest

23 Acknowledgement: Wollo University was the sponsor of the research. Data
24 collectors, supervisors and health facility managers had played crucial role for the
25 well accomplishment of the research field work.

26

28

29 **Abstract**

30 Vitamin A plays important roles in vision, cellular differentiation, embryonic development,
31 reproduction, growth, and the immune system. Women living in developing countries are at
32 increased risk of undernutrition during pregnancy due to poverty, poor diet quality and quantity,
33 and high fertility rate. Dietary quality and diversity reflect adequacy of vitamin A whereby
34 reduce the risk of vitamin A deficiency. The aim of study was to determine adequacy of vitamin
35 A among pregnant women attending antenatal care in health facilities of Dessie town, Ethiopia,
36 January, 2017. Health facility-based cross-sectional study was conducted among 390 women that
37 attended antenatal care in Dessie town. The 9 food groups from FAO based on 24hours dietary
38 recall was used for data collection. Adequacy of vitamin A was determined from nutrient
39 adequacy ratio after obtaining report of nutrient intake from food composition table version III
40 and IV in terms of B carotene and retinol equivalent respectively, based on estimated average
41 requirement recommendation of vitamin A, 370 RE/day for pregnant women. Multivariable
42 Logistic regression analysis was done after dichotomizing the dependent variables.

43 Adequacy of vitamin A among pregnant women was 41.8 % with an average nutrient adequacy
44 ratio of 0.9. The mean dietary intake of vitamin A was 290.1 μ g per day. The predictors for
45 adequacy of vitamin A were high and medium women diversity score (AOR=2.92; CI: 1.50-5.70)
46 and (AOR=1.87; CI: 1.11- 3.16).

47 In this study adequacy of vitamin A was low and affected by women dietary diversity score.
48 Focusing on food based approaches especially educating pregnant women to diversify their diet is crucial
49 to reduce their risk of vitamin a deficiency.

50 Keywords: Adequacy of Vitamin A; Pregnant women; Dessie, Ethiopia.

51

53 Vitamin A is an essential nutrient that plays roles in the vision, cellular differentiation,
54 embryonic development, reproduction, growth and the immune system (1-2). Its deficiency
55 called Vitamin A deficiency (VAD) is the third most common nutritional deficiency in the world
56 and mostly severe in Southeast Asia and Sub-Saharan Africa (3).

57 Dietary sources of vitamin A are preformed vitamin A; and pro-vitamin A, which are those
58 Carotenoids precursors that can be bio-converted to retinol. Pro-vitamin A sources contribute
59 30–35% of the total vitamin A in the food supplies of industrialized populations, which is 70–
60 75% in the populations of Africa and Southern Asia (4).

61 Nutritional adequacy is defined as the sufficient intake of essential nutrients including vitamin
62 A. Adequacy of nutrients is needed to fulfill nutritional requirements for optimal health; the
63 prevention of chronic diseases or the reduction of risk for diet associated diseases (5). Low
64 vitamin A intake during nutritionally demanding periods in life, such as infancy, childhood,
65 pregnancy and lactation increases the risk of health consequences, or vitamin A deficiency
66 disorders (VADD) (6,7). Dietary diversity scores can be used as a proxy measure of
67 micronutrient and diet adequacy of women (8). Dietary diversity has been linked to less
68 reporting of a major pregnancy related complications, like preeclampsia and Eclampsia (9, 10).

69 The most common cause of Vitamin A deficiency is low dietary intake of Vitamin A. When
70 dietary intake is chronically low, there will be insufficient vitamin A to support vision and
71 cellular processes, leading to impaired tissue function (11, 12). Studies have shown that
72 improving vitamin A status can reduce pregnancy-related mortality by as much as 40 % (7, 13).

73 Although considerable progress has been made in controlling Vitamin A deficiency worldwide,
74 there is still a need for additional prevention efforts in the form of dietary approaches (13, 14).

75

76

78 designed with National Nutrition Program (NNP) with implementing sectors have declared and
79 pledged their commitment to support the achievement of the targets of the program (15).
80 However, these efforts are not yet put on the ground to the point of addressing the adequacy
81 of vitamin A among pregnant women. Taking into consideration that the period of pregnancy
82 is a window of exposure for nutritional detrimental effects; this study was conducted on
83 adequacy of vitamin A among pregnant women that attended antenatal care in health facilities of
84 Dessie town as these people are part and parcel of the vulnerable groups in Ethiopia.

