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Abstract

Background: The human genome contains ‘dark’ gene regions that cannot be adequately assembled or
aligned using standard short-read sequencing technologies, preventing researchers from identifying mutations
within these gene regions that may be relevant to human disease. Here, we identify regions that are ‘dark by
depth’ (few mappable reads) and others that are ‘camouflaged’ (ambiguous alignment), and we assess how
well long-read technologies resolve these regions. We further present an algorithm to resolve most
camouflaged regions (including in short-read data) and apply it to the Alzheimer’s Disease Sequencing Project

(ADSP; 13142 samples), as a proof of principle.

Results: Based on standard whole-genome lllumina sequencing data, we identified 37873 dark regions in 5857
gene bodies (3635 protein-coding) from pathways important to human health, development, and
reproduction. Of the 5857 gene bodies, 494 (8.4%) were 100% dark (142 protein-coding) and 2046 (34.9%)
were 25% dark (628 protein-coding). Exactly 2757 dark regions were in protein-coding exons (CDS) across 744
genes. Long-read sequencing technologies from 10x Genomics, PacBio, and Oxford Nanopore Technologies
reduced dark CDS regions to approximately 45.1%, 33.3%, and 18.2% respectively. Applying our algorithm to
the ADSP, we rescued 4622 exonic variants from 501 camouflaged genes, including a rare, ten-nucleotide

frameshift deletion in CR1, a top Alzheimer’s disease gene, found in only five ADSP cases and zero controls.

Conclusions: While we could not formally assess the CR1 frameshift mutation in Alzheimer’s disease
(insufficient sample-size), we believe it merits investigating in a larger cohort. There remain thousands of
potentially important genomic regions overlooked by short-read sequencing that are largely resolved by long-

read technologies.
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Background

Researchers have known for years that large, complex genomes, including the human genome, contain ‘dark’
regions—regions where standard high-throughput short-read sequencing technologies cannot be adequately
assembled or aligned—thus preventing our ability to identify mutations within these regions that may be
relevant to human health and disease. Some dark regions are what we term ‘dark by depth’ (few or no
mappable reads), while others are what we term ‘dark by mapping quality’ (reads aligned to the region, but
with a low mapping quality). Regions that are dark by depth may arise because the region is inherently difficult
to sequence at the chemistry level (e.g., high GC content [1, 2]), essentially eliminating sequencing reads from
that region altogether. Other dark regions arise, not because the sequencing is inherently problematic, but
because of bioinformatic challenges. Specifically, many dark regions arise from duplicated genomic regions,
where confidently aligning short reads to a unique location is not possible; we term these regions as
‘camouflaged’. These camouflaged regions are generally either large contiguous tandem repeats (e.g.,
centromeres, telomeres, and other short tandem repeats), or a larger specific DNA region that has been
duplicated (e.g., a gene duplication) either in tandem or in a more distal genome region. In fact, many genes in
the human genome were duplicated over evolutionary time and are still transcriptionally and translationally
active (e.g., heat-shock proteins) [3—9], while others have been duplicated, but are considered inactive (i.e.,
pseudogenes). Regardless of whether the duplication is active, however, any genomic region that has been
nearly-identically duplicated, and is large enough to prevent sequencing reads from aligning unambiguously

will be ‘dark’, because the aligner cannot determine which genomic region the read originated from.

When confronted with a read that aligns equally well to two or more camouflaged regions (commonly known
as multi-mapping reads [2, 10]), standard next-generation sequence aligners, such as the Burrows-Wheeler
Aligner (BWA) [11-13], randomly assign the read to one of the regions and assign a low mapping quality. For

BWA, specifically, reads that cannot be uniquely mapped are generally assigned a mapping quality (MAPQ) of
4


https://doi.org/10.1101/514497
http://creativecommons.org/licenses/by-nc-nd/4.0/

LO

11

L2

L3

L4

L5

L6

L7

L8

bioRxiv preprint doi: https://doi.org/10.1101/514497; this version posted January 9, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

0; though, in certain paired-end sequencing scenarios, BWA will assign a high mapping quality if the read mate

is confidently mapped nearby (i.e., within the estimated insert-size length).

Recent work has characterized camouflaged regions, in part, including a study that demonstrates how this
issue affects all standard RNA-Seq analyses [10], and another that quantifies the number of nucleotides in
human reference GRCh38 that are dark for mapping quality of O (camouflaged regions), based on 1000
Genome Project data [2]. Robert and Watson demonstrated that expression for 958 genes were either over-
or under-represented because of multi-mapping reads across 12 different RNA-Seq processing methods, and
no method was immune to the problem [10]. They also demonstrated that many of these genes are directly
implicated in human disease. Zheng-Bradley et al. recently re-aligned genomes from the 1000 Genomes
Project to GRCh38, and, among other findings, generally demonstrated the breadth of multi-mapping reads
across the genome [2]. These data characterize the general problem, and report specific genes affected by this

issue.

Here, we systematically analyze dark and camouflaged genes to more fully characterize the problem, and we
highlight many disease-relevant genes that are directly implicated in Alzheimer’s disease, autism spectrum
disorder, amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), and others. We also show that
long-read sequencing technologies substantially reduce the number of dark and camouflaged regions, and we
present a method to address camouflaged regions, even in standard short-read sequencing data. As a proof of
concept, we apply our method to the Alzheimer’s Disease Sequencing Project (ADSP) data, and identify a rare,
ten-nucleotide frameshift deletion in the C3b and C4b binding domain of CR1, a top Alzheimer’s disease gene
[14-22], that is only present in five ADSP cases and zero controls. The ADSP is not large enough to statistically

assess association between the CR1 frameshift mutation and Alzheimer’s disease.
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Results

To quantify the number of dark and camouflaged regions in standard short-read whole-genome sequencing
data, we obtained whole-genome sequencing data for ten unrelated males from the Alzheimer’s Disease
Sequencing Project (ADSP) and scanned each sample for dark and camouflaged regions, averaging across all
ten samples; we only used data from males for this study so we could also assess dark and camouflaged
regions on the Y chromosome because large portions of the Y chromosome are dark. We ignored incomplete
genomic regions (e.g., centromeres). We then limited the dark and camouflaged regions to known gene
bodies, based on annotations from build 87 of the Ensembl GRCh37 human reference genome [23]. All ten
samples were sequenced using standard lllumina whole-genome sequencing with 100-nucleotide read
lengths, where median genome-wide read depths ranged from 35.4x to 42.9x coverage, with an overall
median of 39.4x. We performed the same analyses on ten unrelated males from the 1000 Genomes Project
[24] that were sequenced using lllumina whole-genome sequencing with 250-nucleotide read lengths, where
median genome-wide read depths ranged from 39.3x to 52.6x coverage, with an overall median of 48.9x.
Similarly, we assessed how well long-read sequencing technologies, including 10x Genomics (52x median
coverage), PacBio (50x median coverage), and ONT (46x median coverage) resolve dark and camouflaged
regions. Although we were only able to obtain a single high-depth male genome for each long-read
technology, we believe our results are a reasonable estimate for how well each technology addresses dark and

camouflaged regions. Larger sequencing studies will further clarify our results.

We consider a region ‘dark’ for one of two reasons: (1) insufficient number of reads aligned to the genomic
region (dark by depth); and (2) reads aligned to the region, but with insufficient mapping quality for a variant
caller to identify mutations in the region (dark by mapping quality). Specifically, we define regions that are
dark by depth as those with fewer than five aligned reads (Figure 1a), and regions that are dark by mapping

quality as those where 290% of aligned reads have a mapping quality (MAPQ) <10 (Figure 1b). Defining dark-


https://doi.org/10.1101/514497
http://creativecommons.org/licenses/by-nc-nd/4.0/

LO

11

L2

L3

L4

L5

L6

L7

L8

bioRxiv preprint doi: https://doi.org/10.1101/514497; this version posted January 9, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

by-depth regions as those with fewer than five reads is a relatively strict cutoff, and likely underestimates the
number of dark regions because 20 to 30 reads is often considered a reasonable minimum to confidently
identify heterozygous mutations; overall median read depth is an important factor, however, and we believe a
strict cutoff provides a more conservative estimate. We used a mapping quality threshold <10 to define
regions that are dark by mapping quality because that is the standard cutoff used in the Genome Analysis
ToolKit (GATK) [25]. Camouflaged regions are those that are dark by mapping quality because the region has
been duplicated in the genome (Figure 1c). We identified sets of camouflaged regions (regions camouflaged by
each other) using BLAT [26], where we required at least 98% sequence identity for two regions to be included

in the same set.

