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1 Abstract

Despite strong vetting for disease activity, only 10% of candidate new molecular entities in early stage clinical trials
are eventually approved. Analyzing historical pipeline data, Nelson et al. 2015 (Nat. Genet.) concluded pipeline
drug targets with human genetic evidence of disease association are twice as likely to lead to approved drugs.
Taking advantage of recent clinical development advances and rapid growth in GWAS datasets, we extend the
original work using updated data, test whether genetic evidence predicts future successes and introduce statistical
models adjusting for target and indication-level properties. Our work confirms drugs with genetically supported
targets were more likely to be successful in Phases IT and III. When causal genes are clear (Mendelian traits and
GWAS associations linked to coding variants), we find the use of human genetic evidence increases approval from
Phase I by greater than two-fold, and, for Mendelian associations, the positive association holds prospectively.
Our findings suggest investments into genomics and genetics are likely to be beneficial to companies deploying this
strategy.

2 Introduction

The cost of developing new molecular entities (NMEs) into approved therapies continues to sky rocket with cost
per launched NME ranging from $3 billion to more than $10 billion across major research based pharmaceutical
companies [26]. Despite strong vetting for disease activity, only 5-10% of candidate NMEs in early stage clinical
trials are eventually approved and this probability of approval has a direct relationship to total cost per approved
drug [23] 26]. Thus, to maintain a sustainable drug development process, there is a critical need to increase the
number of successful NMEs, while reducing the number of failures.

Analyzing historic data of the progress of drug compounds through the drug development pipeline, Nelson et
al. 2015 [2I] concluded pipeline drug targets with human genetic evidence of disease association are twice as likely
to lead to approved drugs. The specific claim of doubled approval probability, if true, could lead to fewer failed
clinical programs thereby lowering drug development costs. Indeed, using the estimated impact of genetics from
Nelson et al. [21], increasing the fraction of NMEs in development with genetic support from the current value of
15% to 50% is predicted to decrease the direct R&D cost per launched drug by 22 + 13% [15].

Several recent successes have corroborated the power of leveraging genetic data to predict the success of a new
drug targets. Genetic evidence linking mutations in the LDL receptor gene (LDLR) to high LDL cholesterol levels
and increased risk of heart disease led to lovastatin and many other drugs that inhibit HMG-CoA reductase, a rate
limiting step in LDL biosynthesis [30]. The gain of function mutations in PCSK9 [7 2| [16] [§], which cause familial
hypercholesterolaemia and coronary artery disease led to to the launch of Evolocumab (Amgen) and Alirocumab
(Regeneron). In question is how widely the pharmaceutical industry can expect genetics and genomics to yield
increased success rates beyond these more narrowly defined examples that have unambiguous causal genes and
multiple verified Mendelian mutations. If the association between human genetic evidence and approved drugs
is genuine and continues to hold for present-day drug development, we expect better variant to gene mapping
methods and more sophisticated predictive approaches will further improve our ability to prioritize drug targets.
Because of the foundational nature of the Nelson et al. work [27], it is important to determine whether the reported
association holds prospectively, and whether it replicates on independent data subsets not used in the original model
construction.
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Three years have passed since the publication by Nelson et al. and five years have passed since the data freeze
used for analysis happened [21]. The results may now be validated using drug progression events to which Nelson
et al. were completely blinded at the time. Similarly, ongoing efforts in discovering disease-associated variants in
increasingly large patient samples have rapidly grown the number of potential gene trait links. For example, a
public central repository of genetic association studies (GWAS Catalog [19], https://www.ebi.ac.uk/gwas/) has
grown by four-fold [33] [18]. Additionally, the quantity and quality of links between noncoding SNPs and genes has
expanded with the development of GTEx [I3]. Here we report revised estimates of the impact of genetic evidence
on drug target success and extend Nelson’s observations into a model that can be deployed by other companies and
academics to predict the likelihood of success of targets of interest to them.

