

1 **Title:** Activity of a long-acting injectable bedaquiline formulation in a paucibacillary mouse
2 model of latent tuberculosis infection

3

4 **Running title:** Long-acting injectable bedaquiline in latent TB model

5

6 **Authors and affiliations:**

7 Amit Kaushik^{1*}, Nicole C. Ammerman^{1*}, Sandeep Tyagi¹, Vikram Saini^{1**}, Iwan Vervoort,²
8 Sophie Lachau-Durand,² Eric Nuermberger^{1#}, Koen Andries²

9

10 ¹Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School
11 of Medicine, Baltimore, Maryland, USA

12 ²Janssen R&D, a division of Janssen Pharmaceutica NV, Beerse, Belgium

13

14 *Authors contributed equally.

15

16 **Current address: MedStar Health Internal Medicine, Baltimore, Maryland, USA

17

18 #Corresponding author: Eric Nuermberger, enuermb@jhmi.edu

19 **ABSTRACT**

20 The potent anti-tuberculosis activity and long half-life of bedaquiline make it an attractive
21 candidate for long-acting/extended release formulations for treatment of latent tuberculosis
22 infection (LTBI). Our objective was to evaluate a long-acting injectable (LAI) bedaquiline
23 formulation in a validated paucibacillary mouse model of LTBI. Following immunization with
24 *Mycobacterium bovis* rBCG30, BALB/c mice were challenged by aerosol infection with *M.*
25 *tuberculosis* H37Rv. Treatment began 13 weeks after challenge infection with one of the
26 following regimens: untreated negative control; positive controls of daily rifampin (10 mg/kg),
27 once-weekly rifapentine (15 mg/kg) and isoniazid (50 mg/kg), or daily bedaquiline (25 mg/kg);
28 test regimens of one, two, or three monthly doses of LAI bedaquiline at 160 mg/dose ($B_{LAI-160}$);
29 and test regimens of daily bedaquiline at 2.67 ($B_{2.67}$), 5.33 ($B_{5.33}$), or 8 (B_8) mg/kg to deliver the
30 same total bedaquiline as one, two, or three doses of $B_{LAI-160}$, respectively. All drugs were
31 administered orally, except for $B_{LAI-160}$ (intramuscular injection). The primary outcome was the
32 decline in *M. tuberculosis* lung CFU counts during 12 weeks of treatment. The negative and
33 positive control regimens performed as expected. One, two, and three doses of $B_{LAI-160}$ resulted
34 in decreases of 2.9, 3.2, and $3.5 \log_{10}$ CFU/lung, respectively by week 12. Daily oral dosing with
35 $B_{2.67}$, $B_{5.33}$, and B_8 decreased lung CFU counts by 1.6, 2.8, and $4.1 \log_{10}$, respectively. One dose
36 of $B_{LAI-160}$ exhibited activity for at least 12 weeks. The sustained activity of $B_{LAI-160}$ indicates
37 promise as a short-course LTBI treatment requiring few patient encounters to ensure treatment
38 completion.

39 **INTRODUCTION**

40 The crux of global efforts to eliminate tuberculosis (TB) is the prevention of *Mycobacterium*
41 *tuberculosis* transmission in the population. With approximately 10 million incident cases of TB
42 occurring annually (1), the identification and treatment of individuals with active disease is
43 clearly necessary for interrupting transmission. Addressing incident TB in the population,
44 however, will not be sufficient to end the global epidemic, as the World Health Organization
45 (WHO) has stated that up to one-third of the world's population may be latently infected with *M.*
46 *tuberculosis*, referred to as latent TB infection (LTBI) (2). This reservoir of potentially billions of
47 people serves as an ever-present source of new TB cases, independent of recent transmission
48 events (3). Thus, the identification and treatment of individuals with LTBI is also an essential
49 component of the WHO's End TB Strategy (2, 4).

50

51 There are currently four WHO-recommended LTBI treatment regimens: daily isoniazid
52 monotherapy for 6-9 months, daily rifampin for 3-4 months, daily rifampin plus isoniazid for three
53 months, and weekly rifapentine plus isoniazid for three months (2). When completed, all four
54 regimens are highly and equivalently efficacious in reducing the risk of developing active TB
55 disease, but the shorter (*i.e.*, 3-4 month) regimens are associated with higher rates of
56 completion than the longer (*i.e.*, 6-9 month) regimen (5-7). However, ensuring treatment
57 completion of the three- or four-month regimens is still a formidable challenge for TB control
58 programs. The availability of efficacious regimens even shorter than three months could further
59 improve treatment completion rates. An example is the 1-month daily rifapentine plus isoniazid
60 regimen recently evaluated in a phase 3 clinical trial for the treatment of LTBI in individuals
61 infected with HIV (8); the efficacy of this regimen was not inferior to the 9-month control regimen
62 of daily isoniazid and was associated with statistically significantly higher rates of treatment
63 completion.

64

65 Beyond decreasing regimen durations, another modification with potential to significantly reduce
66 the burden on healthcare delivery systems and improve LTBI treatment completion rates is the
67 use of long-acting injectable (LAI) formulations for drug administration (9). The development and
68 administration of LAI and implantable drug formulations have improved adherence, *i.e.*, fewer
69 missed “daily” doses following injection, compared to daily oral drug intake in patients receiving
70 anti-psychotic medications (10) and in individuals using hormone-based contraceptives (11).
71 Recently, significant advances have been made in the development of LAI formulations of
72 antiretroviral drugs administered monthly or bi-monthly for both prevention and treatment of HIV
73 infection (12-15), with LAI formulations of cabotegravir and rilpivirine currently being evaluated
74 in a phase 3 randomized clinical trial in adults with HIV-1 infection (ClinicalTrials.gov identifier
75 NCT02951052). LAI formulations may be easier for children than swallowing daily medications
76 [(16) and ClinicalTrials.gov identifier NCT03497676], and importantly, several studies have
77 indicated a high level of interest in and preference for long-acting injectable forms, versus daily
78 oral administration, of HIV pre-exposure prophylaxis across diverse populations (17-20).

79
80 Although LAI formulations may be well-suited for use in LTBI treatment, not all anti-TB drugs are
81 well-suited for LAI formulations. Two key properties of (pro)drugs administered in LAI
82 formulations are low aqueous solubility, to preclude rapid dissolution and release of the active
83 drug substance, and a reasonably long pharmacokinetic (PK) elimination half-life, *i.e.*, slow
84 clearance from the body (21). For an antimicrobial, another desired property is high potency,
85 negating the need for high concentrations in the blood (9) and allowing low drug doses to be
86 injected. The diarylquinoline bedaquiline, with a low minimum inhibitory concentration (MIC) for
87 *M. tuberculosis* (about 0.03 µg/mL), high lipophilicity (logP 7.3), and a long half-life (about 24
88 hours functionally or effectively), possesses a profile that may be suitable for use in an LAI
89 formulation (9, 22-25). Furthermore, bedaquiline has been shown to specifically contribute
90 significant treatment-shortening activity in mouse models of TB (26-28) and is associated with

91 treatment-shortening in patients with multidrug-resistant- (MDR-) TB (29-31), suggesting that
92 this drug could also contribute treatment-shortening activity to an LTBI treatment regimen. We
93 previously demonstrated in a validated paucibacillary mouse model of LTBI that three months of
94 daily, orally-administered bedaquiline had equivalent or superior sterilizing activity compared to
95 each of the four WHO-recommended regimens (32). Thus, an LAI formulation of bedaquiline
96 has the potential to significantly shorten and simplify LTBI treatment, including MDR-LTBI
97 treatment.