85 **Methods**

86 **Study Area and Period**

87 A health facility-based cross-sectional survey was conducted from January 12 to February 12,
88 2017 in Dessie Town located 401 Kms from the capital city, Addis Ababa and 480 kms from the
89 regional capital city, Bahir Dar, Ethiopia. Total population in Dessie town was 216,384, among
90 which 7,292 were expected to be pregnant women. There are 12,17 and 4 governmental, private
91 and nongovernmental health facilities (total of 33 health facilities) in Dessie town respectively.
92 Among the total pregnant women, 4397 pregnant women have got ANC in 2016 in the
93 governmental, private and nongovernmental health facilities of the town.
94 Maternal and child health care is given in most of government, some private and
95 nongovernmental health facilities like immunization, Family planning, Antenatal Care ,
96 Delivery care, Postnatal care. In Dessie Town available common food products include cereals,
97 grains, legumes, dairy products, egg, fish, meat, fruits (Mango, papaya, Avocado, Orange) and
98 vegetables (Spinach, Lettuce, Green pepper, carrot, pumpkin, cabbage).
99 All pregnant women who were attending ANC in 12 randomly selected health facilities
100 (government, private and nongovernmental health facilities) of Dessie town were source

102 governments, private and nongovernmental health facilities of Dessie town during data collection
103 were study participants. All pregnant women who were attending in the randomly selected
104 government, private and nongovernmental health facilities of Dessie town were included.
105 Pregnant women found in fasting day and have dietary restriction were excluded from the study

106 **Sample size and Sampling Technique**

107 The sample size was determined using single proportion population formula by considering the
108 following assumptions of proportion 50% of adequacy of vitamin A, confidence level of 95%,
109 margin of error 5% and 10% as non-response rate, the total sample size was **422**.

110 In Dessie town, 17 health facilities provide ANC service, among which 12 health facilities were
111 randomly selected (07 governmental, 04 private and 01 non-governmental). Sample size was
112 allocated proportionally to the client flow of each health facility. Those pregnant women who
113 fulfilled the inclusion criteria and visited the ANC clinic during the study period were
114 systematically selected as study participants after obtaining identification card of each pregnant
115 woman.

116 **Data collection Techniques and Data Measurements**

117 An Interviewer-administered pre-tested questionnaire was used for dietary data from known
118 sources (7, 16-18). The questionnaire was translated to local language (Amharic) and then again
119 back translated to English language. Eight data collectors and two supervisors were hired based
120 on their prior exposure of research data collection.

121 The socio-demographic features (such as age, educational level, occupation, marital status,
122 income level, family size), obstetrics related characteristics (birth interval, parity, months of
123 pregnancy, birth interval) and dietary intake and habits of pregnant women (food taboos,
124 nutrition education, daily intake of vitamin A rich sources, reasons for not daily taking of
125 vitamin A rich vegetables, poultry production, home gardening of vegetables) were assessed to
126 investigate the research objective.

127 Adequacy of vitamin A and Women dietary diversity score (WDDS) were measured by using the
128 9 food groups from FAO dietary diversity guideline based on interactive 24 hours dietary recall.
129 Details of the 9 food groups was probed or interviewed from each participant. Dietary
130 information was assembled and estimated using portion size and gram amounts to know the
131 Carotenoids equivalent and retinol equivalent (RE). And then to determine the level of adequacy,
132 individual RE from each food group was summed. Then the corresponding nutrient adequacy
133 ratio (NAR) was calculated. As recommended by joint FAO/WHO consultation, mean
134 requirement of vitamin A in mcg RE/day for pregnant women is 370 and safe intake in mcg is
135 600 RE/day. So that by using a cutoff value of 1 as adequate and <1 as inadequate; the outcome
136 was defined by NAR (12). The WDDS was classified as low, medium, high according to FAO's
137 classification of WDDS of low WDDS(<3),medium WDDS(4-5) and high WDDS(≥ 6)(17).

138 Dietary intake of vitamin A of each study participant was converted to gram amounts then gram
139 amounts calculated to Carotenoids equivalent as per 100 gram edible portion in the food
140 composition table of Ethiopia.

