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 2

Abstract 1 

Background: The human genome contains ‘dark’ gene regions that cannot be adequately assembled or 2 

aligned using standard short-read sequencing technologies, preventing researchers from identifying mutations 3 

within these gene regions that may be relevant to human disease. Here, we identify regions that are ‘dark by 4 

depth’ (few mappable reads) and others that are ‘camouflaged’ (ambiguous alignment), and we assess how 5 

well long-read technologies resolve these regions. We further present an algorithm to resolve most 6 

camouflaged regions (including in short-read data) and apply it to the Alzheimer’s Disease Sequencing Project 7 

(ADSP; 13142 samples), as a proof of principle. 8 

 9 

Results: Based on standard whole-genome Illumina sequencing data, we identified 37873 dark regions in 5857 10 

gene bodies (3635 protein-coding) from pathways important to human health, development, and 11 

reproduction. Of the 5857 gene bodies, 494 (8.4%) were 100% dark (142 protein-coding) and 2046 (34.9%) 12 

were ≥5% dark (628 protein-coding). Exactly 2757 dark regions were in protein-coding exons (CDS) across 744 13 

genes. Long-read sequencing technologies from 10x Genomics, PacBio, and Oxford Nanopore Technologies 14 

reduced dark CDS regions to approximately 45.1%, 33.3%, and 18.2% respectively. Applying our algorithm to 15 

the ADSP, we rescued 4622 exonic variants from 501 camouflaged genes, including a rare, ten-nucleotide 16 

frameshift deletion in CR1, a top Alzheimer’s disease gene, found in only five ADSP cases and zero controls. 17 

 18 

Conclusions: While we could not formally assess the CR1 frameshift mutation in Alzheimer’s disease 19 

(insufficient sample-size), we believe it merits investigating in a larger cohort. There remain thousands of 20 

potentially important genomic regions overlooked by short-read sequencing that are largely resolved by long-21 

read technologies. 22 

 23 

 24 
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 4

Background 1 

Researchers have known for years that large, complex genomes, including the human genome, contain ‘dark’ 2 

regions—regions where standard high-throughput short-read sequencing technologies cannot be adequately 3 

assembled or aligned—thus preventing our ability to identify mutations within these regions that may be 4 

relevant to human health and disease. Some dark regions are what we term ‘dark by depth’ (few or no 5 

mappable reads), while others are what we term ‘dark by mapping quality’ (reads aligned to the region, but 6 

with a low mapping quality). Regions that are dark by depth may arise because the region is inherently difficult 7 

to sequence at the chemistry level (e.g., high GC content [1, 2]), essentially eliminating sequencing reads from 8 

that region altogether. Other dark regions arise, not because the sequencing is inherently problematic, but 9 

because of bioinformatic challenges. Specifically, many dark regions arise from duplicated genomic regions, 10 

where confidently aligning short reads to a unique location is not possible; we term these regions as 11 

‘camouflaged’. These camouflaged regions are generally either large contiguous tandem repeats (e.g., 12 

centromeres, telomeres, and other short tandem repeats), or a larger specific DNA region that has been 13 

duplicated (e.g., a gene duplication) either in tandem or in a more distal genome region. In fact, many genes in 14 

the human genome were duplicated over evolutionary time and are still transcriptionally and translationally 15 

active (e.g., heat-shock proteins) [3–9], while others have been duplicated, but are considered inactive (i.e., 16 

pseudogenes). Regardless of whether the duplication is active, however, any genomic region that has been 17 

nearly-identically duplicated, and is large enough to prevent sequencing reads from aligning unambiguously 18 

will be ‘dark’, because the aligner cannot determine which genomic region the read originated from.  19 

 20 

When confronted with a read that aligns equally well to two or more camouflaged regions (commonly known 21 

as multi-mapping reads [2, 10]), standard next-generation sequence aligners, such as the Burrows-Wheeler 22 

Aligner (BWA) [11–13], randomly assign the read to one of the regions and assign a low mapping quality. For 23 

BWA, specifically, reads that cannot be uniquely mapped are generally assigned a mapping quality (MAPQ) of 24 
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0; though, in certain paired-end sequencing scenarios, BWA will assign a high mapping quality if the read mate 1 

is confidently mapped nearby (i.e., within the estimated insert-size length). 2 

 3 

Recent work has characterized camouflaged regions, in part, including a study that demonstrates how this 4 

issue affects all standard RNA-Seq analyses [10], and another that quantifies the number of nucleotides in 5 

human reference GRCh38 that are dark for mapping quality of 0 (camouflaged regions), based on 1000 6 

Genome Project data [2]. Robert and Watson demonstrated that expression for 958 genes were either over- 7 

or under-represented because of multi-mapping reads across 12 different RNA-Seq processing methods, and 8 

no method was immune to the problem [10]. They also demonstrated that many of these genes are directly 9 

implicated in human disease. Zheng-Bradley et al. recently re-aligned genomes from the 1000 Genomes 10 

Project to GRCh38, and, among other findings, generally demonstrated the breadth of multi-mapping reads 11 

across the genome [2]. These data characterize the general problem, and report specific genes affected by this 12 

issue. 13 

 14 

Here, we systematically analyze dark and camouflaged genes to more fully characterize the problem, and we 15 

highlight many disease-relevant genes that are directly implicated in Alzheimer’s disease, autism spectrum 16 

disorder, amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), and others. We also show that 17 

long-read sequencing technologies substantially reduce the number of dark and camouflaged regions, and we 18 

present a method to address camouflaged regions, even in standard short-read sequencing data. As a proof of 19 

concept, we apply our method to the Alzheimer’s Disease Sequencing Project (ADSP) data, and identify a rare, 20 

ten-nucleotide frameshift deletion in the C3b and C4b binding domain of CR1, a top Alzheimer’s disease gene 21 

[14–22], that is only present in five ADSP cases and zero controls. The ADSP is not large enough to statistically 22 

assess association between the CR1 frameshift mutation and Alzheimer’s disease. 23 

 24 
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Results 1 

To quantify the number of dark and camouflaged regions in standard short-read whole-genome sequencing 2 

data, we obtained whole-genome sequencing data for ten unrelated males from the Alzheimer’s Disease 3 

Sequencing Project (ADSP) and scanned each sample for dark and camouflaged regions, averaging across all 4 

ten samples; we only used data from males for this study so we could also assess dark and camouflaged 5 

regions on the Y chromosome because large portions of the Y chromosome are dark. We ignored incomplete 6 

genomic regions (e.g., centromeres). We then limited the dark and camouflaged regions to known gene 7 

bodies, based on annotations from build 87 of the Ensembl GRCh37 human reference genome [23]. All ten 8 

samples were sequenced using standard Illumina whole-genome sequencing with 100-nucleotide read 9 

lengths, where median genome-wide read depths ranged from 35.4x to 42.9x coverage, with an overall 10 

median of 39.4x. We performed the same analyses on ten unrelated males from the 1000 Genomes Project 11 

[24] that were sequenced using Illumina whole-genome sequencing with 250-nucleotide read lengths, where 12 

median genome-wide read depths ranged from 39.3x to 52.6x coverage, with an overall median of 48.9x. 13 

Similarly, we assessed how well long-read sequencing technologies, including 10x Genomics (52x median 14 

coverage), PacBio (50x median coverage), and ONT (46x median coverage) resolve dark and camouflaged 15 

regions. Although we were only able to obtain a single high-depth male genome for each long-read 16 

technology, we believe our results are a reasonable estimate for how well each technology addresses dark and 17 

camouflaged regions. Larger sequencing studies will further clarify our results. 18 

 19 

We consider a region ‘dark’ for one of two reasons: (1) insufficient number of reads aligned to the genomic 20 

region (dark by depth); and (2) reads aligned to the region, but with insufficient mapping quality for a variant 21 

caller to identify mutations in the region (dark by mapping quality). Specifically, we define regions that are 22 

dark by depth as those with fewer than five aligned reads (Figure 1a), and regions that are dark by mapping 23 

quality as those where ≥90% of aligned reads have a mapping quality (MAPQ) <10 (Figure 1b). Defining dark-24 
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by-depth regions as those with fewer than five reads is a relatively strict cutoff, and likely underestimates the 1 

number of dark regions because 20 to 30 reads is often considered a reasonable minimum to confidently 2 

identify heterozygous mutations; overall median read depth is an important factor, however, and we believe a 3 

strict cutoff provides a more conservative estimate. We used a mapping quality threshold <10 to define 4 

regions that are dark by mapping quality because that is the standard cutoff used in the Genome Analysis 5 

ToolKit (GATK) [25]. Camouflaged regions are those that are dark by mapping quality because the region has 6 

been duplicated in the genome (Figure 1c). We identified sets of camouflaged regions (regions camouflaged by 7 

each other) using BLAT [26], where we required at least 98% sequence identity for two regions to be included 8 

in the same set. 9 

 10 

Standard short-read sequencing leaves 37873 dark regions across 5857 gene bodies, including protein-11 

coding exons from 744 genes 12 

Using whole-genome Illumina sequencing data (100-nucleotide read lengths) from ten unrelated males, we 13 

identified 37873 dark regions (>16 million nucleotides) in 5857 gene bodies (based on Ensemble GRCh37 build 14 

87 gene annotations) that were either dark by depth or dark by mapping quality (Supplemental Figure 1a; 15 