98

99 Here, we describe the PK and activity of an LAI bedaquiline formulation in the validated
100 paucibacillary mouse model of LTBI (32-34) by comparing the bactericidal activity of one, two,
101 or three monthly injections of the long-acting formulation to that of the same total doses of
102 bedaquiline administered daily by the oral route.

103

104 **RESULTS**

105 **MIC of long-acting bedaquiline formulation for *M. tuberculosis* H37Rv**

106 Using a broth macrodilution assay, the MIC of the long-acting bedaquiline microsuspension
107 formulation for *M. tuberculosis* H37Rv was 0.03 µg/mL. This was identical to the MIC of the
108 bedaquiline powder used for oral drug administration, and in agreement with previously
109 published MIC values of bedaquiline for this strain (28, 35).

110

111 **PK characteristics of long-acting bedaquiline formulation**

112 The mouse plasma concentration-time profiles of bedaquiline and its M2 metabolite are
113 displayed in **Figure 1**, and the plasma PK parameters are presented in **Table 1**. After
114 intramuscular administration of 160 mg/kg bedaquiline microsuspension, the release of
115 bedaquiline from the injection site was slow as shown by plasma concentrations above the MIC
116 at 2184 h (13 weeks) post-dosing. The C_{max} of bedaquiline was reached earlier (range 1-4 h)

117 compared to that of M2 (range 24-168 h). Considering the interindividual variability, the C_{max}
118 values were not significantly different between bedaquiline and M2, whereas the $AUC_{0-\infty}$ value
119 for M2 was 3.6-fold higher than that of bedaquiline.

120

121 **Establishment of stable, low-level *M. tuberculosis* infection**

122 Mice were immunized by aerosol infection with *M. bovis* rBCG30; the day after immunization,
123 the mean rBCG30 lung CFU count was 3.05 (SD 0.10) \log_{10} (**Tables S1, S2**). Six weeks later,
124 mice were challenged by aerosol infection with *M. tuberculosis* H37Rv. The day after challenge
125 infection, the mean *M. tuberculosis* lung CFU count was 2.11 (SD 0.09) \log_{10} , and the mean
126 rBCG30 lung CFU count was 4.95 (SD 0.11) \log_{10} (**Tables S1, S2**). Thirteen weeks later, on the
127 day of treatment initiation (Day 0), the mean *M. tuberculosis* lung CFU count was 4.75 (SD
128 0.27), and mean lung CFU counts for the untreated control mice (**Table 2**) remained at this level
129 throughout the experiment: 4.71 (SD 0.48), 4.60 (SD 0.27) and 4.94 (SD 0.29) \log_{10} at Weeks 4,
130 8, and 12, respectively (**Table 3, Figure S1, and Tables S3-S6**). Thus, a stable, relatively low-
131 level *M. tuberculosis* lung infection was established in the mice.

132

133 **Activity of LAI bedaquiline in a mouse model of LTBI**

134 On Day 0, treatment was initiated with the regimens described in **Table 2**. Throughout the 12
135 weeks of treatment, the daily rifampin and the once-weekly rifapentine-isoniazid control
136 regimens performed as expected (32-34), resulting in total reductions of about 3.5 and 4.5 \log_{10}
137 CFU/lung, respectively (**Table 3, Figure S1A, and Tables S3-S7**). Daily oral dosing with
138 bedaquiline at 25 mg/kg also performed as expected (32, 33), resulting in a reduction of about
139 4.7 \log_{10} CFU/lung over 12 weeks of treatment.

140

141 For oral bedaquiline regimens, increasing bactericidal activity was observed with increasing
142 dose at Weeks 4, 8, and 12 (**Table 3, Figure S1B, and Tables S3-S7**). After 12 weeks of

143 treatment, only the B_{2.67} (5/7) regimen was significantly less bactericidal than the R₁₀ (5/7)
144 control ($p < 0.0001$). For mice that received one or two injections of B_{LAI-160} (1/28), lung CFU
145 counts were equivalent to those in mice that received the same total bedaquiline dose
146 administered as a daily oral regimen, B₈ (5/7) for 4 or 8 weeks, respectively ($p > 0.05$). The lung
147 CFU counts in mice that received a single injection of B_{LAI-160} declined between each time point
148 (**Figure S1C**). After 12 weeks of treatment, their CFU counts were lower than those observed in
149 mice that received the same total dose of bedaquiline (160 mg/kg) via daily oral dosing with B_{2.67}
150 (5/7) ($p = 0.0002$), with the former regimen resulting in a decline of about 3 log₁₀ CFU/lung and
151 the latter resulting in a decline of 1.7 log₁₀ CFU/lung, compared to untreated control mice
152 (**Figure S1D**). In mice that received a total bedaquiline dose of 320 mg/kg, either through two
153 injections of B_{LAI-160} or through daily oral dosing of B_{5.33} (5/7), the decline in lung CFU counts
154 was similar at about 3 log₁₀ CFU/lung ($p > 0.05$) (**Figure S1E**). For mice that received a total
155 bedaquiline dose of 480 mg/kg via three injections of B_{LAI-160} (1/28), the lung CFU counts were
156 modestly higher than in mice that received the equivalent total dose through daily oral dosing
157 with B₈ (5/7) (**Figure S1F**), and the difference was not statistically significant.
158

159 **DISCUSSION**

160 Although highly efficacious regimens exist for the treatment of LTBI, low treatment completion
161 rates hinder their practical effectiveness (2, 6, 7, 36). The use of LAI drug formulations for LTBI
162 treatment could simplify treatment and improve completion rates (9). It may also overcome
163 limitations of poor or variable oral bioavailability, mitigate concentration-dependent toxicity and
164 drug-drug interactions, and ease administration in children. A bedaquiline LAI-based LTBI
165 regimen could confer these benefits to contacts of MDR-TB patients, for whom short-course
166 rifamycin-containing regimens are likely to be ineffective as preventive therapy. Here, we report
167 the development and initial evaluation of an LAI formulation of bedaquiline with a promising PK
168 and pharmacodynamic profile for use in LTBI treatment.