3 Results

3.1 Identifying Validation Sets

Nelson et al. [21I] estimated a twofold increase in approval probability for Phase I drug targets with genetic
evidence using drug pipeline data from Informa Pharmaprojects along with genetic data from a variety of sources,
all obtained in 2013. This estimate comes from historical rather than experimental data so a direct replication
is not possible. However, we can obtain updated sources of pipeline and genetic data and use the data subsets
not used in the Nelson et al. study study to validate its claims. Figure shows how updated pipeline (Informa
Pharmaprojects [I]) and genetic association (GWAS Catalog, OMIM [20]) datasets may be split into discrete
subsets, several of which were not used in the original analysis. We call these sets validation sets. In addition to
genetic associations and pipeline progression events added after 2013 (New Genetic and Pipeline Progression sets),
we identified a large subset of pipeline data that was available to Nelson et al., but that was excluded from analysis
because Pharmaprojects reported an inactive status, most commonly “No Development Reported”. Instead of
directly using Pharmaprojects development status, we use other fields in the database to label drugs with a latest
historical development phase (see Methods, S2.1), enabling us to use 83% of this data in our analysis.

Following Nelson, we aggregate data at the level of gene target-indication pair, the unit on which genetic evidence
is computed. In total, we mapped 26360 gene target-indication pairs to a highest pipeline phase, in contrast to
8853 pairs labelled with an known phase in the Nelson et al. analysis. 5513 pairs could be tested for progression to
a more advanced clinical phase since 2013, and 14759 pairs either absent or inactive in the 2013 data set could now
be assigned a highest historical pipeline phase. Two validation sets (New Pipeline, and new GWAS associations)
are larger than the original datasets used in Nelson et al. giving us sufficient power to test predictions.

Our replication analysis occurred in three steps. In the first step, we took labels of genetic evidence directly
from Nelson et al. 2015 and tested how these labels predict pipeline outcomes in the New Pipeline and Pipeline
Progression validation sets. Second, we repeated the analysis using both updated pipeline data and updated genetic
association datasets and determined whether genetic evidence labels constructed from associations reported after
2013 are positively associated with historical progression. This analysis uses the New Genetic validation set, defined
as GWAS data added after May 2013 and OMIM data added after October 2013. Third, we determine whether
genetic labels constructed from the full set of updated GWAS and OMIM genetic associations are linked to improved
pipeline outcomes over the entire updated Pharmaprojects dataset (See Methods and Supplemental Data for more
details). We refer to this analysis as Full Data.

3.2 Estimated Effect of Genetic Evidence on Validation sets

Of the many results from the original Nelson et al. publication, we focus on determining whether the probability
of progressing along the development pipeline is greater for gene target-indication pairs with genetic evidence as
this most directly impacts business decision-making (supplementary figures S8-9 and S11-12 show replication of
other results). A gene target-indication pair is said to have genetic evidence if there is human genetic evidence
of association between the gene target and a trait sufficiently similar to the indication (see sections and .
Figure shows estimates and 95% confidence intervals for the ratio of the probability of progression for gene
target-indication pairs with and without genetic evidence computed on the three validation sets and the full set of
new data each plotted against values computed from Nelson et al. supplementary tables.

Across all three validation sets (Pipeline Progression, New Genetic, and New Pipeline), we consistently see a
marked difference between the effect of genetic evidence derived from the OMIM database and genetic evidence
derived from the GWAS Catalog. Estimated effects of OMIM genetic evidence are comparable to or greater than
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Figure 1: Estimated effect of evidence from human genetic studies on the probability of advancing in clinical
development. A: Partitioning Pharmaprojects, OMIM, and GWAS Catalog into training data available to Nelson
et al. 2015 and validation sets. We use validation set Pipeline Progression (which drugs advanced >2013) to
determine whether gene target-indication pairs with genetic evidence were more likely to advance to the next
pipeline phase from 2013-2018. B: Our estimates of the effect of genetic evidence on gene target-indication pair
progression compared to values reported by Nelson et al. 2015 [2]I] in validation sets New Pipeline (drugs and
indications > 2013, 2013 inactive drugs) New Genetic (only new genetic information > 2013) Pipeline Progression,
and in the full updated dataset (Full Data).