141 Carotenoids equivalents were converted to retinol equivalent (RE) by a conversion factor of 6.
142 Foods that have retinol values were simply recorded and summed to values obtained by
143 conversion of Carotenoids to retinol (RE). To determine nutrient adequacy ratio (NAR) of
144 vitamin A, ratio of observed intake was calculated in relation to recommended intake based on
145 estimated average requirement (EAR) of 370 mcg RE/day (12).

146 In this study adequacy of vitamin A was defined as daily intake of the vitamin from plant and/or
147 animal sources that is equal to the estimated average requirement of vitamin A, 370mcg RE/day.

148 Adequacy of vitamin A was dichotomized as inadequate if $NAR < 1$ and as adequate if NAR
149 ≥ 1 (12, 17).

150 **Data quality control**

151 Training was given for data collectors on the objectives of the study, the number and items of the
152 data collection tools. Information about the essential technical skills on how to collect a 24 hours
153 dietary recall method was also part of the training. Frequent supervision and checking of the data
154 for consistency and completeness was done by supervisors and principal investigator. To reduce
155 recall bias on dietary data, corresponding portion size of dietary intake was estimated by local
156 measurement utensils by allowing study participants to choose from a variety of commonly used
157 local measurement utensils offered during data collection and show which variety of local
158 measurements was used for the portion size of their diet. Gram amounts for the portion sizes

159 were determined as per the food composition table of Ethiopia (per 100 gram edible portion).
160 Some consumed foods were estimated by their raw portion size or gram amounts.

161 **Data management and analysis**

162 Data entry was done using Epi-Info 7.2 software program and data cleaning by SPSS version 20
163 software program. The food composition table of Ethiopia version III and IV was used to convert
164 raw dietary data to Carotenoids equivalent and retinol equivalent of vitamin A rich foods
165 consumed in the past 24 hours.

166 Descriptive statistics such as percentage, mean and standard deviation were done to express the
167 findings. After dichotomizing the dependent variable, binary Logistic regression and multiple
168 logistic regression analysis with crude odds ratio (COR) and adjusted odds ratio (AOR) were
169 done to see the association of independent variables on the outcome variable and to control the
170 possible confounding effects. Odds ratio was used to describe the study population in relation to
171 relevant variables and to assess the presence and degree of association between dependent and
172 independent variables. P-value less than 0.05 used to decide whether differences that occur
173 would be statistically significant or not.

174 **Results**

175 **Socio-demographic and economic characteristics of pregnant women**

176 Out of a total of 422 pregnant women sampled, 390 women participated with 92.4% response
177 rate. The mean age of the respondents was 26.89 (\pm 4.63 SD) years. Among the study participants
178 41(10.5%), 95(24.4%), 185(47.4%), and 69(17.7%) were unable to read and write, primary
179 schooling, secondary schooling and college and above in their education respectively. The mean
180 gestational age was 6.16(\pm 2.21SD) months (Table 1).

181 **Dietary diversity and Vitamin A adequacy of Pregnant Women**

182 Poultry production & home gardening of vegetables for own consumption was assessed to see
183 the availability of rich sources of Vitamin A. About one every five pregnant woman (22%)
184 consumed vitamin A rich fruits and vegetables in daily basis (Table 2).

185 The foods eaten by the pregnant women were predominantly starchy staple foods (99.7%), other
186 fruits and vegetables (98.7%), and legumes (84.9%) (Fig1). Women dietary diversity
187 score(WDDS) from the nine food groups were measured and 26.9%, 55.4% and 17.7% of
188 pregnant women found to have low, medium and high dietary diversity score respectively. The
189 mean WDDS was 4.36 ± 1.2 SD.

190 The average dietary Vitamin A intakes were $294.1 \mu\text{g}$ of retinol equivalents or $185.3 \mu\text{g}$ retinol
191 activity equivalents. The average nutrient adequacy ratio of vitamin A from both preformed and
192 pro-vitamin A sources was 0.9. About two every five pregnant women (41.8%) had adequate
193 dietary intake of vitamin A (equivalent of recommended daily allowance of vitamin A).
194 Regarding vitamin A intake from major food sources, Mango contributed RE of 19.5% of
195 pregnant women in its juice or flesh form; this seems an emerging tendency to use it as food of
196 choice by pregnant women.