169

170 While the bacterial burden associated with human LTBI is unknown, it is considered to be less
171 than $4 \log_{10}$ CFU, as the lower limit of detection with acid-fast smears is approximately $4 \log_{10}$
172 CFU/mL sputum (37-39). Although mice are often not considered to develop latent infection with
173 *M. tuberculosis*, the model used in this study produces a stable, chronic paucibacillary lung
174 infection that is $\leq 4 \log_{10}$ CFU/lung (32-34, 40). Thus, this model can be used to evaluate the
175 activity of drugs and regimens against an overall non-replicating *M. tuberculosis* population
176 representing the presumed upper limit of infection in human LTBI. Moreover, this model has
177 been validated through a number of experiments demonstrating the equivalent efficacy of the
178 three rifamycin-based LTBI regimens currently recommended by the WHO (32-34, 41), as well
179 as the 1-month daily isoniazid-rifapentine regimen recently evaluated in a phase 3 clinical trial
180 (8). Furthermore, the superiority of these rifamycin-based regimens to six months of isoniazid in
181 this model is consistent with the results of a meta-analysis of clinical trials suggesting that
182 rifamycin-based regimens may have superior efficacy (42). Thus, experimental and clinical
183 evidence supports the use of this model for the preclinical evaluation of LTBI treatment
184 regimens.

185

186 In the present experiment, our *M. tuberculosis* challenge infection resulted in a larger infectious
187 dose than expected. Our goal was to implant approximately $1.0-1.5 \log_{10}$ CFU/lung (32-34), but
188 our actual implantation was slightly more than $2 \log_{10}$ CFU/lung. As a result, the *M. tuberculosis*
189 lung burden was somewhat higher than intended at the start of treatment (Day 0), averaging
190 $4.75 \log_{10}$ CFU (**Table 3**). Nevertheless, the *M. tuberculosis* lung burden remained stable in
191 untreated control mice throughout the duration of the experiment, indicating that the model was
192 still suitable for the evaluation of LTBI regimens. Indeed, the bactericidal activity of the R₁₀ (5/7),
193 H₅₀P₁₅ (1/7), and B₂₅ (5/7) control regimens, which resulted in decreases of 3, 4.5, and $4.9 \log_{10}$
194 CFU/lung, respectively, after 12 weeks of treatment, was of the same magnitude as that

195 observed in previous studies (32-34). Thus, the higher implantation and Day 0 CFU counts did
196 not affect the relative activity of the drugs against this stable bacterial population in the mouse
197 lungs.

198

199 One of the most striking findings from this study was the apparent duration of bactericidal
200 activity associated with a single dose of the long-acting bedaquiline formulation. One injection of
201 $B_{LAI-160}$ at Day 0 continued to exert bactericidal activity up to the 12-week time point; these data
202 are supported by the PK data, indicating that the plasma bedaquiline levels remained above the
203 MIC for *M. tuberculosis* for at least 12 weeks post-administration. Additional studies with longer
204 follow-up after dosing are clearly needed to understand the full extent of activity of the LAI
205 formulation. When considering this enduring bactericidal activity, it is possible that just two
206 injections of the long-acting bedaquiline formulation, spaced four weeks apart, could be as
207 active as any of the WHO-recommended LTBI treatment regimens. This is a timely finding, as
208 the recently reported success of the 1-month daily isoniazid-rifapentine regimen (8) may have
209 set a new bar for a short-course LTBI regimen. Even more promising is the idea of combining a
210 single injection of the long-acting bedaquiline formulation with a compatible one- or two-week
211 oral regimen. Such a further decrease in patient-provider encounters could revolutionize LTBI
212 treatment. In addition, our results suggest that an LAI formulation of bedaquiline could meet
213 most, if not all, criteria in a recently proposed target product profile for LTBI treatment using LAI
214 formulations, including many of the criteria for an “ideal” regimen (9). Finally, currently
215 recommended short-course regimens for LTBI, as well as the newly reported 1-month isoniazid-
216 rifapentine regimen, all contain isoniazid and/or a rifamycin (2, 8) and are therefore not
217 expected to be effective against LTBI caused by MDR *M. tuberculosis*. The present results
218 further support bedaquiline-based regimens for LTBI treatment in contacts of patients with
219 MDR-TB (43), and LAI formulations in particular could significantly simplify what could be an
220 otherwise long and complicated treatment.

221

222 **METHODS**

223 **Long-acting bedaquiline formulation**

224 A long-acting formulation of bedaquiline was developed as a microsuspension containing
225 bedaquiline and D-tocopherol polyethylene glycol 1000 succinate in a ratio of 4:1 and 50 mg/mL
226 of mannitol. The concentration of bedaquiline in the final formulation was 200 mg/mL.

227

228 **PK studies**

229 The mouse PK procedures were approved by the local Johnson & Johnson Ethical Committee.
230 Male Swiss mice (4-5 weeks old) were purchased from the Janvier Breeding Center (Le Genest
231 Saint-Isle, France). All animals were housed under controlled conditions (specific pathogen free,
232 23°C, 60% humidity, and normal light-dark cycle) and had access to food and water *ad libitum*.
233 A single, 160 mg/kg dose of long-acting bedaquiline was administered by intramuscular injection
234 to five mice. Blood samples were taken from each animal at 1, 4, 7, 24, 168, 336, 504, 672, 840,
235 1176, 1512, 1848 and 2184 hours after injection. Within 1 hour of sampling, the blood samples
236 were centrifuged. After centrifugation, plasma was collected and stored at -18 °C. At all times,
237 blood/plasma samples were protected from light and placed on melting ice. To measure
238 bedaquiline and its M2 metabolite in plasma, all samples were analyzed using a qualified LC-
239 MS/MS method (44). The samples were subjected to a selective sample cleanup, followed by
240 LC-MS/MS. Samples were quantified against calibration curves prepared to cover the
241 concentration range of the study samples. The curves were prepared in the same matrix as the
242 study samples. For each analytical batch, independent quality control samples, prepared in the
243 same matrix as the samples, were analyzed together with the study samples and calibration
244 curve. Individual plasma concentration-time profiles were subjected to a non-compartmental
245 analysis using the linear up/log down trapezoidal rule for all data. Peak plasma concentrations
246 (C_{\max}), corresponding peak times (T_{\max}), and the area under the plasma concentration-time

247 curve from time zero to time t (AUC_{0-t}), where t is the sampling time corresponding to the last
248 measurable concentration above the limit of quantification (5 ng/mL), and from time zero to
249 infinity ($AUC_{0-\infty}$), were calculated.