previously reported values [21], except for progressions from Phase I to Phase II, which are lower using new data.
Notably, we see a positive and significant effect of OMIM genetic evidence on the probability of progression from
Phase II to Phase III since 2013 (Pipeline Progression validation set). With the exception of progressing from
Phase III to Approval, estimated effects from GWAS Catalog-derived genetic evidence are consistently lower than
the originally reported values. Our estimated effects of GWAS genetic evidence in the New Genetic validation set
are often significantly lower than the originally reported values. In validation sets, all estimates of the effect of
GWAS evidence overlap one (no effect), except in the Pipeline Progression validation set, where we estimate a
negative effect of GWAS evidence on Phase II to III progression (Fig 1B).

In both GWAS and OMIM datasets, our estimates of the effect of genetic evidence on Phase I to II progression
probabilities are lower than originally reported, and confidence intervals sometimes exclude original estimates. With
some exceptions (e.g. oncology studies), Phase I trials assess safety in healthy volunteers, not efficacy, so their success
may be less closely linked to human genetic evidence for target involvement in disease. Validation sets may also
differ systematically from the 2013 training data. For example, it is possible that there are systematic differences in
the types of associations discovered before and after 2013 (New Genetic validation set). Later associations may be
biased towards those with smaller effect sizes or rarer variants only detectable in larger cohorts, and could also be
less predictive of drug efficacy. Using the complete updated dataset (Full Data), including all Pharmaprojects drugs
and pre and post 2013 genetic associations, we find the estimated effect of GWAS genetic evidence on Phase I to
Approval is still significantly positive, and the effect of OMIM genetic evidence is greater than originally reported.
With more data accumulation and a modified strategy for classifying data, we more accurately predict the likelihood
of approval for gene target-indication pairs with genetic evidence.

3.3 Statistical modeling of genetic effect on drug approval

The effect of GWAS genetic evidence on approval was considerably reduced and lacked statistical significance in
the New Genetic dataset. In reanalyzing the original data, we found the estimated effect of GWAS genetic evidence
was highly sensitive to the choice of trait-indication similarity cutoff used to determine whether or not a drug target
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Figure 2: Estimated odds ratio of gene target-indication pair attaining approval, as a function of similarity between
drug indication and the most similar trait associated with the target. Left: All genetic associations. Right: Only
genetic associations reported after 2013 download. Posterior median and pointwise 95% credible interval from
Bayesian logistic regression.

had a genetic association (Figure S3). Learning from this analysis, we sought to build a model relating genetic
evidence to the probability of drug approval in the full dataset.

We fit multivariate logistic regression models predicting target-indication pair approval using several independent
variables. The first was a measure of (continuous) genetic evidence, defined as the greatest similarity to the
indication across all traits linked to the drug target through human genetic evidence. The remaining independent
variables are target and indication-level properties that could confound the relationship between genetic evidence
and approval. Previous work has shown that approved drug targets tend to be more conserved than genes linked
to GWAS associations [4], so we included residual variant intolerance score (RVIS) [24], measuring the amount
of common functional variation in each gene relative to the amount of neutral variation, as a predictor. We also
included the amount of time each target is known to have been under development as a predictor, with the rationale
that if accumulating genetic evidence informs drug development, targets supported by genetic evidence might be
newer on average. Finally, we included gene ontology (GO) terms and high level MeSH terms for each indication
as predictors to control for known differences [14), 28] in approval probability among indication and target classes.

