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Abstract

Background
Serum and plasma are commonly used biofluids for large-scale metabolomic-epidemiology studies.
Their metabolomic profile is susceptible to changes due to variability in pre-analytical conditions and

the impact of this is unclear.

Methods

Participant-matched EDTA-plasma and serum samples were collected from 37 non-fasting volunteers
and profiled using a targeted nuclear magnetic resonance (NMR) metabolomics platform (N=151
traits). Metabolic concentrations were compared between reference (pre-storage: 4°C, 1.5h; post-
storage: no sample preparation or NMR-analysis delays) and four, pre-storage, blood processing
conditions, where samples were incubated at (i) 4°C, 24h; (ii) 4°C, 48h; (iii) 21°C, 24h; (iv) 21°C, 48h,
before centrifugation; and two, post-storage, sample processing conditions in which samples (i)
thawed overnight, then left for 24h before addition of sodium buffer followed by immediate NMR
analysis; (ii) thawed overnight, addition of sodium buffer, then left for 24h before profiling. Linear
regression models with random-intercepts were used to assess the impact of these six pre-analytical

conditions on EDTA-plasma/serum metabolome.

Results

Fatty acids, beta-hydroxybutyrate, glycoprotein-acetyls and most lipid-related traits, in serum and
plasma, were robust to the tested pre and post-storage conditions. Pre-storage conditions impacted
concentrations of glycolysis metabolites, acetate, albumin and amino-acids by levels that could
potentially bias research results (up to 1.4SD difference compared with reference). Post-storage

conditions affected histidine, phenylalanine and LDL-particle-size, with differences up to 1.4SD.
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Conclusions

Most metabolic traits are robust to the pre- and post-storage conditions tested here and that may
commonly occur in large-scale cohorts. However, concentrations of glycolysis metabolites, and amino-

acids may be compromised.

Keywords: metabolomics, serum, plasma, NMR, lipids, metabolites, pre-analytical phase

Key messages

e Inlarge scale epidemiological studies, blood processing delays, incubation at high
temperature prior to long term storage, and NMR profiling delays after long term storage,
may occur.

e Concentrations of fatty acids, beta-hydroxybutyrate, glycoprotein acetyls and most lipid-
related traits are robust to variations in pre-storage temperature and duration of incubation
(4°C or 21°C for up to 48h prior to centrifugation) and post-storage sample handling (24h
delay in sample preparation or NMR profiling).

e Glycolytic metabolite concentrations are altered by pre-storage conditions and amino-acids,

particularly histidine and phenylalanine, by both, pre and post-storage conditions.
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Introduction

The development of high throughput methods for quantifying multiple ‘omic traits in large-scale
epidemiological studies, using stored biosamples, has the potential to rapidly advance our
understanding into how human physiology and metabolism vary across the lifecourse. Applying these
methods to existing samples from very densely pheno and geno-typed cohorts also has the potential
to enhance our understanding of causal mechanisms for disease. To do this in a scientifically rigorous
way, further information is required regarding the potential impact of differing pre-analytical
conditions (e.g. variations in incubation duration and temperature before centrifugation) of stored
samples that are likely to vary between cohorts and potentially within the same cohort over time. For
example, since sample collection from longitudinal epidemiological cohorts are collected over many
decades it may be impossible to ensure identical protocols are used throughout the life time of the
study. In clinical cohorts and in pregnancy/birth cohorts, such as the Avon Longitudinal Study of
Parents and Children (ALSPAC)*2 and Born in Bradford® cohorts, some samples (e.g. during antenatal
care or for cord-blood) are obtained during routine clinical practice where health care needs takes
precedence over speedy sample processing and rapid storage. Yet these samples, collected early in
life, are often the most valuable for research related to the long-term effects of childhood exposures.
Other cohorts face different challenges, for example the Health Survey for England* and
Understanding Society®, collect biological samples in participants’ homes, which is likely to increase
pre-analytical variability.