250

251 **Mycobacterial strains**

252 *M. bovis* rBCG30, a recombinant strain in the Tice BCG background that overexpresses the *M.*
253 *tuberculosis* 30-kilodalton major secretory protein (45), originally provided by Professor Marcus
254 A. Horwitz, and *M. tuberculosis* H37Rv, American Type Culture Collection strain 27294, were
255 separately mouse-passaged and frozen in aliquots. Frozen stocks were thawed and grown in
256 liquid culture media to an optical density at 600 nm of around 1.0, and the actively growing
257 cultures were diluted for use in experiments as follows: 10-fold in assay media to prepare MIC
258 assay inoculum (H37Rv only), and 50-fold (rBCG30) or 100-fold (H37Rv) in phosphate-buffered
259 saline to prepare suspensions used for infections.

260

261 **Media**

262 Liquid culture medium was Middlebrook 7H9 broth supplemented with 10% (v/v) oleic acid-
263 albumin-dextrose-catalase (OADC) enrichment, 0.5% (v/v) glycerol, and 0.1% (v/v) Tween 80.
264 Assay medium for MIC determination was 7H9 broth supplemented with 10% (v/v) OADC and
265 0.5% (v/v) glycerol but without Tween 80. All plating was done on 7H11 agar supplemented with
266 10% (v/v) OADC enrichment and 0.5% (v/v) glycerol. Lung homogenates (and their cognate ten-
267 fold dilutions) were plated on selective 7H11 agar (7H11 agar containing 50 µg/mL carbenicillin,
268 10 µg/mL polymyxin B, 20 µg/mL trimethoprim, and 50 µg/mL cycloheximide) (46) that was
269 further supplemented with 0.4% activated charcoal to adsorb any drug carried over in the
270 homogenates (28). For differentiating *M. bovis* rBCG30 from *M. tuberculosis*, selective 7H11
271 agar was additionally supplemented with either 40 µg/mL hygromycin B, selective for *M. bovis*
272 rBCG30 and not *M. tuberculosis*, or 2-thiophenecarboxylic acid hydrazide (TCH), selective for

273 *M. tuberculosis* and not *M. bovis*, at 4 and 200 µg/mL in non-charcoal-containing and charcoal-
274 containing agar, respectively. Difco Middlebrook 7H9 broth powder, Difco Mycobacteria 7H11
275 agar powder, and BBL Middlebrook OADC enrichment were obtained from Becton, Dickinson
276 and Company. Glycerol and Tween 80 were obtained from Fisher Scientific, and activated
277 charcoal was obtained from J.T. Baker. All selective drugs were obtained from Sigma-
278 Aldrich/Millipore Sigma.

279

280 **MIC assays**

281 MICs of rifampin, isoniazid, rifapentine, and bedaquiline for our *M. tuberculosis* H37Rv stock
282 strain were previously determined using the broth macrodilution method and are 0.25, 0.03,
283 0.03-0.06, and 0.06 µg/mL, respectively (28, 35, 47). The same broth macrodilution method was
284 used to compare the MIC of the long-acting bedaquiline formulation with orally-administered
285 bedaquiline; all bedaquiline was provided by Janssen. *M. tuberculosis* H37Rv was inoculated
286 into polystyrene tubes containing 2.5 mL assay broth (at 5 log₁₀ CFU/mL) containing bedaquiline
287 concentrations ranging (by two-fold serial dilutions) from 64 to 0.0039 µg/mL. The MIC was
288 defined as the lowest concentration that inhibited visible bacterial growth after 14 days of
289 incubation at 37 °C.

290

291 **LTBI mouse model**

292 The mouse model procedures were approved by the Johns Hopkins University Animal Care and
293 Use Committee. The paucibacillary mouse model used in this study was previously described
294 (33, 34). Female BALB/c mice (n = 150), aged 10 weeks were purchased from Charles River
295 Laboratories. Mice were housed in individually ventilated cages (up to five mice per cage) with
296 sterile wood shavings for bedding and with access to food and water *ad libitum*. Room
297 temperature was maintained at 22-24 °C with a 12 h light/dark cycle. At each time point, mice
298 were sacrificed by intentional isoflurane overdose by inhalation (drop method) followed by

299 cervical dislocation. Mice were immunized by aerosol infection with a nebulized suspension of
300 *M. bovis* rBCG30 using a Glas-Col Full-Size Inhalation Exposure System, per the
301 manufacturer's instruction; the day after infection, five mice were sacrificed to determine *M.*
302 *bovis* rBCG30 lung implantation. Six weeks after the immunizing infection, mice were
303 challenged by aerosol infection with a nebulized suspension of *M. tuberculosis* H37Rv, and the
304 day after infection, five mice were sacrificed to determine both the *M. tuberculosis* lung
305 implantation and the level of *M. bovis* rBCG30 lung infection. The bacterial concentrations of the
306 suspensions used for infections and the subsequent lung implantation CFU counts were
307 determined as previously described (34, 48) and as outlined in **Tables S1** and **S2**, respectively.
308

309 **Treatment**

310 Treatment was initiated on Day 0, thirteen weeks after *M. tuberculosis* challenge infection. This
311 was about twice as long as the usual incubation period but was necessitated by a delay in the
312 availability of the LAI formulation. Five mice were sacrificed on Day 0 to determine pretreatment
313 bacterial lung levels as previously described (34) and as outlined in **Table S3**. Mice were
314 randomized into one of the ten treatment regimens described in **Table 2**. Doses of rifampin,
315 isoniazid, and rifapentine were chosen to achieve similar plasma exposures (based on area
316 under the plasma concentration-time curve) in mice as are achieved with recommended human
317 doses for treatment of LTBI (49, 50). The daily bedaquiline dose of 25 mg/kg represents the
318 standard dose used in TB treatment studies in mice (22, 28). The daily oral bedaquiline doses of
319 2.67, 5.33, and 8 mg/kg were chosen to administer the same total amount of bedaquiline over a
320 12-week period as one, two, and three doses, respectively, of the LAI bedaquiline formulation,
321 which was administered at 160 mg/kg per dose. For drugs administered by gavage (all drugs
322 except for the long-acting bedaquiline formulation), drug solutions were prepared to deliver the
323 desired dose based on an average mouse body mass of 20 g in a volume of 0.2 mL; drug
324 solutions were prepared weekly and stored at 4 °C. Rifampin and isoniazid were purchased

325 from Millipore-Sigma and prepared in distilled water; rifapentine (Priftin[®]) tablets were
326 purchased from a local pharmacy and prepared in distilled water. Orally-administered
327 bedaquiline was dissolved in 20% (w/v) 2-hydroxypropyl- β -cyclodextrin adjusted to pH ~2 with
328 1N HCl. The LAI bedaquiline formulation was stored at 4 °C. The 160 mg/kg dose (based on an
329 average mouse body mass of 20 g) was administered by two intramuscular injections (8 μ L
330 each, one into each hind thigh) using a BD VeoTM insulin syringe with BD Ultra-FineTM 3/10 mL 6
331 mm \times 31 G needle with half-unit scale. Treatment was administered for up to 12 weeks, with
332 five mice per treatment group sacrificed 4, 8, and 12 weeks after Day 0. At sacrifice, lungs were
333 removed and homogenized, and CFU counts were determined as previously described (34) and
334 as outlined in **Tables S4-S7**. At each time point, the bacterial burden of *M. bovis* rBCG30 was
335 calculated using the CFU/lung values determined on hygromycin-containing agar. The *M.*
336 *tuberculosis* implantation was calculated using the CFU/lung values determined on TCH-
337 containing agar. The *M. tuberculosis* bacterial burden at Day 0 and Week 4, 8, and 12 were
338 calculated by subtracting the CFU/lung determined on hygromycin-containing agar from the total
339 CFU/lung determined on plain agar. The primary outcome was the difference (decline) in *M.*
340 *tuberculosis* lung CFU counts during treatment, compared to counts in the lungs of rBCG30-
341 immunized but untreated negative control mice.

