

1 Systematic analysis of dark and camouflaged genes: disease-relevant genes hiding in plain 2 sight

3
4 Mark T. W. Ebbert^{1,2,†,*}, Tanner D. Jensen^{1,†}, Karen Jansen-West¹, Jonathon P. Sens¹, Joseph S. Reddy¹, Perry G.
5 Ridge³, John S. K. Kauwe³, Veronique Belzil¹, Luc Pregent¹, Minerva M. Carrasquillo¹, Dirk Keene⁴, Eric Larson⁵,
6 Paul Crane⁵, Yan W. Asmann⁶, Nilufer Ertekin-Taner^{1,7}, Steven G. Younkin¹, Owen A. Ross¹, Rosa Rademakers¹,
7 Leonard Petrucelli^{1,2,*}, John D. Fryer^{1,2,*}

8
9 ¹Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; ²Mayo Clinic Graduate School of
10 Biomedical Sciences, Jacksonville, FL 32224, USA; ³Department of Biology, Brigham Young University, Provo,
11 UT 84602, USA; ⁴Department of Pathology, University of Washington, Seattle, Washington 98195, USA;

12 ⁵Department of Medicine, University of Washington, Seattle, Washington 98195, USA; ⁶Department of Health
13 Sciences Research, Mayo Clinic, Jacksonville, FL 32224, USA; ⁷Department of Neurology, Mayo Clinic,
14 Jacksonville, Florida 32224, USA

15
16 *Corresponding authors
17

†Contributed equally

!0 Author emails:

!1 Mark Ebbert: ebbert.mark@mayo.edu

!2 Tanner Jensen: jensen.tanner@mayo.edu

!3 Karen Jansen-West: jansen.karen@mayo.edu

!4 Jonathon Sens: sens.jonathon@mayo.edu

!5 Joseph Reddy: [reddy.joseph@mayo.edu](mailto:redy.joseph@mayo.edu)

!6 Perry Ridge: perry.ridge@byu.edu

!7 John Kauwe: kauwe@byu.edu

!8 Veronique Belzil: belzil.veronique@mayo.edu

!9 Luc Pregent: pregent.luc@mayo.edu

!0 Minerva Carrasquillo: carrasquillo.minerva@mayo.edu

!1 Dirk Keene: cdkeene@uw.edu

!2 Eric Larson: larson.e@ghc.org

!3 Paul Crane: pcrane@uw.edu

!4 Yan Asmann: asmann.yan@mayo.edu

!5 Nilufer Ertekin-Taner: taner.nilufer@mayo.edu

!6 Steven Younkin: younkin.steven@mayo.edu

!7 Owen Ross: ross.owen@mayo.edu

!8 Rosa Rademakers: rademakers.rosa@mayo.edu

!9 Leonard Petrucelli: petrucelli.leonard@mayo.edu

!0 John Fryer: fryer.john@mayo.edu

1 Abstract

2 **Background:** The human genome contains 'dark' gene regions that cannot be adequately assembled or
3 aligned using standard short-read sequencing technologies, preventing researchers from identifying mutations
4 within these gene regions that may be relevant to human disease. Here, we identify regions that are 'dark by
5 depth' (few mappable reads) and others that are 'camouflaged' (ambiguous alignment), and we assess how
6 well long-read technologies resolve these regions. We further present an algorithm to resolve most
7 camouflaged regions (including in short-read data) and apply it to the Alzheimer's Disease Sequencing Project
8 (ADSP; 13142 samples), as a proof of principle.

9

l0 **Results:** Based on standard whole-genome Illumina sequencing data, we identified 37873 dark regions in 5857
l1 gene bodies (3635 protein-coding) from pathways important to human health, development, and
l2 reproduction. Of the 5857 gene bodies, 494 (8.4%) were 100% dark (142 protein-coding) and 2046 (34.9%)
l3 were $\geq 5\%$ dark (628 protein-coding). Exactly 2757 dark regions were in protein-coding exons (CDS) across 744
l4 genes. Long-read sequencing technologies from 10x Genomics, PacBio, and Oxford Nanopore Technologies
l5 reduced dark CDS regions to approximately 45.1%, 33.3%, and 18.2% respectively. Applying our algorithm to
l6 the ADSP, we rescued 4622 exonic variants from 501 camouflaged genes, including a rare, ten-nucleotide
l7 frameshift deletion in *CR1*, a top Alzheimer's disease gene, found in only five ADSP cases and zero controls.

l8

l9 **Conclusions:** While we could not formally assess the *CR1* frameshift mutation in Alzheimer's disease
l0 (insufficient sample-size), we believe it merits investigating in a larger cohort. There remain thousands of
l1 potentially important genomic regions overlooked by short-read sequencing that are largely resolved by long-
l2 read technologies.

l3

l4

1 **Keywords**

2 Camouflaged genes; Dark genes; Long-read sequencing; Pacific Biosciences (PacBio); Oxford Nanopore

3 Technologies (ONT); 10x Genomics; Alzheimer's Disease Sequencing Project (ADSP); CR1;

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

1 **Background**

2 Researchers have known for years that large, complex genomes, including the human genome, contain 'dark'
3 regions—regions where standard high-throughput short-read sequencing technologies cannot be adequately
4 assembled or aligned—thus preventing our ability to identify mutations within these regions that may be
5 relevant to human health and disease. Some dark regions are what we term 'dark by depth' (few or no
6 mappable reads), while others are what we term 'dark by mapping quality' (reads aligned to the region, but
7 with a low mapping quality). Regions that are dark by depth may arise because the region is inherently difficult
8 to sequence at the chemistry level (e.g., high GC content [1, 2]), essentially eliminating sequencing reads from
9 that region altogether. Other dark regions arise, not because the sequencing is inherently problematic, but
10 because of bioinformatic challenges. Specifically, many dark regions arise from duplicated genomic regions,
11 where confidently aligning short reads to a unique location is not possible; we term these regions as
12 'camouflaged'. These camouflaged regions are generally either large contiguous tandem repeats (e.g.,
13 centromeres, telomeres, and other short tandem repeats), or a larger specific DNA region that has been
14 duplicated (e.g., a gene duplication) either in tandem or in a more distal genome region. In fact, many genes in
15 the human genome were duplicated over evolutionary time and are still transcriptionally and translationally
16 active (e.g., heat-shock proteins) [3–9], while others have been duplicated, but are considered inactive (i.e.,
17 pseudogenes). Regardless of whether the duplication is active, however, any genomic region that has been
18 nearly-identically duplicated, and is large enough to prevent sequencing reads from aligning unambiguously
19 will be 'dark', because the aligner cannot determine which genomic region the read originated from.
20

?1 When confronted with a read that aligns equally well to two or more camouflaged regions (commonly known
?2 as multi-mapping reads [2, 10]), standard next-generation sequence aligners, such as the Burrows-Wheeler
?3 Aligner (BWA) [11–13], randomly assign the read to one of the regions and assign a low mapping quality. For
?4 BWA, specifically, reads that cannot be uniquely mapped are generally assigned a mapping quality (MAPQ) of

1 0; though, in certain paired-end sequencing scenarios, BWA will assign a high mapping quality if the read mate
2 is confidently mapped nearby (i.e., within the estimated insert-size length).

3

4 Recent work has characterized camouflaged regions, in part, including a study that demonstrates how this
5 issue affects all standard RNA-Seq analyses [10], and another that quantifies the number of nucleotides in
6 human reference GRCh38 that are dark for mapping quality of 0 (camouflaged regions), based on 1000
7 Genome Project data [2]. Robert and Watson demonstrated that expression for 958 genes were either over-
8 or under-represented because of multi-mapping reads across 12 different RNA-Seq processing methods, and
9 no method was immune to the problem [10]. They also demonstrated that many of these genes are directly
10 implicated in human disease. Zheng-Bradley et al. recently re-aligned genomes from the 1000 Genomes
11 Project to GRCh38, and, among other findings, generally demonstrated the breadth of multi-mapping reads
12 across the genome [2]. These data characterize the general problem, and report specific genes affected by this
13 issue.

14

15 Here, we systematically analyze dark and camouflaged genes to more fully characterize the problem, and we
16 highlight many disease-relevant genes that are directly implicated in Alzheimer's disease, autism spectrum
17 disorder, amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), and others. We also show that
18 long-read sequencing technologies substantially reduce the number of dark and camouflaged regions, and we
19 present a method to address camouflaged regions, even in standard short-read sequencing data. As a proof of
20 concept, we apply our method to the Alzheimer's Disease Sequencing Project (ADSP) data, and identify a rare,
21 ten-nucleotide frameshift deletion in the C3b and C4b binding domain of *CR1*, a top Alzheimer's disease gene
22 [14–22], that is only present in five ADSP cases and zero controls. The ADSP is not large enough to statistically
23 assess association between the *CR1* frameshift mutation and Alzheimer's disease.

24

1 Results

2 To quantify the number of dark and camouflaged regions in standard short-read whole-genome sequencing
3 data, we obtained whole-genome sequencing data for ten unrelated males from the Alzheimer's Disease
4 Sequencing Project (ADSP) and scanned each sample for dark and camouflaged regions, averaging across all
5 ten samples; we only used data from males for this study so we could also assess dark and camouflaged
6 regions on the Y chromosome because large portions of the Y chromosome are dark. We ignored incomplete
7 genomic regions (e.g., centromeres). We then limited the dark and camouflaged regions to known gene
8 bodies, based on annotations from build 87 of the Ensembl GRCh37 human reference genome [23]. All ten
9 samples were sequenced using standard Illumina whole-genome sequencing with 100-nucleotide read
10 lengths, where median genome-wide read depths ranged from 35.4x to 42.9x coverage, with an overall
11 median of 39.4x. We performed the same analyses on ten unrelated males from the 1000 Genomes Project
12 [24] that were sequenced using Illumina whole-genome sequencing with 250-nucleotide read lengths, where
13 median genome-wide read depths ranged from 39.3x to 52.6x coverage, with an overall median of 48.9x.
14 Similarly, we assessed how well long-read sequencing technologies, including 10x Genomics (52x median
15 coverage), PacBio (50x median coverage), and ONT (46x median coverage) resolve dark and camouflaged
16 regions. Although we were only able to obtain a single high-depth male genome for each long-read
17 technology, we believe our results are a reasonable estimate for how well each technology addresses dark and
18 camouflaged regions. Larger sequencing studies will further clarify our results.

19

20 We consider a region 'dark' for one of two reasons: (1) insufficient number of reads aligned to the genomic
21 region (dark by depth); and (2) reads aligned to the region, but with insufficient mapping quality for a variant
22 caller to identify mutations in the region (dark by mapping quality). Specifically, we define regions that are
23 dark by depth as those with fewer than five aligned reads (Figure 1a), and regions that are dark by mapping
24 quality as those where $\geq 90\%$ of aligned reads have a mapping quality (MAPQ) < 10 (Figure 1b). Defining dark-

1 by-depth regions as those with fewer than five reads is a relatively strict cutoff, and likely underestimates the
2 number of dark regions because 20 to 30 reads is often considered a reasonable minimum to confidently
3 identify heterozygous mutations; overall median read depth is an important factor, however, and we believe a
4 strict cutoff provides a more conservative estimate. We used a mapping quality threshold <10 to define
5 regions that are dark by mapping quality because that is the standard cutoff used in the Genome Analysis
6 ToolKit (GATK) [25]. Camouflaged regions are those that are dark by mapping quality because the region has
7 been duplicated in the genome (Figure 1c). We identified sets of camouflaged regions (regions camouflaged by
8 each other) using BLAT [26], where we required at least 98% sequence identity for two regions to be included
9 in the same set.

10

11 **Standard short-read sequencing leaves 37873 dark regions across 5857 gene bodies, including protein-
12 coding exons from 744 genes**
13 Using whole-genome Illumina sequencing data (100-nucleotide read lengths) from ten unrelated males, we
14 identified 37873 dark regions (>16 million nucleotides) in 5857 gene bodies (based on Ensemble GRCh37 build
15 87 gene annotations) that were either dark by depth or dark by mapping quality (Supplemental Figure 1a;
16 Supplemental Tables 1-2). Stratifying the gene bodies by GENCODE biotype [27], 3635 gene bodies were
17 protein coding, 1102 were pseudogenes, and 720 were long intergenic non-coding RNAs (lincRNA; Figure 2a).
18 Of all 37873 dark gene-body regions, 28598 were intronic, 4113 were in non-coding RNA exons (e.g., lincRNAs
19 and pseudogenes), 2657 were in protein-coding exons (CDS), 1134 were in 3'UTR regions, and 1103 were in
20 5'UTR regions (Figure 2b; Supplemental Table 1). Any dark region that spanned a gene element boundary (e.g.,
21 intron to exon) was split into separate dark regions. Of the 5857 gene bodies, 494 (8.4%) were 100% dark,
22 1560 (26.6%) were at least 25% dark, and 2046 (34.9%) were at least 5% dark (Supplemental Figure 1b;
23 Supplemental Table 1).
24

1 Focusing only on CDS regions, we identified 2757 dark CDS regions (>460000 nucleotides) across 744 protein-
2 coding genes that were dark by either depth or mapping quality (Figure 3a; Supplemental Tables 1-2). Exactly
3 142 (19.1%) of the 744 protein-coding genes were 100% dark in CDS regions, 441 (59.3%) were at least 25%
4 dark in CDS regions, and 628 (84.4%) were at least 5% dark in CDS regions (Figure 3b; Supplemental Table 1).
5 Exactly 474 of the 628 genes that were 5% dark in CDS regions were dark because they were camouflaged.
6

7 **Most dark regions are specifically camouflaged**

8 Regions may be dark because of either low depth or low mapping quality, but the majority of regions are dark
9 because of mapping quality, and specifically because they are camouflaged (low mapping quality because of a
10 duplication). Exactly 3953 of the 5857 dark gene bodies are dark because of mapping quality, where 3252 are,
11 in fact, camouflaged. We also measured the number of times each gene region was duplicated and found that
12 70% of gene regions were replicated three or fewer times in the genome, but 84 regions were duplicated ≥ 100
13 times (Supplemental Figure 2a), with the most repeated regions (ten separate intronic regions totaling 2235
14 nucleotides from *C5orf48*) being replicated 941 times in aggregate. Limiting to only CDS regions, we estimate
15 that 74.1% are replicated three or fewer times, with 38 replicated ≥ 10 times (Supplemental Figure 2b) and the
16 most repeated region was from *NBPF12*, in which 173 nucleotides were replicated 37 times.
17

18 **Long-read sequencing technologies resolve substantial portions of the dark regions**

19 Data from the samples sequenced using 250-nucleotide Illumina read lengths reduced the percentage of dark
20 nucleotides by 30.1% and 24.4% for all gene bodies, and for only CDS regions, respectively, leaving 69.9% and
21 75.6% of the nucleotides dark, respectively (Supplemental Figure 1b; Figure 3b; Supplemental Tables 3-4).
22 Comparing long-read sequencing technologies to the standard Illumina 100-nucleotide read lengths, the ONT
23 platform performed best, both when assessing entire gene bodies, and when considering only CDS regions.
24 Specifically, approximately 41.2%, 25.8%, and 24.9% of the nucleotides remained dark for all gene bodies for

1 PacBio, 10x Genomics, and ONT, respectively (Supplemental Figure 1b; Supplemental Tables 5-10). Similarly,
2 approximately 42.2%, 31.4%, and 18.5% of CDS nucleotides remained dark for 10x Genomics, PacBio, and
3 ONT, respectively (Figure 3b; Supplemental Tables 5-10). In contrast to overall gene-body results, PacBio
4 outperformed 10x Genomics when looking only at CDS regions (Supplemental Figure 1b; Figure 3b). The long-
5 read technologies improved over Illumina mostly by reducing the percentage of nucleotides that are dark by
6 mapping quality (Supplemental Figure 1c). Surprisingly, the percentage of gene-body regions that are dark
7 because of low depth is higher for all long-read technologies than it is for Illumina (Supplemental Figure 1c).

8

9 We generated a density plot for the length of all dark-by-mapping quality regions to approximate the
10 proportion of regions each sequencing technology should be able to resolve (Supplemental Figure 3), which
11 resulted in a bimodal distribution. The two modes are located at 95 and 538 nucleotides. As expected, median
12 read lengths for the Illumina whole-genome sequencing based on 100-nucleotide and 250-nucleotide read
13 lengths were 100 and 250 nucleotides, respectively. The first mode for the camouflaged region lengths is at
14 95, explaining why 100-nucleotide read lengths are insufficient to unambiguously span most dark-by-mapping
15 quality regions. The 250-nucleotide read lengths fall between the two modes, explaining why 250-nucleotide
16 read lengths resolve a high percentage of camouflaged regions. In other words, 100-nucleotide read lengths
17 are too short to bridge most camouflaged regions, but 250-nucleotide read lengths appear to be sufficient for
18 many. Median read lengths for both the ONT and PacBio genomes we used in this study were 6276 (N50 =
19 33973) and 8511 (N50 = 17467) nucleotides, respectively, which is shorter than expected, but substantially
20 longer than necessary to resolve most camouflaged regions. We believe comparing median read lengths,
21 rather than N50, is more useful in this scenario, because we are interested to know what percentage of reads
22 are likely to bridge a given dark or camouflaged region. Our results suggest that our estimates for the
23 percentage of camouflaged regions ONT and PacBio are able to resolve may be conservative because a longer
24 DNA library should resolve even more camouflaged regions.