Under this model, approval is positively associated with trait similarity for supporting GWAS and OMIM asso-
ciations, with 95% credible intervals excluding zero (Figure . When associated traits are sufficiently similar, gene
target-indication pairs with GWAS or OMIM associations are more likely to be approved. Evaluation of the data
also revealed when there is a genetic association for a dissimilar disease, they are less likely to be approved than
gene target-indication pairs with no known genetic association. This negative association is a novel finding.

GWAS genetic evidence has a smaller positive effect on approval than does OMIM genetic evidence, and we only
find a small beneficial effect of GWAS genetic evidence in the New Genetic validation set. One possible explanation
is that most GWAS associations are to noncoding variants, and determining function from these associations will
require more advanced methodology [11]. Indeed, when we only consider GWAS Catalog SNPs in high LD (R? > 0.9)
to a missense variant or other variant predicted to be moderately or highly deleterious [6], the estimated effect of
GWAS genetic evidence on drug target approval approaches that of OMIM. Moreover, for missense variants, we see
a larger estimated effect of genetic evidence when using a more stringent LD cutoff to the lead SNP (Figure S24).
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4 Discussion

Pharmaceutical companies are investing in the creation and analysis of genomics data in the hope of improving
target selection and decreasing failures due to lack of efficacy [10] or adverse effects [22]. Previous work by Nelson et
al. 2015 [21] supported this investment, showing gene target-indication pairs with genetic evidence are approximately
twice as likely to progress from Phase I to approval. This quantitative estimate is the product of many decisions,
for example how to identify similar traits in genomics and pipeline databases, that, although reasonable, could have
been made differently. Additionally, the results were based on a large historical set of approved drugs and might
not hold for present-day target selection. This motivated us to replicate the analysis using using 5 years of data
that has accumulated since their data freeze in 2013.

In the replication study, we recovered a robust association between OMIM genetic evidence and drug approval
of a similar or greater magnitude to that originally reported [21I] across several independent test sets. GWAS
genetic evidence also is generally positively associated with progressing in clinical development, but the magnitude
of the association is smaller and not clearly different from zero in any independent replication set. There appears
to be some confounding due to GWAS genes having different properties than successful drug targets. When this
is controlled for using logistic regression, GWAS-supported target-indication pairs are more likely to succeed than
those without a GWAS-linked gene target. This highlights the need for predictive models including target properties,
work that is beginning to emerge [34].

The OMIM database provides expert-curated gene-trait links, bypassing the need to assign noncoding SNPs to
genes, a major source of uncertainty for present GWAS methods. Better methods for linking GWAS SNPs to causal
genes may improve performance, supported by the fact that we found strong and statistically significant positive
associations between GWAS genetic evidence and drug success when considering only the highest confidence SNP-
gene links, characterized as having a leading SNP with R? > 0.9 to a variant predicted to be highly or moderately
deleterious. However, OMIM’s focus on Mendelian phenotypes also means genetic variants will be higher effect size
than those for quantitative traits or conditions prominent in the GWAS Catalog, which is unlikely to be addressed
by improved computational methods.

Because OMIM is a manually curated database, it is possible that known drug mechanisms influence OMIM
entries, creating a positive association between OMIM genetic evidence and approval. However, we observe a
positive effect of OMIM genetic associations reported by Nelson et al. 2015 on progression events occurring after
data were collected for that paper, which is inconsistent with this reverse causal hypothesis. It is also possible
these progression events are not truly independent of pre-2013 approvals, because they may represent approval for
an indication similar to the original indication. However, the positive effect of OMIM genetic evidence on 2013-18
progression remains significant when targets with pre-2013 approvals for similar indications are excluded (Tables
S11-12). We conclude the predictive effect of OMIM genetic evidence is not a statistical artifact, and is more likely
to reflect the value of well-defined disease biology to drug development.