342

343 **Statistical analyses**

344 CFU counts (x) were log-transformed as $(x + 1)$ before analysis. The bactericidal activity of
345 different treatment regimens at each time point was compared using one-way analysis of
346 variance with Bonferroni's correction for multiple comparisons. Analyses were performed using
347 GraphPad Prism version 7.02.

348

349 **ACKNOWLEDGEMENTS**

350 This work was funded by Janssen.

351

352 **REFERENCES**

- 353 1. World Health Organization. 2017. Global tuberculosis report 2017. World Health
354 Organization, Geneva, Switzerland. WHO reference number WHO/HTM/TB/2017.23.
355 Licence CC BY-NCSA 3.0 IGO.
- 356 2. World Health Organization. 2018. Latent tuberculosis infection: updated and consolidated
357 guidelines for programmatic management. World Health Organization, Geneva, Switzerland.
358 WHO reference number WHO/CDS/TB/2018.4. Licence CC BY-NC-SA 3.1 IGO.
- 359 3. Houben RM, Dodd PJ. 2016. The global burden of latent tuberculosis infection: A re-
360 estimation using mathematical modelling. PLoS Med 13:e1002152. doi:
361 10.1371/journal.pmed.1002152.
- 362 4. Uplekar M, Weil D, Lonnroth K, Jaramillo E, Lienhardt C, Dias HM, Falzon D, Floyd K,
363 Gargioni G, Getahun H, Gilpin C, Glaziou P, Grzemska M, Mirzayev F, Nakatani H,
364 Raviglione M. 2015. WHO's new End TB strategy. Lancet 385:1799-1801. doi:
365 10.1016/S0140-6736(15)60570-0.
- 366 5. Pease C, Hutton B, Yazdi F, Wolfe D, Hamel C, Quach P, Skidmore B, Moher D, Alvarez
367 GG. 2017. Efficacy and completion rates of rifapentine and isoniazid (3HP) compared to
368 other treatment regimens for latent tuberculosis infection: a systematic review with network
369 meta-analyses. BMC Infect Dis 17:265. doi: 10.1186/s12879-017-2377-x.
- 370 6. Liu Y, Birch S, Newbold KB, Essue BM. 2018. Barriers to treatment adherence for
371 individuals with latent tuberculosis infection: A systematic search and narrative synthesis of
372 the literature. Int J Health Plann Manage 33:e416-e433. doi: 10.1002/hpm.2495.
- 373 7. Stuurman AL, Vonk Noordegraaf-Schouten M, van Kessel F, Oordt-Speets AM, Sandgren
374 A, van der Werf MJ. 2016. Interventions for improving adherence to treatment for latent
375 tuberculosis infection: a systematic review. BMC Infect Dis 16:257. doi: 10.1186/s12879-
376 016-1549-4.

377 8. Swindells S, Ramchandani R, Gupta A, Benson CA, Leon-Cruz JT, Omoz-Oarhe A, Juste
378 MAJ, Lama JR, Valencia JA, Badal-Faesen S, Moran LE, Fletcher CV, Nuermberger E,
379 Chaisson RE. 2018. One month of rifapentine/isoniazid to prevent TB in people with HIV:
380 BRIEF-TB/A5279. Oral abstract number: 37LB, p. 15-16. *In* Abstract eBook, 25th CROI
381 Conference on Retroviruses and Opportunistic Infections, Boston, March 4-7, 2018. CROI
382 Foundation/IAS-USA. <https://www.croiconference.org/welcome-croi-2018>.

383 9. Swindells S, Siccardi M, Barrett SE, Olsen DB, Grobler JA, Podany AT, Nuermberger E, Kim
384 P, Barry CE,3rd, Owen A, Hazuda D, Flexner C. 2018. Long-acting formulations for the
385 treatment of latent tuberculous infection: opportunities and challenges. *Int J Tuberc Lung Dis*
386 22:125-132. doi: 10.5588/ijtld.17.0486.

387 10. Morton NK, Zubek D. 2013. Adherence challenges and long-acting injectable antipsychotic
388 treatment in patients with schizophrenia. *J Psychosoc Nurs Ment Health Serv* 51:13-18. doi:
389 10.3928/02793695-20130215-01.

390 11. Halpern V, Lopez LM, Grimes DA, Stockton LL, Gallo MF. 2013. Strategies to improve
391 adherence and acceptability of hormonal methods of contraception. *Cochrane Database
392 Syst Rev Issue 10:CD004317*. doi: 10.1002/14651858.CD004317.pub4.

393 12. Sillman B, Bade AN, Dash PK, Bhargavan B, Kocher T, Mathews S, Su H, Kanmogne GD,
394 Poluektova LY, Gorantla S, McMillan J, Gautam N, Alnouti Y, Edagwa B, Gendelman HE.
395 2018. Creation of a long-acting nanoformulated dolutegravir. *Nat Commun* 9:443. doi:
396 10.1038/s41467-018-02885-x.

397 13. Trezza C, Ford SL, Spreen W, Pan R, Piscitelli S. 2015. Formulation and pharmacology of
398 long-acting cabotegravir. *Curr Opin HIV AIDS* 10:239-245. doi:
399 10.1097/COH.0000000000000168.

400 14. Williams PE, Crauwels HM, Basstanie ED. 2015. Formulation and pharmacology of long-
401 acting rilpivirine. *Curr Opin HIV AIDS* 10:233-238. doi: 10.1097/COH.0000000000000164.

402 15. Margolis DA, Gonzalez-Garcia J, Stellbrink HJ, Eron JJ, Yazdanpanah Y, Podzamczer D,
403 Lutz T, Angel JB, Richmond GJ, Clotet B, Gutierrez F, Sloan L, St Clair M, Murray M, Ford
404 SL, Mrus J, Patel P, Crauwels H, Griffith SK, Sutton KC, Dorey D, Smith KY, Williams PE,
405 Spreen WR. 2017. Long-acting intramuscular cabotegravir and rilpivirine in adults with HIV-1
406 infection (LATTE-2): 96-week results of a randomised, open-label, phase 2b, non-inferiority
407 trial. *Lancet* 390:1499-1510. doi: 10.1016/S0140-6736(17)31917-7.