Standard short-read sequencing leaves 37873 dark regions across 5857 gene bodies, including protein-
coding exons from 744 genes

Using whole-genome lllumina sequencing data (100-nucleotide read lengths) from ten unrelated males, we
identified 37873 dark regions (>16 million nucleotides) in 5857 gene bodies (based on Ensemble GRCh37 build
87 gene annotations) that were either dark by depth or dark by mapping quality (Supplemental Figure 1a;
Supplemental Tables 1-2). Stratifying the gene bodies by GENCODE biotype [27], 3635 gene bodies were
protein coding, 1102 were pseudogenes, and 720 were long intergenic non-coding RNAs (lincRNA; Figure 2a).
Of all 37873 dark gene-body regions, 28598 were intronic, 4113 were in non-coding RNA exons (e.g., lincRNAs
and pseudogenes), 2657 were in protein-coding exons (CDS), 1134 were in 3’UTR regions, and 1103 were in
5’UTR regions (Figure 2b; Supplemental Table 1). Any dark region that spanned a gene element boundary (e.g.,
intron to exon) was split into separate dark regions. Of the 5857 gene bodies, 494 (8.4%) were 100% dark,
1560 (26.6%) were at least 25% dark, and 2046 (34.9%) were at least 5% dark (Supplemental Figure 1b;

Supplemental Table 1).
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Focusing only on CDS regions, we identified 2757 dark CDS regions (>460000 nucleotides) across 744 protein-
coding genes that were dark by either depth or mapping quality (Figure 3a; Supplemental Tables 1-2). Exactly
142 (19.1%) of the 744 protein-coding genes were 100% dark in CDS regions, 441 (59.3%) were at least 25%

dark in CDS regions, and 628 (84.4%) were at least 5% dark in CDS regions (Figure 3b; Supplemental Table 1).

Exactly 474 of the 628 genes that were 5% dark in CDS regions were dark because they were camouflaged.

Most dark regions are specifically camouflaged

Regions may be dark because of either low depth or low mapping quality, but the majority of regions are dark
because of mapping quality, and specifically because they are camouflaged (low mapping quality because of a
duplication). Exactly 3953 of the 5857 dark gene bodies are dark because of mapping quality, where 3252 are,
in fact, camouflaged. We also measured the number of times each gene region was duplicated and found that
70% of gene regions were replicated three or fewer times in the genome, but 84 regions were duplicated 2100
times (Supplemental Figure 2a), with the most repeated regions (ten separate intronic regions totaling 2235
nucleotides from C50rf48) being replicated 941 times in aggregate. Limiting to only CDS regions, we estimate
that 74.1% are replicated three or fewer times, with 38 replicated 210 times (Supplemental Figure 2b) and the

most repeated region was from NBPF12, in which 173 nucleotides were replicated 37 times.

Long-read sequencing technologies resolve substantial portions of the dark regions

Data from the samples sequenced using 250-nucleotide Illumina read lengths reduced the percentage of dark
nucleotides by 30.1% and 24.4% for all gene bodies, and for only CDS regions, respectively, leaving 69.9% and
75.6% of the nucleotides dark, respectively (Supplemental Figure 1b; Figure 3b; Supplemental Tables 3-4).
Comparing long-read sequencing technologies to the standard lllumina 100-nucleotide read lengths, the ONT
platform performed best, both when assessing entire gene bodies, and when considering only CDS regions.

Specifically, approximately 41.2%, 25.8%, and 24.9% of the nucleotides remained dark for all gene bodies for
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PacBio, 10x Genomics, and ONT, respectively (Supplemental Figure 1b; Supplemental Tables 5-10). Similarly,
approximately 42.2%, 31.4%, and 18.5% of CDS nucleotides remained dark for 10x Genomics, PacBio, and
ONT, respectively (Figure 3b; Supplemental Tables 5-10). In contrast to overall gene-body results, PacBio
outperformed 10x Genomics when looking only at CDS regions (Supplemental Figure 1b; Figure 3b). The long-
read technologies improved over lllumina mostly by reducing the percentage of nucleotides that are dark by
mapping quality (Supplemental Figure 1c). Surprisingly, the percentage of gene-body regions that are dark

because of low depth is higher for all long-read technologies than it is for lllumina (Supplemental Figure 1c).

We generated a density plot for the length of all dark-by-mapping quality regions to approximate the
proportion of regions each sequencing technology should be able to resolve (Supplemental Figure 3), which
resulted in a bimodal distribution. The two modes are located at 95 and 538 nucleotides. As expected, median
read lengths for the lllumina whole-genome sequencing based on 100-nucleotide and 250-nucleotide read
lengths were 100 and 250 nucleotides, respectively. The first mode for the camouflaged region lengths is at
95, explaining why 100-nucleotide read lengths are insufficient to unambiguously span most dark-by-mapping
quality regions. The 250-nucleotide read lengths fall between the two modes, explaining why 250-nucleotide
read lengths resolve a high percentage of camouflaged regions. In other words, 100-nucleotide read lengths
are too short to bridge most camouflaged regions, but 250-nucleotide read lengths appear to be sufficient for
many. Median read lengths for both the ONT and PacBio genomes we used in this study were 6276 (N50 =
33973) and 8511 (N50 = 17467) nucleotides, respectively, which is shorter than expected, but substantially
longer than necessary to resolve most camouflaged regions. We believe comparing median read lengths,
rather than N50, is more useful in this scenario, because we are interested to know what percentage of reads
are likely to bridge a given dark or camouflaged region. Our results suggest that our estimates for the
percentage of camouflaged regions ONT and PacBio are able to resolve may be conservative because a longer

DNA library should resolve even more camouflaged regions.
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Important pathways and gene families are affected by dark and camouflaged regions

Because such a large number of genes are dark, we characterized the pathways for genes that are not fully
represented in standard Illumina short-read sequencing (100-nucleotide reads) datasets. We included all
genes where at least 5% of the CDS regions were dark (670 unique gene symbols) and identified several
pathways that are important in human health, development, and reproductive function (Figure 4a;
Supplemental Table 11). Specific pathways included defensins (R-HSA-1461973; logP = -7.04), gonadal
mesoderm development (GO:0007506; logP = -6.18), base-excision repair (GO:0006284; logP =-5.93),
chromatin silencing (G0O:0006342; logP = -5.86), Deubiquitination (R-HSA-5688426; logP = -5.32), NLS-bearing
protein import into nucleus (GO:0006607; logP =-5.31), spindle assembly (GO:0051225; logP = -5.19),
spermatogenesis (GO:0007283; logP = -4.93), and forebrain neuron differentiation (G0:0021879; logP = -4.09).
Some specific gene families involved in these pathways include eleven defensin genes (e.g., DEFA1 and
DEFB4A), five testis specific proteins (e.g., TSPY2), eleven ubiquitin-specific 17-like family members, and

twelve golgin genes (e.g., GOLGA6B; Supplemental Table 11).

Looking specifically at known protein-protein interactions, we found 138 proteins with 212 known interactions
(Supplemental Figure 4), and within those, identified three groups enriched for protein-protein interactions
using the MCODE algorithm [28] (Figure 4b). All three MCODE groups combined are primarily associated with
RNA transport (hsa030313; logP = -17.3; Supplemental Figure 5; accessed December 2018). Individually, the
first group (MCODEL1) is enriched for proteins involved in systemic lupus erythematosus (hsa05322; logP = -
6.7), cellular response to stress (R-HSA-2262752; logP =-6.6), and RNA transport (hsa03013; logP = -4.39;
Supplemental Figure 6). The second group (MCODE2) is enriched with proteins involved in NLS-bearing protein
import into nucleus (GO:0006607; logP = -17.1) and protein import into nucleus (GO:0006606; logP =-15.4;

Supplemental Figure 7). The third group does not have significant enrichment associations, likely because little

10
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is known about them; all four genes (PRR20B, PRR20C, PRR20D, and PRR20E) are 100% camouflaged and do

not even have known expression measurements in GTEx [29] (Supplemental Figures 8-11).

There are 75 genes with known mutations associated with 305 human phenotypes

To assess the potential impact missing mutations in dark genes may have on human disease genetics, we
measured the number of dark genes with at least 5% dark CDS that have mutations known to be involved in
human disease; we calculated the number of genes that are 25% dark CDS with a mutation in the Human Gene
Mutation Database (HGMD) [30]. We found 75 genes associated with 305 unique human phenotypes,
including 277 diseases (Figure 5a). Some of the diseases with the most known associated genes include autism
spectrum disorder, hemophilia A, schizophrenia, hearing loss, spinal muscular atrophy, and inflammatory
bowel disease. Some of the diseases most represented in our data are not surprising, given the number of
genes involved in the disease, but these data demonstrate the number of diseases impacted by genes that are
at least 5% dark CDS. We also performed an enrichment analysis, where the diseases most enriched for dark
genes included Hemophilia A, color blindness (protan colour vision defect), and X-linked cone-rod dystrophy

(Supplemental Figure 12).