1

2 **Important pathways and gene families are affected by dark and camouflaged regions**

3 Because such a large number of genes are dark, we characterized the pathways for genes that are not fully
4 represented in standard illumina short-read sequencing (100-nucleotide reads) datasets. We included all
5 genes where at least 5% of the CDS regions were dark (670 unique gene symbols) and identified several
6 pathways that are important in human health, development, and reproductive function (Figure 4a;
7 Supplemental Table 11). Specific pathways included defensins (R-HSA-1461973; logP = -7.04), gonadal
8 mesoderm development (GO:0007506; logP = -6.18), base-excision repair (GO:0006284; logP = -5.93),
9 chromatin silencing (GO:0006342; logP = -5.86), Deubiquitination (R-HSA-5688426; logP = -5.32), NLS-bearing
10 protein import into nucleus (GO:0006607; logP = -5.31), spindle assembly (GO:0051225; logP = -5.19),
11 spermatogenesis (GO:0007283; logP = -4.93), and forebrain neuron differentiation (GO:0021879; logP = -4.09).
12 Some specific gene families involved in these pathways include eleven defensin genes (e.g., DEFA1 and
13 DEFB4A), five testis specific proteins (e.g., TSPY2), eleven ubiquitin-specific 17-like family members, and
14 twelve golgin genes (e.g., GOLGA6B; Supplemental Table 11).

15

16 Looking specifically at known protein-protein interactions, we found 138 proteins with 212 known interactions
17 (Supplemental Figure 4), and within those, identified three groups enriched for protein-protein interactions
18 using the MCODE algorithm [28] (Figure 4b). All three MCODE groups combined are primarily associated with
19 RNA transport (hsa030313; logP = -17.3; Supplemental Figure 5; accessed December 2018). Individually, the
20 first group (MCODE1) is enriched for proteins involved in systemic lupus erythematosus (hsa05322; logP = -
21 6.7), cellular response to stress (R-HSA-2262752; logP = -6.6), and RNA transport (hsa03013; logP = -4.39;
22 Supplemental Figure 6). The second group (MCODE2) is enriched with proteins involved in NLS-bearing protein
23 import into nucleus (GO:0006607; logP = -17.1) and protein import into nucleus (GO:0006606; logP = -15.4;
24 Supplemental Figure 7). The third group does not have significant enrichment associations, likely because little

1 is known about them; all four genes (*PRR20B*, *PRR20C*, *PRR20D*, and *PRR20E*) are 100% camouflaged and do
2 not even have known expression measurements in GTEx [29] (Supplemental Figures 8-11).

3

4 **There are 75 genes with known mutations associated with 305 human phenotypes**

5 To assess the potential impact missing mutations in dark genes may have on human disease genetics, we
6 measured the number of dark genes with at least 5% dark CDS that have mutations known to be involved in
7 human disease; we calculated the number of genes that are $\geq 5\%$ dark CDS with a mutation in the Human Gene
8 Mutation Database (HGMD) [30]. We found 75 genes associated with 305 unique human phenotypes,
9 including 277 diseases (Figure 5a). Some of the diseases with the most known associated genes include autism
10 spectrum disorder, hemophilia A, schizophrenia, hearing loss, spinal muscular atrophy, and inflammatory
11 bowel disease. Some of the diseases most represented in our data are not surprising, given the number of
12 genes involved in the disease, but these data demonstrate the number of diseases impacted by genes that are
13 at least 5% dark CDS. We also performed an enrichment analysis, where the diseases most enriched for dark
14 genes included Hemophilia A, color blindness (protan colour vision defect), and X-linked cone-rod dystrophy
15 (Supplemental Figure 12).

16

17 Similarly, we quantified the number of diseases each gene was associated with (Figure 5b). We identified
18 many disease-relevant genes with large portions of dark CDS regions that may harbor critical disease-
19 modifying mutations that currently go undetected. Some of the genes with the most known disease
20 associations include *ARX* (14.0% dark CDS), *NEB* (9.5% dark CDS), *TBX1* (10.5% dark CDS), *RPGR* (12.9% dark
21 CDS), *HBA2* (12.8% dark CDS), and *CR1* (26.5% dark CDS). The *CR1* gene is particularly notable given that *CR1* is
22 a top-ten Alzheimer's disease gene. Other notable genes include *SMN1* (89.9% dark CDS) and *SMN2* (88.2%
23 dark CDS), which are known to be involved in spinal muscular atrophy (SMA) and ALS. *HSPA1A* (52.8% dark

1 CDS) and *HSPA1B* (51.1% dark CDS) also encode two primary 70-kilodalton (kDa) heat-shock proteins, a family
2 of proteins that have been implicated in ALS [31, 32].
3

4 **Camouflaged genes are consistently dark in gnomAD, but dark-by-depth genes may be sample or dataset
5 specific**

6 Although most dark genes are specifically camouflaged (Supplemental Tables 12-13), many are dark by depth
7 in the ADSP data; upon manual comparison between whole-genome sequencing data from the ten ADSP
8 males and coverage plots from the gnomAD consortium dataset (<http://gnomad.broadinstitute.org/>) [33], we
9 found that camouflaged regions in the ADSP males are consistently dark in the gnomAD data, demonstrating
10 that these camouflaged regions are consistent across datasets. The dark-by-depth regions are more variable
11 between samples and datasets, however, suggesting these regions may be sensitive to specific aspects of
12 whole-genome sequencing (e.g., library preparation) or downstream analyses. Specific camouflaged genes
13 include *SMN1* and *SMN2* (89.9% and 88.2% dark CDS, respectively; Figure 6a), *HSPA1A* and *HSPA1B* (52.8%
14 and 51.1% dark CDS, respectively; Figure 6b), *NEB* (9.5% dark CDS; Figure 6c), and *CR1* (26.5% dark CDS; Figure
15 6d). Specific dark-by-depth genes include *HLA-DRB5* (50.2% dark CDS; Figure 6e), *RPGR* (12.9% dark CDS;
16 Figure 6f), *ARX* (14.0% dark CDS; Figure 6g), and *TBX1* (10.5% dark CDS; Figure 6h). All four camouflaged genes
17 are also dark in the gnomAD data. A manual inspection of our dark-by-depth gene list, however, suggests most
18 are not completely dark in gnomAD, but vary by sample or dataset. Specifically, *HLA-DRB5* and *RPGR* in
19 gnomAD appear to be consistent with the ADSP data; *ARX* and *TBX1*, however, only appear to be dark in a
20 portion of the gnomAD samples, where about 30% of samples have ≤ 5 reads in their respectively defined dark
21 regions (Note: our threshold for dark regions is < 5 reads, but the gnomAD plots for *ARX* and *TBX1* are based on
22 ≤ 5 reads). Dark regions (Figures 6a-h) are either similar or more pronounced in the gnomAD whole-exome
23 data than what we observed in the whole-genome data, highlighting that dark and camouflaged regions are
24 generally magnified in whole-exome data; this is likely because of differences in library preparation and

1 shorter read lengths in exome data. For interest, we also found that *APOE*—the top genetic risk for
2 Alzheimer’s disease [34–36]—is approximately 6% dark CDS (by depth) for certain ADSP samples with whole-
3 genome sequencing, and the same region is dark in gnomAD whole-exome data (Supplemental Figure 13). It is
4 possible some of the dark regions we identified in standard short-read whole-genome data are specific to the
5 ADSP samples, but additional work can clarify this issue. In either case, *dark-by-depth regions* (Supplemental
6 Tables 14-15) *should be interrogated within individual datasets, and perhaps for individual samples as a*
7 *quality control measure.*

8

9 *SMN1* and *SMN2* are camouflaged by each other, where both genes are known to contribute to spinal
10 muscular atrophy, and have been implicated in ALS. *HSPA1A* and *HSPA1B* are also camouflaged by each other,
11 and the heat-shock protein family has been implicated in ALS [37, 38]. *NEB* is a special case that is
12 camouflaged by itself (rather than another gene), and is associated with 24 diseases in the HGMD, including
13 nemaline myopathy, a hereditary neuromuscular disorder. *NEB* is a large gene (249151 nucleotides; 25577
14 CDS nucleotides), thus, ~9.5% dark CDS translates to 2424 dark protein-coding bases. *CR1* is a top Alzheimer’s
15 disease gene that plays a critical role in the complement cascade as a receptor for the C3b and C4b
16 complement components, and potentially helps clear amyloid-beta (A β) [39–41]. Like *NEB*, *CR1* is also
17 camouflaged by itself, where the repeated region actually includes the extracellular C3b and C4b binding
18 domain. The number of repeats and density of certain isoforms have been associated with Alzheimer’s disease
19 [21, 42–45].

20

21 We found *HLA-DRB5* is dark by depth in the ADSP and gnomAD data, and has been implicated in several
22 diseases, including Alzheimer’s disease. *RPGR* is likewise dark in ADSP and gnomAD, and is associated with
23 several eye diseases, including retinitis pigmentosa and cone-rod dystrophy. We identified *ARX* as a dark-by-

1 depth gene, but this gene appears to vary by sample or cohort, as only approximately 30% of gnomAD samples
2 are strictly dark by depth, using our cutoff of <5 reads. *ARX* is associated with diseases including early infantile
3 epileptic encephalopathy 1 (EIEE1) [46] and Partington syndrome [47]. Similarly, *TBX1*, which harbors
4 mutations that cause the same phenotype as 22q11.2 deletion syndrome [48], is dark by depth in only
5 approximately 30% of gnomAD samples.

6

7 **Long-read technologies resolve many camouflaged regions, with variable success**

8 We selected three camouflaged gene regions to highlight common strengths and differences for how well
9 each long-read sequencing technology addresses the camouflaged region, including *SMN1* and *SMN2* (Figure
L0 7a), *HSPA1A* and *HSPA1B* (Figure 7b), and *CR1* (Figure 7c). The *SMN1* and *SMN2* genes are camouflaged by
L1 each other (gene duplication), as are *HSPA1A* and *HSPA1B*. *CR1*, however, is a special case, where it is
L2 camouflaged by a repeated region within itself. Only ONT appeared to be capable of fully addressing the
L3 camouflaged region for all three genes. 10x Genomics also performed well under certain circumstances, such
L4 as *SMN1* and *SMN2* (regions where the duplication is >50kb away), but did not perform well for *HSPA1A* and
L5 *HSPA1B*. PacBio performed well for *CR1* and *HSPA1A/HSPA1B*, but did not perform as well as ONT in the
L6 *SMN1/SMN2* region.

L7

L8 *SMN1* and *SMN2* were 89.9% and 88.2% dark CDS, respectively (Figure 7a), based on standard Illumina
L9 sequencing with 100-nucleotide read lengths, and were 84.0% and 83.1% dark CDS based on Illumina 250-
L0 nucleotide read lengths (not shown). Both genes were technically 0% dark CDS based on 10x Genomics,
L1 PacBio, and ONT data (Figure 7a). PacBio coverage does drop significantly throughout both genes, however.

L2

L3 *HSPA1A* and *HSPA1B* were 52.8% and 51.1% dark CDS (Figure 7b), respectively, based on standard Illumina
L4 100-nucleotide read lengths, and were 50.2% and 49.5% dark CDS based on Illumina 250-nucleotide read

1 lengths (not shown). Both genes were 0% dark CDS based on ONT and PacBio data, and were 45.8% and 51.8%
2 dark CDS based on 10x Genomics data (Figure 7b). In contrast to the results for *SMN1* and *SMN2*, both ONT
3 and PacBio had consistent coverage throughout the camouflaged regions, whereas the camouflaged regions
4 remained dark for 10x Genomics (Figure 7b).

5

6 *CR1* was 26.5% dark CDS based on Illumina 100-nucleotide read lengths (Figure 7c), and was 24.5% dark based
7 on Illumina 250-nucleotide read lengths (not shown). *CR1* was 26.2% dark CDS for 10x Genomics, and 0% for
8 both ONT and PacBio (Figure 7c). While both PacBio and ONT were able fill the camouflaged region, coverage
9 drops dramatically throughout the region, despite both genomes being sequenced at 50x and 46x median
10 depth, which does not presently represent average use case for these technologies. It is likely that the
11 performance of these long-read platforms will be better with longer average sequencing libraries (e.g. >50kb
12 fragment sizes).

13

14 **Many camouflaged regions can be rescued, including in standard short-read sequencing data**

15 There are many large-scale whole-genome or whole-exome sequencing projects across tens of thousands of
16 individuals that are either completed or underway for a variety of diseases, including cancer (e.g., The Cancer
17 Genome Atlas; TCGA), autism spectrum disorder (e.g., The Autism Sequencing Consortium; ASC), Alzheimer's
18 disease (e.g., The Alzheimer's Disease Sequencing Project; ADSP), Parkinson's disease (e.g., The Parkinson's
19 Progression Markers Initiative; PPMI), and ALS (e.g., Target ALS and CReATE). All of these datasets are affected
20 by dark and camouflaged regions that may harbor mutations that are either driving or modify disease in
21 patients. Ideally, all samples would be re-sequenced using the latest technologies over time, but financial
22 resources and biological samples are limited, making it essential to maximize the utility of existing data.

23

1 Using a strategy similar to that proposed by Robert and Watson [10], we have developed a method to rescue
2 mutations in most camouflaged regions, including for standard Illumina short-read sequencing data. When
3 confronted with a sequencing read that aligns to two or more regions equally well (with high confidence),
4 most aligners (e.g., BWA [11–13]) will randomly assign the read to one of the regions and assign a low
5 mapping quality (MAPQ = 0 for BWA, or MAPQ = 1 for novoalign). Because the reads are already aligned to
6 one of the regions, we can use the following steps to rescue mutations in most camouflaged regions (Figure
7 8): (1) extract reads from camouflaged regions; (2) mask all highly similar regions in the reference genome,
8 except one, and re-align the extracted reads; (3) call mutations using standard methods. Without competing
9 camouflaged regions to confuse the aligner, the aligner will assign a high mapping quality, allowing variant
10 callers to behave normally. This will enable researchers to identify mutations that exist in one of the
11 camouflaged regions, but not which specific region (Figure 8). After rescuing these mutations, researchers can
12 then perform association studies to determine whether any of the mutations may be implicated in disease,
13 and follow up with targeted sequencing methods to determine the exact camouflage region a mutation lies in.

14

15 **Re-alignment rescues approximately 4622 exonic variants, including a rare ten-nucleotide frameshift**

16 **deletion in *CR1***

17 As a proof of principle, we applied our method to the Alzheimer's Disease Sequencing Project (ADSP) case-
18 control data [49] to approximate the number of potential mutations our approach could rescue. The ADSP is a
19 large sequencing project organized, in part, to identify functional mutations that influence Alzheimer's disease
20 development. Across 13142 samples from the ADSP, excluding all variants with a quality by depth (QD) <2.5,
21 we were able to rescue approximately 4622 exonic variants with a transition-transversion ration (Ti/Tv) of 1.97
22 from 147 camouflaged region sets, that are spread across 501 camouflaged genes (Supplemental Figure 14;
23 VCF will be provided to the ADSP). Using a more stringent QD (excluding variants with QD <5), we rescued

1 3152 variants with a Ti/Tv ratio of 2.17. We only included camouflaged regions from CDS exons for all genes,
2 including those that are <5% dark CDS.
3
4 Because *CR1* is a top-10 Alzheimer's disease gene, we then specifically interrogated it using our method
5 (Figure 8) for any functional mutations that could be involved in Alzheimer's disease, and identified a rare ten-
6 nucleotide frameshift deletion that is only found in five cases and zero controls, all of which are heterozygous
7 (Figure 8d). Thus, the estimated minor allele frequency for this mutation is $5 / (13142 * 2) = 0.00019$, making it
8 more rare than the *TREM2* R47H allele [50–52]. For interest, only one of the individuals carried a single
9 *APOE*ε4 allele (ε3/ε4). The other four individuals were homozygous for *APOE*ε3 (ε3/ε3). We were able to
10 determine that the frameshift deletion is in one of exons 10, 18, or 26. Briefly, our method extracts all reads
11 with a low mapping quality (MAPQ < 10) from all three exons, masks all but one of the camouflaged regions
12 within each set of camouflaged regions, and aligns all reads from each set to only one of the regions (Figure 8).
13 Without identical competing regions to confuse the aligner, the mapping qualities are high enough for a
14 variant caller (e.g., GATK HaplotypeCaller) to identify whether a mutation exists. For example, reads harboring
15 the ten-nucleotide frameshift mutation were originally randomly scattered across exons 10, 18, and 26 from
16 the original alignment (Figure 8). We masked exons 18 and 26, leaving exon 10 unmasked; this allowed reads
17 from each of the three exons to align to only exon 10, so we could perform variant calling. We estimate a
18 cohort of approximately 70000 cases and controls would have approximately 80% statistical power to formally
19 assess this mutation's involvement in Alzheimer's disease, assuming a Relative Risk (RR) of 3.3, at an alpha of
20 0.0001. We provide the .bed files in GRCh37 and GRCh38, along with scripts that will enable researchers to
21 perform similar analyses in any sequencing dataset at
22 https://github.com/mebbert/Dark_and_Camouflaged_genes.