197 **Factors Associated with Adequacy of Vitamin A**

198 In the Bivariable logistic regression analysis, occupation, no poultry production for own
199 consumption, gardening of vegetables for own consumption and women dietary diversity score
200 (WDDS) were associated with adequacy of vitamin A.

201 Even though many independent variables reached the final step, with multivariable logistic
202 regression analysis, WDDS and no poultry production were found to be significantly associated
203 with adequacy of vitamin A.

204 The odds of vitamin A adequacy among pregnant women with high WDDS was **2.9** times higher
205 than the odds of vitamin A adequacy among pregnant women with low WDDS (AOR=**2.92**; CI:
206 1.50-5.70). Similarly, the odds of vitamin A adequacy among pregnant women with medium
207 WDDS was 1.87 times higher than the odds of vitamin A adequacy among pregnant women with
208 low WDDS (AOR=**1.87**; CI: 1.11- 3.16).
209 However, occupational status of pregnant women, rearing of poultry and having home gardening
210 for cultivating vegetables were not significantly associated with adequacy of vitamin A intake
211 (Table 3).

212 Discussions

213 The current study provides rough estimation of dietary vitamin A intake among pregnant women
214 in which the mean intake was found to be 294.1 μ g RE/day. This finding was much lower than
215 the mean intake of vitamin A among women in Asian countries like China (19), Korea (20) and
216 Japan (21), European and American countries, such as Italy (22), Spain (23), Mexico (24) and
217 United States (25) that ranged from 480.9 μ g RE/day in China to 890 μ g RE/day in Italy. The
218 variation among the current finding and findings from the above mentioned countries may due to
219 clear difference in socio-economic status, knowledge and skills for proper dietary practices. The
220 other reason for the discrepancies in proportion of adequate intake of vitamin A may be the use
221 of different recommendations of vitamin A intake in different countries.
222 Moreover, the percentage nutrient adequacy ratio of vitamin A among pregnant women was
223 about 58%; those pregnant women who cannot meet the mean requirement of vitamin A in μ g
224 RE/day of 370 as recommended by joint FAO/WHO consultation (17). This finding was roughly
225 consistent with the findings of the studies conducted in Indonesia central Java (26) and South

226 Africa (27) which were 59.5% and 62.5% respectively. The apparent difference between the two
227 proportions of adequacy may be due to the highest estimated average requirement of South
228 Africa (550mcg RE/day) for pregnant women. The low proportion of adequacy of dietary
229 vitamin A intake were found to be similar low income countries as stated above that may be due
230 the presence of low economy and poor dietary practices and knowledge seeking behavior.
231 However, significant difference in adequacy of vitamin A among pregnant women was observed
232 in Sirilanka (28) as compared to the present study.

233 The major contributors of vitamin A for consumption among pregnant women were plant
234 sources, particularly vegetables and fruits as pro-vitamin A form and mango took the loin share
235 contribution of Carotenoids. The retinol share of dietary vitamin A was negligible in which the
236 overall consumption of meat, eggs and dairy were below 25%.

237 In multiple logistic regression analysis, women dietary diversity score was found to be
238 significantly associated with nutrient adequacy ratio of vitamin A. The odds of adequacy of
239 vitamin A among pregnant women with high WDDS was about three times higher than the odds
240 of adequacy of vitamin A among pregnant women with low WDDS. This result is comparable
241 with two studies conducted in Ethiopia, Rural Sidama and Wolaita, Southern Ethiopia (29, 30).
242 The higher diversified diet the women consume, the more nutrient adequacy expected and less
243 risky for micronutrient deficiencies. The result was also in line with the theoretical knowledge
244 that low dietary diversity is related with inadequacy of nutrients including vitamin A. Nutrition
245 specific interventions and nutrition sensitive intervention programs determine the immediate
246 determinants of fetal and maternal health i.e. adequate food and nutrient intake through dietary
247 diversification and modification integrated with sound promotion work.

248 Even though it was not significant, pregnant women who consume poultry from their produce
249 had the higher dietary intake of vitamin A. consumption poultry directly contribute to the total
250 pool of retinol equivalent without conversion factor (31).