Supplemental Tables 1-2). Stratifying the gene bodies by GENCODE biotype [27], 3635 gene bodies were 16 

protein coding, 1102 were pseudogenes, and 720 were long intergenic non-coding RNAs (lincRNA; Figure 2a). 17 

Of all 37873 dark gene-body regions, 28598 were intronic, 4113 were in non-coding RNA exons (e.g., lincRNAs 18 

and pseudogenes), 2657 were in protein-coding exons (CDS), 1134 were in 3’UTR regions, and 1103 were in 19 

5’UTR regions (Figure 2b; Supplemental Table 1). Any dark region that spanned a gene element boundary (e.g., 20 

intron to exon) was split into separate dark regions. Of the 5857 gene bodies, 494 (8.4%) were 100% dark, 21 

1560 (26.6%) were at least 25% dark, and 2046 (34.9%) were at least 5% dark (Supplemental Figure 1b; 22 

Supplemental Table 1). 23 

 24 
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Focusing only on CDS regions, we identified 2757 dark CDS regions (>460000 nucleotides) across 744 protein-1 

coding genes that were dark by either depth or mapping quality (Figure 3a; Supplemental Tables 1-2). Exactly 2 

142 (19.1%) of the 744 protein-coding genes were 100% dark in CDS regions, 441 (59.3%) were at least 25% 3 

dark in CDS regions, and 628 (84.4%) were at least 5% dark in CDS regions (Figure 3b; Supplemental Table 1). 4 

Exactly 474 of the 628 genes that were 5% dark in CDS regions were dark because they were camouflaged. 5 

 6 

Most dark regions are specifically camouflaged 7 

Regions may be dark because of either low depth or low mapping quality, but the majority of regions are dark 8 

because of mapping quality, and specifically because they are camouflaged (low mapping quality because of a 9 

duplication). Exactly 3953 of the 5857 dark gene bodies are dark because of mapping quality, where 3252 are, 10 

in fact, camouflaged. We also measured the number of times each gene region was duplicated and found that 11 

70% of gene regions were replicated three or fewer times in the genome, but 84 regions were duplicated ≥100 12 

times (Supplemental Figure 2a), with the most repeated regions (ten separate intronic regions totaling 2235 13 

nucleotides from C5orf48) being replicated 941 times in aggregate. Limiting to only CDS regions, we estimate 14 

that 74.1% are replicated three or fewer times, with 38 replicated ≥10 times (Supplemental Figure 2b) and the 15 

most repeated region was from NBPF12, in which 173 nucleotides were replicated 37 times. 16 

 17 

Long-read sequencing technologies resolve substantial portions of the dark regions 18 

Data from the samples sequenced using 250-nucleotide Illumina read lengths reduced the percentage of dark 19 

nucleotides by 30.1% and 24.4% for all gene bodies, and for only CDS regions, respectively, leaving 69.9% and 20 

75.6% of the nucleotides dark, respectively (Supplemental Figure 1b; Figure 3b; Supplemental Tables 3-4). 21 

Comparing long-read sequencing technologies to the standard Illumina 100-nucleotide read lengths, the ONT 22 

platform performed best, both when assessing entire gene bodies, and when considering only CDS regions. 23 

Specifically, approximately 41.2%, 25.8%, and 24.9% of the nucleotides remained dark for all gene bodies for 24 
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PacBio, 10x Genomics, and ONT, respectively (Supplemental Figure 1b; Supplemental Tables 5-10). Similarly, 1 

approximately 42.2%, 31.4%, and 18.5% of CDS nucleotides remained dark for 10x Genomics, PacBio, and 2 

ONT, respectively (Figure 3b; Supplemental Tables 5-10). In contrast to overall gene-body results, PacBio 3 

outperformed 10x Genomics when looking only at CDS regions (Supplemental Figure 1b; Figure 3b). The long-4 

read technologies improved over Illumina mostly by reducing the percentage of nucleotides that are dark by 5 

mapping quality (Supplemental Figure 1c). Surprisingly, the percentage of gene-body regions that are dark 6 

because of low depth is higher for all long-read technologies than it is for Illumina (Supplemental Figure 1c).  7 

 8 

We generated a density plot for the length of all dark-by-mapping quality regions to approximate the 9 

proportion of regions each sequencing technology should be able to resolve (Supplemental Figure 3), which 10 

resulted in a bimodal distribution. The two modes are located at 95 and 538 nucleotides. As expected, median 11 

read lengths for the Illumina whole-genome sequencing based on 100-nucleotide and 250-nucleotide read 12 

lengths were 100 and 250 nucleotides, respectively. The first mode for the camouflaged region lengths is at 13 

95, explaining why 100-nucleotide read lengths are insufficient to unambiguously span most dark-by-mapping 14 

quality regions. The 250-nucleotide read lengths fall between the two modes, explaining why 250-nucleotide 15 

read lengths resolve a high percentage of camouflaged regions. In other words, 100-nucleotide read lengths 16 

are too short to bridge most camouflaged regions, but 250-nucleotide read lengths appear to be sufficient for 17 

many. Median read lengths for both the ONT and PacBio genomes we used in this study were 6276 (N50 = 18 

33973) and 8511 (N50 = 17467) nucleotides, respectively, which is shorter than expected, but substantially 19 

longer than necessary to resolve most camouflaged regions. We believe comparing median read lengths, 20 

rather than N50, is more useful in this scenario, because we are interested to know what percentage of reads 21 

are likely to bridge a given dark or camouflaged region. Our results suggest that our estimates for the 22 

percentage of camouflaged regions ONT and PacBio are able to resolve may be conservative because a longer 23 

DNA library should resolve even more camouflaged regions. 24 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 9, 2019. ; https://doi.org/10.1101/514497doi: bioRxiv preprint 

https://doi.org/10.1101/514497
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10

 1 

Important pathways and gene families are affected by dark and camouflaged regions 2 

Because such a large number of genes are dark, we characterized the pathways for genes that are not fully 3 

represented in standard Illumina short-read sequencing (100-nucleotide reads) datasets. We included all 4 

genes where at least 5% of the CDS regions were dark (670 unique gene symbols) and identified several 5 

pathways that are important in human health, development, and reproductive function (Figure 4a; 6 

Supplemental Table 11). Specific pathways included defensins (R-HSA-1461973; logP = -7.04), gonadal 7 

mesoderm development (GO:0007506; logP = -6.18), base-excision repair (GO:0006284; logP = -5.93), 8 

chromatin silencing (GO:0006342; logP = -5.86), Deubiquitination (R-HSA-5688426; logP = -5.32), NLS-bearing 9 

protein import into nucleus (GO:0006607; logP = -5.31), spindle assembly (GO:0051225; logP = -5.19), 10 

spermatogenesis (GO:0007283; logP = -4.93), and forebrain neuron differentiation (GO:0021879; logP = -4.09). 11 

Some specific gene families involved in these pathways include eleven defensin genes (e.g., DEFA1 and 12 

DEFB4A), five testis specific proteins (e.g., TSPY2), eleven ubiquitin-specific 17-like family members, and 13 

twelve golgin genes (e.g., GOLGA6B; Supplemental Table 11). 14 

 15 

Looking specifically at known protein-protein interactions, we found 138 proteins with 212 known interactions 16 

(Supplemental Figure 4), and within those, identified three groups enriched for protein-protein interactions 17 

using the MCODE algorithm [28] (Figure 4b). All three MCODE groups combined are primarily associated with 18 

RNA transport (hsa030313; logP = -17.3; Supplemental Figure 5; accessed December 2018). Individually, the 19 

first group (MCODE1) is enriched for proteins involved in systemic lupus erythematosus (hsa05322; logP = -20 

6.7), cellular response to stress (R-HSA-2262752; logP = -6.6), and RNA transport (hsa03013; logP = -4.39; 21 

Supplemental Figure 6). The second group (MCODE2) is enriched with proteins involved in NLS-bearing protein 22 

import into nucleus (GO:0006607; logP = -17.1) and protein import into nucleus (GO:0006606; logP = -15.4; 23 

Supplemental Figure 7). The third group does not have significant enrichment associations, likely because little 24 
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is known about them; all four genes (PRR20B, PRR20C, PRR20D, and PRR20E) are 100% camouflaged and do 1 

not even have known expression measurements in GTEx [29] (Supplemental Figures 8-11). 2 

 3 

There are 75 genes with known mutations associated with 305 human phenotypes 4 

To assess the potential impact missing mutations in dark genes may have on human disease genetics, we 5 

measured the number of dark genes with at least 5% dark CDS that have mutations known to be involved in 6 

human disease; we calculated the number of genes that are ≥5% dark CDS with a mutation in the Human Gene 7 

Mutation Database (HGMD) [30]. We found 75 genes associated with 305 unique human phenotypes, 8 

including 277 diseases (Figure 5a). Some of the diseases with the most known associated genes include autism 9 

spectrum disorder, hemophilia A, schizophrenia, hearing loss, spinal muscular atrophy, and inflammatory 10 

bowel disease. Some of the diseases most represented in our data are not surprising, given the number of 11 

genes involved in the disease, but these data demonstrate the number of diseases impacted by genes that are 12 

at least 5% dark CDS. We also performed an enrichment analysis, where the diseases most enriched for dark 13 

genes included Hemophilia A, color blindness (protan colour vision defect), and X-linked cone-rod dystrophy 14 