Similarly, we quantified the number of diseases each gene was associated with (Figure 5b). We identified
many disease-relevant genes with large portions of dark CDS regions that may harbor critical disease-
modifying mutations that currently go undetected. Some of the genes with the most known disease
associations include ARX (14.0% dark CDS), NEB (9.5% dark CDS), TBX1 (10.5% dark CDS), RPGR (12.9% dark
CDS), HBA2 (12.8% dark CDS), and CR1 (26.5% dark CDS). The CR1 gene is particularly notable given that CR1 is
a top-ten Alzheimer’s disease gene. Other notable genes include SMN1 (89.9% dark CDS) and SMN2 (88.2%

dark CDS), which are known to be involved in spinal muscular atrophy (SMA) and ALS. HSPA1A (52.8% dark

11
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CDS) and HSPA1B (51.1% dark CDS) also encode two primary 70-kilodalton (kDa) heat-shock proteins, a family

of proteins that have been implicated in ALS [31, 32].

Camouflaged genes are consistently dark in gnomAD, but dark-by-depth genes may be sample or dataset
specific

Although most dark genes are specifically camouflaged (Supplemental Tables 12-13), many are dark by depth
in the ADSP data; upon manual comparison between whole-genome sequencing data from the ten ADSP
males and coverage plots from the gnomAD consortium dataset (http://gnomad.broadinstitute.org/) [33], we
found that camouflaged regions in the ADSP males are consistently dark in the gnomAD data, demonstrating
that these camouflaged regions are consistent across datasets. The dark-by-depth regions are more variable
between samples and datasets, however, suggesting these regions may be sensitive to specific aspects of
whole-genome sequencing (e.g., library preparation) or downstream analyses. Specific camouflaged genes
include SMN1 and SMN2 (89.9% and 88.2% dark CDS, respectively; Figure 6a), HSPA1A and HSPA1B (52.8%
and 51.1% dark CDS, respectively; Figure 6b), NEB (9.5% dark CDS; Figure 6¢), and CR1 (26.5% dark CDS; Figure
6d). Specific dark-by-depth genes include HLA-DRBS5 (50.2% dark CDS; Figure 6e), RPGR (12.9% dark CDS;
Figure 6f), ARX (14.0% dark CDS; Figure 6g), and TBX1 (10.5% dark CDS; Figure 6h). All four camouflaged genes
are also dark in the gnomAD data. A manual inspection of our dark-by-depth gene list, however, suggests most
are not completely dark in gnomAD, but vary by sample or dataset. Specifically, HLA-DRB5 and RPGR in
gnomAD appear to be consistent with the ADSP data; ARX and TBX1, however, only appear to be dark in a
portion of the gnomAD samples, where about 30% of samples have <5 reads in their respectively defined dark
regions (Note: our threshold for dark regions is <5 reads, but the gnomAD plots for ARX and TBX1 are based on
<5 reads). Dark regions (Figures 6a-h) are either similar or more pronounced in the gnomAD whole-exome
data than what we observed in the whole-genome data, highlighting that dark and camouflaged regions are

generally magnified in whole-exome data; this is likely because of differences in library preparation and
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shorter read lengths in exome data. For interest, we also found that APOE—the top genetic risk for
Alzheimer’s disease [34—36]—is approximately 6% dark CDS (by depth) for certain ADSP samples with whole-
genome sequencing, and the same region is dark in gnomAD whole-exome data (Supplemental Figure 13). It is
possible some of the dark regions we identified in standard short-read whole-genome data are specific to the
ADSP samples, but additional work can clarify this issue. In either case, dark-by-depth regions (Supplemental
Tables 14-15) should be interrogated within individual datasets, and perhaps for individual samples as a

quality control measure.

SMN1 and SMNZ2 are camouflaged by each other, where both genes are known to contribute to spinal
muscular atrophy, and have been implicated in ALS. HSPA1A and HSPA1B are also camouflaged by each other,
and the heat-shock protein family has been implicated in ALS [37, 38]. NEB is a special case that is
camouflaged by itself (rather than another gene), and is associated with 24 diseases in the HGMD, including
nemaline myopathy, a hereditary neuromuscular disorder. NEB is a large gene (249151 nucleotides; 25577
CDS nucleotides), thus, ~¥9.5% dark CDS translates to 2424 dark protein-coding bases. CR1 is a top Alzheimer’s
disease gene that plays a critical role in the complement cascade as a receptor for the C3b and C4b
complement components, and potentially helps clear amyloid-beta (AB) [39-41]. Like NEB, CR1 is also
camouflaged by itself, where the repeated region actually includes the extracellular C3b and C4b binding
domain. The number of repeats and density of certain isoforms have been associated with Alzheimer’s disease

[21, 42-45].

We found HLA-DRBS5 is dark by depth in the ADSP and gnomAD data, and has been implicated in several
diseases, including Alzheimer’s disease. RPGR is likewise dark in ADSP and gnomAD, and is associated with

several eye diseases, including retinitis pigmentosa and cone-rod dystrophy. We identified ARX as a dark-by-
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depth gene, but this gene appears to vary by sample or cohort, as only approximately 30% of gnomAD samples
are strictly dark by depth, using our cutoff of <5 reads. ARX is associated with diseases including early infantile
epileptic encephalopathy 1 (EIEE1) [46] and Partington syndrome [47]. Similarly, TBX1, which harbors
mutations that cause the same phenotype as 22q11.2 deletion syndrome [48], is dark by depth in only

approximately 30% of gnomAD samples.

Long-read technologies resolve many camouflaged regions, with variable success

We selected three camouflaged gene regions to highlight common strengths and differences for how well
each long-read sequencing technology addresses the camouflaged region, including SMN1 and SMNZ2 (Figure
7a), HSPA1A and HSPA1B (Figure 7b), and CR1 (Figure 7c). The SMN1 and SMN2 genes are camouflaged by
each other (gene duplication), as are HSPA1A and HSPA1B. CR1, however, is a special case, where it is
camouflaged by a repeated region within itself. Only ONT appeared to be capable of fully addressing the
camouflaged region for all three genes. 10x Genomics also performed well under certain circumstances, such
as SMN1 and SMN2 (regions where the duplication is >50kb awayy), but did not perform well for HSPA1A and
HSPA1B. PacBio performed well for CR1 and HSPA1A/HSPA1B, but did not perform as well as ONT in the

SMN1/SMN2 region.

SMN1 and SMNZ2 were 89.9% and 88.2% dark CDS, respectively (Figure 7a), based on standard Illlumina
sequencing with 100-nucleotide read lengths, and were 84.0% and 83.1% dark CDS based on Illlumina 250-
nucleotide read lengths (not shown). Both genes were technically 0% dark CDS based on 10x Genomics,

PacBio, and ONT data (Figure 7a). PacBio coverage does drop significantly throughout both genes, however.

HSPA1A and HSPA1B were 52.8% and 51.1% dark CDS (Figure 7b), respectively, based on standard lllumina

100-nucleotide read lengths, and were 50.2% and 49.5% dark CDS based on lllumina 250-nucleotide read
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lengths (not shown). Both genes were 0% dark CDS based on ONT and PacBio data, and were 45.8% and 51.8%
dark CDS based on 10x Genomics data (Figure 7b). In contrast to the results for SMN1 and SMN2, both ONT
and PacBio had consistent coverage throughout the camouflaged regions, whereas the camouflaged regions

remained dark for 10x Genomics (Figure 7b).

CR1 was 26.5% dark CDS based on Illumina 100-nucleotide read lengths (Figure 7c), and was 24.5% dark based
on lllumina 250-nucleotide read lengths (not shown). CR1 was 26.2% dark CDS for 10x Genomics, and 0% for
both ONT and PacBio (Figure 7c). While both PacBio and ONT were able fill the camouflaged region, coverage
drops dramatically throughout the region, despite both genomes being sequenced at 50x and 46x median
depth, which does not presently represent average use case for these technologies. It is likely that the
performance of these long-read platforms will be better with longer average sequencing libraries (e.g. >50kb

fragment sizes).