251 Assessment of vitamin A adequacy measures risk of vitamin A deficiency but not vitamin A
252 status or vitamin A deficiency. How much of beta carotene was absorbed and also converted to
253 RE was not estimated in this study. Left over foods was not estimated. Some foods were
254 estimated by raw portion size. Laboratory assessment along with functional test of vitamin A
255 nutriture investigation was recommended to know the actual burden of the vitamin deficiency
256 among this vulnerable population groups.

257 **Conclusions:**

258 In this study adequacy of vitamin was found to be low which demonstrated a risk of vitamin A
259 deficiency among the studied pregnant women. This signal reinforces a new focus on food based
260 approaches and vitamin A supplementation to reduce the risk of vitamin A deficiency among
261 pregnant women. Women dietary diversity score was predictor of vitamin A adequacy in this
262 study. It is proved that dietary diversity during pregnancy was crucial to increase adequacy of
263 vitamin A.

264 Advocacy and promotion work is needed to facilitate improved dietary intake by pregnant
265 women; to this end preparing an algorithm for nutrition counseling is the mandate of the top
266 level health department in order to create commonness in the message throughout the health
267 facilities in the studied area.

268 **List of abbreviations:** ANC: Antenatal Care; FAO: Food and Agricultural Organization; NAR:
269 Nutrient Adequacy Ratio; RE: Retinol Equivalent; SD: Standard Deviation; VAD: Vitamin A
270 Deficiency; WDDS: Women Dietary Diversity Score.

271 **Declaration**

272 **Ethics approval and consent to participate:** Ethical clearance was obtained from the ethical
273 review committee of the College of Medicine and Health Sciences of Wollo University. All
274 study participants were reassured that names were not needed and would not be recorded.
275 Chances were given to ask anything about the study and been made free to refuse or stop the
276 interview at any moment they want. Informed written consents were obtained from the study
277 participants.

278 **Consent to Publication:** not applicable.

279 **Availability of Data and Material:** the datasets during and/or analyzed during the current study
280 is available from the corresponding author on reasonable request

281 **Funding:** Wollo University was the sponsor of the study project. The funders had no role in
282 study design, data collection and analysis, decision to publish, or preparation of the manuscript."

283 **Competing interest:** the authors declared that they have no conflict of interest.

284 **Authors' contribution:** ZK: write up the proposal, did the data collection and analysis and
285 involved in manuscript preparation and revision. TCM: involved in the proposal development,
286 data analysis and made the manuscript ready for submission. GE: involved in proposal
287 development and revision of the manuscript. All authors have read and approved the final
288 manuscript' and All authors contributed equally.

289 **Acknowledgement:** Our special thanks go to data collectors and supervisors. We also
290 acknowledge study participants and health managers at all level of health facilities.

291

292 **References**

- 293 1. Gibson RS. Principles of nutritional assessment. 2nd ed. New York, NY: Oxford
294 University Press, 2005. 908.
- 295 2. World Health Organization. Global prevalence of vitamin A deficiency in populations at
296 risk 1995–2005: WHO global database on vitamin A deficiency. Geneva: World Health
297 Organization, 2009. 55 .
- 298 3. World Health Organization. Daily iron and folic acid supplementation in pregnant
299 women. geneva: 2012.