(Supplemental Figure 12). 15 

 16 

Similarly, we quantified the number of diseases each gene was associated with (Figure 5b). We identified 17 

many disease-relevant genes with large portions of dark CDS regions that may harbor critical disease-18 

modifying mutations that currently go undetected. Some of the genes with the most known disease 19 

associations include ARX (14.0% dark CDS), NEB (9.5% dark CDS), TBX1 (10.5% dark CDS), RPGR (12.9% dark 20 

CDS), HBA2 (12.8% dark CDS), and CR1 (26.5% dark CDS). The CR1 gene is particularly notable given that CR1 is 21 

a top-ten Alzheimer’s disease gene. Other notable genes include SMN1 (89.9% dark CDS) and SMN2 (88.2% 22 

dark CDS), which are known to be involved in spinal muscular atrophy (SMA) and ALS. HSPA1A (52.8% dark 23 
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CDS) and HSPA1B (51.1% dark CDS) also encode two primary 70-kilodalton (kDa) heat-shock proteins, a family 1 

of proteins that have been implicated in ALS [31, 32]. 2 

 3 

Camouflaged genes are consistently dark in gnomAD, but dark-by-depth genes may be sample or dataset 4 

specific 5 

Although most dark genes are specifically camouflaged (Supplemental Tables 12-13), many are dark by depth 6 

in the ADSP data; upon manual comparison between whole-genome sequencing data from the ten ADSP 7 

males and coverage plots from the gnomAD consortium dataset (http://gnomad.broadinstitute.org/) [33], we 8 

found that camouflaged regions in the ADSP males are consistently dark in the gnomAD data, demonstrating 9 

that these camouflaged regions are consistent across datasets. The dark-by-depth regions are more variable 10 

between samples and datasets, however, suggesting these regions may be sensitive to specific aspects of 11 

whole-genome sequencing (e.g., library preparation) or downstream analyses. Specific camouflaged genes 12 

include SMN1 and SMN2 (89.9% and 88.2% dark CDS, respectively; Figure 6a), HSPA1A and HSPA1B (52.8% 13 

and 51.1% dark CDS, respectively; Figure 6b), NEB (9.5% dark CDS; Figure 6c), and CR1 (26.5% dark CDS; Figure 14 

6d). Specific dark-by-depth genes include HLA-DRB5 (50.2% dark CDS; Figure 6e), RPGR (12.9% dark CDS; 15 

Figure 6f), ARX (14.0% dark CDS; Figure 6g), and TBX1 (10.5% dark CDS; Figure 6h). All four camouflaged genes 16 

are also dark in the gnomAD data. A manual inspection of our dark-by-depth gene list, however, suggests most 17 

are not completely dark in gnomAD, but vary by sample or dataset. Specifically, HLA-DRB5 and RPGR in 18 

gnomAD appear to be consistent with the ADSP data; ARX and TBX1, however, only appear to be dark in a 19 

portion of the gnomAD samples, where about 30% of samples have ≤5 reads in their respectively defined dark 20 

regions (Note: our threshold for dark regions is <5 reads, but the gnomAD plots for ARX and TBX1 are based on 21 

≤5 reads). Dark regions (Figures 6a-h) are either similar or more pronounced in the gnomAD whole-exome 22 

data than what we observed in the whole-genome data, highlighting that dark and camouflaged regions are 23 

generally magnified in whole-exome data; this is likely because of differences in library preparation and 24 
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shorter read lengths in exome data. For interest, we also found that APOE—the top genetic risk for 1 

Alzheimer’s disease [34–36]—is approximately 6% dark CDS (by depth) for certain ADSP samples with whole-2 

genome sequencing, and the same region is dark in gnomAD whole-exome data (Supplemental Figure 13). It is 3 

possible some of the dark regions we identified in standard short-read whole-genome data are specific to the 4 

ADSP samples, but additional work can clarify this issue. In either case, dark-by-depth regions (Supplemental 5 

Tables 14-15) should be interrogated within individual datasets, and perhaps for individual samples as a 6 

quality control measure. 7 

 8 

SMN1 and SMN2 are camouflaged by each other, where both genes are known to contribute to spinal 9 

muscular atrophy, and have been implicated in ALS. HSPA1A and HSPA1B are also camouflaged by each other, 10 

and the heat-shock protein family has been implicated in ALS [37, 38]. NEB is a special case that is 11 

camouflaged by itself (rather than another gene), and is associated with 24 diseases in the HGMD, including 12 

nemaline myopathy, a hereditary neuromuscular disorder. NEB is a large gene (249151 nucleotides; 25577 13 

CDS nucleotides), thus, ~9.5% dark CDS translates to 2424 dark protein-coding bases. CR1 is a top Alzheimer’s 14 

disease gene that plays a critical role in the complement cascade as a receptor for the C3b and C4b 15 

complement components, and potentially helps clear amyloid-beta (Aß) [39–41]. Like NEB, CR1 is also 16 

camouflaged by itself, where the repeated region actually includes the extracellular C3b and C4b binding 17 

domain. The number of repeats and density of certain isoforms have been associated with Alzheimer’s disease 18 

[21, 42–45].  19 

 20 

We found HLA-DRB5 is dark by depth in the ADSP and gnomAD data, and has been implicated in several 21 

diseases, including Alzheimer’s disease. RPGR is likewise dark in ADSP and gnomAD, and is associated with 22 

several eye diseases, including retinitis pigmentosa and cone-rod dystrophy. We identified ARX as a dark-by-23 
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depth gene, but this gene appears to vary by sample or cohort, as only approximately 30% of gnomAD samples 1 

are strictly dark by depth, using our cutoff of <5 reads. ARX is associated with diseases including early infantile 2 

epileptic encephalopathy 1 (EIEE1) [46] and Partington syndrome [47]. Similarly, TBX1, which harbors 3 

mutations that cause the same phenotype as 22q11.2 deletion syndrome [48], is dark by depth in only 4 

approximately 30% of gnomAD samples.  5 

 6 

Long-read technologies resolve many camouflaged regions, with variable success 7 

We selected three camouflaged gene regions to highlight common strengths and differences for how well 8 

each long-read sequencing technology addresses the camouflaged region, including SMN1 and SMN2 (Figure 9 

7a), HSPA1A and HSPA1B (Figure 7b), and CR1 (Figure 7c). The SMN1 and SMN2 genes are camouflaged by 10 

each other (gene duplication), as are HSPA1A and HSPA1B. CR1, however, is a special case, where it is 11 

camouflaged by a repeated region within itself. Only ONT appeared to be capable of fully addressing the 12 

camouflaged region for all three genes. 10x Genomics also performed well under certain circumstances, such 13 

as SMN1 and SMN2 (regions where the duplication is >50kb away), but did not perform well for HSPA1A and 14 

HSPA1B. PacBio performed well for CR1 and HSPA1A/HSPA1B, but did not perform as well as ONT in the 15 

SMN1/SMN2 region. 16 

 17 

SMN1 and SMN2 were 89.9% and 88.2% dark CDS, respectively (Figure 7a), based on standard Illumina 18 

sequencing with 100-nucleotide read lengths, and were 84.0% and 83.1% dark CDS based on Illumina 250-19 

nucleotide read lengths (not shown). Both genes were technically 0% dark CDS based on 10x Genomics, 20 

PacBio, and ONT data (Figure 7a). PacBio coverage does drop significantly throughout both genes, however. 21 

 22 

HSPA1A and HSPA1B were 52.8% and 51.1% dark CDS (Figure 7b), respectively, based on standard Illumina 23 

100-nucleotide read lengths, and were 50.2% and 49.5% dark CDS based on Illumina 250-nucleotide read 24 
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lengths (not shown). Both genes were 0% dark CDS based on ONT and PacBio data, and were 45.8% and 51.8% 1 

dark CDS based on 10x Genomics data (Figure 7b). In contrast to the results for SMN1 and SMN2, both ONT 2 

and PacBio had consistent coverage throughout the camouflaged regions, whereas the camouflaged regions 3 

remained dark for 10x Genomics (Figure 7b).  4 

 5 

CR1 was 26.5% dark CDS based on Illumina 100-nucleotide read lengths (Figure 7c), and was 24.5% dark based 6 

on Illumina 250-nucleotide read lengths (not shown). CR1 was 26.2% dark CDS for 10x Genomics, and 0% for 7 

both ONT and PacBio (Figure 7c). While both PacBio and ONT were able fill the camouflaged region, coverage 8 

drops dramatically throughout the region, despite both genomes being sequenced at 50x and 46x median 9 

depth, which does not presently represent average use case for these technologies. It is likely that the 10 

performance of these long-read platforms will be better with longer average sequencing libraries (e.g. >50kb 11 

fragment sizes). 12 

 13 

Many camouflaged regions can be rescued, including in standard short-read sequencing data 14 

There are many large-scale whole-genome or whole-exome sequencing projects across tens of thousands of 15 

individuals that are either completed or underway for a variety of diseases, including cancer (e.g., The Cancer 16 

Genome Atlas; TCGA), autism spectrum disorder (e.g., The Autism Sequencing Consortium; ASC), Alzheimer’s 17 

disease (e.g., The Alzheimer’s Disease Sequencing Project; ADSP), Parkinson’s disease (e.g., The Parkinson’s 18 

Progression Markers Initiative; PPMI), and ALS (e.g., Target ALS and CReATe). All of these datasets are affected 19 

by dark and camouflaged regions that may harbor mutations that are either driving or modify disease in 20 

patients. Ideally, all samples would be re-sequenced using the latest technologies over time, but financial 21 

resources and biological samples are limited, making it essential to maximize the utility of existing data.  22 