23

24 **Discussion**

1 While researchers have known for years that dark regions exist in standard short-read sequencing data, little
2 work has been done to characterize the breadth of the issue, and to develop possible solutions until more
3 financially-feasible long-read sequencing options are available. Short-read sequencing is unable to adequately
4 address camouflaged regions because the reads cannot fully span camouflaged regions to properly align
5 homologous nucleotides. Long-read sequencing technologies, such as those from 10x Genomics (synthetic
6 long reads), Oxford Nanopore Technologies (ONT), and Pacific Biosciences (PacBio) have the potential to
7 address many camouflaged regions because these technologies have median read lengths measured in
8 thousands of nucleotides, rather than only 100-300 nucleotides from standard short-read sequencing
9 technologies (e.g., Illumina). Recent work has even demonstrated that mappable ONT reads can exceed two
10 million nucleotides (e.g, 2272580) [53, 54], showing future potential for addressing large camouflaged regions.

L1

L2 In this study, we systematically characterized dark and camouflaged gene regions and proposed a method to
L3 address most camouflaged regions in long- or short-read sequencing data. Our solution is specifically
L4 applicable to camouflaged regions, not regions that are dark by depth, simply because there are no reads
L5 available in regions that are dark by depth. While our solution is conceptually simple, implementing the
L6 solution systematically was challenging because of many intricate details, including increased zygosity, and
L7 would ideally be integrated into the original alignment and variant-calling process. While the original
L8 implementation was challenging, we provide the resulting .bed files for both GRCh37 and GRCh38 that are
L9 necessary to rescue mutations from camouflaged regions in any human re-sequencing dataset
L0 (https://github.com/mebbert/Dark_and_Camouflaged_genes). We also provide all of our data and source
L1 code. The .bed files and source code should make implementing our method relatively straightforward for
L2 other groups. As a proof of concept, we were able to rescue approximately 4622 variants in the ADSP dataset
L3 from 147 sets of camouflaged gene regions, which are spread across 501 camouflaged genes. Included in

1 these rescued mutations is a ten-nucleotide frameshift deletion in *CR1* found in five ADSP cases and zero
2 controls.
3
4 The number of genes affected by dark and camouflaged regions was surprisingly high. We identified 37873
5 total dark regions across 5857 gene bodies, nearly 4000 of which were protein coding genes. Exactly 28751 of
6 the dark regions were intronic and 2657 were in protein-coding exons (CDS). Others were in pseudogenes
7 (1134) and lincRNAs (732). While most of the dark regions were non-coding (e.g., intronic), these regions may
8 still harbor important mutations that drive or modify human diseases. For example, there are many examples
9 of mutations in non-coding regions driving disease, including repeat expansions [1, 55–62], splice-site
10 mutations (these may be intronic or exonic) [63–77], and regulatory mutations (e.g., UTR regions) [78–87].
11 There are also many lincRNAs associated with disease [88–97].
12
13 There are many patients with diseases known to be genetically inherited that remain genetically unexplained
14 because the patients do not have any of the known mutations. Many of the genes we identified as being at
15 least partially dark are known to be involved in numerous diseases, including Alzheimer's disease, ALS, SMA,
16 hemophilia A, autism spectrum disorder, schizophrenia, and others; functional mutations that modify disease
17 likely lie in some of these dark and camouflaged regions. For example, *SMN1* and *SMN2* are mostly dark
18 (camouflaged) and are known to harbor mutations that cause disease [63, 65–67]. *CR1* is another dark gene
19 that is 26.5% dark CDS, being camouflaged to itself, and is strongly implicated in Alzheimer's disease. In fact,
20 the *CR1* camouflaged region includes the C3b and C4b protein binding sites, repeated several times.
21 Interestingly, the *C4B* gene (encodes the C4b protein) is also 72.8% dark CDS (camouflaged) and may be
22 involved in disease [98, 99]. We are confident that rescuing mutations from camouflaged regions will have a
23 meaningful impact on disease research, and may explain some of the missing heritability of Alzheimer's
24 disease [18, 100–102] and other diseases.

1

2 A large number of gene bodies (494) were 100% dark, which means they are entirely overlooked in standard
3 whole-exome, whole-genome, and RNA sequencing studies [10]. Additionally, more than 1500 gene bodies, or
4 nearly 27%, were at least 25% dark and more than 2000 (34.9%) were at least 5% dark; of these, 628 protein-
5 coding genes were at least 5% dark within CDS regions. Understanding what role these genes play in human
6 health and disease will require being able to resolve them in DNA and RNA sequencing experiments.

7

8 A critical decision for future large-scale sequencing projects will be regarding which long-read technology is
9 ideal to maximize the probability of identifying functional mutations driving disease. Unfortunately, the
10 answer is not clear, as each technology has its pros and cons. Based on our results, the ONT platform
11 performed best, overall, resolving 71.4% of dark gene-body regions. Current costs will likely be prohibitive for
12 large studies, however. The 10x Genomics platform resolved 66.3% of dark gene-body regions, when
13 compared to standard Illumina sequencing. PacBio resolved 49.0% of dark gene-body regions. Even increasing
14 Illumina read lengths from 100 to 250 made a sizeable difference, overall, resolving 21.1% of dark gene-body
15 regions. Both the PacBio and ONT data used in this study had shorter median read lengths than expected,
16 suggesting both technologies can likely perform better than our estimates.

17

18 Focusing only on CDS regions, there were 2757 dark CDS regions across 744 protein-coding genes, based on
19 Illumina 100-nucleotide read lengths. ONT outperformed other long-read technologies, resolving 81.8% of
20 dark CDS regions. PacBio and 10x Genomics resolved 66.6% and 54.9%, respectively. We found that 10x
21 Genomics performed well in the *SMN1* and *SMN2* genes (Figure 7), attaining consistently deep, high-quality
22 coverage throughout. Both ONT and PacBio coverage declined in the interior regions of the genes. In other
23 cases, such as *CR1* and *NEB*, 10x Genomics was unable to improve on standard Illumina sequencing, but
24 PacBio and ONT were able to largely resolve the region—albeit requiring higher than normal sequencing

1 depth. We believe that 10x Genomics can correct the issues we observed in *CR1* and *NEB*, by implementing a
2 more sophisticated version of our method that also incorporates evidence from their synthetic long-read
3 technology.

4

5 Whether each technology is able to reliably resolve dark and camouflaged regions is an important
6 consideration for choosing the best long-read technology, but we should also consider how reliably each
7 technology is able to resolve structural mutations. In a previous study, we tested how well ONT and PacBio are
8 able to traverse challenging repeat expansions, and whether they are amenable to genetic discovery [1]. We
9 found that both technologies are well-suited, but we have not assessed performance of the 10x Genomics
10 platform across long repeat expansions.

11

12 The primary challenge with ONT and PacBio long-read sequencing is, of course, the high error rate, which can
13 be overcome through deeper sequencing because errors in ONT and PacBio sequencing are mostly random
14 [103, 104]. Ultimately, we are confident that, as long-read error rates improve, and costs continue to decline,
15 long-read technologies will be the preferred sequencing choice for large-scale sequencing projects, especially
16 when considering structural mutations.

17

18 We identified dark and camouflaged regions in this study by averaging data across ten males with deep
19 Illumina whole-genome sequencing, using 100-nucleotide read lengths. We assessed how well long-read
20 sequencing technologies (PacBio, ONT, and 10X genomics) resolve these regions, but our measurements
21 should only be considered estimates. While long-read sequencing technologies are becoming more common,
22 we were unable to find more than one male individual for each long-read technology; we needed male
23 samples to assess all chromosomes, including the Y chromosome. Additionally, the samples we used for each
24 long-read technology were sequenced at a much higher depth than is currently typical for a re-sequencing

1 effort, which is likely over estimating the number of dark regions they resolve for the average use case. Our
2 measurements should be a reasonable estimate of reality, however, and future analyses will be able to refine
3 our estimates.

4

5 We used whole-genome sequencing to assess dark and camouflaged regions, but this problem is magnified in
6 whole-exome data, which many large-scale sequencing studies are based on, either completely, or in part.

7 Whole-exome data are typically generated using even shorter read lengths. They are also generally based on
8 capture, which means certain exons are not fully represented. *APOE* is a prime example, where it is typically
9 well-covered in whole-genome data, but a portion is dark in whole-exome data (Supplemental Figure 13).

l0 With *APOE* harboring the largest genetic risk factors for Alzheimer's disease, it is important to properly
l1 characterize the entire gene.

l2

l3 In this study, we characterized dark and camouflaged gene bodies, and demonstrated several disease-relevant
l4 genes where a significant portion is dark in standard short-read sequencing data, including *SMN1* and *SMN2*,
l5 *CR1*, and sometimes even *APOE*. We also identified a rare ten-nucleotide frameshift deletion in *CR1* that is
l6 found only in five ADSP cases and zero controls, as a proof of principle (Figure 8d). Using our method (Figure
l7 8), we were able to determine that the frameshift deletion is in one of exons 10, 18, or 26. With *CR1* being a
l8 top Alzheimer's disease gene without any known functional mutations, we believe it will be important to
l9 assess this mutation in a large cohort, to determine whether it plays a role in disease development and
l0 progression. We have also proposed a solution to address most camouflaged genes in sequencing data, and
l1 believe that our approach has the potential to identify functional mutations that are influencing development
l2 across a range of diseases, but are currently entirely overlooked by standard short-read sequencing
l3 approaches.

l4

1 Conclusion

2 There remain thousands of potentially important genomic regions that are overlooked with short-read
3 sequencing, but are largely resolved by long-read technologies. While these regions represent only a small
4 portion of the entire genome or exome, many of these regions are known to be important in human health
5 and disease. Equally important, however, is that the impact of many other genes is entirely unknown because
6 they are 100% dark. We presented a method that can resolve most camouflaged regions that we believe will
7 help researchers identify mutations that are involved in disease. As a proof of principle, we rescued
8 approximately 4622 variants in the ADSP dataset, including a ten-nucleotide frameshift mutation in *CR1*. While
9 we cannot formally assess the *CR1* frameshift mutation in Alzheimer's disease (insufficient sample-size), we
10 believe it is worth investigating in a larger cohort. In the long-term, we believe long-read sequencing
11 technologies will be the best solution for resolving dark and camouflaged regions.

12

13 Methods

14 Sample selection and preparation

15 To identify dark and camouflaged regions, and to assess how well other technologies address them, we
16 selected samples from each technology and read length. All samples were aligned to hg19/GRCh37. To assess
17 dark and camouflaged regions in standard Illumina sequencing with 100-nucleotide read lengths, we selected
18 ten unrelated male control samples from the Alzheimer's Disease Sequencing Project (ADSP) where deep
19 whole-genome sequencing had been performed by randomly selecting one male from ten random families. All
20 ten males were from either the "Health/Medical/Biomedical" (HMB-IRB) or "Health/Medical/Biomedical" for
21 non-profit organizations (HMB-IRB-NPU) consent groups, indicated as groups C1 and C2 in the ADSP pedigree
22 files (available through dbGAP). We selected samples from the ADSP because we required samples that met
23 the following criteria: (1) had been sequenced using standard paired-end Illumina sequencing with 100-

1 nucleotide read lengths, (2) had been sequenced with a median depth >30x, and (3) were publicly available.
2 Median genome-wide read depths ranged from 35.4x to 42.9x, with a median of 39.4x. Samples were
3 prepared and sequenced as part of the ADSP [49]. These samples were aligned using BWA (v0.5.9). We could
4 not find samples from the 1000 Genomes Project [24] that met these criteria; sequencing depths were either
5 too shallow, or read lengths were too long or short. The ADSP sample IDs we used were: A-CUHS-CU000406,
6 A-CUHS-CU002997, A-CUHS-CU000779, A-CUHS-CU000208, A-CUHS-CU001010, A-CUHS-CU002031, A-CUHS-
7 CU002707, A-CUHS-CU003023, A-CUHS-CU003090, A-CUHS-CU003128.

8

9 To assess dark and camouflaged regions in samples sequenced using Illumina 250-nucleotide read lengths, we
10 selected ten samples from the 1000 Genomes Project that had been sequenced with 250-nucleotide read
11 lengths, and had a median depth >30x. All ten samples were aligned using BWA (v 0.7.5a-r428) [2, 11–13].
12 Median genome-wide read depths ranged from 39.3 to 52.6, with a median of 48.9x. Sample IDs for the
13 Illumina 250-nucleotide read lengths were: NA20845
14 (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/NA20845/high_coverage_alignment/), HG01112
15 (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/HG01112/high_coverage_alignment/), HG01583
16 (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/HG01583/high_coverage_alignment/), HG01051
17 (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/HG01051/high_coverage_alignment/), HG03742
18 (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/HG03742/high_coverage_alignment/), HG00096
19 (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/HG00096/high_coverage_alignment/), HG01565
20 (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/HG01565/high_coverage_alignment/), HG01879
21 (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/HG01879/high_coverage_alignment/), HG01500
22 (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/HG01500/high_coverage_alignment/), and HG03006
23 (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/HG03006/high_coverage_alignment/).

24

1 We also selected samples generated using the 10x Genomics synthetic long-read sequencing platform, and
2 ONT and PacBio long-read sequencing platforms that were either prepared by, and publicly available from the
3 respective company, or prepared using standard practice. Specifically, we downloaded HG00512 raw FASTQ
4 data from 10x Genomics (<https://support.10xgenomics.com/de-novo-assembly/datasets/1.1.0/msHG00512>;
5 http://s3-us-west-2.amazonaws.com/10x.files/samples/assembly/2.1.0/chi/chi_fastqs.tar) and aligned it
6 according to 10x Genomics' standard practices. We used longranger (v2.2.2) and aligned to GRCh37
7 (longranger wgs --id HG00512 --description="Han Chinese" --sex="male" --
8 fastqs=chi/HNKHFCCXX,chi/HWHFTCCXX/ --reference="10x-b37-2.1.0/" --jobmode=sge --mempercore=125 --
9 downsample=385). Median depth for HG00512 was 52x, after downsampling. For ONT, we downloaded the
10 final Cliveome v2 from ONT's official GitHub page (<http://cliveo.me/>; <https://github.com/nanoporetech/ONT-HG1/blob/master/CONTENTS.md>), which was prepared by ONT. Cliveome v2 was sequenced to a median
11 depth of 36x. To increase the median read depth to more closely match those of other technologies, we
12 merged reads from HG002 (https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/Ultralong_OxfordNanopore/com
13 bined 2018-08-10/HG002_ONTrel2_16x_RG_HP10xtrioRTG.cram) [105, 106] and aligned using minimap2
14 [107] (ALIGN_OPTS="x map-pb -a --eqx -L -O 5,56 -E 4,1 -B 5 --secondary=no -z 400,50 -r 2k -Y";
15 REF=g1kv37/g1kv37.fa; minimap2 -d \${REF}.mmi \${ALIGN_OPTS} \${REF}; minimap2 \${ALIGN_OPTS} -a
16 \${REF}.mmi <reads.fq> | samtools view -T \${REF} -F 2308 > output_file). The merged sample had 46x median
17 depth. We used the same alignment options recommended for PacBio because we found the recommended
18 'map-ont' option in minimap2 performed substantially worse. We used PacBio data generated from HG005
19 (ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/ChineseTrio/HG005_NA24631_son/MtSinai_PacBio/PacBio_minimap2_b
20 [am/](#)) [105], which was sequenced to a median depth of 50x and aligned using minimap2 [107] (pbsv fasta
21 [movie].subreads.bam | minimap2 -t 8 -x map-pb -a --eqx -L -O 5,56 -E 4,1 -B 5 --secondary=no -z 400,50 -r 2k -

1 Y

2 ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/phase2_reference_assembly_sequence/hs37d

3 <5.fa.gz> - | samtools sort > HG005_PacBio_GRCh37.bam). Neither the ONT nor the PacBio alignments include
4 secondary alignments.