Many camouflaged regions can be rescued, including in standard short-read sequencing data

There are many large-scale whole-genome or whole-exome sequencing projects across tens of thousands of
individuals that are either completed or underway for a variety of diseases, including cancer (e.g., The Cancer
Genome Atlas; TCGA), autism spectrum disorder (e.g., The Autism Sequencing Consortium; ASC), Alzheimer’s
disease (e.g., The Alzheimer’s Disease Sequencing Project; ADSP), Parkinson’s disease (e.g., The Parkinson’s
Progression Markers Initiative; PPMI), and ALS (e.g., Target ALS and CReATe). All of these datasets are affected
by dark and camouflaged regions that may harbor mutations that are either driving or modify disease in
patients. Ideally, all samples would be re-sequenced using the latest technologies over time, but financial

resources and biological samples are limited, making it essential to maximize the utility of existing data.
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Using a strategy similar to that proposed by Robert and Watson [10], we have developed a method to rescue
mutations in most camouflaged regions, including for standard Illumina short-read sequencing data. When
confronted with a sequencing read that aligns to two or more regions equally well (with high confidence),
most aligners (e.g., BWA [11-13]) will randomly assign the read to one of the regions and assign a low
mapping quality (MAPQ = 0 for BWA, or MAPQ = 1 for novoalign). Because the reads are already aligned to
one of the regions, we can use the following steps to rescue mutations in most camouflaged regions (Figure
8): (1) extract reads from camouflaged regions; (2) mask all highly similar regions in the reference genome,
except one, and re-align the extracted reads; (3) call mutations using standard methods. Without competing
camouflaged regions to confuse the aligner, the aligner will assign a high mapping quality, allowing variant
callers to behave normally. This will enable researchers to identify mutations that exist in one of the
camouflaged regions, but not which specific region (Figure 8). After rescuing these mutations, researchers can
then perform association studies to determine whether any of the mutations may be implicated in disease,

and follow up with targeted sequencing methods to determine the exact camouflage region a mutation lies in.

Re-alignment rescues approximately 4622 exonic variants, including a rare ten-nucleotide frameshift
deletion in CR1

As a proof of principle, we applied our method to the Alzheimer’s Disease Sequencing Project (ADSP) case-
control data [49] to approximate the number of potential mutations our approach could rescue. The ADSP is a
large sequencing project organized, in part, to identify functional mutations that influence Alzheimer’s disease
development. Across 13142 samples from the ADSP, excluding all variants with a quality by depth (QD) <2.5,
we were able to rescue approximately 4622 exonic variants with a transition-transversion ration (Ti/Tv) of 1.97
from 147 camouflaged region sets, that are spread across 501 camouflaged genes (Supplemental Figure 14;

VCF will be provided to the ADSP). Using a more stringent QD (excluding variants with QD <5), we rescued
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3152 variants with a Ti/Tv ratio of 2.17. We only included camouflaged regions from CDS exons for all genes,

including those that are <5% dark CDS.

Because CR1 is a top-10 Alzheimer’s disease gene, we then specifically interrogated it using our method
(Figure 8) for any functional mutations that could be involved in Alzheimer’s disease, and identified a rare ten-
nucleotide frameshift deletion that is only found in five cases and zero controls, all of which are heterozygous
(Figure 8d). Thus, the estimated minor allele frequency for this mutation is 5 / (13142 * 2) = 0.00019, making it
more rare than the TREM2 R47H allele [50-52]. For interest, only one of the individuals carried a single
APOEe4 allele (€3/€4). The other four individuals were homozygous for APOEe3 (€3/€3). We were able to
determine that the frameshift deletion is in one of exons 10, 18, or 26. Briefly, our method extracts all reads
with a low mapping quality (MAPQ < 10) from all three exons, masks all but one of the camouflaged regions
within each set of camouflaged regions, and aligns all reads from each set to only one of the regions (Figure 8).
Without identical competing regions to confuse the aligner, the mapping qualities are high enough for a
variant caller (e.g., GATK HaplotypeCaller) to identify whether a mutation exists. For example, reads harboring
the ten-nucleotide frameshift mutation were originally randomly scattered across exons 10, 18, and 26 from
the original alignment (Figure 8). We masked exons 18 and 26, leaving exon 10 unmasked; this allowed reads
from each of the three exons to align to only exon 10, so we could perform variant calling. We estimate a
cohort of approximately 70000 cases and controls would have approximately 80% statistical power to formally
assess this mutation’s involvement in Alzheimer’s disease, assuming a Relative Risk (RR) of 3.3, at an alpha of
0.0001. We provide the .bed files in GRCh37 and GRCh38, along with scripts that will enable researchers to
perform similar analyses in any sequencing dataset at

https://github.com/mebbert/Dark and Camouflaged genes.

Discussion
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While researchers have known for years that dark regions exist in standard short-read sequencing data, little
work has been done to characterize the breadth of the issue, and to develop possible solutions until more
financially-feasible long-read sequencing options are available. Short-read sequencing is unable to adequately
address camouflaged regions because the reads cannot fully span camouflaged regions to properly align
homologous nucleotides. Long-read sequencing technologies, such as those from 10x Genomics (synthetic
long reads), Oxford Nanopore Technologies (ONT), and Pacific Biosciences (PacBio) have the potential to
address many camouflaged regions because these technologies have median read lengths measured in
thousands of nucleotides, rather than only 100-300 nucleotides from standard short-read sequencing
technologies (e.g., lllumina). Recent work has even demonstrated that mappable ONT reads can exceed two

million nucleotides (e.g, 2272580) [53, 54], showing future potential for addressing large camouflaged regions.

In this study, we systematically characterized dark and camouflaged gene regions and proposed a method to
address most camouflaged regions in long- or short-read sequencing data. Our solution is specifically
applicable to camouflaged regions, not regions that are dark by depth, simply because there are no reads
available in regions that are dark by depth. While our solution is conceptually simple, implementing the
solution systematically was challenging because of many intricate details, including increased zygosity, and
would ideally be integrated into the original alignment and variant-calling process. While the original
implementation was challenging, we provide the resulting .bed files for both GRCh37 and GRCh38 that are
necessary to rescue mutations from camouflaged regions in any human re-sequencing dataset
(https://github.com/mebbert/Dark_and_Camouflaged genes). We also provide all of our data and source
code. The .bed files and source code should make implementing our method relatively straightforward for
other groups. As a proof of concept, we were able to rescue approximately 4622 variants in the ADSP dataset

from 147 sets of camouflaged gene regions, which are spread across 501 camouflaged genes. Included in
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these rescued mutations is a ten-nucleotide frameshift deletion in CR1 found in five ADSP cases and zero

controls.

The number of genes affected by dark and camouflaged regions was surprisingly high. We identified 37873
total dark regions across 5857 gene bodies, nearly 4000 of which were protein coding genes. Exactly 28751 of
the dark regions were intronic and 2657 were in protein-coding exons (CDS). Others were in pseudogenes
(1234) and lincRNAs (732). While most of the dark regions were non-coding (e.g., intronic), these regions may
still harbor important mutations that drive or modify human diseases. For example, there are many examples
of mutations in non-coding regions driving disease, including repeat expansions [1, 55—-62], splice-site
mutations (these may be intronic or exonic) [63—77], and regulatory mutations (e.g., UTR regions) [78-87].

There are also many lincRNAs associated with disease [88—97].

There are many patients with diseases known to be genetically inherited that remain genetically unexplained
because the patients do not have any of the known mutations. Many of the genes we identified as being at
least partially dark are known to be involved in numerous diseases, including Alzheimer’s disease, ALS, SMA,
hemophilia A, autism spectrum disorder, schizophrenia, and others; functional mutations that modify disease
likely lie in some of these dark and camouflaged regions. For example, SMN1 and SMNZ2 are mostly dark
(camouflaged) and are known to harbor mutations that cause disease [63, 65—67]. CR1 is another dark gene
that is 26.5% dark CDS, being camouflaged to itself, and is strongly implicated in Alzheimer’s disease. In fact,
the CR1 camouflaged region includes the C3b and C4b protein binding sites, repeated several times.
Interestingly, the C4B gene (encodes the C4b protein) is also 72.8% dark CDS (camouflaged) and may be
involved in disease [98, 99]. We are confident that rescuing mutations from camouflaged regions will have a
meaningful impact on disease research, and may explain some of the missing heritability of Alzheimer’s

disease [18, 100—102] and other diseases.
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A large number of gene bodies (494) were 100% dark, which means they are entirely overlooked in standard
whole-exome, whole-genome, and RNA sequencing studies [10]. Additionally, more than 1500 gene bodies, or
nearly 27%, were at least 25% dark and more than 2000 (34.9%) were at least 5% dark; of these, 628 protein-
coding genes were at least 5% dark within CDS regions. Understanding what role these genes play in human

health and disease will require being able to resolve them in DNA and RNA sequencing experiments.

A critical decision for future large-scale sequencing projects will be regarding which long-read technology is
ideal to maximize the probability of identifying functional mutations driving disease. Unfortunately, the
answer is not clear, as each technology has its pros and cons. Based on our results, the ONT platform
performed best, overall, resolving 71.4% of dark gene-body regions. Current costs will likely be prohibitive for
large studies, however. The 10x Genomics platform resolved 66.3% of dark gene-body regions, when
compared to standard Illlumina sequencing. PacBio resolved 49.0% of dark gene-body regions. Even increasing
Illumina read lengths from 100 to 250 made a sizeable difference, overall, resolving 21.1% of dark gene-body
regions. Both the PacBio and ONT data used in this study had shorter median read lengths than expected,

suggesting both technologies can likely perform better than our estimates.