 23 
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Using a strategy similar to that proposed by Robert and Watson [10], we have developed a method to rescue 1 

mutations in most camouflaged regions, including for standard Illumina short-read sequencing data. When 2 

confronted with a sequencing read that aligns to two or more regions equally well (with high confidence), 3 

most aligners (e.g., BWA [11–13]) will randomly assign the read to one of the regions and assign a low 4 

mapping quality (MAPQ = 0 for BWA, or MAPQ = 1 for novoalign). Because the reads are already aligned to 5 

one of the regions, we can use the following steps to rescue mutations in most camouflaged regions (Figure 6 

8): (1) extract reads from camouflaged regions; (2) mask all highly similar regions in the reference genome, 7 

except one, and re-align the extracted reads; (3) call mutations using standard methods. Without competing 8 

camouflaged regions to confuse the aligner, the aligner will assign a high mapping quality, allowing variant 9 

callers to behave normally. This will enable researchers to identify mutations that exist in one of the 10 

camouflaged regions, but not which specific region (Figure 8). After rescuing these mutations, researchers can 11 

then perform association studies to determine whether any of the mutations may be implicated in disease, 12 

and follow up with targeted sequencing methods to determine the exact camouflage region a mutation lies in. 13 

 14 

Re-alignment rescues approximately 4622 exonic variants, including a rare ten-nucleotide frameshift 15 

deletion in CR1 16 

As a proof of principle, we applied our method to the Alzheimer’s Disease Sequencing Project (ADSP) case-17 

control data [49] to approximate the number of potential mutations our approach could rescue. The ADSP is a 18 

large sequencing project organized, in part, to identify functional mutations that influence Alzheimer’s disease 19 

development. Across 13142 samples from the ADSP, excluding all variants with a quality by depth (QD) <2.5, 20 

we were able to rescue approximately 4622 exonic variants with a transition-transversion ration (Ti/Tv) of 1.97 21 

from 147 camouflaged region sets, that are spread across 501 camouflaged genes (Supplemental Figure 14; 22 

VCF will be provided to the ADSP). Using a more stringent QD (excluding variants with QD <5), we rescued 23 
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3152 variants with a Ti/Tv ratio of 2.17. We only included camouflaged regions from CDS exons for all genes, 1 

including those that are <5% dark CDS. 2 

 3 

Because CR1 is a top-10 Alzheimer’s disease gene, we then specifically interrogated it using our method 4 

(Figure 8) for any functional mutations that could be involved in Alzheimer’s disease, and identified a rare ten-5 

nucleotide frameshift deletion that is only found in five cases and zero controls, all of which are heterozygous 6 

(Figure 8d). Thus, the estimated minor allele frequency for this mutation is 5 / (13142 * 2) = 0.00019, making it 7 

more rare than the TREM2 R47H allele [50–52]. For interest, only one of the individuals carried a single 8 

APOEε4 allele (ε3/ε4). The other four individuals were homozygous for APOEε3 (ε3/ε3).  We were able to 9 

determine that the frameshift deletion is in one of exons 10, 18, or 26. Briefly, our method extracts all reads 10 

with a low mapping quality (MAPQ < 10) from all three exons, masks all but one of the camouflaged regions 11 

within each set of camouflaged regions, and aligns all reads from each set to only one of the regions (Figure 8). 12 

Without identical competing regions to confuse the aligner, the mapping qualities are high enough for a 13 

variant caller (e.g., GATK HaplotypeCaller) to identify whether a mutation exists. For example, reads harboring 14 

the ten-nucleotide frameshift mutation were originally randomly scattered across exons 10, 18, and 26 from 15 

the original alignment (Figure 8). We masked exons 18 and 26, leaving exon 10 unmasked; this allowed reads 16 

from each of the three exons to align to only exon 10, so we could perform variant calling. We estimate a 17 

cohort of approximately 70000 cases and controls would have approximately 80% statistical power to formally 18 

assess this mutation’s involvement in Alzheimer’s disease, assuming a Relative Risk (RR) of 3.3, at an alpha of 19 

0.0001. We provide the .bed files in GRCh37 and GRCh38, along with scripts that will enable researchers to 20 

perform similar analyses in any sequencing dataset at 21 

https://github.com/mebbert/Dark_and_Camouflaged_genes. 22 

 23 

Discussion 24 
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While researchers have known for years that dark regions exist in standard short-read sequencing data, little 1 

work has been done to characterize the breadth of the issue, and to develop possible solutions until more 2 

financially-feasible long-read sequencing options are available. Short-read sequencing is unable to adequately 3 

address camouflaged regions because the reads cannot fully span camouflaged regions to properly align 4 

homologous nucleotides. Long-read sequencing technologies, such as those from 10x Genomics (synthetic 5 

long reads), Oxford Nanopore Technologies (ONT), and Pacific Biosciences (PacBio) have the potential to 6 

address many camouflaged regions because these technologies have median read lengths measured in 7 

thousands of nucleotides, rather than only 100-300 nucleotides from standard short-read sequencing 8 

technologies (e.g., Illumina). Recent work has even demonstrated that mappable ONT reads can exceed two 9 

million nucleotides (e.g, 2272580) [53, 54], showing future potential for addressing large camouflaged regions.  10 

 11 

In this study, we systematically characterized dark and camouflaged gene regions and proposed a method to 12 

address most camouflaged regions in long- or short-read sequencing data. Our solution is specifically 13 

applicable to camouflaged regions, not regions that are dark by depth, simply because there are no reads 14 

available in regions that are dark by depth. While our solution is conceptually simple, implementing the 15 

solution systematically was challenging because of many intricate details, including increased zygosity, and 16 

would ideally be integrated into the original alignment and variant-calling process. While the original 17 

implementation was challenging, we provide the resulting .bed files for both GRCh37 and GRCh38 that are 18 

necessary to rescue mutations from camouflaged regions in any human re-sequencing dataset 19 

(https://github.com/mebbert/Dark_and_Camouflaged_genes). We also provide all of our data and source 20 

code. The .bed files and source code should make implementing our method relatively straightforward for 21 

other groups. As a proof of concept, we were able to rescue approximately 4622 variants in the ADSP dataset 22 

from 147 sets of camouflaged gene regions, which are spread across 501 camouflaged genes. Included in 23 
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these rescued mutations is a ten-nucleotide frameshift deletion in CR1 found in five ADSP cases and zero 1 

controls. 2 

 3 

The number of genes affected by dark and camouflaged regions was surprisingly high. We identified 37873 4 

total dark regions across 5857 gene bodies, nearly 4000 of which were protein coding genes. Exactly 28751 of 5 

the dark regions were intronic and 2657 were in protein-coding exons (CDS). Others were in pseudogenes 6 

(1134) and lincRNAs (732). While most of the dark regions were non-coding (e.g., intronic), these regions may 7 

still harbor important mutations that drive or modify human diseases. For example, there are many examples 8 

of mutations in non-coding regions driving disease, including repeat expansions [1, 55–62], splice-site 9 

mutations (these may be intronic or exonic) [63–77], and regulatory mutations (e.g., UTR regions) [78–87]. 10 

There are also many lincRNAs associated with disease [88–97]. 11 

 12 

There are many patients with diseases known to be genetically inherited that remain genetically unexplained 13 

because the patients do not have any of the known mutations. Many of the genes we identified as being at 14 

least partially dark are known to be involved in numerous diseases, including Alzheimer’s disease, ALS, SMA, 15 

hemophilia A, autism spectrum disorder, schizophrenia, and others; functional mutations that modify disease 16 

likely lie in some of these dark and camouflaged regions. For example, SMN1 and SMN2 are mostly dark 17 

(camouflaged) and are known to harbor mutations that cause disease [63, 65–67]. CR1 is another dark gene 18 

that is 26.5% dark CDS, being camouflaged to itself, and is strongly implicated in Alzheimer’s disease. In fact, 19 

the CR1 camouflaged region includes the C3b and C4b protein binding sites, repeated several times. 20 

Interestingly, the C4B gene (encodes the C4b protein) is also 72.8% dark CDS (camouflaged) and may be 21 

involved in disease [98, 99]. We are confident that rescuing mutations from camouflaged regions will have a 22 

meaningful impact on disease research, and may explain some of the missing heritability of Alzheimer’s 23 

disease [18, 100–102] and other diseases. 24 
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 1 

A large number of gene bodies (494) were 100% dark, which means they are entirely overlooked in standard 2 

whole-exome, whole-genome, and RNA sequencing studies [10]. Additionally, more than 1500 gene bodies, or 3 

nearly 27%, were at least 25% dark and more than 2000 (34.9%) were at least 5% dark; of these, 628 protein-4 

coding genes were at least 5% dark within CDS regions. Understanding what role these genes play in human 5 

health and disease will require being able to resolve them in DNA and RNA sequencing experiments. 6 

 7 

A critical decision for future large-scale sequencing projects will be regarding which long-read technology is 8 

ideal to maximize the probability of identifying functional mutations driving disease. Unfortunately, the 9 

answer is not clear, as each technology has its pros and cons. Based on our results, the ONT platform 10 

performed best, overall, resolving 71.4% of dark gene-body regions. Current costs will likely be prohibitive for 11 

large studies, however. The 10x Genomics platform resolved 66.3% of dark gene-body regions, when 12 

compared to standard Illumina sequencing. PacBio resolved 49.0% of dark gene-body regions. Even increasing 13 