5

6 Identifying dark and camouflaged gene body regions

7 To identify dark and camouflaged gene body regions in standard Illumina 100-nucleotide read length data, we
8 first scanned all ten ADSP whole-genome sequence samples for genomic positions that met either of the
9 following criteria: (1) had <5 reads, and (2) had $\geq 90\%$ of reads with a mapping quality (MAPQ) <10. We then
10 averaged the depth and count of low MAPQ reads across all samples for each position. We used strict cutoffs
11 to identify regions that are clearly dark, but there are many additional regions that fall just beyond our
12 thresholds. This analysis was performed using the Dark Region Finder (DRF;

13 <https://github.com/mebbert/DarkRegionFinder>; mapq=9; dark_mass=90; camo_mass=50; dark_depth=5; java
14 -jar -Xmx20g CamoGeneFinder.jar -i <sample>.bam --human-ref genome.fa --min-region-size 1 --camo-mapq-
15 threshold \$mapq --min-dark-mapq-mass \$dark_mass --min-camo-mapq-mass \$camo_mass --dark-depth
16 \$dark_depth --camo-bed-output <sample>-camo-dark_depth_\${dark_depth}-dark_mass_\${dark_mass}-
17 camo_mass_\${camo_mass}-mapq_\${mapq}.b37.bed --dark-bed-output <sample>-dark-
18 dark_depth_\${dark_depth}-dark_mass_\${dark_mass}.b37.bed --incomplete-bed-output <sample>-
19 incomplete.b37.bed). Any position that met either criteria was considered dark and categorized as either dark
20 by depth or dark by mapping quality. We then limited the dark regions to gene bodies by intersecting dark
21 regions identified by Dark Region Finder with Ensembl's GRCh37 build 87 gene annotations. We converted the
22 transcript-level annotations to gene-level annotations using bedtools [108] and custom scripts that are
23 available. Any dark region that spanned a gene body element region (e.g., intron-exon boundary) was split into
24 two separate dark regions so we could estimate the number of dark bases in each type of gene body region

1 (e.g., introns, exons, UTRs, etc.). For most analyses, we only included dark regions with ≥ 20 contiguous bases.
2 The only exception is for Supplemental Tables 1, 3, 5, 7, 9, 12, and 14, where we calculate total percentage of
3 each gene body that is dark, in which we include all dark positions. To identify camouflaged regions,
4 specifically, we used BLAT [26] to identify all genomic regions that were highly similar to any given gene body
5 region that was dark by mapping quality. Any region that was $\geq 98\%$ identical (-minIdentity = 98), and that was
6 considered dark ($\geq 90\%$ of reads with MAPQ < 10), was considered a match. We generated .bed files for
7 GRCh37 using this method. We also converted the GRCh37 .bed file to GRCh38 using a custom script, based
8 off the Ensembl build 87 GRCh38 gene annotations. All code and .bed files can be found at
9 https://github.com/mebbert/Dark_and_Camouflaged_genes.

L0

L1 **Statistics**

L2 We quantified the percentage of each gene body that was dark by summing the total number of dark bases in
L3 the gene (i.e., between the 5'UTR to the 3'UTR start and end, respectively) and dividing by the total number of
L4 bases in the gene. We similarly calculated the percentage of intronic, exonic (including CDS and UTR), and only
L5 CDS exons by dividing the total number of dark bases in each category within the gene by the total number of
L6 bases within that category. We performed these calculations for data based on Illumina 100-nucleotide reads
L7 for all dark regions combined (Supplemental Tables 1-2), dark by depth only (Supplemental Tables 14-15), dark
L8 by mapping quality (Supplemental Tables 16-17), and only camouflaged regions (Supplemental Tables 12-13).
L9 We performed identical calculations for the samples from Illumina 250-nucleotide read length data, 10x
L0 Genomics, ONT, and PacBio (Supplemental Tables 3-10, 18-41). We identified diseases that were known to be
L1 associated with genes that are at least 5% dark CDS by searching for mutations in the Human Gene Mutation
L2 Database (HGMD) [30].

L3

1 Coverage plots from gnomAD data were obtained from gnomAD-old.broadinstitute.org [33]. We used the old
2 version because the current version of gnomAD (accessed December 2018) does not allow the user to view
3 median read depths, nor the percentage of samples with greater than a given coverage depth. Sequence
4 pileups in representative samples were generated using the Integrative Genomics Viewer (IGV) [109], where
5 reads with a MAPQ < 10 were filtered, and insertions, deletions, and mismatches were not shown. Karyotype
6 plots showing genomic locations for dark and camouflaged regions were generated using KaryotypeR (v1.6.2)
7 [110] in R (v3.5.1). Bar plots were made using ggplot2 (v3.0.0). Pathway analyses and resulting plots were
8 generated using Metascape (accessed December 2018) [111]. Word clouds were generated at
9 wordclouds.com. Gene schematics were generated using the Gene Structure Display Server (GSDS; v2) [112].

L0

L1 We performed an enrichment analysis to assess whether genes that are $\geq 5\%$ dark CDS are enriched for specific
L2 diseases. Because we identified 75 genes that have a known mutation associated with disease, and that are
L3 $\geq 5\%$ dark CDS, we randomly selected 75 genes from the with known HGMD mutations and measured the
L4 number of genes with known mutation associated with each disease. We repeated this process 10000 times
L5 and used the following metric as our enrichment score: $-10 * \log_{10}(\text{empirical_pvalue})$, rounded to the nearest
L6 whole number.

L7

L8 **Screening ADSP for functional *CR1* mutations in camouflaged region**

L9 After discovering that more than 25% of the *CR1* gene's CDS is camouflaged, we screened all ADSP samples for
L0 rare functional mutations that could play a role in Alzheimer's disease development and progression by
L1 applying our proposed method (Figure 8). To apply our method, we extracted all reads with a mapping quality
L2 (MAPQ) < 10 from each camouflaged region within *CR1*, and from each of the respective camouflage mate
L3 regions, using samtools and the GRCh37 .bed file we generated that identifies all camouflaged regions. An
L4 example of camouflaged mate regions in *CR1* includes exons 10, 18, and 26, which are identical in the

1 reference genome (Figure 8). As previously mentioned, *CR1* is a special case that is camouflaged by regions
2 duplicated within itself, rather than being camouflaged by a different gene; thus, we knew that any mutations
3 we discovered would be from *CR1*. Our approach works the same regardless of whether a gene is camouflaged
4 by itself or another gene, but we mention that *CR1* is camouflaged by itself, for interest. After extracting reads
5 from each camouflaged region, using the .bed file we provide, we then masked all camouflaged regions within
6 *CR1* in the reference genome, except for one from each set of camouflaged mates. For example, between
7 exons 10, 18, and 26, we masked exons 18 and 26 in the reference genome, allowing reads from all three
8 exons to align only to exon 10; without competing camouflaged regions to confuse the aligner, all reads from
9 exons 10, 18, and 26 mapped to exon 10 with high quality. Masking regions of the reference genome simply
10 means to change nucleotides to an unmappable character (usually 'N'), to prevent any reads from aligning to
11 that region.

12

13 After aligning all reads to a single region within each set of camouflaged regions, we were able to perform
14 standard variant calling using the GATK HaplotypeCaller [25], with one exception: instead of treating each
15 camouflaged region as diploid, we increased the ploidy setting in HaplotypeCaller according to the number of
16 copies within a given set of camouflaged regions. Referring again to our *CR1* example, because there are three
17 regions (exons 10, 18, and 26), we set the HaplotypeCaller ploidy to hexaploid. Increasing the ploidy is
18 essential for increased sensitivity, since the number of reads harboring a given variant—which only originate
19 from one of the camouflaged regions—will be overwhelmed by reads from the others, thus preventing the
20 variant caller from identifying the mutation under the assumption that the data are from a diploid region. In
21 other words, if a mutation exists in exon 26, we would expect only approximately 1/6th of reads from exons
22 10, 18, and 26 to harbor that mutation, rather than approximately 1/2. Because the ADSP is mostly exome
23 data, we limited HaplotypeCaller to CDS exons only. According to the current ADSP phenotype data, one of the

1 samples harboring the *CR1* frameshift mutation is a control. The individual has since been officially diagnosed
2 with Alzheimer's disease, however.

3

4 Abbreviations

5 MAPQ: mapping quality; CDS: coding sequence; ALS: amyotrophic lateral sclerosis; FTD: frontotemporal
6 dementia; PacBio: Pacific Biosciences; ONT: Oxford Nanopore Technologies; ADSP: Alzheimer's Disease
7 Sequencing Project;

8

9 Declarations

10 Ethics approval and consent to participate

11 The Mayo Clinic Institutional Review Board (IRB) approved all procedures for this study and we followed all
12 appropriate protocols.

13

14 Consent for publication

15 All participants were properly consented for this study.

16

17 Availability of data and materials

18 The ADSP dataset supporting the conclusions of this article (including the whole-genome and whole-exome
19 data) are available in the National Institute on Aging Genetics of Alzheimer's Disease Storage (NIAGADS) site,
20 and may be requested therein: <https://www.niagads.org/adsp/>. Public links to the high-coverage whole-
21 genome data from the 1000 Genomes Project (illumina 250bp read lengths) are listed in the Methods. Raw
22 data from the 10x Genomics sample (HG00512) used within this article was downloaded directly from the 10x
23 Genomics website at: <https://support.10xgenomics.com/de-novo-assembly/datasets/2.1.0/chi>. The Cliveome2

1 data was downloaded from the official Oxford Nanopore Technologies GitHub page:
2 <https://github.com/nanoporetech/ONT-HG1/blob/master/>. The PacBio data used in this publication (HG005)
3 was downloaded from ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/ChineseTrio/HG005_NA24631_son/MtSinai_PacBio/PacBio_minimap2_bam/HG005_PacBio_GRCh37.bam.
4
5
6

7 All scripts are available at: https://github.com/mebbert/Dark_and_Camouflaged_genes.
8
9

9 Competing interests

10 All authors declare they have no conflicts of interest.
11
12

12 Funding

13 This work was supported by the PhRMA Foundation [RSGTMT17 to M.E.]; the Ed and Ethel Moore Alzheimer's
14 Disease Research Program of Florida Department of Health [8AZ10 and 9AZ08 to M.E., and 6AZ06 to J.F.]; the
15 Muscular Dystrophy Association (M.E.); the National Institutes of Health [NS094137 to J.F., AG047327 to J.F.,
16 AG049992 to J.F., NS097261 to R.R., NS097273 to L.P., NS084528 to L.P., NS084974 to L.P., NS099114 to L.P.,
17 NS088689 to L.P., NS093865 to L.P.]; Department of Defense [ALSRP AL130125 to L.P.]; Mayo Clinic
18 Foundation (L.P. and J.F.); Mayo Clinic Center for Individualized Medicine (L.P. and J.F.); Amyotrophic Lateral
19 Sclerosis Association (M.E., L.P.); Robert Packard Center for ALS Research at Johns Hopkins (L.P.) Target ALS
20 (L.P.); Association for Frontotemporal Degeneration (L.P.); GHR Foundation (J.F.); and the Mayo Clinic Gerstner
21 Family Career Development Award (J.F.).
22

23 Authors' contributions

1 ME, LP, and JF developed and designed the study, and wrote the manuscript. ME and TJ performed all
2 analyses. JR, SY, NT, YA, VB, EL, DK, PC, LP, PR, JK, MC, OA, and RR contributed important intellectual ideas and
3 feedback. SY, YA, NT, OA, and RR helped obtain data. KW and JS performed experiments. EL, DK, and PC
4 provided samples. All authors read and approved the final manuscript.

5

6 **Acknowledgements**

7 Biological samples and Associated Phenotypic Data used in primary data analyses were stored at Principal
8 Investigators' institutions, and at the National Cell Repository for Alzheimer's Disease (NCRAD) at Indiana
9 University funded by NIA. Associated Phenotypic Data used in primary and secondary data analyses were
10 provided by Principal Investigators, the NIA funded Alzheimer's Disease Centers (ADCs), and the National
11 Alzheimer's Coordinating Center (NACC) and stored at Principal Investigators' institutions, NCRAD, and at the
12 National Institute on Aging Alzheimer's Disease Data Storage Site (NIAGADS) at the University of Pennsylvania,
13 funded by NIA. Contributors to the Genetic Analysis Data included Principal Investigators on projects that were
14 individually funded by NIA, other NIH institutes, private U.S. organizations, or foreign governmental or
15 nongovernmental organizations.

16

17 The Alzheimer's Disease Sequencing Project (ADSP) is comprised of two Alzheimer's Disease (AD) genetics
18 consortia and three National Human Genome Research Institute (NHGRI) funded Large Scale Sequencing and
19 Analysis Centers (LSAC). The two AD genetics consortia are the Alzheimer's Disease Genetics Consortium
20 (ADGC) funded by NIA (U01 AG032984), and the Cohorts for Heart and Aging Research in Genomic
21 Epidemiology (CHARGE) funded by NIA (R01 AG033193), the National Heart, Lung, and Blood Institute (NHLBI),
22 other National Institute of Health (NIH) institutes and other foreign governmental and non-governmental
23 organizations. The Discovery Phase analysis of sequence data is supported through UF1AG047133 (to Drs.
24 Schellenberg, Farrer, Pericak-Vance, Mayeux, and Haines); U01AG049505 to Dr. Seshadri; U01AG049506 to Dr.

1 Boerwinkle; U01AG049507 to Dr. Wijsman; and U01AG049508 to Dr. Goate and the Discovery Extension Phase
2 analysis is supported through U01AG052411 to Dr. Goate, U01AG052410 to Dr. Pericak-Vance and U01
3 AG052409 to Drs. Seshadri and Fornage. Data generation and harmonization in the Follow-up Phases is
4 supported by U54AG052427 (to Drs. Schellenberg and Wang).

5

6 The ADGC cohorts include: Adult Changes in Thought (ACT), the Alzheimer's Disease Centers (ADC), the
7 Chicago Health and Aging Project (CHAP), the Memory and Aging Project (MAP), Mayo Clinic (MAYO), Mayo
8 Parkinson's Disease controls, University of Miami, the Multi-Institutional Research in Alzheimer's Genetic
9 Epidemiology Study (MIRAGE), the National Cell Repository for Alzheimer's Disease (NCRAD), the National
10 Institute on Aging Late Onset Alzheimer's Disease Family Study (NIA-LOAD), the Religious Orders Study (ROS),
11 the Texas Alzheimer's Research and Care Consortium (TARC), Vanderbilt University/Case Western Reserve
12 University (VAN/CWRU), the Washington Heights-Inwood Columbia Aging Project (WHICAP) and the
13 Washington University Sequencing Project (WUSP), the Columbia University Hispanic-Estudio Familiar de
14 Influencia Genetica de Alzheimer (EFIGA), the University of Toronto (UT), and Genetic Differences (GD).