Due to the MeSH ontology structure, current methods require manual similarity assignments to recognize re-
lationships between most quantitative traits and diseases. The high sensitivity of key results to MeSH similarity
motivates treating similarity as a continuous variable and suggests improvements to its quantification. While expert
curation can be advantageous in identifying closely related traits, it also leaves more room for human input to bias
the analysis outcome. To assess this we removed automatically assigned similarities. Positive associations between
GWAS genetic evidence and approval remain, though in some cases are greatly reduced in magnitude (Figure S16,
S24) (OMIM is minimally impacted as it contains few quantitative traits). We expect improved methods automat-
ically identifying similar phenotypes to drug indications will expand our ability to use genomics data in predictive
models.

Our results highlight the importance of similarity between associated trait and drug indication in determining
which gene target-indication pairs are likely to succeed. Our finding that genetic associations for highly dissimilar
traits reduce the probability of approval is new and could be of significance once the reason is better understood. A
possible explanation is an increased incidence of side effects due to involvement in unrelated disease mechanisms. It
suggests that when target disease links are known, genetic data can improve the drug development process through
improved indication selection.


https://doi.org/10.1101/513945
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/513945; this version posted January 8, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Our analysis of the last five years of drug development data validates the results of Nelson et al. and indicates that
the positive association between genetic evidence and drug success is not just a historical phenomenon. Using logistic
regression to control for target and indication level properties, and quantifying genetic evidence on a continuous
scale, we also demonstrated that associations to disparate phenotypes is a negative predictor of approval. With
these algorithmic developments, we have built a Shiny [5] app that others can use to evaluate their target-indication
pairs of interest. As the knowledge of what genes do biologically increases, our data suggests the reliability of genetic
predictions will continue to improve. In closing, public and private investments into genomics for the purpose of
improving the fraction of successful drug targets appears to be well warranted.

5 Methods

5.1 Pipeline data

Data on drug gene targets, indications, latest development phase, and approvals by country were collected from
the Pharmaprojects database (accessed January 25, 2018). For each drug, Pharmaprojects provides country-level,
indication-level, and global development status. The latter is the latest development status across indications for
any country. A drug was considered US/EU approved for an indication if it was approved in the US or EU and
approved for that indication (so if a drug is US/EU approved for one but not all of its approved indications, we will
incorrectly assign some approvals). We infer this was also the approach of Nelson et al., as they mention no source
other than Pharmaprojects for drug approval data and Pharmaprojects does not provide drug-indication-country
level approval data.

To calculate phase-specific progression probabilities by genetic evidence, we must assign a latest historical de-
velopment phase to Pharmaprojects drug-indication pairs that are not in active development using other database
fields. Country status gives the latest phase for single-indication and preclinical drugs. Other drug-indication phases
are determined through assessing the presence or absence of key events and clinical details matching the trial phase
and the disease name. Clinical details were only used when other sources were unavailable because this field may
contain information about planned or anticipated trials. Details are provided in the supplement (Section S2.1).

Pharmaprojects gene targets were mapped from Entrez to ensembl ids. Drugs with non-human and xMHC targets
were excluded (following the original analysis) as were a small number of drugs with non protein coding targets.

5.2 Genetic data

Genetic association data was obtained from the GWAS Catalog [19] downloaded 2017-09-26. OMIM data was
downloaded from [20] on 2018-06-06. GWAS Catalog associations with reported p-value greater than 108, OMIM
provisional associations, drug response associations, and somatic variant associations were excluded.