Illumina read lengths from 100 to 250 made a sizeable difference, overall, resolving 21.1% of dark gene-body 14 

regions. Both the PacBio and ONT data used in this study had shorter median read lengths than expected, 15 

suggesting both technologies can likely perform better than our estimates. 16 

 17 

Focusing only on CDS regions, there were 2757 dark CDS regions across 744 protein-coding genes, based on 18 

Illumina 100-nucleotide read lengths. ONT outperformed other long-read technologies, resolving 81.8% of 19 

dark CDS regions. PacBio and 10x Genomics resolved 66.6% and 54.9%, respectively. We found that 10x 20 

Genomics performed well in the SMN1 and SMN2 genes (Figure 7), attaining consistently deep, high-quality 21 

coverage throughout. Both ONT and PacBio coverage declined in the interior regions of the genes. In other 22 

cases, such as CR1 and NEB, 10x Genomics was unable to improve on standard Illumina sequencing, but 23 

PacBio and ONT were able to largely resolve the region—albeit requiring higher than normal sequencing 24 
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depth. We believe that 10x Genomics can correct the issues we observed in CR1 and NEB, by implementing a 1 

more sophisticated version of our method that also incorporates evidence from their synthetic long-read 2 

technology. 3 

 4 

Whether each technology is able to reliably resolve dark and camouflaged regions is an important 5 

consideration for choosing the best long-read technology, but we should also consider how reliably each 6 

technology is able to resolve structural mutations. In a previous study, we tested how well ONT and PacBio are 7 

able to traverse challenging repeat expansions, and whether they are amenable to genetic discovery [1]. We 8 

found that both technologies are well-suited, but we have not assessed performance of the 10x Genomics 9 

platform across long repeat expansions.  10 

 11 

The primary challenge with ONT and PacBio long-read sequencing is, of course, the high error rate, which can 12 

be overcome through deeper sequencing because errors in ONT and PacBio sequencing are mostly random 13 

[103, 104]. Ultimately, we are confident that, as long-read error rates improve, and costs continue to decline, 14 

long-read technologies will be the preferred sequencing choice for large-scale sequencing projects, especially 15 

when considering structural mutations. 16 

 17 

We identified dark and camouflaged regions in this study by averaging data across ten males with deep 18 

Illumina whole-genome sequencing, using 100-nucleotide read lengths. We assessed how well long-read 19 

sequencing technologies (PacBio, ONT, and 10X genomics) resolve these regions, but our measurements 20 

should only be considered estimates. While long-read sequencing technologies are becoming more common, 21 

we were unable to find more than one male individual for each long-read technology; we needed male 22 

samples to assess all chromosomes, including the Y chromosome. Additionally, the samples we used for each 23 

long-read technology were sequenced at a much higher depth than is currently typical for a re-sequencing 24 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 9, 2019. ; https://doi.org/10.1101/514497doi: bioRxiv preprint 

https://doi.org/10.1101/514497
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22

effort, which is likely over estimating the number of dark regions they resolve for the average use case. Our 1 

measurements should be a reasonable estimate of reality, however, and future analyses will be able to refine 2 

our estimates. 3 

 4 

We used whole-genome sequencing to assess dark and camouflaged regions, but this problem is magnified in 5 

whole-exome data, which many large-scale sequencing studies are based on, either completely, or in part. 6 

Whole-exome data are typically generated using even shorter read lengths. They are also generally based on 7 

capture, which means certain exons are not fully represented. APOE is a prime example, where it is typically 8 

well-covered in whole-genome data, but a portion is dark in whole-exome data (Supplemental Figure 13). 9 

With APOE harboring the largest genetic risk factors for Alzheimer’s disease, it is important to properly 10 

characterize the entire gene.  11 

 12 

In this study, we characterized dark and camouflaged gene bodies, and demonstrated several disease-relevant 13 

genes where a significant portion is dark in standard short-read sequencing data, including SMN1 and SMN2, 14 

CR1, and sometimes even APOE. We also identified a rare ten-nucleotide frameshift deletion in CR1 that is 15 

found only in five ADSP cases and zero controls, as a proof of principle (Figure 8d). Using our method (Figure 16 

8), we were able to determine that the frameshift deletion is in one of exons 10, 18, or 26. With CR1 being a 17 

top Alzheimer’s disease gene without any known functional mutations, we believe it will be important to 18 

assess this mutation in a large cohort, to determine whether it plays a role in disease development and 19 

progression. We have also proposed a solution to address most camouflaged genes in sequencing data, and 20 

believe that our approach has the potential to identify functional mutations that are influencing development 21 

across a range of diseases, but are currently entirely overlooked by standard short-read sequencing 22 

approaches. 23 

 24 
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Conclusion 1 

There remain thousands of potentially important genomic regions that are overlooked with short-read 2 

sequencing, but are largely resolved by long-read technologies. While these regions represent only a small 3 

portion of the entire genome or exome, many of these regions are known to be important in human health 4 

and disease. Equally important, however, is that the impact of many other genes is entirely unknown because 5 

they are 100% dark. We presented a method that can resolve most camouflaged regions that we believe will 6 

help researchers identify mutations that are involved in disease. As a proof of principle, we rescued 7 

approximately 4622 variants in the ADSP dataset, including a ten-nucleotide frameshift mutation in CR1. While 8 

we cannot formally assess the CR1 frameshift mutation in Alzheimer’s disease (insufficient sample-size), we 9 

believe it is worth investigating in a larger cohort. In the long-term, we believe long-read sequencing 10 

technologies will be the best solution for resolving dark and camouflaged regions. 11 

 12 

Methods 13 

Sample selection and preparation 14 

To identify dark and camouflaged regions, and to assess how well other technologies address them, we 15 

selected samples from each technology and read length. All samples were aligned to hg19/GRCh37. To assess 16 

dark and camouflaged regions in standard Illumina sequencing with 100-nucleotide read lengths, we selected 17 

ten unrelated male control samples from the Alzheimer’s Disease Sequencing Project (ADSP) where deep 18 

whole-genome sequencing had been performed by randomly selecting one male from ten random families. All 19 

ten males were from either the “Health/Medical/Biomedical” (HMB-IRB) or “Health/Medical/Biomedical” for 20 

non-profit organizations (HMB-IRB-NPU) consent groups, indicated as groups C1 and C2 in the ADSP pedigree 21 

files (available through dbGAP). We selected samples from the ADSP because we required samples that met 22 

the following criteria: (1) had been sequenced using standard paired-end Illumina sequencing with 100-23 
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nucleotide read lengths, (2) had been sequenced with a median depth >30x, and (3) were publicly available. 1 

Median genome-wide read depths ranged from 35.4x to 42.9x, with a median of 39.4x. Samples were 2 

prepared and sequenced as part of the ADSP [49]. These samples were aligned using BWA (v0.5.9). We could 3 

not find samples from the 1000 Genomes Project [24] that met these criteria; sequencing depths were either 4 

too shallow, or read lengths were too long or short. The ADSP sample IDs we used were: A-CUHS-CU000406, 5 

A-CUHS-CU002997, A-CUHS-CU000779, A-CUHS-CU000208, A-CUHS-CU001010, A-CUHS-CU002031, A-CUHS-6 

CU002707, A-CUHS-CU003023, A-CUHS-CU003090, A-CUHS-CU003128.  7 

 8 

To assess dark and camouflaged regions in samples sequenced using Illumina 250-nucleotide read lengths, we 9 

selected ten samples from the 1000 Genomes Project that had been sequenced with 250-nucleotide read 10 

lengths, and had a median depth >30x. All ten samples were aligned using BWA (v 0.7.5a-r428) [2, 11–13]. 11 

Median genome-wide read depths ranged from 39.3 to 52.6, with a median of 48.9x. Sample IDs for the 12 

Illumina 250-nucleotide read lengths were: NA20845 13 

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/NA20845/high_coverage_alignment/), HG01112 14 

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/HG01112/high_coverage_alignment/), HG01583 15 

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/HG01583/high_coverage_alignment/), HG01051 16 

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/HG01051/high_coverage_alignment/), HG03742 17 

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/HG03742/high_coverage_alignment/), HG00096 18 

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/HG00096/high_coverage_alignment/), HG01565 19 

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/HG01565/high_coverage_alignment/), HG01879 20 

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/HG01879/high_coverage_alignment/), HG01500 21 

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/HG01500/high_coverage_alignment/), and HG03006 22 

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/HG03006/high_coverage_alignment/). 23 

 24 
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We also selected samples generated using the 10x Genomics synthetic long-read sequencing platform, and 1 

ONT and PacBio long-read sequencing platforms that were either prepared by, and publicly available from the 2 

respective company, or prepared using standard practice. Specifically, we downloaded HG00512 raw FASTQ 3 

data from 10x Genomics (https://support.10xgenomics.com/de-novo-assembly/datasets/1.1.0/msHG00512; 4 

http://s3-us-west-2.amazonaws.com/10x.files/samples/assembly/2.1.0/chi/chi_fastqs.tar) and aligned it 5 

according to 10x Genomics’ standard practices. We used longranger (v2.2.2) and aligned to GRCh37 6 

(longranger wgs --id HG00512 --description="Han Chinese" --sex="male" --7 

fastqs=chi/HNKHFCCXX/,chi/HWHFTCCXX/ --reference="10x-b37-2.1.0/" --jobmode=sge --mempercore=125 –8 

downsample=385). Median depth for HG00512 was 52x, after downsampling. For ONT, we downloaded the 9 

final Cliveome v2 from ONT’s official GitHub page (http://cliveo.me/; https://github.com/nanoporetech/ONT-10 