15

16 The CHARGE cohorts are supported in part by National Heart, Lung, and Blood Institute (NHLBI) infrastructure
17 grant HL105756 (Psaty), RC2HL102419 (Boerwinkle) and the neurology working group is supported by the
18 National Institute on Aging (NIA) R01 grant AG033193. The CHARGE cohorts participating in the ADSP include
19 the following: Austrian Stroke Prevention Study (ASPS), ASPS-Family study, and the Prospective Dementia
20 Registry-Austria (ASPS/PRODEM-Aus), the Atherosclerosis Risk in Communities (ARIC) Study, the
21 Cardiovascular Health Study (CHS), the Erasmus Rucphen Family Study (ERF), the Framingham Heart Study
22 (FHS), and the Rotterdam Study (RS). ASPS is funded by the Austrian Science Fond (FWF) grant number
23 P20545-P05 and P13180 and the Medical University of Graz. The ASPS-Fam is funded by the Austrian Science
24 Fund (FWF) project I904, the EU Joint Programme - Neurodegenerative Disease Research (JPND) in frame of

1 the BRIDGET project (Austria, Ministry of Science) and the Medical University of Graz and the Steiermärkische
2 Krankenanstalten Gesellschaft. PRODEM-Austria is supported by the Austrian Research Promotion agency
3 (FFG) (Project No. 827462) and by the Austrian National Bank (Anniversary Fund, project 15435. ARIC research
4 is carried out as a collaborative study supported by NHLBI contracts (HHSN268201100005C,
5 HHSN268201100006C, HHSN268201100007C, HHSN268201100008C, HHSN268201100009C,
6 HHSN268201100010C, HHSN268201100011C, and HHSN268201100012C). Neurocognitive data in ARIC is
7 collected by U01 2U01HL096812, 2U01HL096814, 2U01HL096899, 2U01HL096902, 2U01HL096917 from the
8 NIH (NHLBI, NINDS, NIA and NIDCD), and with previous brain MRI examinations funded by R01-HL70825 from
9 the NHLBI. CHS research was supported by contracts HHSN268201200036C, HHSN268200800007C,
10 N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086, and
11 grants U01HL080295 and U01HL130114 from the NHLBI with additional contribution from the National
12 Institute of Neurological Disorders and Stroke (NINDS). Additional support was provided by R01AG023629,
13 R01AG15928, and R01AG20098 from the NIA. FHS research is supported by NHLBI contracts N01-HC-25195
14 and HHSN268201500001I. This study was also supported by additional grants from the NIA (R01s AG054076,
15 AG049607 and AG033040 and NINDS (R01 NS017950). The ERF study as a part of EUROSPAN (European
16 Special Populations Research Network) was supported by European Commission FP6 STRP grant number
17 018947 (LSHG-CT-2006-01947) and also received funding from the European Community's Seventh
18 Framework Programme (FP7/2007-2013)/grant agreement HEALTH-F4-2007-201413 by the European
19 Commission under the programme "Quality of Life and Management of the Living Resources" of 5th
20 Framework Programme (no. QLG2-CT-2002-01254). High-throughput analysis of the ERF data was supported
21 by a joint grant from the Netherlands Organization for Scientific Research and the Russian Foundation for
22 Basic Research (NWO-RFBR 047.017.043). The Rotterdam Study is funded by Erasmus Medical Center and
23 Erasmus University, Rotterdam, the Netherlands Organization for Health Research and Development
24 (ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and

1 Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII), and the municipality
2 of Rotterdam. Genetic data sets are also supported by the Netherlands Organization of Scientific Research
3 NWO Investments (175.010.2005.011, 911-03-012), the Genetic Laboratory of the Department of Internal
4 Medicine, Erasmus MC, the Research Institute for Diseases in the Elderly (014-93-015; RIDE2), and the
5 Netherlands Genomics Initiative (NGI)/Netherlands Organization for Scientific Research (NWO) Netherlands
6 Consortium for Healthy Aging (NCHA), project 050-060-810. All studies are grateful to their participants,
7 faculty and staff. The content of these manuscripts is solely the responsibility of the authors and does not
8 necessarily represent the official views of the National Institutes of Health or the U.S. Department of Health
9 and Human Services.

l0

l1 The four LSACs are: the Human Genome Sequencing Center at the Baylor College of Medicine (U54
l2 HG003273), the Broad Institute Genome Center (U54HG003067), The American Genome Center at the
l3 Uniformed Services University of the Health Sciences (U01AG057659), and the Washington University Genome
l4 Institute (U54HG003079).

l5

l6 Biological samples and associated phenotypic data used in primary data analyses were stored at Study
l7 Investigators institutions, and at the National Cell Repository for Alzheimer's Disease (NCRAD, U24AG021886)
l8 at Indiana University funded by NIA. Associated Phenotypic Data used in primary and secondary data analyses
l9 were provided by Study Investigators, the NIA funded Alzheimer's Disease Centers (ADCs), and the National
l0 Alzheimer's Coordinating Center (NACC, U01AG016976) and the National Institute on Aging Genetics of
l1 Alzheimer's Disease Data Storage Site (NIAGADS, U24AG041689) at the University of Pennsylvania, funded by
l2 NIA, and at the Database for Genotypes and Phenotypes (dbGaP) funded by NIH. This research was supported
l3 in part by the Intramural Research Program of the National Institutes of health, National Library of Medicine.
l4 Contributors to the Genetic Analysis Data included Study Investigators on projects that were individually

1 funded by NIA, and other NIH institutes, and by private U.S. organizations, or foreign governmental or
2 nongovernmental organizations.

3

4

5

6 References

1. Ebbert MTW, Farrugia SL, Sens JP, Jansen-West K, Gendron TF, Prudencio M, et al. Long-read sequencing across the C9orf72 “GGGGCC” repeat expansion: implications for clinical use and genetic discovery efforts in human disease. *Mol Neurodegener.* 2018;13:46. doi:10.1186/s13024-018-0274-4.
2. Zheng-Bradley X, Streeter I, Fairley S, Richardson D, Clarke L, Flicek P, et al. Alignment of 1000 Genomes Project reads to reference assembly GRCh38. *Gigascience.* 2017;6:1–8. doi:10.1093/gigascience/gix038.
3. Callaway E. Human brain shaped by duplicate genes. *Nature.* 2012. doi:10.1038/nature.2012.10584.
4. Charrier C, Joshi K, Coutinho-Budd J, Kim J-E, Lambert N, de Marchena J, et al. Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation. *Cell.* 2012;149:923–35. doi:10.1016/j.cell.2012.03.034.
5. Dennis MY, Nuttle X, Sudmant PH, Antonacci F, Graves TA, Nefedov M, et al. Evolution of human-specific neural SRGAP2 genes by incomplete segmental duplication. *Cell.* 2012;149:912–22. doi:10.1016/j.cell.2012.03.033.
6. Karlin S, Brocchieri L. Heat shock protein 60 sequence comparisons: duplications, lateral transfer, and mitochondrial evolution. *Proc Natl Acad Sci USA.* 2000;97:11348–53. doi:10.1073/pnas.97.21.11348.
7. Lin Y, Cheng Y, Jin J, Jin X, Jiang H, Yan H, et al. Genome duplication and gene loss affect the evolution of heat shock transcription factor genes in legumes. *PLoS One.* 2014;9:e102825. doi:10.1371/journal.pone.0102825.
8. Nguyen AD, Gotelli NJ, Cahan SH. The evolution of heat shock protein sequences, cis-regulatory elements, and expression profiles in the eusocial Hymenoptera. *BMC Evol Biol.* 2016;16:15. doi:10.1186/s12862-015-0573-0.
9. Sørensen JG, Kristensen TN, Loeschke V. The evolutionary and ecological role of heat shock proteins. *Ecol Lett.* 2003;6:1025–37. doi:10.1046/j.1461-0248.2003.00528.x.
10. Robert C, Watson M. Errors in RNA-Seq quantification affect genes of relevance to human disease. *Genome Biol.* 2015;16:177. doi:10.1186/s13059-015-0734-x.
11. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics.* 2009;25:1754–60. doi:10.1093/bioinformatics/btp324.
12. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. *Bioinformatics.* 2010;26:589–95. doi:10.1093/bioinformatics/btp698.
13. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. *arXiv.* 2013.
14. Lambert J-C, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. *Nat Genet.* 2009;41:1094–9. doi:10.1038/ng.439.
15. Hollingworth P, Harold D, Sims R, Gerrish A, Lambert J-C, Carrasquillo MM, et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. *Nat Genet.* 2011;43:429–35. doi:10.1038/ng.803.
16. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. *Nat Genet.* 2013;45:1452–8. doi:10.1038/ng.2802.
17. Kauwe JSK, Cruchaga C, Karch CM, Sadler B, Lee M, Mayo K, et al. Fine mapping of genetic variants in BIN1, CLU, CR1 and PICALM for association with cerebrospinal fluid biomarkers for Alzheimer’s disease.

- 1 PLoS One. 2011;6:e15918. doi:10.1371/journal.pone.0015918.
- 2 18. Ridge PG, Hoyt KB, Boehme K, Mukherjee S, Crane PK, Haines JL, et al. Assessment of the genetic
3 variance of late-onset Alzheimer's disease. *Neurobiol Aging*. 2016;41:200.e13-200.e20.
4 doi:10.1016/j.neurobiolaging.2016.02.024.
- 5 19. Ebbert MTW, Ridge PG, Wilson AR, Sharp AR, Bailey M, Norton MC, et al. Population-based analysis of
6 Alzheimer's disease risk alleles implicates genetic interactions. *Biol Psychiatry*. 2014;75:732–7.
7 doi:10.1016/j.biopsych.2013.07.008.
- 8 20. Ridge PG, Ebbert MTW, Kauwe JSK. Genetics of Alzheimer's disease. *Biomed Res Int*.
9 2013;2013:254954. doi:10.1155/2013/254954.
- 10 21. Mahmoudi R, Feldman S, Kissnerli A, Duret V, Tabary T, Bertholon L-A, et al. Inherited and Acquired
11 Decrease in Complement Receptor 1 (CR1) Density on Red Blood Cells Associated with High Levels of
12 Soluble CR1 in Alzheimer's Disease. *Int J Mol Sci*. 2018;19. doi:10.3390/ijms19082175.
- 13 22. Naj AC, Jun G, Beecham GW, Wang L-S, Vardarajan BN, Buros J, et al. Common variants at
14 MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. *Nat Genet*.
15 2011;43:436–41. doi:10.1038/ng.801.
- 16 23. Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, et al. Ensembl 2018. *Nucleic Acids
17 Res*. 2018;46:D754–61. doi:10.1093/nar/gkx1098.
- 18 24. 1000 Genomes Project Consortium, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, et al.
19 An integrated map of genetic variation from 1,092 human genomes. *Nature*. 2012;491:56–65.
20 doi:10.1038/nature11632.
- 21 25. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis
22 Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Res*.
23 2010;20:1297–303. doi:10.1101/gr.107524.110.
- 24 26. Kent WJ. BLAT--the BLAST-like alignment tool. *Genome Res*. 2002;12:656–64. doi:10.1101/gr.229202.
- 25 27. Frankish A, Diekhans M, Ferreira A-M, Johnson R, Jungreis I, Loveland J, et al. GENCODE reference
26 annotation for the human and mouse genomes. *Nucleic Acids Res*. 2018. doi:10.1093/nar/gky955.
- 27 28. Bader GD, Hogue CWV. An automated method for finding molecular complexes in large protein interaction
28 networks. *BMC Bioinformatics*. 2003;4:2.
- 29 29. Carithers LJ, Ardlie K, Barcus M, Branton PA, Britton A, Buia SA, et al. A Novel Approach to High-
30 Quality Postmortem Tissue Procurement: The GTEx Project. *Biopreserv Biobank*. 2015;13:311–9.
31 doi:10.1089/bio.2015.0032.
- 32 30. Stenson PD, Ball EV, Mort M, Phillips AD, Shiel JA, Thomas NST, et al. Human Gene Mutation Database
33 (HGMD): 2003 update. *Hum Mutat*. 2003;21:577–81. doi:10.1002/humu.10212.
- 34 31. Seminary ER, Sison SL, Ebert AD. Modeling Protein Aggregation and the Heat Shock Response in ALS
35 iPSC-Derived Motor Neurons. *Front Neurosci*. 2018;12:86. doi:10.3389/fnins.2018.00086.
- 36 32. Kalmar B, Lu C-H, Greensmith L. The role of heat shock proteins in Amyotrophic Lateral Sclerosis: The
37 therapeutic potential of Arimoclomol. *Pharmacol Ther*. 2014;141:40–54.
38 doi:10.1016/j.pharmthera.2013.08.003.
- 39 33. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding
40 genetic variation in 60,706 humans. *Nature*. 2016;536:285–91. doi:10.1038/nature19057.
- 41 34. Roses AD. Apolipoprotein E alleles as risk factors in Alzheimer's disease. *Annu Rev Med*. 1996;47:387–
400. doi:10.1146/annurev.med.47.1.387.
- 42 35. Roses AD, Saunders AM. APOE is a major susceptibility gene for Alzheimer's disease. *Curr Opin
43 Biotechnol*. 1994;5:663–7. doi:10.1016/0958-1669(94)90091-4.
- 44 36. Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS, et al.
45 Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset
46 familial Alzheimer disease. *Proc Natl Acad Sci USA*. 1993;90:1977–81.
- 47 37. Blauw HM, Barnes CP, van Vugt PWJ, van Rheenen W, Verheul M, Cuppen E, et al. SMN1 gene
48 duplications are associated with sporadic ALS. *Neurology*. 2012;78:776–80.
49 doi:10.1212/WNL.0b013e318249f697.
- 50 38. Corcia P, Camu W, Halimi JM, Vourc'h P, Antar C, Vedrine S, et al. SMN1 gene, but not SMN2, is a risk

- 1 factor for sporadic ALS. *Neurology*. 2006;67:1147–50. doi:10.1212/01.wnl.0000233830.85206.1e.
- 2 39. Rogers J, Cooper NR, Webster S, Schultz J, McGeer PL, Styren SD, et al. Complement activation by beta-
- 3 amyloid in Alzheimer disease. *Proc Natl Acad Sci USA*. 1992;89:10016–20.
- 4 40. Rogers J, Li R, Mastroeni D, Grover A, Leonard B, Ahern G, et al. Peripheral clearance of amyloid beta
- 5 peptide by complement C3-dependent adherence to erythrocytes. *Neurobiol Aging*. 2006;27:1733–9.
- 6 doi:10.1016/j.neurobiolaging.2005.09.043.
- 7 41. Kissnerli A, Tabary T, Cohen JHM, Duret V, Mahmoudi R. High-resolution Melting PCR for Complement
- 8 Receptor 1 Length Polymorphism Genotyping: An Innovative Tool for Alzheimer's Disease Gene
- 9 Susceptibility Assessment. *J Vis Exp*. 2017. doi:10.3791/56012.
- 10 42. Fonseca MI, Chu S, Pierce AL, Brubaker WD, Hauhart RE, Mastroeni D, et al. Analysis of the putative role
- 11 of CR1 in alzheimer's disease: genetic association, expression and function. *PLoS One*. 2016;11:e0149792.
- 12 doi:10.1371/journal.pone.0149792.
- 13 43. Brouwers N, Van Cauwenbergh C, Engelborghs S, Lambert JC, Bettens K, Le Bastard N, et al. Alzheimer
- 14 risk associated with a copy number variation in the complement receptor 1 increasing C3b/C4b binding sites.
- 15 *Mol Psychiatry*. 2012;17:223–33. doi:10.1038/mp.2011.24.
- 16 44. Kucukkilic E, Brookes K, Barber I, Guetta-Baranes T, ARUK Consortium, Morgan K, et al. Complement
- 17 receptor 1 gene (CR1) intragenic duplication and risk of Alzheimer's disease. *Hum Genet*. 2018;137:305–14.
- 18 doi:10.1007/s00439-018-1883-2.
- 19 45. Crane A, Brubaker WD, Johansson JU, Trigunaite A, Ceballos J, Bradt B, et al. Peripheral complement
- 20 interactions with amyloid β peptide in Alzheimer's disease: 2. Relationship to amyloid β immunotherapy.
- 21 *Alzheimers Dement*. 2018;14:243–52. doi:10.1016/j.jalz.2017.04.015.
- 22 46. Kato M, Saitoh S, Kamei A, Shiraishi H, Ueda Y, Akasaka M, et al. A longer polyalanine expansion
- 23 mutation in the ARX gene causes early infantile epileptic encephalopathy with suppression-burst pattern
- 24 (Ohtahara syndrome). *Am J Hum Genet*. 2007;81:361–6. doi:10.1086/518903.
- 25 47. Partington MW, Turner G, Boyle J, Gécz J. Three new families with X-linked mental retardation caused by
- 26 the 428-451dup(24bp) mutation in ARX. *Clin Genet*. 2004;66:39–45. doi:10.1111/j.0009-9163.2004.00268.x.
- 27 48. Zweier C, Sticht H, Aydin-Yaylagül I, Campbell CE, Rauch A. Human TBX1 missense mutations cause
- 28 gain of function resulting in the same phenotype as 22q11.2 deletions. *Am J Hum Genet*. 2007;80:510–7.
- 29 doi:10.1086/511993.
- 30 49. Naj AC, Lin H, Vardarajan BN, White S, Lancour D, Ma Y, et al. Quality control and integration of
- 31 genotypes from two calling pipelines for whole genome sequence data in the Alzheimer's disease sequencing
- 32 project. *Genomics*. 2018. doi:10.1016/j.ygeno.2018.05.004.
- 33 50. Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogeava E, Majounie E, et al. TREM2 variants in
- 34 Alzheimer's disease. *N Engl J Med*. 2013;368:117–27. doi:10.1056/NEJMoa1211851.
- 35 51. Jonsson T, Stefansson H, Steinberg S, Jónsdóttir I, Jonsson PV, Snaedal J, et al. Variant of TREM2
- 36 associated with the risk of Alzheimer's disease. *N Engl J Med*. 2013;368:107–16.
- 37 doi:10.1056/NEJMoa1211103.
- 38 52. Gonzalez Murcia JD, Schmutz C, Munger C, Perkes A, Gustin A, Peterson M, et al. Assessment of TREM2
- 39 rs75932628 association with Alzheimer's disease in a population-based sample: the Cache County Study.
- 40 *Neurobiol Aging*. 2013;34:2889.e11-3. doi:10.1016/j.neurobiolaging.2013.06.004.
- 41 53. Payne A, Holmes N, Rakyan V, Loose M. Whale watching with BulkVis: A graphical viewer for Oxford
- 42 Nanopore bulk fast5 files. *BioRxiv*. 2018. doi:10.1101/312256.
- 43 54. Payne A, Holmes N, Rakyan V, Loose M. BulkVis: a graphical viewer for Oxford nanopore bulk FAST5
- 44 files. *Bioinformatics*. 2018. doi:10.1093/bioinformatics/bty841.
- 45 55. La Spada AR, Taylor JP. Repeat expansion disease: progress and puzzles in disease pathogenesis. *Nat Rev*
- 46 *Genet*. 2010;11:247–58. doi:10.1038/nrg2748.
- 47 56. Orr HT, Chung MY, Banfi S, Kwiatkowski TJ, Servadio A, Beaudet AL, et al. Expansion of an unstable
- 48 trinucleotide CAG repeat in spinocerebellar ataxia type 1. *Nat Genet*. 1993;4:221–6. doi:10.1038/ng0793-221.
- 49 57. Lindblad K, Savontaus ML, Stevanin G, Holmberg M, Digre K, Zander C, et al. An expanded CAG repeat
- 50 sequence in spinocerebellar ataxia type 7. *Genome Res*. 1996;6:965–71.
- 51 58. Squitieri F, Andrew SE, Goldberg YP, Kremer B, Spence N, Zeisler J, et al. DNA haplotype analysis of