Focusing only on CDS regions, there were 2757 dark CDS regions across 744 protein-coding genes, based on
[llumina 100-nucleotide read lengths. ONT outperformed other long-read technologies, resolving 81.8% of
dark CDS regions. PacBio and 10x Genomics resolved 66.6% and 54.9%, respectively. We found that 10x
Genomics performed well in the SMN1 and SMN2 genes (Figure 7), attaining consistently deep, high-quality
coverage throughout. Both ONT and PacBio coverage declined in the interior regions of the genes. In other
cases, such as CR1 and NEB, 10x Genomics was unable to improve on standard Illlumina sequencing, but

PacBio and ONT were able to largely resolve the region—albeit requiring higher than normal sequencing
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depth. We believe that 10x Genomics can correct the issues we observed in CR1 and NEB, by implementing a
more sophisticated version of our method that also incorporates evidence from their synthetic long-read

technology.

Whether each technology is able to reliably resolve dark and camouflaged regions is an important
consideration for choosing the best long-read technology, but we should also consider how reliably each
technology is able to resolve structural mutations. In a previous study, we tested how well ONT and PacBio are
able to traverse challenging repeat expansions, and whether they are amenable to genetic discovery [1]. We
found that both technologies are well-suited, but we have not assessed performance of the 10x Genomics

platform across long repeat expansions.

The primary challenge with ONT and PacBio long-read sequencing is, of course, the high error rate, which can
be overcome through deeper sequencing because errors in ONT and PacBio sequencing are mostly random

[103, 104]. Ultimately, we are confident that, as long-read error rates improve, and costs continue to decline,
long-read technologies will be the preferred sequencing choice for large-scale sequencing projects, especially

when considering structural mutations.

We identified dark and camouflaged regions in this study by averaging data across ten males with deep
Ilumina whole-genome sequencing, using 100-nucleotide read lengths. We assessed how well long-read
sequencing technologies (PacBio, ONT, and 10X genomics) resolve these regions, but our measurements
should only be considered estimates. While long-read sequencing technologies are becoming more common,
we were unable to find more than one male individual for each long-read technology; we needed male
samples to assess all chromosomes, including the Y chromosome. Additionally, the samples we used for each

long-read technology were sequenced at a much higher depth than is currently typical for a re-sequencing
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effort, which is likely over estimating the number of dark regions they resolve for the average use case. Our
measurements should be a reasonable estimate of reality, however, and future analyses will be able to refine

our estimates.

We used whole-genome sequencing to assess dark and camouflaged regions, but this problem is magnified in
whole-exome data, which many large-scale sequencing studies are based on, either completely, or in part.
Whole-exome data are typically generated using even shorter read lengths. They are also generally based on
capture, which means certain exons are not fully represented. APOE is a prime example, where it is typically
well-covered in whole-genome data, but a portion is dark in whole-exome data (Supplemental Figure 13).
With APOE harboring the largest genetic risk factors for Alzheimer’s disease, it is important to properly

characterize the entire gene.

In this study, we characterized dark and camouflaged gene bodies, and demonstrated several disease-relevant
genes where a significant portion is dark in standard short-read sequencing data, including SMN1 and SMN2,
CR1, and sometimes even APOE. We also identified a rare ten-nucleotide frameshift deletion in CR1 that is
found only in five ADSP cases and zero controls, as a proof of principle (Figure 8d). Using our method (Figure
8), we were able to determine that the frameshift deletion is in one of exons 10, 18, or 26. With CR1 being a
top Alzheimer’s disease gene without any known functional mutations, we believe it will be important to
assess this mutation in a large cohort, to determine whether it plays a role in disease development and
progression. We have also proposed a solution to address most camouflaged genes in sequencing data, and
believe that our approach has the potential to identify functional mutations that are influencing development
across a range of diseases, but are currently entirely overlooked by standard short-read sequencing

approaches.
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Conclusion

There remain thousands of potentially important genomic regions that are overlooked with short-read
sequencing, but are largely resolved by long-read technologies. While these regions represent only a small
portion of the entire genome or exome, many of these regions are known to be important in human health
and disease. Equally important, however, is that the impact of many other genes is entirely unknown because
they are 100% dark. We presented a method that can resolve most camouflaged regions that we believe will
help researchers identify mutations that are involved in disease. As a proof of principle, we rescued
approximately 4622 variants in the ADSP dataset, including a ten-nucleotide frameshift mutation in CR1. While
we cannot formally assess the CR1 frameshift mutation in Alzheimer’s disease (insufficient sample-size), we
believe it is worth investigating in a larger cohort. In the long-term, we believe long-read sequencing

technologies will be the best solution for resolving dark and camouflaged regions.

Methods

Sample selection and preparation

To identify dark and camouflaged regions, and to assess how well other technologies address them, we
selected samples from each technology and read length. All samples were aligned to hg19/GRCh37. To assess
dark and camouflaged regions in standard Illumina sequencing with 100-nucleotide read lengths, we selected
ten unrelated male control samples from the Alzheimer’s Disease Sequencing Project (ADSP) where deep
whole-genome sequencing had been performed by randomly selecting one male from ten random families. All
ten males were from either the “Health/Medical/Biomedical” (HMB-IRB) or “Health/Medical/Biomedical” for
non-profit organizations (HMB-IRB-NPU) consent groups, indicated as groups C1 and C2 in the ADSP pedigree
files (available through dbGAP). We selected samples from the ADSP because we required samples that met

the following criteria: (1) had been sequenced using standard paired-end Illlumina sequencing with 100-
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nucleotide read lengths, (2) had been sequenced with a median depth >30x, and (3) were publicly available.
Median genome-wide read depths ranged from 35.4x to 42.9x, with a median of 39.4x. Samples were
prepared and sequenced as part of the ADSP [49]. These samples were aligned using BWA (v0.5.9). We could
not find samples from the 1000 Genomes Project [24] that met these criteria; sequencing depths were either
too shallow, or read lengths were too long or short. The ADSP sample IDs we used were: A-CUHS-CU000406,
A-CUHS-CU002997, A-CUHS-CU000779, A-CUHS-CU000208, A-CUHS-CU001010, A-CUHS-CU002031, A-CUHS-

CU002707, A-CUHS-CU003023, A-CUHS-CU003090, A-CUHS-CU003128.

To assess dark and camouflaged regions in samples sequenced using Illumina 250-nucleotide read lengths, we
selected ten samples from the 1000 Genomes Project that had been sequenced with 250-nucleotide read
lengths, and had a median depth >30x. All ten samples were aligned using BWA (v 0.7.5a-r428) [2, 11-13].
Median genome-wide read depths ranged from 39.3 to 52.6, with a median of 48.9x. Sample IDs for the
[lumina 250-nucleotide read lengths were: NA20845

(ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/phase3/data/NA20845/high coverage alignment/), HG01112

(ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/phase3/data/HG01112/high coverage alignment/), HG01583

(ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/phase3/data/HG01583/high coverage alignment/), HG01051

(ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/phase3/data/HG01051/high coverage alignment/), HG03742

(ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/phase3/data/HG03742/high coverage alignment/), HGO0096

(ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/phase3/data/HG00096/high coverage alignment/), HG01565

(ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/phase3/data/HG01565/high coverage alignment/), HG01879

(ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/phase3/data/HG01879/high coverage alignment/), HG01500

(ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/phase3/data/HG01500/high coverage alignment/), and HG03006

(ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/phase3/data/HG03006/high coverage alignment/).
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We also selected samples generated using the 10x Genomics synthetic long-read sequencing platform, and
ONT and PacBio long-read sequencing platforms that were either prepared by, and publicly available from the
respective company, or prepared using standard practice. Specifically, we downloaded HG00512 raw FASTQ

data from 10x Genomics (https://support.10xgenomics.com/de-novo-assembly/datasets/1.1.0/msHG00512;

http://s3-us-west-2.amazonaws.com/10x.files/samples/assembly/2.1.0/chi/chi fastgs.tar) and aligned it

according to 10x Genomics’ standard practices. We used longranger (v2.2.2) and aligned to GRCh37
(longranger wgs --id HG00512 --description="Han Chinese" --sex="male" --
fastqs=chi/HNKHFCCXX/,chi/HWHFTCCXX/ --reference="10x-b37-2.1.0/" --jobmode=sge --mempercore=125 —
downsample=385). Median depth for HG0O0512 was 52x, after downsampling. For ONT, we downloaded the

final Cliveome v2 from ONT’s official GitHub page (http://cliveo.me/; https://github.com/nanoporetech/ONT-