HG1/blob/master/CONTENTS.md), which was prepared by ONT. Cliveome v2 was sequenced to a median 11 

depth of 36x. To increase the median read depth to more closely match those of other technologies, we 12 

merged reads from HG002 (https://ftp-13 

trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/Ultralong_OxfordNanopore/com14 

bined_2018-08-10/HG002_ONTrel2_16x_RG_HP10xtrioRTG.cram) [105, 106] and aligned using minimap2 15 

[107] (ALIGN_OPTS="x map-pb -a --eqx -L -O 5,56 -E 4,1 -B 5 --secondary=no -z 400,50 -r 2k -Y"; 16 

REF=g1kv37/g1kv37.fa; minimap2 -d ${REF}.mmi ${ALIGN_OPTS} ${REF}; minimap2 ${ALIGN_OPTS} -a 17 

${REF}.mmi <reads.fq> | samtools view -T {REF} -F 2308 > output_file). The merged sample had 46x median 18 

depth. We used the same alignment options recommended for PacBio because we found the recommended 19 

‘map-ont’ option in minimap2 performed substantially worse. We used PacBio data generated from HG005 20 

(ftp://ftp-21 

trace.ncbi.nlm.nih.gov/giab/ftp/data/ChineseTrio/HG005_NA24631_son/MtSinai_PacBio/PacBio_minimap2_b22 

am/) [105], which was sequenced to a median depth of 50x and aligned using minimap2 [107] (pbsv fasta 23 

[movie].subreads.bam | minimap2 -t 8 -x map-pb -a --eqx -L -O 5,56 -E 4,1 -B 5 --secondary=no -z 400,50 -r 2k -24 
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Y 1 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/phase2_reference_assembly_sequence/hs37d2 

5.fa.gz - | samtools sort > HG005_PacBio_GRCh37.bam). Neither the ONT nor the PacBio alignments include 3 

secondary alignments. 4 

 5 

Identifying dark and camouflaged gene body regions 6 

To identify dark and camouflaged gene body regions in standard Illumina 100-nucleotide read length data, we 7 

first scanned all ten ADSP whole-genome sequence samples for genomic positions that met either of the 8 

following criteria: (1) had <5 reads, and (2) had ≥90% of reads with a mapping quality (MAPQ) <10. We then 9 

averaged the depth and count of low MAPQ reads across all samples for each position. We used strict cutoffs 10 

to identify regions that are clearly dark, but there are many additional regions that fall just beyond our 11 

thresholds. This analysis was performed using the Dark Region Finder (DRF; 12 

https://github.com/mebbert/DarkRegionFinder; mapq=9; dark_mass=90; camo_mass=50; dark_depth=5; java 13 

-jar -Xmx20g CamoGeneFinder.jar -i <sample>.bam --human-ref genome.fa --min-region-size 1 --camo-mapq-14 

threshold $mapq --min-dark-mapq-mass $dark_mass --min-camo-mapq-mass $camo_mass --dark-depth 15 

$dark_depth --camo-bed-output <sample>-camo-dark_depth_${dark_depth}-dark_mass_${dark_mass}-16 

camo_mass_${camo_mass}-mapq_${mapq}.b37.bed --dark-bed-output <sample>-dark-17 

dark_depth_${dark_depth}-dark_mass_${dark_mass}.b37.bed --incomplete-bed-output <sample>-18 

incomplete.b37.bed). Any position that met either criteria was considered dark and categorized as either dark 19 

by depth or dark by mapping quality. We then limited the dark regions to gene bodies by intersecting dark 20 

regions identified by Dark Region Finder with Ensembl’s GRCh37 build 87 gene annotations. We converted the 21 

transcript-level annotations to gene-level annotations using bedtools [108] and custom scripts that are 22 

available. Any dark region that spanned a gene body element region (e.g., intron-exon boundary) was split into 23 

two separate dark regions so we could estimate the number of dark bases in each type of gene body region 24 
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(e.g., introns, exons, UTRs, etc.). For most analyses, we only included dark regions with ≥20 contiguous bases. 1 

The only exception is for Supplemental Tables 1, 3, 5, 7, 9, 12, and 14, where we calculate total percentage of 2 

each gene body that is dark, in which we include all dark positions. To identify camouflaged regions, 3 

specifically, we used BLAT [26] to identify all genomic regions that were highly similar to any given gene body 4 

region that was dark by mapping quality. Any region that was ≥98% identical (-minIdentity = 98), and that was 5 

considered dark (≥90% of reads with MAPQ <10), was considered a match. We generated .bed files for 6 

GRCh37 using this method. We also converted the GRCh37 .bed file to GRCh38 using a custom script, based 7 

off the Ensembl build 87 GRCh38 gene annotations. All code and .bed files can be found at 8 

https://github.com/mebbert/Dark_and_Camouflaged_genes. 9 

 10 

Statistics 11 

We quantified the percentage of each gene body that was dark by summing the total number of dark bases in 12 

the gene (i.e., between the 5’UTR to the 3’UTR start and end, respectively) and dividing by the total number of 13 

bases in the gene. We similarly calculated the percentage of intronic, exonic (including CDS and UTR), and only 14 

CDS exons by dividing the total number of dark bases in each category within the gene by the total number of 15 

bases within that category. We performed these calculations for data based on Illumina 100-nucleotide reads 16 

for all dark regions combined (Supplemental Tables 1-2), dark by depth only (Supplemental Tables 14-15), dark 17 

by mapping quality (Supplemental Tables 16-17), and only camouflaged regions (Supplemental Tables 12-13). 18 

We performed identical calculations for the samples from Illumina 250-nucleotide read length data, 10x 19 

Genomics, ONT, and PacBio (Supplemental Tables 3-10, 18-41). We identified diseases that were known to be 20 

associated with genes that are at least 5% dark CDS by searching for mutations in the Human Gene Mutation 21 

Database (HGMD) [30]. 22 

 23 
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Coverage plots from gnomAD data were obtained from gnomAD-old.broadinstitute.org [33]. We used the old 1 

version because the current version of gnomAD (accessed December 2018) does not allow the user to view 2 

median read depths, nor the percentage of samples with greater than a given coverage depth. Sequence 3 

pileups in representative samples were generated using the Integrative Genomics Viewer (IGV) [109], where 4 

reads with a MAPQ < 10 were filtered, and insertions, deletions, and mismatches were not shown. Karyotype 5 

plots showing genomic locations for dark and camouflaged regions were generated using KaryotypeR (v1.6.2) 6 

[110] in R (v3.5.1). Bar plots were made using ggplot2 (v3.0.0). Pathway analyses and resulting plots were 7 

generated using Metascape (accessed December 2018) [111]. Word clouds were generated at 8 

wordclouds.com. Gene schematics were generated using the Gene Structure Display Server (GSDS; v2) [112]. 9 

 10 

We performed an enrichment analysis to assess whether genes that are ≥5% dark CDS are enriched for specific 11 

diseases. Because we identified 75 genes that have a known mutation associated with disease, and that are 12 

≥5% dark CDS, we randomly selected 75 genes from the with known HGMD mutations and measured the 13 

number of genes with known mutation associated with each disease. We repeated this process 10000 times 14 

and used the following metric as our enrichment score: -10*log10(empirical_pvalue), rounded to the nearest 15 

whole number. 16 

 17 

Screening ADSP for functional CR1 mutations in camouflaged region 18 

After discovering that more than 25% of the CR1 gene’s CDS is camouflaged, we screened all ADSP samples for 19 

rare functional mutations that could play a role in Alzheimer’s disease development and progression by 20 

applying our proposed method (Figure 8). To apply our method, we extracted all reads with a mapping quality 21 

(MAPQ) <10 from each camouflaged region within CR1, and from each of the respective camouflage mate 22 

regions, using samtools and the GRCh37 .bed file we generated that identifies all camouflaged regions. An 23 

example of camouflaged mate regions in CR1 includes exons 10, 18, and 26, which are identical in the 24 
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reference genome (Figure 8). As previously mentioned, CR1 is a special case that is camouflaged by regions 1 

duplicated within itself, rather than being camouflaged by a different gene; thus, we knew that any mutations 2 

we discovered would be from CR1. Our approach works the same regardless of whether a gene is camouflaged 3 

by itself or another gene, but we mention that CR1 is camouflaged by itself, for interest. After extracting reads 4 

from each camouflaged region, using the .bed file we provide, we then masked all camouflaged regions within 5 

CR1 in the reference genome, except for one from each set of camouflaged mates. For example, between 6 

exons 10, 18, and 26, we masked exons 18 and 26 in the reference genome, allowing reads from all three 7 

exons to align only to exon 10; without competing camouflaged regions to confuse the aligner, all reads from 8 

exons 10, 18, and 26 mapped to exon 10 with high quality. Masking regions of the reference genome simply 9 

means to change nucleotides to an unmappable character (usually ‘N’), to prevent any reads from aligning to 10 

that region. 11 

 12 

After aligning all reads to a single region within each set of camouflaged regions, we were able to perform 13 

standard variant calling using the GATK HaplotypeCaller [25], with one exception: instead of treating each 14 

camouflaged region as diploid, we increased the ploidy setting in HaplotypeCaller according to the number of 15 

copies within a given set of camouflaged regions. Referring again to our CR1 example, because there are three 16 

regions (exons 10, 18, and 26), we set the HaplotypeCaller ploidy to hexaploid. Increasing the ploidy is 17 

essential for increased sensitivity, since the number of reads harboring a given variant—which only originate 18 

from one of the camouflaged regions—will be overwhelmed by reads from the others, thus preventing the 19 

variant caller from identifying the mutation under the assumption that the data are from a diploid region. In 20 

other words, if a mutation exists in exon 26, we would expect only approximately 1/6th of reads from exons 21 