Additionally, we are increasingly interested in cohort collaborations (e.g. UCL-LSHTM-Edinburgh-
Bristol® consortium, COnsortium of METabolomics Studies’, Cohorts for Heart and Aging Research in
Genomic Epidemiology® consortium) and broader international comparisons, for example between
determinants of health and wellbeing in low-, middle- and high-income countries and how these
differ. Consequently, we often need to combine data from samples collected in very different
circumstances. For all these reasons, it is important to recognise that biosample collection protocols

are often a compromise between reducing any effects of pre-analytical variation with maximising the
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amount of data, that can be obtained from samples, within the financial and practical restraints of a
given collection sweep.

In clinical chemistry, pre-analytics account for 60-80% of laboratory errors®*? and current standard
operating procedures (SOP) for blood handling in metabolomics, are generally based on best
practices!® (not evidence based) for conventional biochemistry tests.> * Whilst several studies have
explored the impact of pre-analytical conditions on a small number of commonly assessed biomarkers

in epidemiology!®1>18

, metabolomics —the simultaneous quantification of large numbers of metabolic
traits — has particular challenges as different metabolites may have different susceptibilities to
degradation. 23 The aim of this study was to determine the impact of different pre-analytical

conditions, that reflect conditions potentially arising during sample collection and processing in large

scale epidemiological studies, on serum and plasma metabolome.
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Methods

Samples from 37 healthy volunteers were collected. Exclusion criteria for the study were:
clotting/bleeding disorders, anaemia, use of anti-coagulant medication or insulin treatment, and
presence of blood borne viruses. Participants provided written informed consent and completed a
guestionnaire. Ethical approval for the study was obtained from South West Frenchay Proportionate
Review Committee, Bristol, UK, reference 14/SW/0087.

An overview of the experimental design is given in sFigure 1. Ten blood tubes were drawn for each
non-fasting participant (5 EDTA-plasma, 5 serum). Further details are provided in Supplementary

methods.

Reference samples

All samples were processed within 1.5h of blood withdrawal. Once centrifuged, serum and plasma
samples were aliquoted into 1.5ml microtubes (STARLAB E1415-2240) and immediately frozen and
stored at -80°C for one month prior to NMR analysis. Prior to profiling frozen samples were thawed in

24-26

the refrigerator (4°C) overnight, prepared with sodium phosphate buffer and then immediately

run through the NMR spectrometer.

Pre-storage handling: effect of pre-centrifugation delay and temperature

We compared metabolic trait concentrations, quantified by the NMR platform, between four pre- and
two post-storage conditions and the reference samples. The four pre-storage conditions had the
following combination of incubation temperature/duration before centrifugation (i) 4°C for 24h; (ii)
4°C for 48h; (iii) 21°C for 24h; (iv) 21°C for 48h. These conditions were chosen to reflect pre-storage
variations likely to occur in epidemiological studies. Participant-matched serum and EDTA-plasma

samples were processed according to these four conditions.
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Post-storage handling: sample preparation and sample NMR profiling delay

Two variations to the standard Nightingale® NMR protocol?*?® were investigated to evaluate the
impact of sample preparation and instrumental analysis delay. Matched serum and plasma aliquots of
each participant previously prepared according to the reference pre-storage conditions, above
described, were subjected to two post-storage conditions. Samples were either (i) thawed overnight
(4°C), then left for 24 hours at 4°C in the dark before addition of sodium phosphate buffer followed
by immediate NMR analysis (sample preparation delay); (ii) thawed overnight, addition of buffer

before being left for 24 hours at 4°C in the dark, then NMR profiling (NMR analysis delay).