HG1/blob/master/CONTENTS.md), which was prepared by ONT. Cliveome v2 was sequenced to a median

depth of 36x. To increase the median read depth to more closely match those of other technologies, we
merged reads from HG002 (https://ftp-

trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002 NA24385 son/Ultralong OxfordNanopore/com

bined 2018-08-10/HG002 ONTrel2 16x RG HP10xtrioRTG.cram) [105, 106] and aligned using minimap?2

[107] (ALIGN_OPTS="x map-pb -a --eqx -L -0 5,56 -E 4,1 -B 5 --secondary=no -z 400,50 -r 2k -Y";
REF=g1kv37/g1kv37.fa; minimap2 -d S{REF}.mmi S{ALIGN_OPTS} ${REF}; minimap2 S{ALIGN_OPTS} -a
S{REF}.mmi <reads.fq> | samtools view -T {REF} -F 2308 > output_file). The merged sample had 46x median
depth. We used the same alignment options recommended for PacBio because we found the recommended
‘map-ont” option in minimap2 performed substantially worse. We used PacBio data generated from HG0OO5
(ftp://ftp-

trace.ncbi.nlm.nih.gov/giab/ftp/data/ChineseTrio/HG005 NA24631 son/MtSinai PacBio/PacBio minimap2 b

am/) [105], which was sequenced to a median depth of 50x and aligned using minimap2 [107] (pbsv fasta
[movie].subreads.bam | minimap2 -t 8 -x map-pb -a --eqx -L -0 5,56 -E 4,1 -B 5 --secondary=no -z 400,50 -r 2k -
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Y

ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/technical/reference/phase2 reference assembly sequence/hs37d

5.fa.gz - | samtools sort > HGOO5_PacBio_GRCh37.bam). Neither the ONT nor the PacBio alignments include

secondary alignments.

Identifying dark and camouflaged gene body regions

To identify dark and camouflaged gene body regions in standard lllumina 100-nucleotide read length data, we
first scanned all ten ADSP whole-genome sequence samples for genomic positions that met either of the
following criteria: (1) had <5 reads, and (2) had 290% of reads with a mapping quality (MAPQ) <10. We then
averaged the depth and count of low MAPQ reads across all samples for each position. We used strict cutoffs
to identify regions that are clearly dark, but there are many additional regions that fall just beyond our
thresholds. This analysis was performed using the Dark Region Finder (DRF;

https://github.com/mebbert/DarkRegionFinder; mapq=9; dark_mass=90; camo_mass=50; dark_depth=5; java

-jar -Xmx20g CamoGeneFinder.jar -i <sample>.bam --human-ref genome.fa --min-region-size 1 --camo-mapgq-
threshold Smapq --min-dark-mapg-mass Sdark_mass --min-camo-mapg-mass Scamo_mass --dark-depth
Sdark_depth --camo-bed-output <sample>-camo-dark_depth_S{dark_depth}-dark_mass_${dark_mass}-
camo_mass_S{camo_mass}-mapqg_S{mapq}.b37.bed --dark-bed-output <sample>-dark-
dark_depth_S${dark_depth}-dark_mass_S{dark_mass}.b37.bed --incomplete-bed-output <sample>-
incomplete.b37.bed). Any position that met either criteria was considered dark and categorized as either dark
by depth or dark by mapping quality. We then limited the dark regions to gene bodies by intersecting dark
regions identified by Dark Region Finder with Ensembl’s GRCh37 build 87 gene annotations. We converted the
transcript-level annotations to gene-level annotations using bedtools [108] and custom scripts that are
available. Any dark region that spanned a gene body element region (e.g., intron-exon boundary) was split into

two separate dark regions so we could estimate the number of dark bases in each type of gene body region
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(e.g., introns, exons, UTRs, etc.). For most analyses, we only included dark regions with 220 contiguous bases.
The only exception is for Supplemental Tables 1, 3, 5, 7, 9, 12, and 14, where we calculate total percentage of
each gene body that is dark, in which we include all dark positions. To identify camouflaged regions,
specifically, we used BLAT [26] to identify all genomic regions that were highly similar to any given gene body
region that was dark by mapping quality. Any region that was 298% identical (-minldentity = 98), and that was
considered dark (290% of reads with MAPQ <10), was considered a match. We generated .bed files for
GRCh37 using this method. We also converted the GRCh37 .bed file to GRCh38 using a custom script, based
off the Ensembl build 87 GRCh38 gene annotations. All code and .bed files can be found at

https://github.com/mebbert/Dark_and_Camouflaged_genes.

Statistics

We quantified the percentage of each gene body that was dark by summing the total number of dark bases in
the gene (i.e., between the 5’UTR to the 3'UTR start and end, respectively) and dividing by the total number of
bases in the gene. We similarly calculated the percentage of intronic, exonic (including CDS and UTR), and only
CDS exons by dividing the total number of dark bases in each category within the gene by the total number of
bases within that category. We performed these calculations for data based on lllumina 100-nucleotide reads
for all dark regions combined (Supplemental Tables 1-2), dark by depth only (Supplemental Tables 14-15), dark
by mapping quality (Supplemental Tables 16-17), and only camouflaged regions (Supplemental Tables 12-13).
We performed identical calculations for the samples from Illumina 250-nucleotide read length data, 10x
Genomics, ONT, and PacBio (Supplemental Tables 3-10, 18-41). We identified diseases that were known to be
associated with genes that are at least 5% dark CDS by searching for mutations in the Human Gene Mutation

Database (HGMD) [30].
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Coverage plots from gnomAD data were obtained from gnomAD-old.broadinstitute.org [33]. We used the old
version because the current version of gnomAD (accessed December 2018) does not allow the user to view
median read depths, nor the percentage of samples with greater than a given coverage depth. Sequence
pileups in representative samples were generated using the Integrative Genomics Viewer (IGV) [109], where
reads with a MAPQ < 10 were filtered, and insertions, deletions, and mismatches were not shown. Karyotype
plots showing genomic locations for dark and camouflaged regions were generated using KaryotypeR (v1.6.2)
[110] in R (v3.5.1). Bar plots were made using ggplot2 (v3.0.0). Pathway analyses and resulting plots were
generated using Metascape (accessed December 2018) [111]. Word clouds were generated at

wordclouds.com. Gene schematics were generated using the Gene Structure Display Server (GSDS; v2) [112].

We performed an enrichment analysis to assess whether genes that are 5% dark CDS are enriched for specific
diseases. Because we identified 75 genes that have a known mutation associated with disease, and that are
>5% dark CDS, we randomly selected 75 genes from the with known HGMD mutations and measured the
number of genes with known mutation associated with each disease. We repeated this process 10000 times
and used the following metric as our enrichment score: -10*log10(empirical_pvalue), rounded to the nearest

whole number.

Screening ADSP for functional CR1 mutations in camouflaged region

After discovering that more than 25% of the CR1 gene’s CDS is camouflaged, we screened all ADSP samples for
rare functional mutations that could play a role in Alzheimer’s disease development and progression by
applying our proposed method (Figure 8). To apply our method, we extracted all reads with a mapping quality
(MAPQ) <10 from each camouflaged region within CR1, and from each of the respective camouflage mate
regions, using samtools and the GRCh37 .bed file we generated that identifies all camouflaged regions. An

example of camouflaged mate regions in CR1 includes exons 10, 18, and 26, which are identical in the

28


https://doi.org/10.1101/514497
http://creativecommons.org/licenses/by-nc-nd/4.0/

LO

11

L2

L3

L4

L5

L6

L7

L8

bioRxiv preprint doi: https://doi.org/10.1101/514497; this version posted January 9, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

reference genome (Figure 8). As previously mentioned, CR1 is a special case that is camouflaged by regions
duplicated within itself, rather than being camouflaged by a different gene; thus, we knew that any mutations
we discovered would be from CRI1. Our approach works the same regardless of whether a gene is camouflaged
by itself or another gene, but we mention that CR1 is camouflaged by itself, for interest. After extracting reads
from each camouflaged region, using the .bed file we provide, we then masked all camouflaged regions within
CR1 in the reference genome, except for one from each set of camouflaged mates. For example, between
exons 10, 18, and 26, we masked exons 18 and 26 in the reference genome, allowing reads from all three
exons to align only to exon 10; without competing camouflaged regions to confuse the aligner, all reads from
exons 10, 18, and 26 mapped to exon 10 with high quality. Masking regions of the reference genome simply
means to change nucleotides to an unmappable character (usually ‘N’), to prevent any reads from aligning to

that region.