10, 18, and 26 to harbor that mutation, rather than approximately 1/2. Because the ADSP is mostly exome 22 

data, we limited HaplotypeCaller to CDS exons only. According to the current ADSP phenotype data, one of the 23 
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samples harboring the CR1 frameshift mutation is a control. The individual has since been officially diagnosed 1 

with Alzheimer’s disease, however. 2 

 3 
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MAPQ: mapping quality; CDS: coding sequence; ALS: amyotrophic lateral sclerosis; FTD: frontotemporal 5 
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 44 

Figure 1. Genomic regions may be ‘dark’ by depth or mapping quality, many of which are ‘camouflaged’. 45 

Large, complex genomes are known to contain ‘dark’ regions where standard high-throughput short-read 46 
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sequencing technologies cannot be adequately assembled or aligned. We split these dark regions into two 1 

types: (1) dark because of low depth; and (2) dark because of low mapping quality (MAPQ), which are mostly 2 

‘camouflaged’. (a) HLA-DRB5 encodes a Major Histocompatibility Complex protein that plays an important role 3 

in immune-response and has been associated with several diseases, including Alzheimer’s disease. It is well 4 

known to be dark (low depth); specifically, when performing whole-genome sequencing using standard short-5 

read sequencing technologies, an insufficient number of reads align, preventing variant callers from assessing 6 

mutations. We calculated sequencing depth across HLA-DRB5 for ten male samples from the Alzheimer’s 7 

Disease Sequencing Project (ADSP) that were sequenced using standard Illumina whole-genome sequencing 8 

with 100-nucleotide read lengths. Approximately 62.0% (50.2% of coding sequence) of HLA-DRB5 is dark by 9 

depth (<5 aligned reads; indicated by red lines). (b) HSPA1A is a heat-shock protein from the 70-kilodalton 10 

(kDa) heat-shock protein family, and plays an important role in stabilizing proteins against aggregation. 11 

HSPA1A is dark because of low mapping quality (MAPQ <10 for ≥90% of reads at a given position). 12 

Approximately 41.8% (52.8% coding sequence) of HSPA1A is dark by mapping quality (indicated by red line). 13 

Dark gray bars indicate sequencing reads with a relatively high mapping quality, whereas white bars indicate 14 

reads with a low mapping quality (MAPQ = 0). (c) Many genomic regions that are dark because of mapping 15 

quality arise because they have been duplicated in the genome, which we term ‘camouflaged’ (or ‘camo 16 

genes’). When confronted with a read that aligns equally well to more than one location, standard sequence 17 

aligners randomly assign the read to one location and give it a low mapping quality. Thus, it is unclear from 18 

which gene any of the reads indicated by white bars originated from. HSPA1A and HSPA1B are clear examples 19 

of camouflaged genes arising from a tandem duplication. The two genes are approximately 14kb apart and 20 

approximately 50% of the genes are identical. 21 

 22 

Figure 2. Many dark regions involve protein-coding gene regions. We identified 37873 dark regions (>16 23 

million nucleotides) in 5857 gene bodies that were either dark by depth or dark by mapping quality. (a) 24 
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Stratifying the gene bodies by GENCODE biotype, 3635 gene bodies were protein coding, 1102 were 1 

pseudogenes, and 720 were long intergenic non-coding RNAs (lincRNA). (b) Of all 37873 dark regions, 28598 2 

were intronic, 4114 were in lincRNA exons, 2657 were in protein-coding exons (CDS), 1134 were in 3’UTR 3 

regions, and 1103 were in 5’UTR regions. Any dark region that spanned a gene element boundary (e.g., intron 4 

to exon) was split into separate dark regions. 5 

 6 

Figure 3. Dark coding regions occur throughout the genome, and are largely resolved with long-read 7 

sequencing technologies. We identified 2757 dark coding (CDS) regions (>460000 nucleotides) in 744 protein-8 

coding genes that were dark by either depth or mapping quality (Supplemental Tables 1-2). Exactly 142 9 

(19.1%) of the 744 protein-coding genes were 100% dark in CDS regions, 441 (59.3%) were at least 25% dark in 10 

CDS regions, and 628 (84.4%) were at least 5% dark in CDS regions (Supplemental Table 1). (a) We mapped all 11 

protein-coding gene bodies with a dark coding exon to the genome to visualize their genomic location, and are 12 

generally spread throughout. There are several tight clusters of dark CDS regions on chromosomes 1, 9, 10, 13 

and Y, however. (b) We assessed how well increasing read lengths would resolve dark regions by assessing 14 

samples sequenced with Illumina whole-genome sequencing using 250-nucleotided read lengths, as well as 15 

long-read technologies 10x Genomics, Oxford Nanopore Technologies (ONT), and Pacific Biosciences (PacBio). 16 

Data from the samples sequenced using 250-nucleotide Illumina read lengths reduced the area under the 17 

curve by 23.2% in CDS regions; this translates to a 24.4% reduction in dark CDS nucleotides. Comparing long-18 

read sequencing technologies to the standard Illumina 100-nucleotide read lengths, 10x Genomics, PacBio, 19 

and ONT reduced the area under the curve for CDS regions by approximately 54.9%, 66.7%, and 81.8%, 20 

respectively; this translates to a 57.8%, 68.6%, and 81.4% reduction in dark CDS nucleotides, respectively. The 21 

area under the curve (AUC) for each technology is scaled in reference to Illumina sequencing based on 100-22 

nucleotide read lengths (i.e., AUC for Illumina 100-nucleotide read lengths = 1). In contrast to overall results, 23 
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PacBio outperformed 10x Genomics when looking only at CDS regions (see text). Most analyses focused on 1 

genes where at least 5% of the CDS nucleotides are dark, indicated by the dashed line. 2 

 3 

Figure 4. Pathways relevant to human health, development, and reproductive function are affected by dark 4 

and camouflaged genes. We characterized the pathways for dark and camouflaged genes using 5 

Metascape.org, including only genes where at least 5% of the CDS regions were dark (670 unique gene 6 

symbols; based on standard Illumina 100 nucleotide read lengths). (a) We identified several pathways that are 7 

important in human health, development, and reproductive function (Supplemental Table 11). Specific 8 

pathways included defensins (R-HSA-1461973; logP = -7.04), gonadal mesoderm development (GO:0007506; 9 

logP = -6.18), base-excision repair (GO:0006284; logP = -5.93), chromatin silencing (GO:0006342; logP = -5.86), 10 

Deubiquitination (R-HSA-5688426; logP = -5.32), NLS-bearing protein import into nucleus (GO:0006607; logP = 11 

-5.31), spindle assembly (GO:0051225; logP = -5.19), spermatogenesis (GO:0007283; logP = -4.93), and 12 

forebrain neuron differentiation (GO:0021879; logP = -4.09). (b) Looking specifically at known protein-protein 13 

interactions, Metascape identified 138 proteins with 212 known interactions (Supplemental Figure 4), and 14 

within those, identified three groups enriched for protein-protein interactions using the MCODE algorithm. All 15 

three MCODE groups combined are primarily associated with RNA transport (hsa030313; logP = -17.3; 16 

Supplemental Figure 5). Individually, the first group (MCODE1) is enriched for proteins involved in systemic 17 

lupus erythematosus (hsa05322; logP = -6.7), cellular response to stress (R-HSA-2262752; logP = -6.6), and 18 

RNA transport (hsa03013; logP = -4.39; Supplemental Figure 6). The second group (MCODE2) is enriched with 19 

proteins involved in NLS-bearing protein import into nucleus (GO:0006607; logP = -17.1) and protein import 20 

into nucleus (GO:0006606; logP = -15.4; Supplemental Figure 7). The third group does not have significant 21 

enrichment associations, likely because little is known about them; all four (PRR20B, PRR20C, PRR20D, and 22 

PRR20E) are 100% camouflaged and do not even have known expression measurements in GTEx [29] 23 
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(Supplemental Figures 8-11). 1 

 2 

Figure 5. Seventy-five dark genes (≥5% CDS) are associated with 305 human phenotypes, including autism, 3 

inflammatory bowel disease, and others. We found 75 genes ≥5% dark CDS that harbor mutations associated 4 

with 305 unique human phenotypes, including 277 diseases, according to the Human Gene Mutation Database 5 

(HGMD). (a) Some of the diseases with the most known associated genes include autism spectrum disorder, 6 

hemophilia A, schizophrenia, hearing loss, spinal muscular atrophy, and inflammatory bowel disease. Word 7 

size represents the number of genes associated with each disease. Some of the diseases most represented in 8 

our data are not surprising, given the number of genes involved in the disease, but these data demonstrate 9 

the number of diseases impacted by genes that are at least 5% dark CDS, and how important it is to 10 

completely resolve dark regions. We also performed an enrichment analysis, where the diseases most 11 

enriched for dark genes included Hemophilia A, color blindness (protan colour vision defect), and X-linked 12 

cone-rod dystrophy (Supplemental Figure 12). (b) Similarly, we quantified the number of diseases each gene 13 

was associated with, and identified many disease-relevant genes with large portions of dark CDS regions that 14 

may harbor critical disease-modifying mutations that currently go undetected. Some of the genes with the 15 

most known disease associations include ARX (14.0% dark CDS), NEB (9.5% dark CDS), TBX1 (10.5% dark CDS), 16 