Nuclear Magnetic Resonance metabolomics platform

A high-throughput NMR metabolomics platform, Nightingale Health®, at the University of Bristol, was
used to quantify up to 151 lipoproteins, lipid and metabolites in serum and plasma. The platform
applies a single experimental setup, providing the simultaneous quantification of routine lipids, 14
lipoprotein subclasses and lipids transported by these particles, various fatty acids (FA) and FA traits
(e.g. chain length, degree of unsaturation), amino acids, ketone bodies, glycolysis and
gluconeogenesis-related metabolites, fluid balance and one inflammation metabolite. Most of these
are quantified in clinically meaningful concentrations (e.g. mmol/L), and particle size in nm. Details of
this platform and its use in epidemiological studies have been described elsewhere?”=°, Pyruvate,
glycerol and glycine are not quantified in EDTA-plasma samples due to the interfering resonances of

EDTA on their signals.
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Statistical Analysis

We used linear regression models with random intercepts to assess the impact of the different pre-
analytical conditions on metabolic trait concentrations. Such models account for within individual
clustering of observations as each individual participant contributes with multiple samples for analysis.
All metabolic traits were scaled to standard deviation (SD) units (by subtracting the mean and dividing
by the standard deviation); this was done separately for plasma and serum, and pre and post-storage
conditions. Standardization allows comparison of metabolic traits with different units and/or different
concentration ranges. Results in measured concentration units (e.g. mmol/l) are provided in
Supplementary Data. All analyses were conducted using participant-matched serum and plasma
samples.

Full specification of the models can be found in the Supplementary methods. First, we evaluated the
impact of pre-storage duration, before centrifugation, by keeping temperature constant (at 4°C and
21°C). Incubation duration was entered as a continuous term (levels: O=reference, 1=24h, 2=48h) in
the model with betas representing the standardized mean difference in metabolite concentration per
24h increment in incubation time at 4°C and 21°C respectively. Next, we investigated the impact of
post-storage conditions to estimate the standardized mean difference in metabolite concentration
comparing delays in sample preparation and NMR profiling to the reference (levels: O=reference, 1=
sample preparation delay or NMR profiling delay). In addition, as the usefulness of measurements for
epidemiological analysis often depends on the correct ranking of individuals (i.e. between-individual
variations should be much bigger than within-individual variation due to pre-analytical
handling/between days), we calculated the Spearman rank correlation coefficient between metabolic
concentrations of reference samples and samples subjected to non-ideal conditions for pre and post-
storage studies.

To better appreciate the effects of pre-storage temperature and duration of incubation on the overall
metabolic profile,3! we conducted a principal component analysis (PCA)32. In PCA scores plots, the

metabolic profile of each sample is shown as a single data-point, therefore each participant is
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represented by five data-points corresponding to each pre-storage condition. Samples (data-points)
close to one another have similar metabolic composition in comparison to samples further apart.®
Therefore, if pre-storage conditions do not impact metabolic profiles, samples will not cluster by pre-
storage conditions.

Statistical analyses were conducted using R version 3.0.1 (R Foundation for Statistical Computing,

Vienna, Austria).

Results

Characteristics of study participants are shown in Table 1, with metabolic trait distributions in sTable
1. Most participants were female (78%) and 46% were between 21-35 years old; 41% had drunk
alcohol within the 24h period prior to blood sampling.

The following main conclusions can be drawn from our analyses of the effect of pre-analytical
conditions on blood metabolic traits:

e Fatty acids, beta-hydroxybutyrate, glycoprotein acetyls and most lipids and lipoproteins, in
serum and plasma, are robust to incubation temperatures of 4°C or 21°C for up to 48h prior
to centrifugation (Figure 1, 2; sFigure 2; sTables 2, 3). They are also resilient to being left to
thaw for up to 24h before buffer is added or having buffer added after overnight thaw and
then left for a further 24h before NMR profiling (Figure 3, 4; sFigure 3; sTables 4, 5; sTables 6,
7).

e Labile traits include glycolysis related metabolites (glucose, lactate, pyruvate) and amino-acids
which showed marked differences in concentration in relation to pre-storage conditions and
post-storage conditions (amino-acids only) (Figure 2, 4; sFigure 4; sTables 2-5).