300 4. Keith P. West, Jr, Sucheta Mehra. Vitamin A Intake and Status in Populations Facing
301 Economic Stress *The Journal of Nutrition* 2015
302 5. Itandehui Castro-Quezada 1, Blanca Román-Viñas 2,3 and Lluís Serra-Majem. The
303 Mediterranean Diet and Nutritional Adequacy: *Nutrients* 2014, 6, 231-248
304 6. P. K, West J. Vitamin A deficiency disorders in children and women. *Food and*
305 *Nutrition Bulletin*. 2003;24(4).
306 7. Demissie T, Ali A, Mekonnen Y, Haider J, M. U. Demographic and health-related risk
307 factors of subclinical vitamin A deficiency in Ethiopia. *J Health Popul Nutr.*
308 2009;27:666-73.
309 8. Jendryczko A, M. D. Plasma retinol,beta carotene and vitamin E levels in relation to the
310 future risk of preeclampsia. *Zentralbl gynakol.* 1989;111:1121-3.
311 9. Huang Y, S. Z. The effect of vitamin A deficiency during pregnancy on anorectal
312 malformations. *J pediatr surg.* 2011;46:1400-5.
313 10. Zhang c, Williams MA, Sanchez SE, King IB, Ware Jauregui S, G L. Plasma
314 concentrations of caroteneoids, retinol, and tocopherols in preeclamptic and normotensive
315 pregnant women. *Am J Epidemiol.* 2001;53:572-80.
316 11. World Health Organization. The World Health Report 2005. Make every mother and
317 child count. Geneva, World Health Organization, 2005 (<http://www.who.int/whr/2005>)
318 12. Report of the XXII International Vitamin A Consultative Group Meeting. *Vitamin A and*
319 *the common agenda for micronutrients*. Lima, Peru, 15–17 November,2004, pp 49–59.
320 13. Keith P, West KP. J. Extent of vitamin A deficiency among preschool children and
321 women of reproductive age. *Journal of nutrition*. 2002.
322 14. Mason J et al. Recent trends in malnutrition in developing regions: vitamin A deficiency,
323 anemia, iodine deficiency, and child underweight. *Food and Nutrition Bulletin*, 2005,
324 26:59–108
325 15. Health Mo. National nutrition Program., 2nd ed. Ethiopia2013.
326 16. FAO. Guideline for measuring individual and household dietary diversity. Italy2010.
327 17. FANTA. A guide to measuring minimum dietary diversity for women. 2016.
328 18. Persson. V. vitamin a intake, status and improvement using the dietary approach.
329 2001;12.
330 19. Du W, Wang H, Wang Z, Zhang J, Su C, Jia X, Zhang J, Jiang H, Huang F, Ouyang Y et
331 al: **Dietary vitamin a intake among Chinese adults: findings from CNTCS2015.**
332 *Nutrition Journal* 2018, 17(1):60.
333 20. Kim S, Kim YN, Cho YO: **Vitamin A status of 20- to 59-year-old adults living in**
334 **Seoul and the metropolitan area, Korea.** *Nutr Res Pract* 2012, 6(1):45-50.
335 21. Ribaya-Mercado JD, Solon FS, Fermin LS, Perfecto CS, Solon JA, Dolnikowski GG,
336 Russell RM: **Dietary vitamin A intakes of Filipino elders with adequate or low liver**
337 **vitamin A concentrations as assessed by the deuterated-retinol-dilution method:**
338 **implications for dietary requirements.** *Am J Clin Nutr* 2004, 79(4):633-641.
339 22. Sette S, Le Donne C, Piccinelli R, Arcella D, Turrini A, Leclercq C: **The third Italian**
340 **National Food Consumption Survey, INRAN-SCAI 2005-06--part 1: nutrient**
341 **intakes in Italy.** *Nutr Metab Cardiovasc Dis* 2011, 21(12):922-932.
342 23. Beltran-de-Miguel B, Estevez-Santiago R, Olmedilla-AlonsoB. Assessment of dietary
343 vitamin a intake (retinol, alpha-carotene, beta-carotene, betacryptoxanthin) and its

344 sources in the National Survey of dietary intake in Spain (2009-2010). *Int J Food Sci*
345 *Nutr.* 2015;66(6):706–12.

346 24. Pedroza-Tobias A, Hernandez-Barrera L, Lopez-Olmedo N, Garcia-Guerra A,
347 Rodriguez-Ramirez S, Ramirez-Silva I, Villalpando S, Carriquiry A, Rivera JA: **Usual**
348 **Vitamin Intakes by Mexican Populations.** *J Nutr* 2016, **146**(9):10.

349 25. Moshfegh AJ, Goldman JD, Ahuja JKC, Rhodes DG, Lacomb RP: **What We Eat in**
350 **America, NHANES 2005-2006: Usual Nutrient Intakes from Food and Water**
351 **Compared to 1997 Dietary Reference Intakes for Vitamin D, Calcium, Phosphorus,**
352 **and Magnesium;** 2009.

353 26. Persson V, Hartini TNS, Greiner T, et al. (2002) Vitamin A intake is low among pregnant
354 women in Central Java, Indonesia. *Int J Vitam Nutr Res* 72, 124–132.