408 16. Rajoli RKR, Back DJ, Rannard S, Meyers CF, Flexner C, Owen A, Siccardi M. 2018. In silico
409 dose prediction for long-acting rilpivirine and cabotegravir administration to children and
410 adolescents. *Clin Pharmacokinet* 57:255-266. doi: 10.1007/s40262-017-0557-x.

411 17. Meyers K, Wu Y, Qian H, Sandfort T, Huang X, Xu J, Zhang J, Xia W, Glidden D, Wu H,
412 Shang H. 2018. Interest in long-acting injectable PrEP in a cohort of men who have sex with
413 men in China. *AIDS Behav* 22:1217-1227. doi: 10.1007/s10461-017-1845-z.

414 18. Luecke EH, Cheng H, Woeber K, Nakyanzi T, Mudekunye-Mahaka IC, van der Straten A,
415 MTN-003D Study Team. 2016. Stated product formulation preferences for HIV pre-exposure
416 prophylaxis among women in the VOICE-D (MTN-003D) study. *J Int AIDS Soc* 19:20875.
417 doi: 10.7448/IAS.19.1.20875.

418 19. Weinrib R, Minnis A, Agot K, Ahmed K, Owino F, Manenzhe K, Cheng H, van der Straten A.
419 2018. End-users' product preference across three multipurpose prevention technology
420 delivery forms: baseline results from young women in Kenya and South Africa. *AIDS Behav*
421 22:133-145. doi: 10.1007/s10461-017-1911-6.

422 20. Levy ME, Patrick R, Gamble J, Rawls A, Opoku J, Magnus M, Kharfen M, Greenberg AE,
423 Kuo I. 2017. Willingness of community-recruited men who have sex with men in
424 Washington, DC to use long-acting injectable HIV pre-exposure prophylaxis. *PLoS One*
425 12:e0183521. doi: 10.1371/journal.pone.0183521.

426 21. Park EJ, Amatya S, Kim MS, Park JH, Seol E, Lee H, Shin YH, Na DH. 2013. Long-acting
427 injectable formulations of antipsychotic drugs for the treatment of schizophrenia. *Arch
428 Pharm Res* 36:651-659. doi: 10.1007/s12272-013-0105-7.

429 22. Andries K, Verhasselt P, Guillemont J, Göhlmann HW, Neefs JM, Winkler H, Van Gestel J,
430 Timmerman P, Zhu M, Lee E, Williams P, de Chaffoy D, Huitric E, Hoffner S, Cambau E,
431 Truffot-Pernot C, Lounis N, Jarlier V. 2005. A diarylquinoline drug active on the ATP
432 synthase of *Mycobacterium tuberculosis*. *Science* 307:223-227. doi:
433 10.1126/science.1106753.

434 23. Diacon AH, Donald PR, Pym A, Grobusch M, Patientia RF, Mahanyele R, Bantubani N,
435 Narasimooloo R, De Marez T, van Heeswijk R, Lounis N, Meyvisch P, Andries K, Mcneeley
436 DF. 2012. Randomized pilot trial of eight weeks of bedaquiline (TMC207) treatment for
437 multidrug-resistant tuberculosis: long-term outcome, tolerability, and effect on emergence of
438 drug resistance. *Antimicrob Agents Chemother* 56:3271-3276. doi: 10.1128/AAC.06126-11;
439 10.1128/AAC.06126-11.

440 24. United States Food and Drug Administration. 2012. SirturoTM (bedaquiline 100 mg tablets),
441 For the treatment of adults (≥ 18 years) as part of combination therapy of pulmonary multi-
442 drug resistant tuberculosis (MDRTB), Briefing package, Division of Anti-Infective Products,
443 Office of Antimicrobial Products, CDER, FDA, NDA 204-384.

444 25. Rajoli RKR, Podany AT, Moss DM, Swindells S, Flexner C, Owen A, Siccardi M. 2018.
445 Modelling the long-acting administration of anti-tuberculosis agents using PBPK: a proof of
446 concept study. *Int J Tuberc Lung Dis* 22:937-944. doi: 10.5588/ijtld.17.0515.

447 26. Ibrahim M, Truffot-Pernot C, Andries K, Jarlier V, Veziris N. 2009. Sterilizing activity of
448 R207910 (TMC207)-containing regimens in the murine model of tuberculosis. *Am J Respir
449 Crit Care Med* 180:553-557. doi: 10.1164/rccm.200807-1152OC.

450 27. Veziris N, Ibrahim M, Lounis N, Andries K, Jarlier V. 2011. Sterilizing activity of second-line
451 regimens containing TMC207 in a murine model of tuberculosis. *PLoS One* 6:e17556. doi:
452 10.1371/journal.pone.0017556.

453 28. Tasneen R, Li SY, Peloquin CA, Taylor D, Williams KN, Andries K, Mdluli KE, Nuermberger
454 EL. 2011. Sterilizing activity of novel TMC207- and PA-824-containing regimens in a murine
455 model of tuberculosis. *Antimicrob Agents Chemother* 55:5485-5492. doi:
456 10.1128/AAC.05293-11.

457 29. Conradie F, Diacon A, Mendel C, Everitt D, van Niekerk C, Howell P, Spigelman M. 2016.
458 Interim results of Nix-TB clinical study of pretomanid, bedaquiline and linezolid for treatment
459 of XDR and treatment intolerant/failed MDR-TB. *Int J Tuberc Lung Dis* 20:S402-S403.

460 30. Borisov SE, Dheda K, Enwerem M, Romero Leyet R, D'Ambrosio L, Centis R, Sotgiu G,
461 Tiberi S, Alffenaar JW, Maryandyshev A, Belilovski E, Ganatra S, Skrahina A, Akkerman O,
462 Alekса A, Amale R, Artsukovich J, Bruchfeld J, Caminero JA, Carpena Martinez I, Codecasa
463 L, Dalcolmo M, Denholm J, Douglas P, Duarte R, Esmail A, Fadul M, Filippov A, Davies
464 Forsman L, Gaga M, Garcia-Fuertes JA, García-García JM, Gualano G, Jonsson J, Kunst H,
465 Lau JS, Lazaro Mastrapa B, Teran Troya JL, Manga S, Manika K, González Montaner P,
466 Mullerpattan J, Oelofse S, Ortelli M, Palmero DJ, Palmieri F, Papalia A, Papavasileiou A,
467 Payen MC, Pontali E, Robalo Cordeiro C, Saderi L, Sadutshang TD, Sanukevich T,
468 Solodovnikova V, Spanevello A, Topgyal S, Toscanini F, Tramontana AR, Udwadia ZF,
469 Viggiani P, White V, Zumla A, Migliori GB. 2017. Effectiveness and safety of bedaquiline-
470 containing regimens in the treatment of MDR- and XDR-TB: a multicentre study. *Eur Respir
471 J* 49:1700387. doi: 10.1183/13993003.00387-2017.