OMIM reports gene-trait links, but the GWAS Catalog reports SNP-trait links which must be converted to
gene-trait links via SNP-gene links. Although methods for creating SNP-gene links have since advanced [I1], we
closely follow the approach of [2I] with updated data sources to reduce our degrees of freedom for overfitting to
new data and to make our new estimates of the effect of genetic evidence comparable to the original estimates. Our
gene-trait mapping procedure attempts to replicate that used by Nelson et al. with updated data sources. An LD
expansion of GWAS Catalog reported variants was performed using an LD threshold of 0.5 in the 1000 Genomes
Phase 3 EUR super population [9]. A distance-based gene-trait association was established when an LD SNP was
within 5000 b.p. of the gene in hg38 as annotated by SNPEff [6]. An eQTL-based gene-trait link was established
when an LD SNP was reported associated with a gene with nominal p-value less than 10~¢ in any GTEx tissue [13].
Using a cutoff of 107!? makes little difference to results (Table S20). A DHS-based gene-trait link was established
when an LD SNP was located in a DNAse I hypersensitivity site correlated with gene expression with one-sided
permutation p-value 1.000 (from 1000 replicates) [27]. All linked genes were mapped to Ensembl IDs, and links to
genes not annotated as protein coding by Ensembl were removed from the dataset. Additional details are available
in the supplement (Sections S3.1 and S3.2).

5.3 Trait-indication similarities

Pharmaprojects indications and GWAS Catalog and OMIM traits were mapped to MeSH headings to link traits
and indications by a common vocabulary. We mapped as many terms as possible automatically by string matching
to MeSH terms and their synonyms, and the remainder were manually assigned to the most specific MeSH heading
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encompassing the term. The MeSH vocabulary consists of MeSH headings, which are organized in a tree structure,
and supplementary concepts, which are not. We did not map to MeSH supplementary concepts as the lack of struc-
ture means we cannot compute similarities between these concepts and other terms. However, each supplementary
concept is assigned one or more mapped headings, and so terms matching a supplementary concept were assigned
to the mapped heading. This set of MeSH term mappings was used in the full replication with new genetic data
sources.

When testing predictions from the 2013 genetic association data, it was important that MeSH headings mapped
to Pharmaprojects indications be consistent with the original analysis by Nelson et al. in order to correctly
identify common pairs between dataset for which progression can be tested and to ensure that our New Pipeline
test set contained truly novel pairs. Nelson et al. provided mappings for many Pharmaprojects indications in a
supplementary dataset. Terms without provided mappings were mapped to maximize the number of Nelson et
al. gene target-indication pairs also present in our dataset, subject to the mapping being biologically justifiable.
Standardized mapping increased the percent of Nelson et al gene target-indication pairs present in our dataset from
88% (using our independently mapped terms) to 98%.

Resnik [25] and Lin [I7] similarities between MeSH headings were computed in R in the ontologySimilarity
package [12], standardized to have a maximum value of 1 for each trait, and averaged to compute a similarity
between each pair of MeSH headings (Section S4.1). Two traits are considered similar if the similarity is greater
than or equal to a critical value. Our assigned similarities are not identical to those of Nelson et al. because of
using different versions of MeSH (2009 versus 2017), but were correlated with those originally reported (R?=0.86,
Figure S14). We determined a critical value of 0.73 in our analysis corresponded to the critical value 0.7 used in the
original analysis, and used this to determine similar traits in our replication study. Manually assigned similarities
were taken from the supplement of [2I]. Manual assignment was performed because the MeSH ontology makes
few connections between diseases and closely related quantitative phenotypes, for example osteoporosis and bone
density.

5.4 Genetic Evidence

We formalize and extend the concept of genetic evidence used by Nelson et al. We first define a similarity function
operating on two gene-trait pairs. Define function S from (G x 7)? to [0, 1] where G is the space of genes and T is
the space of traits.

Sr(te,t -
S((ghtl), (92,152)) = T( 1 2) g1 g2.
0 otherwise

where Sp : T x T — [0,1] is a trait similarity function (in the Nelson et al analysis and here, computed from
Resnik and Lin similarities). Let A be a set of gene-trait pairs with elements in G X T obtained from genetic data
sources (for example, when analyzing the effect of OMIM genetic evidence A is the set of gene-trait pairs in OMIM).
Genetic evidence according to Nelson et al. 2015 is a function Ep from G x T to {0,1}

1 max{S((g,1), (ga>ta)) : (garta) € A} > 0.7
0 otherwise

ED(gat) = {

However, trait similarity is a real number in [0, 1], so we can define another genetic evidence function E¢ from
G x T to[0,1]

Ec(g,t) = max{5((g,1), (9a: ta)) : (9ata) € A}
Ep(g,t) =1 if and only Fc(g,t) > 0.7.