355 27. Celeste Marinda. Dietary adequacy, variety and diversity and associated factors in
356 pregnant women attending the bishop lavis mou in Cape Town. Msc .University of cape
357 town;2015

358 28. A.M.N.T. Adikari, R. Sivakanesan1, D.G.N.G. Wijesinghe, C. Liyanage. Assessment of
359 Nutritional Status of Pregnant Women in a Rural Area in Sri Lanka. *Tropical*
360 *Agricultural Research* Vol. 27 (2): 203 – 211 (2016)

361 29. Gebremedhin S, Enquesselassie F, Umeta M. Prevalence and Correlates of Prenatal
362 Vitamin A Deficiency in Rural Sidama, Southern Ethiopia. *J Health Population Nutr.*
363 2013.

364 30. Abebe H, Abebe Y, Loha E. Consumption of Vitamin A Rich Foods and Dark
365 Adaptation Threshold of Pregnant Women at Damot Sore District, Wolayita, Southern
366 Ethiopia. *Ethiopian journal of health sciences.* 2014;24:219-26.

367 31. Persson. V. vitamin a intake, status and improvement using the dietary approach. 2001;
368 12.

369

370 **Figure Legends:**

371 Figure 1: food groups consumed by pregnant women having ANC follow up in Health facilities
372 of Dessie Town, Amhara Region, Ethiopia, May 2017.

373

374

375

376

377

378

379 **Table 1: Socio demographic and economic variables of pregnant women, health facilities of**
380 **Dessie town, May 2017.**

Variables	Number of study participants (n=390)	Percentage
Maternal Education		
Unable read and write	41	10.5
Primary schooling	95	24.4
Secondary schooling	185	47.4
College and above	69	17.7
Maternal Occupation		
Unemployed	14	3.6
Government employed	321	82.3
Merchant	55	14.1
Stage of pregnancy(in Wks)		
First trimester	61	15.6
Second trimester	142	36.4
Third trimester	187	48.0
Mean gestational age ± SD	6.16 ± 2.21 months	
Family size		
<3	174	44.6
3-4	66	16.9

>=5	150	38.5
-----	-----	------

Pregnancy related illness

Yes	201	51.5
No	189	48.5

Common illness during pregnancy

Dyspepsia	18	8.9
Morning sickness	166	82.6
Helminthes infestation	17	8.5

Birth interval (n=209)

1-5 years	141	67.5
>5years	69	32.5

Parity

<3	282	72.3
>=3	108	27.7

Nutrition education

Yes	96	24.6
No	294	75.4

381

382

383

384

385

386

387 Table 2: Nutritional variables of pregnant women, health facilities of Dessie town, **May 2017**.

Variables	Number of study participants	
	(n=390)	%
Daily intake of vitamin A rich vegetables and Fruits		
389 Yes	86	22.0
390 No	304	77.9
Reasons for no Daily intake of vitamin A rich vegetables (n=304)		
393 Vitamin A rich sources available during market day	67	17.2
394 No fresh products except market days	45	11.5
395 Socio economic reasons	192	49.2
Poultry production		
397 Yes	56	14.4
398 No	334	85.6
Home garden		
400 Yes	63	16.2
401 No	327	83.8