472 31. Diacon AH, Pym A, Grobusch MP, de los Rios JM, Gotuzzo E, Vasilyeva I, Leimane V,
473 Andries K, Bakare N, De Marez T, Haxaire-Theeuwes M, Lounis N, Meyvisch P, De Paepe
474 E, van Heeswijk RP, Dannemann B, TMC207-C208 Study Group. 2014. Multidrug-resistant

475 tuberculosis and culture conversion with bedaquiline. *N Engl J Med* 371:723-732. doi:
476 10.1056/NEJMoa1313865.

477 32. Zhang T, Li SY, Williams KN, Andries K, Nuermberger EL. 2011. Short-course
478 chemotherapy with TMC207 and rifapentine in a murine model of latent tuberculosis
479 infection. *Am J Respir Crit Care Med* 184:732-737. doi: 10.1164/rccm.201103-0397OC.

480 33. Lanoix JP, Betoudji F, Nuermberger E. 2014. Novel regimens identified in mice for treatment
481 of latent tuberculosis infection in contacts of patients with multidrug-resistant tuberculosis.
482 *Antimicrob Agents Chemother* 58:2316-2321. doi: 10.1128/AAC.02658-13.

483 34. Zhang T, Zhang M, Rosenthal IM, Grosset JH, Nuermberger EL. 2009. Short-course therapy
484 with daily rifapentine in a murine model of latent tuberculosis infection. *Am J Respir Crit
485 Care Med* 180:1151-1157. doi: 10.1164/rccm.200905-0795OC.

486 35. Almeida D, Ioerger T, Tyagi S, Li SY, Mdluli K, Andries K, Grosset J, Sacchettini J,
487 Nuermberger E. 2016. Mutations in *pepQ* confer low-level resistance to bedaquiline and
488 clofazimine in *Mycobacterium tuberculosis*. *Antimicrob Agents Chemother* 60:4590-4599.
489 doi: 10.1128/AAC.00753-16.

490 36. Dobler CC, Bosnic-Anticevich S, Armour CL. 2018. Physicians' perspectives on
491 communication and decision making in clinical encounters for treatment of latent
492 tuberculosis infection. *ERJ Open Res* 4:00146-2017. doi: 10.1183/23120541.00146-2017.

493 37. Cruickshank DB. 1952. Bacteriology, p. 53-77. *In* T. H. Sellors and J. L. Livingstone (eds.),
494 Modern Practice in Tuberculosis vol. 1. Butterworth, London.

495 38. Hobby GL, Holman AP, Iseman MD, Jones JM. 1973. Enumeration of tubercle bacilli in
496 sputum of patients with pulmonary tuberculosis. *Antimicrob Agents Chemother* 4:94-104.
497 doi: 10.1128/AAC.4.2.94.

498 39. Yeager H,Jr, Lacy J, Smith LR, LeMaistre CA. 1967. Quantitative studies of mycobacterial
499 populations in sputum and saliva. *Am Rev Respir Dis* 95:998-1004. doi:
500 10.1164/arrd.1967.95.6.998.

501 40. Nuermberger EL, Yoshimatsu T, Tyagi S, Bishai WR, Grosset JH. 2004. Paucibacillary
502 tuberculosis in mice after prior aerosol immunization with *Mycobacterium bovis* BCG. Infect
503 Immun 72:1065-1071.

504 41. Nuermberger E, Tyagi S, Williams KN, Rosenthal I, Bishai WR, Grosset JH. 2005.
505 Rifapentine, moxifloxacin, or DNA vaccine improves treatment of latent tuberculosis in a
506 mouse model. Am J Respir Crit Care Med 172:1452-1456. doi: 10.1164/rccm.200507-
507 1047OC.

508 42. Stagg HR, Zenner D, Harris RJ, Munoz L, Lipman MC, Abubakar I. 2014. Treatment of
509 latent tuberculosis infection: a network meta-analysis. Ann Intern Med 161:419-428. doi:
510 10.7326/M14-1019.

511 43. Fox GJ, Schaaf HS, Mandalakas A, Chiappini E, Zumla A, Marais BJ. 2017. Preventing the
512 spread of multidrug-resistant tuberculosis and protecting contacts of infectious cases. Clin
513 Microbiol Infect 23:147-153. doi: 10.1016/j.cmi.2016.08.024.

514 44. Rouan MC, Lounis N, Gevers T, Dillen L, Gilissen R, Raoof A, Andries K. 2012.
515 Pharmacokinetics and pharmacodynamics of TMC207 and its N-desmethyl metabolite in a
516 murine model of tuberculosis. Antimicrob Agents Chemother 56:1444-1451. doi:
517 10.1128/AAC.00720-11.

518 45. Horwitz MA, Harth G, Dillon BJ, Masleša-Galić S. 2000. Recombinant bacillus Calmette-
519 Guérin (BCG) vaccines expressing the *Mycobacterium tuberculosis* 30-kDa major secretory
520 protein induce greater protective immunity against tuberculosis than conventional BCG
521 vaccines in a highly susceptible animal model. Proc Natl Acad Sci U S A 97:13853-13858.
522 doi: 10.1073/pnas.250480397.

523 46. Mitchison DA, Allen BW, Carroll L, Dickinson JM, Aber VR. 1972. A selective oleic acid
524 albumin agar medium for tubercle bacilli. J Med Microbiol 5:165-175. doi:
525 10.1099/00222615-5-2-165.

526 47. Kaushik A, Makkar N, Pandey P, Parrish N, Singh U, Lamichhane G. 2015. Carbapenems
527 and rifampin exhibit synergy against *Mycobacterium tuberculosis* and *Mycobacterium*
528 *abscessus*. *Antimicrob Agents Chemother* 59:6561-6567. doi: 10.1128/AAC.01158-15.

529 48. Ammerman NC, Swanson RV, Tapley A, Moodley C, Ngcobo B, Adamson J, Dorasamy A,
530 Moodley S, Mgaga Z, Bester LA, Singh SD, Almeida DV, Grosset JH. 2017. Clofazimine has
531 delayed antimicrobial activity against *Mycobacterium tuberculosis* both *in vitro* and *in vivo*. *J*
532 *Antimicrob Chemother* 72:455-461. doi: 10.1093/jac/dkw417.

533 49. Rosenthal IM, Zhang M, Williams KN, Peloquin CA, Tyagi S, Vernon AA, Bishai WR,
534 Chaisson RE, Grosset JH, Nuermberger EL. 2007. Daily dosing of rifapentine cures
535 tuberculosis in three months or less in the murine model. *PLoS Med* 4:e344. doi:
536 10.1371/journal.pmed.0040344.