5.5 Statistical analysis
5.5.1 Two-by-two tables

Let D be a vector of gene target-indication-phase triplets with elements (g;,t;, ki), i =1,...,n. H; € {0,...,4} is
an ordered categorical variable giving the latest phase each gene target-indication pair has achieved (0=Preclinical,
1=Phase I, 2=Phase II, 3=Phase III, and 4=US/EU Approved).
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Risk ratios for progressing from Phase = to Phase y, x > y were computed as

P(Success|Genetic Evidence) Ny o/Ng.y

P(Success|No Genetic Evidence) — Ny /Ny

where N, , = 3" | Ep(gi,t;)I(h; > x) is the number of gene target-indication pairs in Phase z or later with genetic
evidence and Ny , = > (1—Ep(gs,t:))I(h; > z) is the number of gene target-indication pairs in Phase z or later
without genetic evidence. We required at least 5 reported genetic associations for similar traits. Phase progression
probability calculations usually exclude in progress development [14] but here we include them for consistency with
Nelson et al. Confidence intervals were computed using the riskratio.boot function in the epitools R package
[3]. We ensured consistency of this approach with that of Nelson et al. by verifying our code could reproduce their
results from supplemental materials (Section S1.1). Drugs approved only outside the US and EU and drugs with
unknown latest phase were excluded from this analysis.

5.5.2 Bayesian Logistic Regression

Let ¢ index gene target-indication pairs (g;,¢;), ¢ = 1,...,N. Let y; € {0,1} be 1 if pair 7 is found in at least one
US/EU approved drug and 0 otherwise. Let X be an N x d design matrix where d is the number of non-genetic
predictors with i'" row z.

i indep Bernoulli(logit_l(a +mi+af)i=1,....N (1)

where

= > _oviEc(gi, t;)7  there exists (¢,t) € A such that g = g;
’ 0 otherwise

Our choice of p = 2 is supported by WAIC [31][32]. Predictors in X were top-level MeSH category, target class,
estimated time the target has been under development, and RVIS score [24]. Details are provided in Section S5.1.
Priors were

o ~ N(pta,02); (2)

B; S N0,02)j=1,....d (3)
iid 9

Vi NN(Ovag)k:()v]-vQ (4)

All models were fit in Stan [29] using four chains with default initialization and run settings.

Prior parameters p,=-2.2, 0,=0.75 was chosen to reflect prior knowledge that approximately 10% of Phase
I compounds become approved [14] and prior standard deviations o,=2, and o,=2 were chosen prior belief that
observed effect sizes should be moderate. Note «, for which we have chosen a nonzero mean prior, controls the
baseline approval probability, not the effect of genetic evidence. Continuous covariates in X were standardized to
have mean 0 and standard deviation 1 as was E¢.

In this analysis we depart from the original Nelson et al. approach and exclude all drugs assigned an active
development phase by Pharmaprojects, as it is unknown whether these development programs will ultimately lead
to approval. This decision is consistent with other work estimating clinical success probabilities [14][34]. We
include unapproved drugs with unknown latest historical phase. A total of 20292 gene target-indication pairs were
associated with at least one US/EU approved or inactive drug and included in the analysis.

6 Code availability

Code to reproduce the main text figures from supplementary data is provided on Github (https://github.com/
AbbVie-ComputationalGenomics/genetic-evidence-approval). The git repository also contains instructions for
running a Shiny app displaying model predictions.

7 Data availability

Supplementary data tables required to reproduce the main text figures are provided on Github (https://github.
com/AbbVie-ComputationalGenomics/genetic-evidence-approval).
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