402

403

404

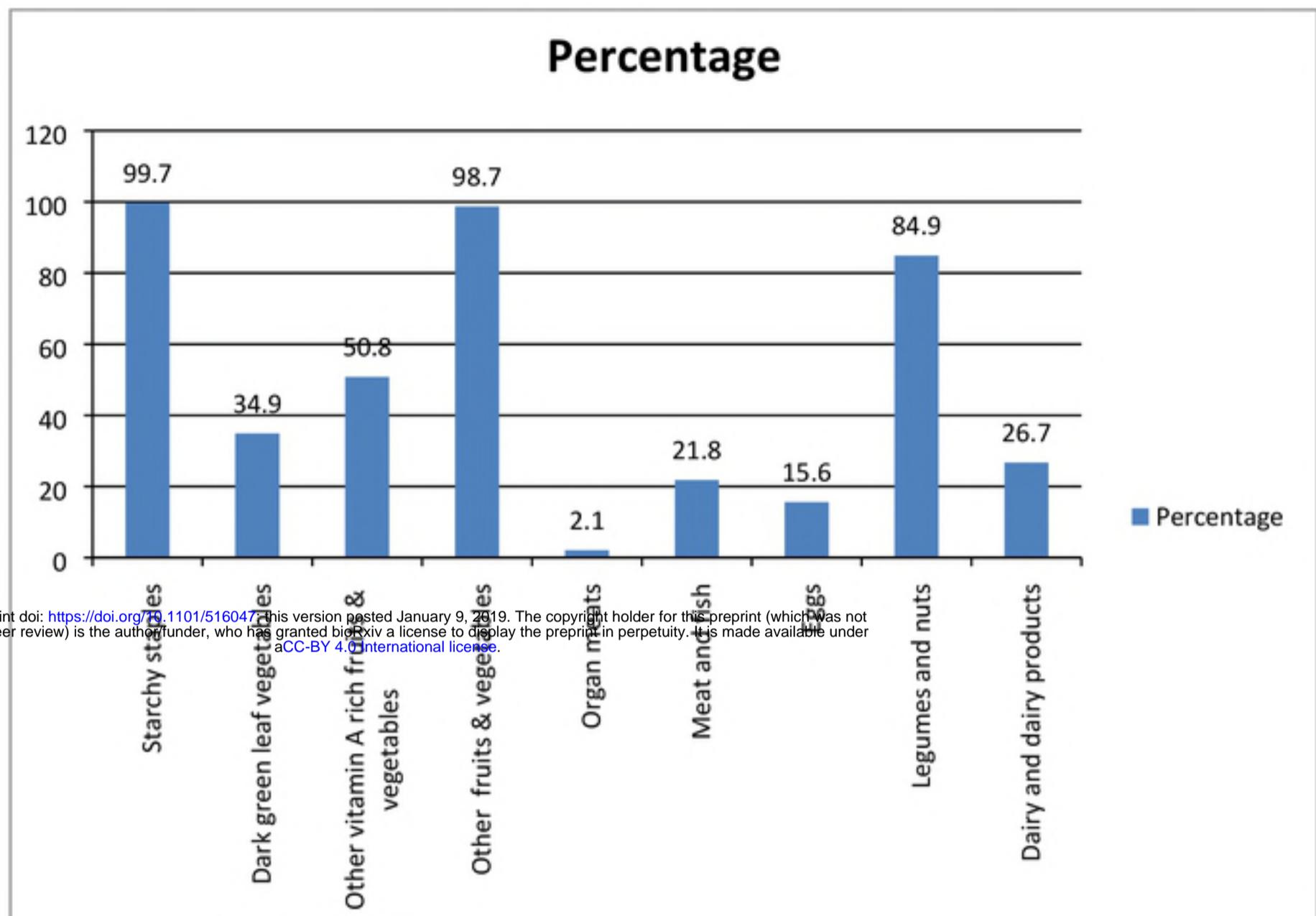
405

406

407

408

409


410 **Table 3: Bivariate and multivariable logistic regression analysis for associated factors of adequacy**
 411 **of vitamin A in pregnant women, health facilities of Dessie town, May 2017.**

412

413

Variables	Vitamin A		COR (95% CI)	AOR (95% CI)
	Adequate	Inadequate		
Occupation				
Unemployed	24(14.7%)	60(26.4%)	1	
Government employed	117(71.8%)	134(59.0%)	2.18(1.27-3.72) **	1.64(0.93-2.88)
Merchant	22(13.5%)	33(14.5%)	1.66(0.81-3.41)	1.26(0.59-2.68)
Poultry production				
Yes	16(9.8%)	40(17.6%)	1	1
No	147(90.2%)	187(82.4%)	1.96(1.05-3.64)*	1.55(0.80-3.00)
Gardening of vitamin A rich vegetables				
Yes	19(11.7%)	44(19.4%)	1	1
No	144(88.3%)	183(80.6%)	1.82(1.02-3.25)*	1.55(0.84-2.88)
WDDS				
Low WDDS	29(17.8%)	76(33.5%)	1	1
Medium WDDS	95(58.3%)	121(53.3%)	2.05(1.24-3.41)***	1.87(1.11-3.16)*
High WDDS	39(23.9%)	30(13.2%)	3.40(1.79-6.46)***	2.92(1.50-5.70)**

NB: * significant variable at p value <0.05, **significant variable at p value <0.001