e Branched and aromatic amino-acids appear more robust to pre-storage condition in EDTA-

plasma than in serum (Figure 2; sTables 2, 3).
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e For pyruvate, pre-storage delay and temperature appeared to interact, with levels slightly
decreasing/stable from reference levels per 24h at 4°C and increasing per 24 hours at 21°C
(Figure 2; sTables 2, 3).

e Asanillustration of the magnitude of effects in serum, glucose levels decreased by 0.91mmol/I
(95%Cl: 0.87 to 0.95) and 1.9mmol/l (95%Cl: 1.7 to 2.1) for each 24h delay, compared with
the reference sample, at 4°C and 21°C, respectively. Pyruvate levels decreased by
0.013mmol/I per 24h (95%Cl: 0.008 to 0.018) at 4°C but increased by 0.73mmol/| per 24h
(95%Cl: 0.64, 0.82) at 21°C.

e Post-storage conditions affected histidine, phenylalanine and LDL-particle size, with changes
up to 1.4SD from reference (Figure 3, 4; sTables 4, 5).

o 71.5% and 93% of metabolites across pre and post-storage conditions, respectively, had
spearman correlations coefficients, between ideal and variant conditions, above 0.8 (sTables
6-9).

e Diacylglycerol (DAG) and histidine (range: 0.1-0.8); and DAG, histidine, acetate, pyruvate,
lactate (range: 0.3-0.5), across pre and post-storage conditions, respectively, have the lowest

correlations (sTables 6-9).

Discussion

In this experiment we have shown that most metabolites, including lipids, lipoproteins and fatty acids
are unaffected by different sample pre-analytical conditions that were designed to reflect plausible
variation in large-scale epidemiological studies that have collected samples at different times and
different populations. 91% and 97% of metabolites across pre and post-storage conditions,
respectively, had SD differences from the reference below 0.55D. We did however find effects on

glucose and related glycolysis metabolites, as well as on amino acids (up to 1.4SD).
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Previous studies have addressed this using clinical chemistry tests, mass spectrometry and NMR, with
targeted and untargeted platforms. Where it is possible to make comparisons, these are summarized
in sTable 10.

Pre-storage delay and incubation temperature of uncentrifuged samples, can cause changes to serum
and plasma metabolomes because blood cells and enzymes are still metabolically active inside the
sample tube, resulting in the uptake and release of metabolites. Concordant findings include the
reported stability of triglycerides %18 high density lipoprotein-cholesterol (C) ¥, low density
lipoprotein-C (4°C) 8, total cholesterol (4°C) '8, apolipoprotein A-l and B 8, and creatinine 8. The

17-19, 34,35
7

observed changes in glucose, pyruvate, lactate and alanine, agree with previous studies and

are likely due to blood cell activity, primarily red blood cells (RBC).?* 3¢ The absence of RBC in post-
storage samples explains why these metabolites are robust to the tested post-storage conditions.'” 2°
Increases in concentrations of most amino-acids with the pre- and post-storage (non-ideal) conditions
that we tested here are also consistent with previous studies.' 3% One possible reason for this is
protein degradation, and in the case of phenylalanine® 3 accumulation, as it is an uncommon
component of proteins and has few degradation pathways.'* Glutamine decreased,'*3* converted into
glutamate, and high levels of the latter prevent reliable quantification of pyruvate, since pyruvate only
gives one peak in the *H-NMR-spectrum, which can be overlapped by glutamate signals. Our results
also show that amino-acids in serum are less robust than in EDTA-plasma, possibly due to the
inhibition of metal-dependent proteases by EDTA in the latter, and activation of a range of proteases
during coagulation, in the former. Histidine and acetate had opposite changes in serum and plasma
likely due to the influence of the presence/absence of anti-coagulant. Post-storage effects were less
pronounced than pre-storage ones indicating that most sample degradation are related to blood cells
activities.?>3” Nevertheless we found changes in histidine and phenylalanine and, although not directly
comparable to the conditions we tested, others **1° have report changes in some metabolites when
delays occur after centrifugation. These are potentially caused by enzymes released due to cell

damage during centrifugation and other proteins. 1% 37
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Study strengths and limitations