RPGR (12.9% dark CDS), HBA2 (12.8% dark CDS), and CR1 (26.5% dark CDS). CR1 is particularly notable for 17 

neuroscientists and Alzheimer’s disease geneticists, patients, and their caregivers, given that CR1 is a top-ten 18 

Alzheimer’s disease gene. Other notable genes include SMN1 (89.9% dark CDS) and SMN2 (88.2% dark CDS), 19 

which are known to harbor mutations (in camouflaged regions) that are involved in spinal muscular atrophy 20 

(SMA) [65, 66, 113]. HSPA1A (52.8% dark CDS) and HSPA1B (51.1% dark CDS) also encode two primary 70-21 

kilodalton (kDa) heat-shock proteins. Heat-shock proteins have been implicated in ALS [31, 32]. 22 

 23 
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Figure 6. Camouflaged genes are consistently dark in gnomAD, but dark-by-depth genes may be sample or 1 

dataset specific. Most dark genes are specifically camouflaged (Supplemental Tables 12-13), but many are 2 

dark by depth; we found that camouflaged regions in the ADSP are consistently dark in the gnomAD 3 

consortium data (http://gnomad.broadinstitute.org/) [33]. Dark-by-depth regions may be more variable 4 

between samples and datasets, however, suggesting these regions may be sensitive to specific aspects of 5 

whole-genome sequencing (e.g., library preparation) or downstream analyses. (a) SMN1 and SMN2 are 6 

camouflaged by each other (89.9% and 88.2% dark CDS, respectively; only SMN1 shown). Both genes 7 

contribute to spinal muscular atrophy, and have been implicated in ALS. (b) HSPA1A and HSPA1B are also 8 

camouflaged by each other (52.8% and 51.1% dark CDS, respectively; only HSPA1A shown). The heat-shock 9 

protein family has been implicated in ALS. (c) NEB (9.5% dark CDS) is a special case that is camouflaged by 10 

itself. NEB is associated with 24 diseases in the HGMD, including nemaline myopathy, a hereditary 11 

neuromuscular disorder. NEB is a large gene, thus, 9.5% dark CDS translates to 2424 protein-coding bases. (d) 12 

CR1 is a top Alzheimer’s disease gene that plays a critical role in the complement cascade as a receptor for the 13 

C3b and C4b complement components, and potentially helps clear amyloid-beta (Aß) [39–41]. CR1 is also 14 

camouflaged by itself (26.5% dark CDS), where the repeated region includes the extracellular C3b and C4b 15 

binding domain. The number of repeats and density of certain isoforms have been associated with Alzheimer’s 16 

disease [21, 42–45]. (e) HLA-DRB5 is dark by depth in the ADSP and gnomAD data (50.2% dark CDS). HLA-DRB5 17 

has been implicated in several diseases, including Alzheimer’s disease. (f) RPGR is likewise dark in ADSP and 18 

gnomAD (12.9% dark CDS), and is associated with several eye diseases, including retinitis pigmentosa and 19 

cone-rod dystrophy. (g) ARX is dark-by-depth (14.0% dark CDS), but varies by sample or cohort, as 20 

approximately 70% of gnomAD samples are not strictly dark by depth. ARX is associated with diseases 21 

including early infantile epileptic encephalopathy 1 (EIEE1) and Partington syndrome. (h) Similarly, TBX1 is not 22 

strictly dark by depth in approximately 70% of gnomAD samples (10.5% dark CDS). The Y axes for figures a-f 23 

indicate median coverage in gnomAD (blue = exomes; green = genomes), whereas the Y axes in g-h represent 24 
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the proportion of gnomAD samples that have >5x coverage. Dark and camouflaged regions, as well as the 1 

percentage of each gene’s CDS region that is dark, are indicated by red lines. Dark regions in exome data are 2 

either similar or more pronounced than what we observed in whole-genome data, highlighting that dark and 3 

camouflaged regions are generally magnified in whole-exome data. For interest, we also discovered that 4 

APOE—the top genetic risk for Alzheimer’s disease [34–36]—is approximately 6% dark CDS (by depth) for 5 

certain ADSP samples with whole-genome sequencing, and the same region is dark in gnomAD whole-exome 6 

data (Supplemental Figure 13). 7 

 8 

Figure 7. Long-read technologies resolve many camouflaged regions, with variable success. We found that 9 

ONT’s long-read technology appeared to resolve all camouflaged regions well with the high sequencing depth. 10 

PacBio performed similarly well, and 10x Genomics performs well under certain circumstances. (a) SMN1 and 11 

SMN2 were 89.9% and 88.2% dark CDS, respectively, based on standard Illumina sequencing with 100-12 

nucleotide read lengths (illuminaRL100), and were 84.0% and 83.1% dark CDS based on Illumina 250-13 

nucleotide read lengths (illuminaRL250; not shown). Both genes were technically 0% dark CDS for 10x 14 

Genomics, PacBio, and ONT data. (b) HSPA1A and HSPA1B were 52.8% and 51.1% dark CDS, respectively, 15 

based on illuminaRL100 data, and were 50.2% and 49.5% dark CDS based on illuminaRL250 (not shown). Both 16 

genes were 0% dark CDS based on ONT and PacBio data, and were 45.8% and 51.8% dark CDS based on 10x 17 

Genomics data. In contrast to the results for SMN1 and SMN2, both ONT and PacBio had consistent coverage 18 

throughout the camouflaged regions, whereas the camouflaged regions remain dark for 10x Genomics. (c) CR1 19 

was 26.5% dark CDS based on illuminaRL100, and was 24.5% dark based on illuminaRL250 (not shown). 10x 20 

Genomics did not improve coverage for CR1; the region remained 26.2% dark CDS. Both ONT and PacBio were 21 

0% dark CDS. While both PacBio and ONT were able fill the camouflaged region, coverage dropped 22 

dramatically throughout the region, despite both genomes being sequenced at 50x and 46x median depth, 23 
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which does not presently represent average use case for these technologies. The duplicated region is indicated 1 

by blue bars, where white lines indicate regions that have diverged sufficiently for reads to align uniquely. It is 2 

likely that the performance for ONT and PacBio long-read platforms will be better with longer sequencing 3 

libraries (e.g. >50kb fragment sizes). Regions were visualized with IGV. Reads with a MAPQ < 10 were filtered, 4 

and insertions, deletions, and mismatches are not shown. 5 

 6 

Figure 8. Many camouflaged regions can be rescued, including CR1, even in standard short-read sequencing 7 

data. Many large-scale whole-genome or whole-exome sequencing projects exist, covering tens of thousands 8 

of individuals. All of these datasets are affected by dark and camouflaged regions that may harbor mutations 9 

that either drive or modify disease in patients. Ideally, all samples would be re-sequenced using the latest 10 

technologies over time, but financial and biological samples are limited, making it essential to maximize the 11 

utility of existing data. We developed a method to rescue mutations in most camouflaged regions, including 12 

for standard short-read sequencing data. When confronted with a sequencing read that aligns to two or more 13 

regions equally well (with high confidence), most aligners (e.g., BWA [11–13]) will randomly assign the read to 14 

one of the regions with a low mapping quality (e.g., MAPQ = 0 for BWA). (a) Because the reads are already 15 

aligned to one of the regions, we can use the following steps to rescue mutations in most camouflaged 16 

regions: (1) extract reads from camouflaged regions; (2) mask all highly similar regions in the reference 17 

genome, except one, and re-align the extracted reads; (3) call mutations using standard methods (adjusting 18 

for ploidy); and (4) determine precise location using targeted sequencing (e.g., long-range PCR combined with 19 

Sanger, or targeted long-read sequencing [1]). Without competing camouflaged regions to confuse the aligner, 20 

the aligner will assign a high mapping quality, allowing variant callers to behave normally. (b) Exons 10, 18, 21 

and 26 in CR1 are identical, according to the reference genome. Standard aligners will randomly scatter reads 22 

matching that sequence across these exons and assign a low mapping quality (e.g., MAPQ = 0 for BWA; 23 

indicated as hollow reads). Red lines indicate an individual’s mutation that exists in one of these exons, but 24 
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reads containing this mutation also get scattered and assigned a low mapping quality. (c) By masking exons 18 1 

and 26, we can align all of these reads to exon 10 with high mapping qualities to determine whether a 2 

mutation exists. We cannot determine at this stage which of the three exons the mutation is actually located 3 

in, but researchers can test association with a given disease to determine whether the mutation is worth 4 

further investigation. (d) As a proof of principle, we rescued approximately 4622 exonic variants in the ADSP 5 

(TiTv = 1.97) using our method, including a frameshift mutation in CR1 (MAF = 0.00019) that is only found in 6 

five cases and zero controls (three representative samples shown). The frameshift results in a stop codon 7 

shortly downstream. The ADSP is not large enough to formally assess association between the CR1 frameshift 8 

and Alzheimer’s disease, but we believe the mutation merits follow-up studies given its location (CR1 binding 9 

domain) and CR1’s strong association with disease. 10 
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