537 50. Almeida D, Nuermberger E, Tasneen R, Rosenthal I, Tyagi S, Williams K, Peloquin C,
538 Grosset J. 2009. Paradoxical effect of isoniazid on the activity of rifampin-pyrazinamide
539 combination in a mouse model of tuberculosis. *Antimicrob Agents Chemother* 53:4178-
540 4184. doi: 10.1128/AAC.00830-09.

541 **Table 1. Plasma pharmacokinetic parameters of bedaquiline and M2 after a single, 160**
542 **mg/kg intramuscular injection of long-acting bedaquiline.**

Pharmacokinetic parameter	Bedaquiline	M2
C_{max} (ng/mL)	2,363 (1,447)	3,002 (1,139)
T_{max} (h)*	1-4	24-168
$AUC_{0-2184h}$ (ng•hr/mL)	447,361 (174,979)	1,689,422 (755,169)
$AUC_{0-\infty}$ (ng•hr/mL)	500,850 (201,928)	1,823,672 (836,740)

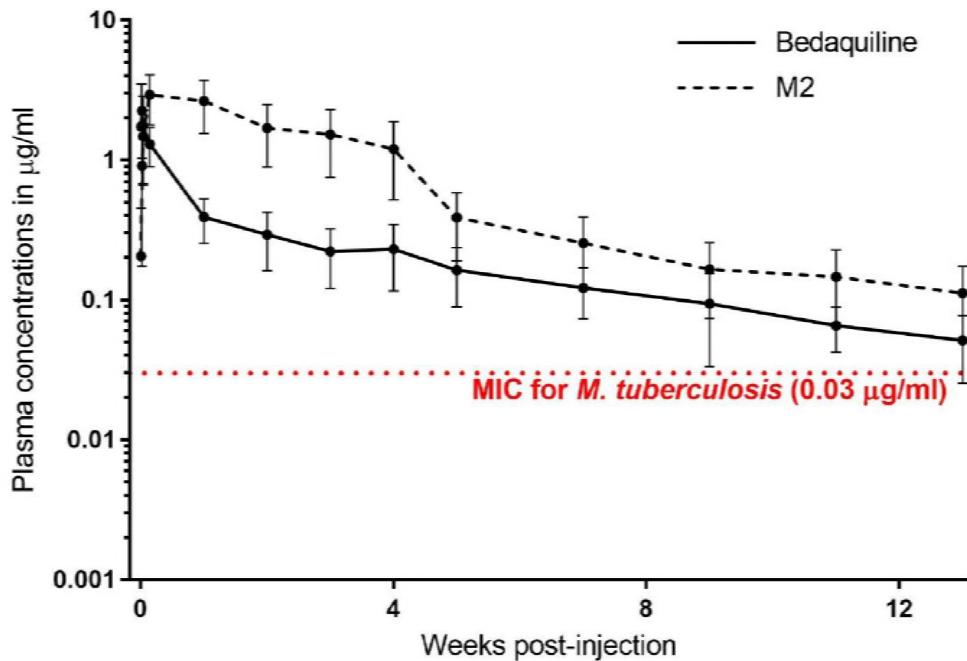
543 *A range is given for T_{max} values; all other data represent means (standard deviation) for five
544 mice sampled at each time point.

545 **Table 2. Regimens evaluated for 12 weeks in a paucibacillary mouse model of LTBI**

546 **treatment.**

Regimen name	Regimen description
Untreated	Negative control, no drug administered
R ₁₀ (5/7)	Positive control, rifampin (R) at 10 mg/kg, administered daily* by gavage
H ₅₀ P ₁₅ (1/7)	Positive control, isoniazid (H) at 50 mg/kg and rifapentine (P) at 15 mg/kg, administered once weekly by gavage**
B ₂₅ (5/7)	Positive control, bedaquiline (B) at 25 mg/kg administered daily by gavage
B ₈ (5/7)	B at 8 mg/kg administered daily by gavage
B _{5.33} (5/7)	B at 5.33 mg/kg administered daily by gavage
B _{2.67} (5/7)	B at 2.67 mg/kg administered daily by gavage
B _{LAI-160} (1/28) × 3	Long-acting injectable bedaquiline formulation (B _{LAI}) at 160 mg/kg, administered every 28 days by intramuscular injection, for three total doses: Day 0, Day 28 (Week 4), and Day 56 (Week 8)
B _{LAI-160} (1/28) × 2	B _{LAI} at 160 mg/kg, administered every 28 days by intramuscular injection, for two total doses: Day 0 and Day 28 (Week 4)
B _{LAI-160} (1/28) × 1	B _{LAI} at 160 mg/kg, administered once on Day 0

547 * “Daily” indicates administration Monday through Friday.


548 ** Isoniazid was administered at least one hour after rifapentine administration. The once

549 weekly gavage occurred every Monday.

550 **Table 3. *M. tuberculosis* lung CFU counts.**

Regimen	Total B dose (mg/kg) administered in 12 weeks	Mean (SD) <i>M. tuberculosis</i> log ₁₀ CFU/lung at the indicated time point:				
		Week -13	Day 0	Week 4	Week 8	Week 12
Untreated	N/A	2.11 (0.09)	4.75 (0.27)	4.71 (0.48)	4.60 (0.27)	4.94 (0.29)
R ₁₀ (5/7)	N/A			3.39 (0.46)	2.74 (0.62)	1.27 (0.85)
H ₅₀ P ₁₅ (1/7)	N/A			2.67 (0.25)	0.79 (0.80)	0.28 (0.41)
B ₂₅ (5/7)	1500			3.01 (0.45)	0.82 (0.49)	0.07 (0.09)
B ₈ (5/7)	480			3.30 (0.12)	2.42 (0.26)	0.69 (0.43)
B _{5.33} (5/7)	320			3.83 (0.25)	3.15 (0.47)	1.98 (0.17)
B _{2.67} (5/7)	160			3.96 (0.35)	3.52 (0.38)	3.16 (0.24)
B _{LAI-160} (1/28) × 3	480					1.23 (0.16)
B _{LAI-160} (1/28) × 2	320				2.31 (0.40)	1.63 (0.40)
B _{LAI-160} (1/28) × 1	160			3.55 (0.32)	3.31 (0.38)	1.83 (0.34)

551 Week -13 is the day after aerosol infection with *M. tuberculosis*; Day 0 is the day of treatment
552 initiation. Data are presented graphically in **Figure S1**. See **Table 2** for a description of the
553 regimens. See **Tables S2-S7** for the raw CFU data at each time point. N/A, not applicable.

554

555 **Figure 1. Plasma concentrations of bedaquiline and its M2 metabolite following a single,**
556 **160 mg/kg intramuscular injection of long-acting bedaquiline.** Data points represent mean
557 values, and error bars represent standard deviation (5 mice sampled per time point).