- 1 Huntington disease reveals clues to the origins and mechanisms of CAG expansion and reasons for geographic
2 variations of prevalence. *Hum Mol Genet.* 1994;3:2103–14.
- 3 59. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, et al. Expanded
4 GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and
5 ALS. *Neuron.* 2011;72:245–56. doi:10.1016/j.neuron.2011.09.011.
- 6 60. Renton AE, Majounie E, Waite A, Simón-Sánchez J, Rollinson S, Gibbs JR, et al. A hexanucleotide repeat
7 expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. *Neuron.* 2011;72:257–68.
8 doi:10.1016/j.neuron.2011.09.010.
- 9 61. Campuzano V, Montermini L, Moltò MD, Pianese L, Cossée M, Cavalcanti F, et al. Friedreich's ataxia:
10 autosomal recessive disease caused by an intronic GAA triplet repeat expansion. *Science.* 1996;271:1423–7.
11 doi:10.1126/science.271.5254.1423.
- 12 62. Mahadevan M, Tsilfidis C, Sabourin L, Shutler G, Amemiya C, Jansen G, et al. Myotonic dystrophy
13 mutation: an unstable CTG repeat in the 3' untranslated region of the gene. *Science.* 1992;255:1253–5.
- 14 63. Kashima T, Rao N, David CJ, Manley JL. hnRNP A1 functions with specificity in repression of SMN2 exon
15 7 splicing. *Hum Mol Genet.* 2007;16:3149–59. doi:10.1093/hmg/ddm276.
- 16 64. Ward AJ, Cooper TA. The pathobiology of splicing. *J Pathol.* 2010;220:152–63. doi:10.1002/path.2649.
- 17 65. Cartegni L, Hastings ML, Calarco JA, de Stanchina E, Krainer AR. Determinants of exon 7 splicing in the
18 spinal muscular atrophy genes, SMN1 and SMN2. *Am J Hum Genet.* 2006;78:63–77. doi:10.1086/498853.
- 19 66. Kashima T, Manley JL. A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy.
20 *Nat Genet.* 2003;34:460–3. doi:10.1038/ng1207.
- 21 67. Cartegni L, Krainer AR. Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes
22 spinal muscular atrophy in the absence of SMN1. *Nat Genet.* 2002;30:377–84. doi:10.1038/ng854.
- 23 68. Takahara K, Schwarze U, Imamura Y, Hoffman GG, Toriello H, Smith LT, et al. Order of intron removal
24 influences multiple splice outcomes, including a two-exon skip, in a COL5A1 acceptor-site mutation that results
25 in abnormal pro-alpha1(V) N-propeptides and Ehlers-Danlos syndrome type I. *Am J Hum Genet.* 2002;71:451–
26 65. doi:10.1086/342099.
- 27 69. Habara Y, Takeshima Y, Awano H, Okizuka Y, Zhang Z, Saiki K, et al. In vitro splicing analysis showed
28 that availability of a cryptic splice site is not a determinant for alternative splicing patterns caused by +1G->A
29 mutations in introns of the dystrophin gene. *J Med Genet.* 2009;46:542–7. doi:10.1136/jmg.2008.061259.
- 30 70. Anna A, Monika G. Splicing mutations in human genetic disorders: examples, detection, and confirmation.
31 *J Appl Genet.* 2018;59:253–68. doi:10.1007/s13353-018-0444-7.
- 32 71. Zeng L, Liu W, Feng W, Wang X, Dang H, Gao L, et al. A novel donor splice-site mutation of major
33 intrinsic protein gene associated with congenital cataract in a Chinese family. *Mol Vis.* 2013;19:2244–9.
- 34 72. Hori T, Fukao T, Murase K, Sakaguchi N, Harding CO, Kondo N. Molecular basis of two-exon skipping
35 (exons 12 and 13) by c.1248+5g>a in OXCT1 gene: study on intermediates of OXCT1 transcripts in fibroblasts.
36 *Hum Mutat.* 2013;34:473–80. doi:10.1002/humu.22258.
- 37 73. Känsäkoski J, Jääskeläinen J, Jääskeläinen T, Tommiska J, Saarinen L, Lehtonen R, et al. Complete
38 androgen insensitivity syndrome caused by a deep intronic pseudoexon-activating mutation in the androgen
39 receptor gene. *Sci Rep.* 2016;6:32819. doi:10.1038/srep32819.
- 40 74. Fang LJ, Simard MJ, Vidaud D, Assouline B, Lemieux B, Vidaud M, et al. A novel mutation in the
41 neurofibromatosis type 1 (NF1) gene promotes skipping of two exons by preventing exon definition. *J Mol
42 Biol.* 2001;307:1261–70. doi:10.1006/jmbi.2001.4561.
- 43 75. Symoens S, Malfait F, Vlummens P, Hermanns-Lê T, Syx D, De Paepe A. A novel splice variant in the N-
44 propeptide of COL5A1 causes an EDS phenotype with severe kyphoscoliosis and eye involvement. *PLoS One.*
45 2011;6:e20121. doi:10.1371/journal.pone.0020121.
- 46 76. Sanz DJ, Hollywood JA, Scallan MF, Harrison PT. Cas9/gRNA targeted excision of cystic fibrosis-causing
47 deep-intronic splicing mutations restores normal splicing of CFTR mRNA. *PLoS One.* 2017;12:e0184009.
48 doi:10.1371/journal.pone.0184009.
- 49 77. Ramalho AS, Beck S, Penque D, Gonska T, Seydewitz HH, Mall M, et al. Transcript analysis of the cystic
50 fibrosis splicing mutation 1525-1G>A shows use of multiple alternative splicing sites and suggests a putative
51 role of exonic splicing enhancers. *J Med Genet.* 2003;40:e88.

- 1 78. Ridge PG, Karch CM, Hsu S, Arano I, Teerlink CC, Ebbert MTW, et al. Linkage, whole genome sequence,
2 and biological data implicate variants in RAB10 in Alzheimer's disease resilience. *Genome Med.* 2017;9:100.
3 doi:10.1186/s13073-017-0486-1.
- 4 79. Lettice LA, Heaney SJH, Purdie LA, Li L, de Beer P, Oostra BA, et al. A long-range Shh enhancer regulates
5 expression in the developing limb and fin and is associated with preaxial polydactyly. *Hum Mol Genet.*
6 2003;12:1725–35. doi:10.1093/hmg/ddg180.
- 7 80. Emison ES, McCallion AS, Kashuk CS, Bush RT, Grice E, Lin S, et al. A common sex-dependent mutation
8 in a RET enhancer underlies Hirschsprung disease risk. *Nature.* 2005;434:857–63. doi:10.1038/nature03467.
- 9 81. de Vooght KMK, van Wijk R, van Solinge WW. Management of gene promoter mutations in molecular
10 diagnostics. *Clin Chem.* 2009;55:698–708. doi:10.1373/clinchem.2008.120931.
- 11 82. Short PJ, McRae JF, Gallone G, Sifrim A, Won H, Geschwind DH, et al. De novo mutations in regulatory
12 elements in neurodevelopmental disorders. *Nature.* 2018;555:611–6. doi:10.1038/nature25983.
- 13 83. De Gobbi M, Viprakasit V, Hughes JR, Fisher C, Buckle VJ, Ayyub H, et al. A regulatory SNP causes a
14 human genetic disease by creating a new transcriptional promoter. *Science.* 2006;312:1215–7.
15 doi:10.1126/science.1126431.
- 16 84. Grant SF, Reid DM, Blake G, Herd R, Fogelman I, Ralston SH. Reduced bone density and osteoporosis
17 associated with a polymorphic Sp1 binding site in the collagen type I alpha 1 gene. *Nat Genet.* 1996;14:203–5.
18 doi:10.1038/ng1096-203.
- 19 85. Benko S, Fantes JA, Amiel J, Kleinjan D-J, Thomas S, Ramsay J, et al. Highly conserved non-coding
20 elements on either side of SOX9 associated with Pierre Robin sequence. *Nat Genet.* 2009;41:359–64.
21 doi:10.1038/ng.329.
- 22 86. Jeong Y, Leskow FC, El-Jaick K, Roessler E, Muenke M, Yocom A, et al. Regulation of a remote Shh
23 forebrain enhancer by the Six3 homeoprotein. *Nat Genet.* 2008;40:1348–53. doi:10.1038/ng.230.
- 24 87. Rahimov F, Marazita ML, Visel A, Cooper ME, Hitchler MJ, Rubini M, et al. Disruption of an AP-2alpha
25 binding site in an IRF6 enhancer is associated with cleft lip. *Nat Genet.* 2008;40:1341–7. doi:10.1038/ng.242.
- 26 88. Faghihi MA, Modarresi F, Khalil AM, Wood DE, Sahagan BG, Morgan TE, et al. Expression of a
27 noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of beta-secretase.
28 *Nat Med.* 2008;14:723–30. doi:10.1038/nm1784.
- 29 89. Chen W-L, Lin J-W, Huang H-J, Wang S-M, Su M-T, Lee-Chen G-J, et al. SCA8 mRNA expression
30 suggests an antisense regulation of KLHL1 and correlates to SCA8 pathology. *Brain Res.* 2008;1233:176–84.
31 doi:10.1016/j.brainres.2008.07.096.
- 32 90. Kogo R, Shimamura T, Mimori K, Kawahara K, Imoto S, Sudo T, et al. Long noncoding RNA HOTAIR
33 regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal
34 cancers. *Cancer Res.* 2011;71:6320–6. doi:10.1158/0008-5472.CAN-11-1021.
- 35 91. Ishii N, Ozaki K, Sato H, Mizuno H, Saito S, Takahashi A, et al. Identification of a novel non-coding RNA,
36 MIAT, that confers risk of myocardial infarction. *J Hum Genet.* 2006;51:1087–99. doi:10.1007/s10038-006-
37 0070-9.
- 38 92. Khalil AM, Faghihi MA, Modarresi F, Brothers SP, Wahlestedt C. A novel RNA transcript with
39 antiapoptotic function is silenced in fragile X syndrome. *PLoS One.* 2008;3:e1486.
40 doi:10.1371/journal.pone.0001486.
- 41 93. Chubb JE, Bradshaw NJ, Soares DC, Porteous DJ, Millar JK. The DISC locus in psychiatric illness. *Mol
42 Psychiatry.* 2008;13:36–64. doi:10.1038/sj.mp.4002106.
- 43 94. Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, et al. The nuclear-retained noncoding RNA
44 MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. *Mol Cell.*
45 2010;39:925–38. doi:10.1016/j.molcel.2010.08.011.
- 46 95. Matouk IJ, DeGroot N, Mezan S, Ayesh S, Abu-lail R, Hochberg A, et al. The H19 non-coding RNA is
47 essential for human tumor growth. *PLoS One.* 2007;2:e845. doi:10.1371/journal.pone.0000845.
- 48 96. Lin R, Maeda S, Liu C, Karin M, Edgington TS. A large noncoding RNA is a marker for murine
49 hepatocellular carcinomas and a spectrum of human carcinomas. *Oncogene.* 2007;26:851–8.
50 doi:10.1038/sj.onc.1209846.
- 51 97. Yang Z, Zhou L, Wu L-M, Lai M-C, Xie H-Y, Zhang F, et al. Overexpression of long non-coding RNA

- 1 HOTAIR predicts tumor recurrence in hepatocellular carcinoma patients following liver transplantation. *Ann*
2 *Surg Oncol.* 2011;18:1243–50. doi:10.1245/s10434-011-1581-y.
- 3 98. Zorzetto M, Datturi F, Divizia L, Pistono C, Campo I, De Silvestri A, et al. Complement C4A and C4B gene
4 copy number study in alzheimer's disease patients. *Curr Alzheimer Res.* 2017;14:303–8.
5 doi:10.2174/1567205013666161013091934.
- 6 99. Trouw LA, Nielsen HM, Minthon L, Londos E, Landberg G, Veerhuis R, et al. C4b-binding protein in
7 Alzheimer's disease: binding to Abeta1-42 and to dead cells. *Mol Immunol.* 2008;45:3649–60.
8 doi:10.1016/j.molimm.2008.04.025.
- 9 100. Ridge PG, Mukherjee S, Crane PK, Kauwe JSK, Alzheimer's Disease Genetics Consortium. Alzheimer's
10 disease: analyzing the missing heritability. *PLoS One.* 2013;8:e79771. doi:10.1371/journal.pone.0079771.
- 11 101. Ebbert MTW, Ridge PG, Kauwe JSK. Bridging the gap between statistical and biological epistasis in
12 Alzheimer's disease. *Biomed Res Int.* 2015;2015:870123. doi:10.1155/2015/870123.
- 13 102. Ebbert MTW, Boehme KL, Wadsworth ME, Staley LA, Alzheimer's Disease Neuroimaging Initiative,
14 Alzheimer's Disease Genetics Consortium, et al. Interaction between variants in CLU and MS4A4E modulates
15 Alzheimer's disease risk. *Alzheimers Dement.* 2016;12:121–9. doi:10.1016/j.jalz.2015.08.163.
- 16 103. Weirather JL, de Cesare M, Wang Y, Piazza P, Sebastian V, Wang X-J, et al. Comprehensive comparison
17 of Pacific Biosciences and Oxford Nanopore Technologies and their applications to transcriptome analysis.
18 [version 2; referees: 2 approved]. *F1000Res.* 2017;6:100. doi:10.12688/f1000research.10571.2.
- 19 104. Ardui S, Ameur A, Vermeesch JR, Hestand MS. Single molecule real-time (SMRT) sequencing comes of
20 age: applications and utilities for medical diagnostics. *Nucleic Acids Res.* 2018;46:2159–68.
21 doi:10.1093/nar/gky066.
- 22 105. Zook JM, Catoe D, McDaniel J, Vang L, Spies N, Sidow A, et al. Extensive sequencing of seven human
23 genomes to characterize benchmark reference materials. *Sci Data.* 2016;3:160025. doi:10.1038/sdata.2016.25.
- 24 106. Zook J, McDaniel J, Parikh H, Heaton H, Irvine SA, Trigg L, et al. Reproducible integration of multiple
25 sequencing datasets to form high-confidence SNP, indel, and reference calls for five human genome reference
26 materials. *BioRxiv.* 2018. doi:10.1101/281006.
- 27 107. Li H. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics.* 2018;34:3094–100.
28 doi:10.1093/bioinformatics/bty191.
- 29 108. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features.
30 *Bioinformatics.* 2010;26:841–2. doi:10.1093/bioinformatics/btq033.
- 31 109. Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance
32 genomics data visualization and exploration. *Brief Bioinformatics.* 2013;14:178–92. doi:10.1093/bib/bbs017.
- 33 110. Gel B, Serra E. karyoploteR: an R/Bioconductor package to plot customizable genomes displaying
34 arbitrary data. *Bioinformatics.* 2017;33:3088–90. doi:10.1093/bioinformatics/btx346.
- 35 111. Tripathi S, Pohl MO, Zhou Y, Rodriguez-Frandsen A, Wang G, Stein DA, et al. Meta- and Orthogonal
36 Integration of Influenza “OMICs” Data Defines a Role for UBR4 in Virus Budding. *Cell Host Microbe.*
37 2015;18:723–35. doi:10.1016/j.chom.2015.11.002.
- 38 112. Hu B, Jin J, Guo A-Y, Zhang H, Luo J, Gao G. GSDS 2.0: an upgraded gene feature visualization server.
39 *Bioinformatics.* 2015;31:1296–7. doi:10.1093/bioinformatics/btu817.
- 40 113. Lefebvre S, Bürglen L, Reboullet S, Clermont O, Burlet P, Viollet L, et al. Identification and
41 characterization of a spinal muscular atrophy-determining gene. *Cell.* 1995;80:155–65. doi:10.1016/0092-
42 8674(95)90460-3.