After aligning all reads to a single region within each set of camouflaged regions, we were able to perform
standard variant calling using the GATK HaplotypeCaller [25], with one exception: instead of treating each
camouflaged region as diploid, we increased the ploidy setting in HaplotypeCaller according to the number of
copies within a given set of camouflaged regions. Referring again to our CR1 example, because there are three
regions (exons 10, 18, and 26), we set the HaplotypeCaller ploidy to hexaploid. Increasing the ploidy is
essential for increased sensitivity, since the number of reads harboring a given variant—which only originate
from one of the camouflaged regions—will be overwhelmed by reads from the others, thus preventing the
variant caller from identifying the mutation under the assumption that the data are from a diploid region. In
other words, if a mutation exists in exon 26, we would expect only approximately 1/6"™ of reads from exons
10, 18, and 26 to harbor that mutation, rather than approximately 1/2. Because the ADSP is mostly exome

data, we limited HaplotypeCaller to CDS exons only. According to the current ADSP phenotype data, one of the
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samples harboring the CR1 frameshift mutation is a control. The individual has since been officially diagnosed

with Alzheimer’s disease, however.
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Figure 1. Genomic regions may be ‘dark’ by depth or mapping quality, many of which are ‘camouflaged’.

Large, complex genomes are known to contain ‘dark’ regions where standard high-throughput short-read
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sequencing technologies cannot be adequately assembled or aligned. We split these dark regions into two
types: (1) dark because of low depth; and (2) dark because of low mapping quality (MAPQ), which are mostly
‘camouflaged’. (a) HLA-DRB5 encodes a Major Histocompatibility Complex protein that plays an important role
in immune-response and has been associated with several diseases, including Alzheimer’s disease. It is well
known to be dark (low depth); specifically, when performing whole-genome sequencing using standard short-
read sequencing technologies, an insufficient number of reads align, preventing variant callers from assessing
mutations. We calculated sequencing depth across HLA-DRB5 for ten male samples from the Alzheimer’s
Disease Sequencing Project (ADSP) that were sequenced using standard lllumina whole-genome sequencing
with 100-nucleotide read lengths. Approximately 62.0% (50.2% of coding sequence) of HLA-DRB5 is dark by
depth (<5 aligned reads; indicated by red lines). (b) HSPA1A is a heat-shock protein from the 70-kilodalton
(kDa) heat-shock protein family, and plays an important role in stabilizing proteins against aggregation.
HSPA1A is dark because of low mapping quality (MAPQ <10 for 290% of reads at a given position).
Approximately 41.8% (52.8% coding sequence) of HSPA1A is dark by mapping quality (indicated by red line).
Dark gray bars indicate sequencing reads with a relatively high mapping quality, whereas white bars indicate
reads with a low mapping quality (MAPQ = 0). (c) Many genomic regions that are dark because of mapping
quality arise because they have been duplicated in the genome, which we term ‘camouflaged’ (or ‘camo
genes’). When confronted with a read that aligns equally well to more than one location, standard sequence
aligners randomly assign the read to one location and give it a low mapping quality. Thus, it is unclear from
which gene any of the reads indicated by white bars originated from. HSPA1A and HSPA1B are clear examples
of camouflaged genes arising from a tandem duplication. The two genes are approximately 14kb apart and

approximately 50% of the genes are identical.

Figure 2. Many dark regions involve protein-coding gene regions. We identified 37873 dark regions (>16

million nucleotides) in 5857 gene bodies that were either dark by depth or dark by mapping quality. (a)
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Stratifying the gene bodies by GENCODE biotype, 3635 gene bodies were protein coding, 1102 were
pseudogenes, and 720 were long intergenic non-coding RNAs (lincRNA). (b) Of all 37873 dark regions, 28598
were intronic, 4114 were in lincRNA exons, 2657 were in protein-coding exons (CDS), 1134 were in 3’UTR
regions, and 1103 were in 5’"UTR regions. Any dark region that spanned a gene element boundary (e.g., intron

to exon) was split into separate dark regions.

Figure 3. Dark coding regions occur throughout the genome, and are largely resolved with long-read
sequencing technologies. We identified 2757 dark coding (CDS) regions (>460000 nucleotides) in 744 protein-
coding genes that were dark by either depth or mapping quality (Supplemental Tables 1-2). Exactly 142
(19.1%) of the 744 protein-coding genes were 100% dark in CDS regions, 441 (59.3%) were at least 25% dark in
CDS regions, and 628 (84.4%) were at least 5% dark in CDS regions (Supplemental Table 1). (a) We mapped all
protein-coding gene bodies with a dark coding exon to the genome to visualize their genomic location, and are
generally spread throughout. There are several tight clusters of dark CDS regions on chromosomes 1, 9, 10,
and Y, however. (b) We assessed how well increasing read lengths would resolve dark regions by assessing
samples sequenced with lllumina whole-genome sequencing using 250-nucleotided read lengths, as well as
long-read technologies 10x Genomics, Oxford Nanopore Technologies (ONT), and Pacific Biosciences (PacBio).
Data from the samples sequenced using 250-nucleotide lllumina read lengths reduced the area under the
curve by 23.2% in CDS regions; this translates to a 24.4% reduction in dark CDS nucleotides. Comparing long-
read sequencing technologies to the standard lllumina 100-nucleotide read lengths, 10x Genomics, PacBio,
and ONT reduced the area under the curve for CDS regions by approximately 54.9%, 66.7%, and 81.8%,
respectively; this translates to a 57.8%, 68.6%, and 81.4% reduction in dark CDS nucleotides, respectively. The
area under the curve (AUC) for each technology is scaled in reference to lllumina sequencing based on 100-

nucleotide read lengths (i.e., AUC for lllumina 100-nucleotide read lengths = 1). In contrast to overall results,
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PacBio outperformed 10x Genomics when looking only at CDS regions (see text). Most analyses focused on

genes where at least 5% of the CDS nucleotides are dark, indicated by the dashed line.

Figure 4. Pathways relevant to human health, development, and reproductive function are affected by dark
and camouflaged genes. We characterized the pathways for dark and camouflaged genes using
Metascape.org, including only genes where at least 5% of the CDS regions were dark (670 unique gene
symbols; based on standard Illumina 100 nucleotide read lengths). (a) We identified several pathways that are
important in human health, development, and reproductive function (Supplemental Table 11). Specific
pathways included defensins (R-HSA-1461973; logP = -7.04), gonadal mesoderm development (GO:0007506;
logP =-6.18), base-excision repair (G0O:0006284; logP =-5.93), chromatin silencing (GO:0006342; logP =-5.86),
Deubiquitination (R-HSA-5688426; logP = -5.32), NLS-bearing protein import into nucleus (GO:0006607; logP =
-5.31), spindle assembly (GO:0051225; logP = -5.19), spermatogenesis (GO:0007283; logP =-4.93), and
forebrain neuron differentiation (G0:0021879; logP = -4.09). (b) Looking specifically at known protein-protein
interactions, Metascape identified 138 proteins with 212 known interactions (Supplemental Figure 4), and
within those, identified three groups enriched for protein-protein interactions using the MCODE algorithm. All
three MCODE groups combined are primarily associated with RNA transport (hsa030313; logP =-17.3;
Supplemental Figure 5). Individually, the first group (MCODEL1) is enriched for proteins involved in systemic
lupus erythematosus (hsa05322; logP = -6.7), cellular response to stress (R-HSA-2262752; logP = -6.6), and
RNA transport (hsa03013; logP = -4.39; Supplemental Figure 6). The second group (MCODE2) is enriched with
proteins involved in NLS-bearing protein import into nucleus (GO:0006607; logP =-17.1) and protein import
into nucleus (GO:0006606; logP =-15.4; Supplemental Figure 7). The third group does not have significant
enrichment associations, likely because little is known about them; all four (PRR20B, PRR20C, PRR20D, and

PRR20E) are 100% camouflaged and do not even have known expression measurements in GTEx [29]
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(Supplemental Figures 8-11).

Figure 5. Seventy-five dark genes (25% CDS) are associated with 305 human phenotypes, including autism,
inflammatory bowel disease, and others. We found 75 genes 25% dark CDS that harbor mutations associated
with 305 unique human phenotypes, including 277 diseases, according to the Human Gene Mutation Database
(HGMD). (a) Some of the diseases with the most known associated genes include autism spectrum disorder,
hemophilia A, schizophrenia, hearing loss, spinal muscular atrophy, and inflammatory bowel disease. Word
size represents the number of genes associated with each disease. Some of the diseases most represented in
our data are not surprising, given the number of genes involved in the disease, but these data demonstrate
the number of diseases impacted by genes that are at least 5% dark CDS, and how important it is to
completely resolve dark regions. We also performed an enrichment analysis, where the diseases most
enriched for dark genes included Hemophilia A, color blindness (protan colour vision defect), and X-linked
cone-rod dystrophy (Supplemental Figure 12). (b) Similarly, we quantified the number of diseases each gene
was associated with, and identified many disease-relevant genes with large portions of dark CDS regions that
may harbor critical disease-modifying mutations that currently go undetected. Some of the genes with the
most known disease associations include ARX (14.0% dark CDS), NEB (9.5% dark CDS), TBX1 (10.5% dark CDS),
RPGR (12.9% dark CDS), HBA2 (12.8% dark CDS), and CR1 (26.5% dark CDS). CR1 is particularly notable for
neuroscientists and Alzheimer’s disease geneticists, patients, and their caregivers, given that CR1 is a top-ten
Alzheimer’s disease gene. Other notable genes include SMN1 (89.9% dark CDS) and SMN2 (88.2% dark CDS),
which are known to harbor mutations (in camouflaged regions) that are involved in spinal muscular atrophy
(SMA) [65, 66, 113]. HSPA1A (52.8% dark CDS) and HSPA1B (51.1% dark CDS) also encode two primary 70-

kilodalton (kDa) heat-shock proteins. Heat-shock proteins have been implicated in ALS [31, 32].

45


https://doi.org/10.1101/514497
http://creativecommons.org/licenses/by-nc-nd/4.0/

LO

11

L2

L3

L4

L5

L6

L7

L8

bioRxiv preprint doi: https://doi.org/10.1101/514497; this version posted January 9, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Figure 6. Camouflaged genes are consistently dark in gnomAD, but dark-by-depth genes may be sample or
dataset specific. Most dark genes are specifically camouflaged (Supplemental Tables 12-13), but many are
dark by depth; we found that camouflaged regions in the ADSP are consistently dark in the gnomAD
consortium data (http://gnomad.broadinstitute.org/) [33]. Dark-by-depth regions may be more variable
between samples and datasets, however, suggesting these regions may be sensitive to specific aspects of
whole-genome sequencing (e.g., library preparation) or downstream analyses. (a) SMN1 and SMNZ2 are
camouflaged by each other (89.9% and 88.2% dark CDS, respectively; only SMN1 shown). Both genes
contribute to spinal muscular atrophy, and have been implicated in ALS. (b) HSPA1A and HSPA1B are also
camouflaged by each other (52.8% and 51.1% dark CDS, respectively; only HSPA1A shown). The heat-shock
protein family has been implicated in ALS. (c) NEB (9.5% dark CDS) is a special case that is camouflaged by
itself. NEB is associated with 24 diseases in the HGMD, including nemaline myopathy, a hereditary
neuromuscular disorder. NEB is a large gene, thus, 9.5% dark CDS translates to 2424 protein-coding bases. (d)
CR1is a top Alzheimer’s disease gene that plays a critical role in the complement cascade as a receptor for the
C3b and C4b complement components, and potentially helps clear amyloid-beta (Af3) [39—41]. CR1 is also
camouflaged by itself (26.5% dark CDS), where the repeated region includes the extracellular C3b and C4b
binding domain. The number of repeats and density of certain isoforms have been associated with Alzheimer’s
disease [21, 42—45]. (e) HLA-DRBS is dark by depth in the ADSP and gnomAD data (50.2% dark CDS). HLA-DRB5
has been implicated in several diseases, including Alzheimer’s disease. (f) RPGR is likewise dark in ADSP and
gnomAD (12.9% dark CDS), and is associated with several eye diseases, including retinitis pigmentosa and
cone-rod dystrophy. (g) ARX is dark-by-depth (14.0% dark CDS), but varies by sample or cohort, as
approximately 70% of gnomAD samples are not strictly dark by depth. ARX is associated with diseases
including early infantile epileptic encephalopathy 1 (EIEE1) and Partington syndrome. (h) Similarly, TBX1 is not
strictly dark by depth in approximately 70% of gnomAD samples (10.5% dark CDS). The Y axes for figures a-f

indicate median coverage in gnomAD (blue = exomes; green = genomes), whereas the Y axes in g-h represent
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the proportion of gnomAD samples that have >5x coverage. Dark and camouflaged regions, as well as the
percentage of each gene’s CDS region that is dark, are indicated by red lines. Dark regions in exome data are
either similar or more pronounced than what we observed in whole-genome data, highlighting that dark and
camouflaged regions are generally magnified in whole-exome data. For interest, we also discovered that
APOE—the top genetic risk for Alzheimer’s disease [34—36]—is approximately 6% dark CDS (by depth) for
certain ADSP samples with whole-genome sequencing, and the same region is dark in gnomAD whole-exome

data (Supplemental Figure 13).

Figure 7. Long-read technologies resolve many camouflaged regions, with variable success. We found that
ONT’s long-read technology appeared to resolve all camouflaged regions well with the high sequencing depth.
PacBio performed similarly well, and 10x Genomics performs well under certain circumstances. (a) SMN1 and
SMIN2 were 89.9% and 88.2% dark CDS, respectively, based on standard lllumina sequencing with 100-
nucleotide read lengths (illuminaRL100), and were 84.0% and 83.1% dark CDS based on Illlumina 250-
nucleotide read lengths (illuminaRL250; not shown). Both genes were technically 0% dark CDS for 10x
Genomics, PacBio, and ONT data. (b) HSPA1A and HSPA1B were 52.8% and 51.1% dark CDS, respectively,
based on illuminaRL100 data, and were 50.2% and 49.5% dark CDS based on illuminaRL250 (not shown). Both
genes were 0% dark CDS based on ONT and PacBio data, and were 45.8% and 51.8% dark CDS based on 10x
Genomics data. In contrast to the results for SMN1 and SMN2, both ONT and PacBio had consistent coverage
throughout the camouflaged regions, whereas the camouflaged regions remain dark for 10x Genomics. (c) CR1
was 26.5% dark CDS based on illuminaRL100, and was 24.5% dark based on illuminaRL250 (not shown). 10x
Genomics did not improve coverage for CR1; the region remained 26.2% dark CDS. Both ONT and PacBio were
0% dark CDS. While both PacBio and ONT were able fill the camouflaged region, coverage dropped

dramatically throughout the region, despite both genomes being sequenced at 50x and 46x median depth,
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which does not presently represent average use case for these technologies. The duplicated region is indicated
by blue bars, where white lines indicate regions that have diverged sufficiently for reads to align uniquely. It is
likely that the performance for ONT and PacBio long-read platforms will be better with longer sequencing
libraries (e.g. >50kb fragment sizes). Regions were visualized with IGV. Reads with a MAPQ < 10 were filtered,

and insertions, deletions, and mismatches are not shown.

Figure 8. Many camouflaged regions can be rescued, including CR1, even in standard short-read sequencing
data. Many large-scale whole-genome or whole-exome sequencing projects exist, covering tens of thousands
of individuals. All of these datasets are affected by dark and camouflaged regions that may harbor mutations
that either drive or modify disease in patients. Ideally, all samples would be re-sequenced using the latest
technologies over time, but financial and biological samples are limited, making it essential to maximize the
utility of existing data. We developed a method to rescue mutations in most camouflaged regions, including
for standard short-read sequencing data. When confronted with a sequencing read that aligns to two or more
regions equally well (with high confidence), most aligners (e.g., BWA [11-13]) will randomly assign the read to
one of the regions with a low mapping quality (e.g., MAPQ = 0 for BWA). (a) Because the reads are already
aligned to one of the regions, we can use the following steps to rescue mutations in most camouflaged
regions: (1) extract reads from camouflaged regions; (2) mask all highly similar regions in the reference
genome, except one, and re-align the extracted reads; (3) call mutations using standard methods (adjusting
for ploidy); and (4) determine precise location using targeted sequencing (e.g., long-range PCR combined with
Sanger, or targeted long-read sequencing [1]). Without competing camouflaged regions to confuse the aligner,
the aligner will assign a high mapping quality, allowing variant callers to behave normally. (b) Exons 10, 18,
and 26 in CR1 are identical, according to the reference genome. Standard aligners will randomly scatter reads
matching that sequence across these exons and assign a low mapping quality (e.g., MAPQ = 0 for BWA;

indicated as hollow reads). Red lines indicate an individual’s mutation that exists in one of these exons, but
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reads containing this mutation also get scattered and assigned a low mapping quality. (c) By masking exons 18
and 26, we can align all of these reads to exon 10 with high mapping qualities to determine whether a
mutation exists. We cannot determine at this stage which of the three exons the mutation is actually located
in, but researchers can test association with a given disease to determine whether the mutation is worth
further investigation. (d) As a proof of principle, we rescued approximately 4622 exonic variants in the ADSP
(TiTv = 1.97) using our method, including a frameshift mutation in CR1 (MAF = 0.00019) that is only found in
five cases and zero controls (three representative samples shown). The frameshift results in a stop codon
shortly downstream. The ADSP is not large enough to formally assess association between the CR1 frameshift
and Alzheimer’s disease, but we believe the mutation merits follow-up studies given its location (CR1 binding

domain) and CR1’s strong association with disease.
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