43
44
45 **Figure 1. Genomic regions may be ‘dark’ by depth or mapping quality, many of which are ‘camouflaged’.**

46 Large, complex genomes are known to contain ‘dark’ regions where standard high-throughput short-read

1 sequencing technologies cannot be adequately assembled or aligned. We split these dark regions into two
2 types: (1) dark because of low depth; and (2) dark because of low mapping quality (MAPQ), which are mostly
3 'camouflaged'. **(a)** *HLA-DRB5* encodes a Major Histocompatibility Complex protein that plays an important role
4 in immune-response and has been associated with several diseases, including Alzheimer's disease. It is well
5 known to be dark (low depth); specifically, when performing whole-genome sequencing using standard short-
6 read sequencing technologies, an insufficient number of reads align, preventing variant callers from assessing
7 mutations. We calculated sequencing depth across *HLA-DRB5* for ten male samples from the Alzheimer's
8 Disease Sequencing Project (ADSP) that were sequenced using standard Illumina whole-genome sequencing
9 with 100-nucleotide read lengths. Approximately 62.0% (50.2% of coding sequence) of *HLA-DRB5* is dark by
10 depth (<5 aligned reads; indicated by red lines). **(b)** *HSPA1A* is a heat-shock protein from the 70-kilodalton
11 (kDa) heat-shock protein family, and plays an important role in stabilizing proteins against aggregation.
12 *HSPA1A* is dark because of low mapping quality (MAPQ <10 for ≥90% of reads at a given position).
13 Approximately 41.8% (52.8% coding sequence) of *HSPA1A* is dark by mapping quality (indicated by red line).
14 Dark gray bars indicate sequencing reads with a relatively high mapping quality, whereas white bars indicate
15 reads with a low mapping quality (MAPQ = 0). **(c)** Many genomic regions that are dark because of mapping
16 quality arise because they have been duplicated in the genome, which we term 'camouflaged' (or 'camo
17 genes'). When confronted with a read that aligns equally well to more than one location, standard sequence
18 aligners randomly assign the read to one location and give it a low mapping quality. Thus, it is unclear from
19 which gene any of the reads indicated by white bars originated from. *HSPA1A* and *HSPA1B* are clear examples
20 of camouflaged genes arising from a tandem duplication. The two genes are approximately 14kb apart and
21 approximately 50% of the genes are identical.

22

23 **Figure 2. Many dark regions involve protein-coding gene regions.** We identified 37873 dark regions (>16
24 million nucleotides) in 5857 gene bodies that were either dark by depth or dark by mapping quality. **(a)**

1 Stratifying the gene bodies by GENCODE biotype, 3635 gene bodies were protein coding, 1102 were
2 pseudogenes, and 720 were long intergenic non-coding RNAs (lincRNA). **(b)** Of all 37873 dark regions, 28598
3 were intronic, 4114 were in lincRNA exons, 2657 were in protein-coding exons (CDS), 1134 were in 3'UTR
4 regions, and 1103 were in 5'UTR regions. Any dark region that spanned a gene element boundary (e.g., intron
5 to exon) was split into separate dark regions.

6

7 **Figure 3. Dark coding regions occur throughout the genome, and are largely resolved with long-read**
8 **sequencing technologies.** We identified 2757 dark coding (CDS) regions (>460000 nucleotides) in 744 protein-
9 coding genes that were dark by either depth or mapping quality (Supplemental Tables 1-2). Exactly 142
10 (19.1%) of the 744 protein-coding genes were 100% dark in CDS regions, 441 (59.3%) were at least 25% dark in
11 CDS regions, and 628 (84.4%) were at least 5% dark in CDS regions (Supplemental Table 1). **(a)** We mapped all
12 protein-coding gene bodies with a dark coding exon to the genome to visualize their genomic location, and are
13 generally spread throughout. There are several tight clusters of dark CDS regions on chromosomes 1, 9, 10,
14 and Y, however. **(b)** We assessed how well increasing read lengths would resolve dark regions by assessing
15 samples sequenced with Illumina whole-genome sequencing using 250-nucleotidized read lengths, as well as
16 long-read technologies 10x Genomics, Oxford Nanopore Technologies (ONT), and Pacific Biosciences (PacBio).
17 Data from the samples sequenced using 250-nucleotide Illumina read lengths reduced the area under the
18 curve by 23.2% in CDS regions; this translates to a 24.4% reduction in dark CDS nucleotides. Comparing long-
19 read sequencing technologies to the standard Illumina 100-nucleotide read lengths, 10x Genomics, PacBio,
20 and ONT reduced the area under the curve for CDS regions by approximately 54.9%, 66.7%, and 81.8%,
21 respectively; this translates to a 57.8%, 68.6%, and 81.4% reduction in dark CDS nucleotides, respectively. The
22 area under the curve (AUC) for each technology is scaled in reference to Illumina sequencing based on 100-
23 nucleotide read lengths (i.e., AUC for Illumina 100-nucleotide read lengths = 1). In contrast to overall results,

1 PacBio outperformed 10x Genomics when looking only at CDS regions (see text). Most analyses focused on
2 genes where at least 5% of the CDS nucleotides are dark, indicated by the dashed line.

3

4 **Figure 4. Pathways relevant to human health, development, and reproductive function are affected by dark**
5 **and camouflaged genes.** We characterized the pathways for dark and camouflaged genes using
6 Metascape.org, including only genes where at least 5% of the CDS regions were dark (670 unique gene
7 symbols; based on standard Illumina 100 nucleotide read lengths). **(a)** We identified several pathways that are
8 important in human health, development, and reproductive function (Supplemental Table 11). Specific
9 pathways included defensins (R-HSA-1461973; logP = -7.04), gonadal mesoderm development (GO:0007506;
10 logP = -6.18), base-excision repair (GO:0006284; logP = -5.93), chromatin silencing (GO:0006342; logP = -5.86),
11 Deubiquitination (R-HSA-5688426; logP = -5.32), NLS-bearing protein import into nucleus (GO:0006607; logP =
12 -5.31), spindle assembly (GO:0051225; logP = -5.19), spermatogenesis (GO:0007283; logP = -4.93), and
13 forebrain neuron differentiation (GO:0021879; logP = -4.09). **(b)** Looking specifically at known protein-protein
14 interactions, Metascape identified 138 proteins with 212 known interactions (Supplemental Figure 4), and
15 within those, identified three groups enriched for protein-protein interactions using the MCODE algorithm. All
16 three MCODE groups combined are primarily associated with RNA transport (hsa030313; logP = -17.3;
17 Supplemental Figure 5). Individually, the first group (MCODE1) is enriched for proteins involved in systemic
18 lupus erythematosus (hsa05322; logP = -6.7), cellular response to stress (R-HSA-2262752; logP = -6.6), and
19 RNA transport (hsa03013; logP = -4.39; Supplemental Figure 6). The second group (MCODE2) is enriched with
20 proteins involved in NLS-bearing protein import into nucleus (GO:0006607; logP = -17.1) and protein import
21 into nucleus (GO:0006606; logP = -15.4; Supplemental Figure 7). The third group does not have significant
22 enrichment associations, likely because little is known about them; all four (*PRR20B*, *PRR20C*, *PRR20D*, and
23 *PRR20E*) are 100% camouflaged and do not even have known expression measurements in GTEx [29]

1 (Supplemental Figures 8-11).

2

3 **Figure 5. Seventy-five dark genes ($\geq 5\%$ CDS) are associated with 305 human phenotypes, including autism,**
4 **inflammatory bowel disease, and others.** We found 75 genes $\geq 5\%$ dark CDS that harbor mutations associated
5 with 305 unique human phenotypes, including 277 diseases, according to the Human Gene Mutation Database
6 (HGMD). **(a)** Some of the diseases with the most known associated genes include autism spectrum disorder,
7 hemophilia A, schizophrenia, hearing loss, spinal muscular atrophy, and inflammatory bowel disease. Word
8 size represents the number of genes associated with each disease. Some of the diseases most represented in
9 our data are not surprising, given the number of genes involved in the disease, but these data demonstrate
10 the number of diseases impacted by genes that are at least 5% dark CDS, and how important it is to
11 completely resolve dark regions. We also performed an enrichment analysis, where the diseases most
12 enriched for dark genes included Hemophilia A, color blindness (protan colour vision defect), and X-linked
13 cone-rod dystrophy (Supplemental Figure 12). **(b)** Similarly, we quantified the number of diseases each gene
14 was associated with, and identified many disease-relevant genes with large portions of dark CDS regions that
15 may harbor critical disease-modifying mutations that currently go undetected. Some of the genes with the
16 most known disease associations include *ARX* (14.0% dark CDS), *NEB* (9.5% dark CDS), *TBX1* (10.5% dark CDS),
17 *RPGR* (12.9% dark CDS), *HBA2* (12.8% dark CDS), and *CR1* (26.5% dark CDS). *CR1* is particularly notable for
18 neuroscientists and Alzheimer's disease geneticists, patients, and their caregivers, given that *CR1* is a top-ten
19 Alzheimer's disease gene. Other notable genes include *SMN1* (89.9% dark CDS) and *SMN2* (88.2% dark CDS),
20 which are known to harbor mutations (in camouflaged regions) that are involved in spinal muscular atrophy
21 (SMA) [65, 66, 113]. *HSPA1A* (52.8% dark CDS) and *HSPA1B* (51.1% dark CDS) also encode two primary 70-
22 kilodalton (kDa) heat-shock proteins. Heat-shock proteins have been implicated in ALS [31, 32].

23

1 **Figure 6. Camouflaged genes are consistently dark in gnomAD, but dark-by-depth genes may be sample or**
2 **dataset specific.** Most dark genes are specifically camouflaged (Supplemental Tables 12-13), but many are
3 dark by depth; we found that camouflaged regions in the ADSP are consistently dark in the gnomAD
4 consortium data (<http://gnomad.broadinstitute.org/>) [33]. Dark-by-depth regions may be more variable
5 between samples and datasets, however, suggesting these regions may be sensitive to specific aspects of
6 whole-genome sequencing (e.g., library preparation) or downstream analyses. **(a)** *SMN1* and *SMN2* are
7 camouflaged by each other (89.9% and 88.2% dark CDS, respectively; only *SMN1* shown). Both genes
8 contribute to spinal muscular atrophy, and have been implicated in ALS. **(b)** *HSPA1A* and *HSPA1B* are also
9 camouflaged by each other (52.8% and 51.1% dark CDS, respectively; only *HSPA1A* shown). The heat-shock
10 protein family has been implicated in ALS. **(c)** *NEB* (9.5% dark CDS) is a special case that is camouflaged by
11 itself. *NEB* is associated with 24 diseases in the HGMD, including nemaline myopathy, a hereditary
12 neuromuscular disorder. *NEB* is a large gene, thus, 9.5% dark CDS translates to 2424 protein-coding bases. **(d)**
13 *CR1* is a top Alzheimer's disease gene that plays a critical role in the complement cascade as a receptor for the
14 C3b and C4b complement components, and potentially helps clear amyloid-beta (A β) [39-41]. *CR1* is also
15 camouflaged by itself (26.5% dark CDS), where the repeated region includes the extracellular C3b and C4b
16 binding domain. The number of repeats and density of certain isoforms have been associated with Alzheimer's
17 disease [21, 42-45]. **(e)** *HLA-DRB5* is dark by depth in the ADSP and gnomAD data (50.2% dark CDS). *HLA-DRB5*
18 has been implicated in several diseases, including Alzheimer's disease. **(f)** *RPGR* is likewise dark in ADSP and
19 gnomAD (12.9% dark CDS), and is associated with several eye diseases, including retinitis pigmentosa and
20 cone-rod dystrophy. **(g)** *ARX* is dark-by-depth (14.0% dark CDS), but varies by sample or cohort, as
21 approximately 70% of gnomAD samples are not strictly dark by depth. *ARX* is associated with diseases
22 including early infantile epileptic encephalopathy 1 (EIEE1) and Partington syndrome. **(h)** Similarly, *TBX1* is not
23 strictly dark by depth in approximately 70% of gnomAD samples (10.5% dark CDS). The Y axes for figures **a-f**
24 indicate median coverage in gnomAD (blue = exomes; green = genomes), whereas the Y axes in **g-h** represent

1 the proportion of gnomAD samples that have >5x coverage. Dark and camouflaged regions, as well as the
2 percentage of each gene's CDS region that is dark, are indicated by red lines. Dark regions in exome data are
3 either similar or more pronounced than what we observed in whole-genome data, highlighting that dark and
4 camouflaged regions are generally magnified in whole-exome data. For interest, we also discovered that
5 *APOE*—the top genetic risk for Alzheimer's disease [34–36]—is approximately 6% dark CDS (by depth) for
6 certain ADSP samples with whole-genome sequencing, and the same region is dark in gnomAD whole-exome
7 data (Supplemental Figure 13).

8

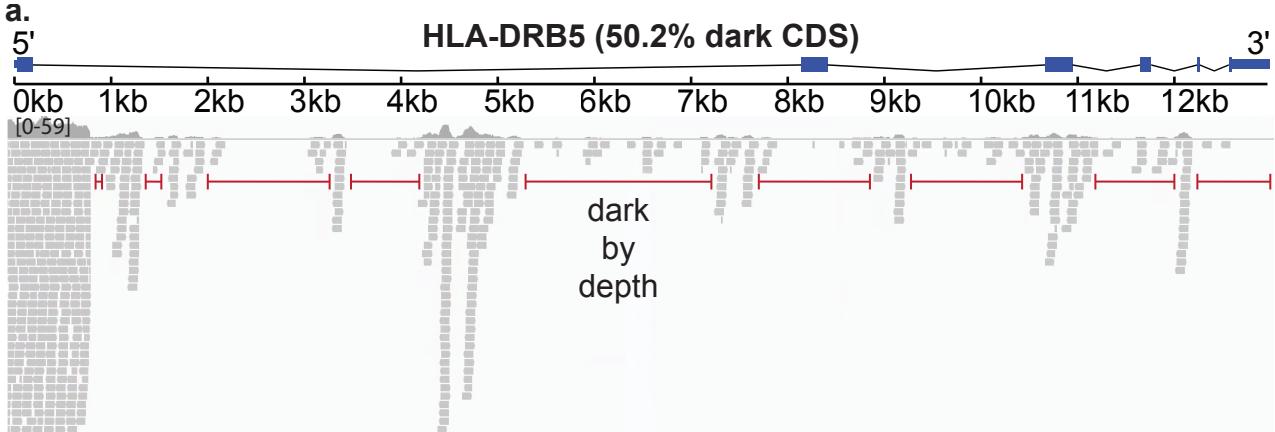
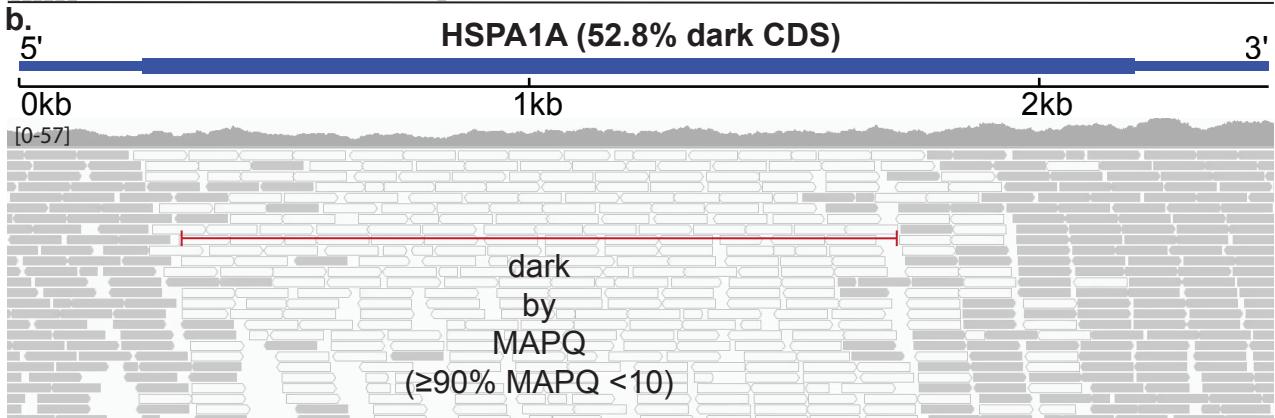
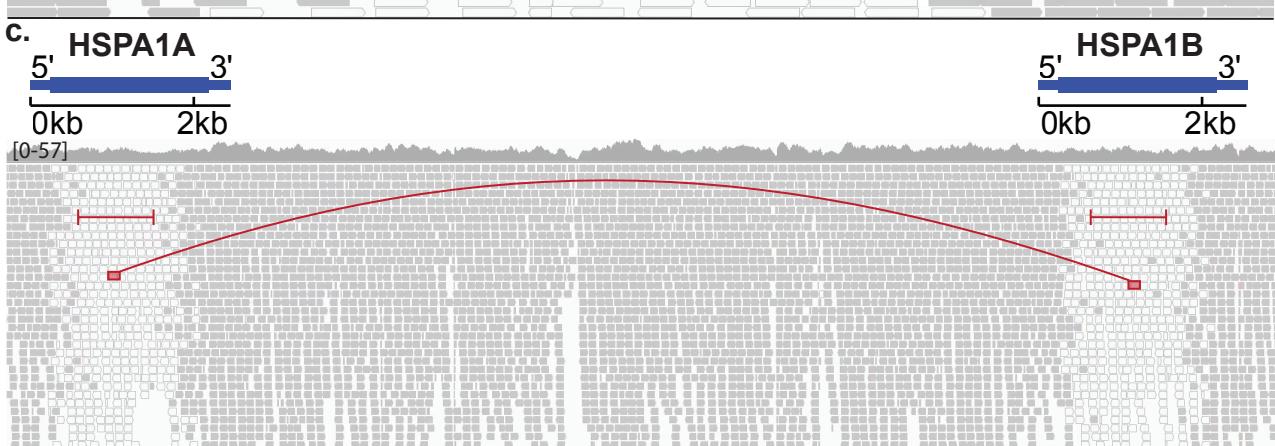
9 **Figure 7. Long-read technologies resolve many camouflaged regions, with variable success.** We found that
10 ONT's long-read technology appeared to resolve all camouflaged regions well with the high sequencing depth.
11 PacBio performed similarly well, and 10x Genomics performs well under certain circumstances. (a) *SMN1* and
12 *SMN2* were 89.9% and 88.2% dark CDS, respectively, based on standard Illumina sequencing with 100-
13 nucleotide read lengths (illuminaRL100), and were 84.0% and 83.1% dark CDS based on Illumina 250-
14 nucleotide read lengths (illuminaRL250; not shown). Both genes were technically 0% dark CDS for 10x
15 Genomics, PacBio, and ONT data. (b) *HSPA1A* and *HSPA1B* were 52.8% and 51.1% dark CDS, respectively,
16 based on illuminaRL100 data, and were 50.2% and 49.5% dark CDS based on illuminaRL250 (not shown). Both
17 genes were 0% dark CDS based on ONT and PacBio data, and were 45.8% and 51.8% dark CDS based on 10x
18 Genomics data. In contrast to the results for *SMN1* and *SMN2*, both ONT and PacBio had consistent coverage
19 throughout the camouflaged regions, whereas the camouflaged regions remain dark for 10x Genomics. (c) *CR1*
20 was 26.5% dark CDS based on illuminaRL100, and was 24.5% dark based on illuminaRL250 (not shown). 10x
21 Genomics did not improve coverage for *CR1*; the region remained 26.2% dark CDS. Both ONT and PacBio were
22 0% dark CDS. While both PacBio and ONT were able fill the camouflaged region, coverage dropped
23 dramatically throughout the region, despite both genomes being sequenced at 50x and 46x median depth,

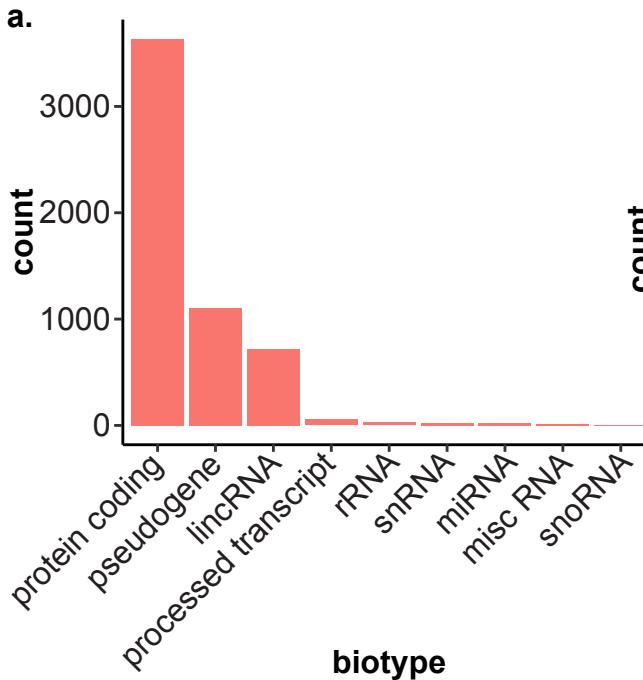
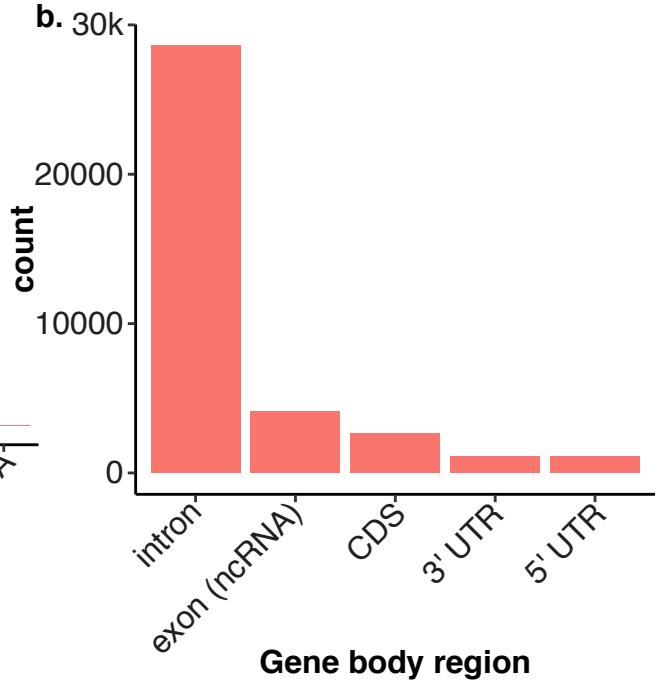
1 which does not presently represent average use case for these technologies. The duplicated region is indicated
2 by blue bars, where white lines indicate regions that have diverged sufficiently for reads to align uniquely. It is
3 likely that the performance for ONT and PacBio long-read platforms will be better with longer sequencing
4 libraries (e.g. >50kb fragment sizes). Regions were visualized with IGV. Reads with a MAPQ < 10 were filtered,
5 and insertions, deletions, and mismatches are not shown.

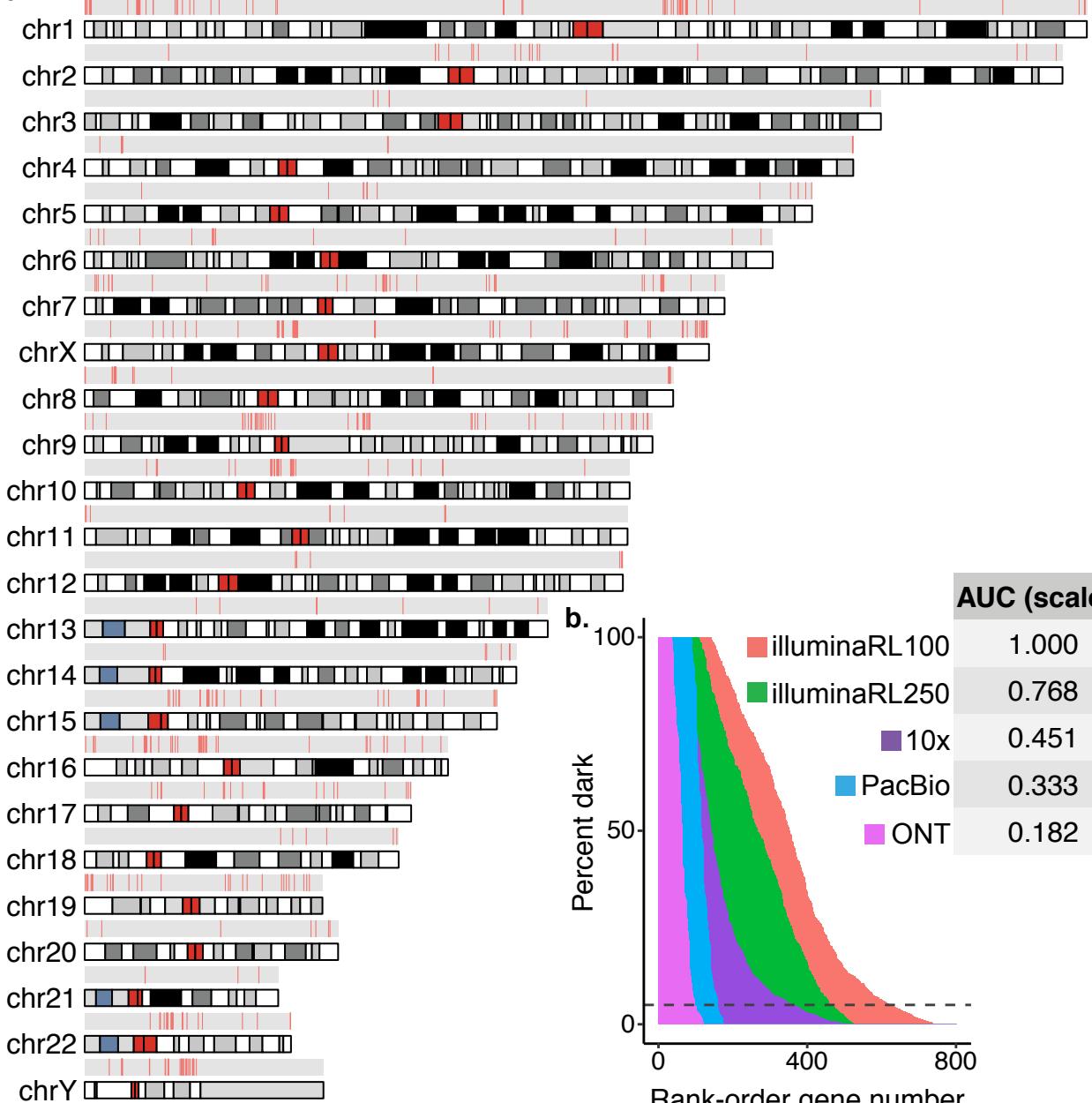
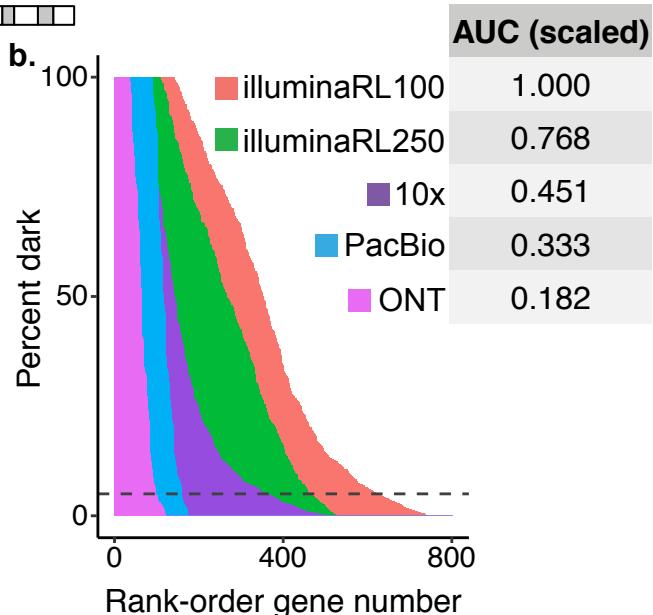
6

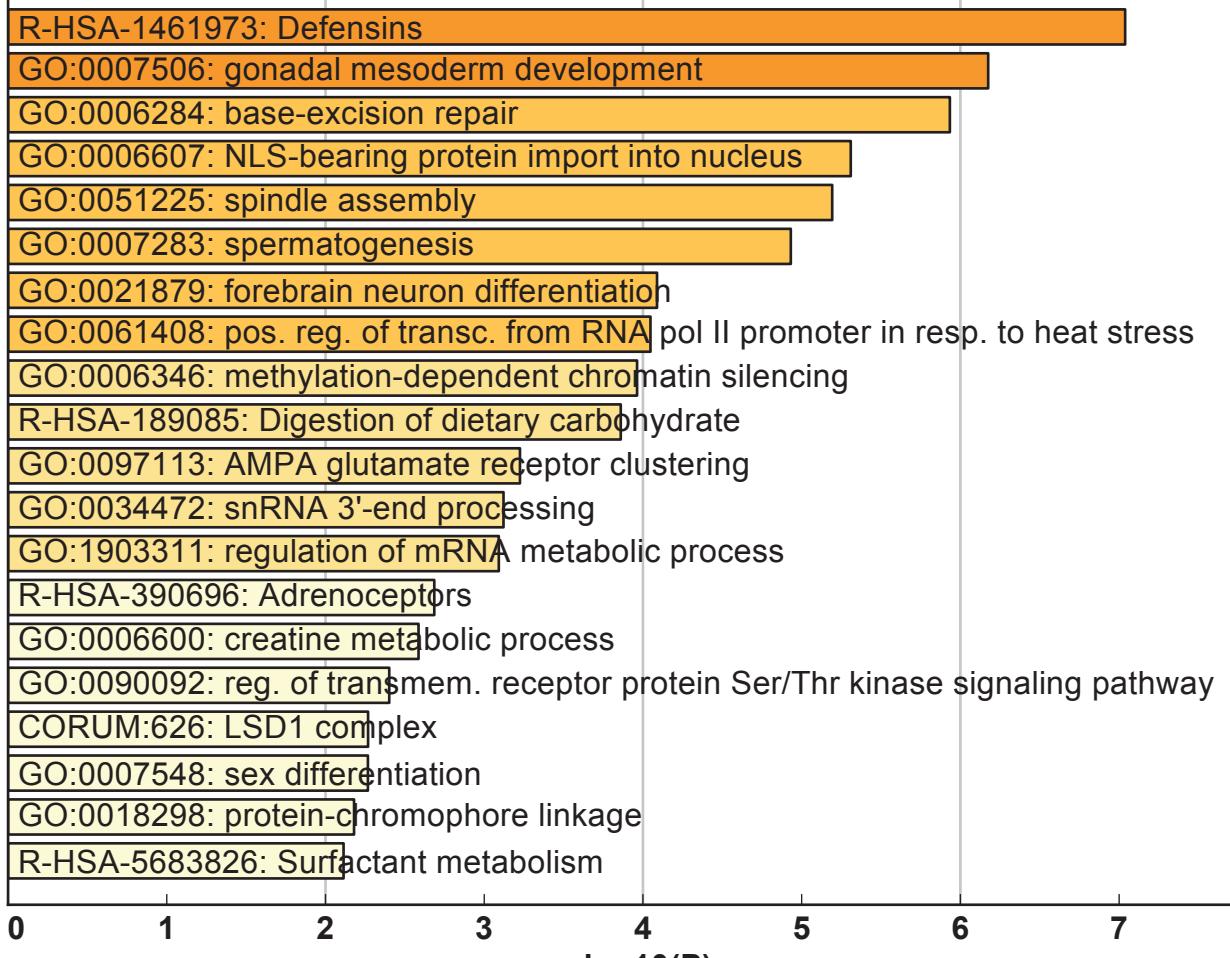
7 **Figure 8. Many camouflaged regions can be rescued, including CR1, even in standard short-read sequencing**
8 **data.** Many large-scale whole-genome or whole-exome sequencing projects exist, covering tens of thousands
9 of individuals. All of these datasets are affected by dark and camouflaged regions that may harbor mutations
10 that either drive or modify disease in patients. Ideally, all samples would be re-sequenced using the latest
11 technologies over time, but financial and biological samples are limited, making it essential to maximize the
12 utility of existing data. We developed a method to rescue mutations in most camouflaged regions, including
13 for standard short-read sequencing data. When confronted with a sequencing read that aligns to two or more
14 regions equally well (with high confidence), most aligners (e.g., BWA [11–13]) will randomly assign the read to
15 one of the regions with a low mapping quality (e.g., MAPQ = 0 for BWA). **(a)** Because the reads are already
16 aligned to one of the regions, we can use the following steps to rescue mutations in most camouflaged
17 regions: (1) extract reads from camouflaged regions; (2) mask all highly similar regions in the reference
18 genome, except one, and re-align the extracted reads; (3) call mutations using standard methods (adjusting
19 for ploidy); and (4) determine precise location using targeted sequencing (e.g., long-range PCR combined with
20 Sanger, or targeted long-read sequencing [1]). Without competing camouflaged regions to confuse the aligner,
21 the aligner will assign a high mapping quality, allowing variant callers to behave normally. **(b)** Exons 10, 18,
22 and 26 in *CR1* are identical, according to the reference genome. Standard aligners will randomly scatter reads
23 matching that sequence across these exons and assign a low mapping quality (e.g., MAPQ = 0 for BWA;
24 indicated as hollow reads). Red lines indicate an individual's mutation that exists in one of these exons, but

1 reads containing this mutation also get scattered and assigned a low mapping quality. **(c)** By masking exons 18
2 and 26, we can align all of these reads to exon 10 with high mapping qualities to determine whether a
3 mutation exists. We cannot determine at this stage which of the three exons the mutation is actually located
4 in, but researchers can test association with a given disease to determine whether the mutation is worth
5 further investigation. **(d)** As a proof of principle, we rescued approximately 4622 exonic variants in the ADSP
6 ($TiTv = 1.97$) using our method, including a frameshift mutation in *CR1* ($MAF = 0.00019$) that is only found in
7 five cases and zero controls (three representative samples shown). The frameshift results in a stop codon
8 shortly downstream. The ADSP is not large enough to formally assess association between the *CR1* frameshift
9 and Alzheimer's disease, but we believe the mutation merits follow-up studies given its location (*CR1* binding
10 domain) and *CR1*'s strong association with disease.





a.**b.**

a.**b.**