We have explored the effects of plausible variation in sample processing conditions on over 151
metabolic traits, which is an important contribution to the literature given the increasing use of high
throughput metabolomics in stored samples from epidemiological studies. Samples from just 37
participants were used but the narrow confidence intervals of our results suggest this was sufficient
to provide enough sample comparisons for precise estimation of effects. Participants did not fast
before providing a sample, but this would only affect our results if fasting were related to the different
conditions we have tested (e.g. processing delay or incubation temperature); as samples from each
individual were subjected to all experimental conditions and none of the participants were asked to
fast, we think this is unlikely. Whilst this study highlights which metabolic traits are sensitive to
variations in pre-analytical conditions this does not tell us whether this will bias association analyses.
If measurements for all participants tend to change by a similar amount such analyses may not be
affected (and this appears to be the case for most metabolites as given by the spearman correlation
results). Therefore, we would suggest that where results are being pooled across studies that have
had different pre-analytical processing conditions, between study heterogeneity of glycolysis, amino

acid, acetate and DAG associations should be looked at in detail.

Conclusion

Most serum and EDTA-plasma metabolic traits, quantified by Nightingale Health® NMR platform (87%
of measured traits are lipid-related), are stable to the pre and post-storage conditions tested with
exception of glycolysis metabolites (labile to pre-storage conditions) and amino-acids (labile to both
pre and post-storage conditions). In large collaborations and longitudinal studies, the possible impact

of processing conditions on between metabolomic-data heterogeneity should be explored.
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Table 1. Characteristics of study participants (N=37) who contributed to at least one pair of
exposure-outcome analysis. Age was collected in categories.

Characteristics n %
Female 29 78
Age

[21-35] 17 46
[36-50] 10 27
[51-65] 10 27
Ever smoked, No 15 41

Time since last alcohol consumption

Never Drinks 2 5

<1 Week 16 43
1-4 Weeks 4 11
24h before blood collection 15 41
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Figure 1- Pre-storage handling effects: standardized mean differences in metabolite
concentrations (or trait value) per 24h increment in incubation duration at 4°C and 21°C.
Standardized mean differences are given for serum and plasma traits (associations for
detailed lipoprotein traits are given in sFigure 2). Mean differences in absolute units are listed
in sTables 2 and 3. Pyruvate, glycerol and glycine are not quantified in
Ethylenediaminetetraacetic acid (EDTA) -plasma samples due to the interfering resonances of

EDTA on their signals. Abbreviations: C=cholesterol; IDL=intermediate-density lipoprotein; LDL=low-density
lipoprotein; HDL=high-density lipoprotein; VLDL=very-low-density lipoprotein.
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Figure 2- Pre-storage handling effects (Figure 1 continued): standardized mean differences
in metabolite concentrations (or trait value) per 24h increment in incubation duration at 4°C
and 21°C. Standardized mean differences are given for serum and plasma traits (associations
for detailed lipoprotein traits are given in sFigure 2). Mean differences in absolute units are
listed in sTables 2 and 3. Pyruvate, glycerol and glycine are not quantified in
Ethylenediaminetetraacetic acid (EDTA) -plasma samples due to the interfering resonances of
EDTA on their signals. Abbreviations: MUFA=monounsaturated fatty acids; PUFA=polyunsaturated fatty

acids.
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Figure 3- Post-storage handling effects: standardized mean differences in metabolite
concentrations (or trait value) comparing delays in sample preparation (i.e. thaw to buffer
addition delay) and NMR profiling (buffer addition to NMR profiling delay) to the reference,
for serum and plasma samples (associations for detailed lipoprotein traits are given in sFigure
3). Mean differences in absolute units are listed in sTables 4 and 5. Pyruvate, glycerol and
glycine are not quantified in Ethylenediaminetetraacetic acid (EDTA) -plasma samples due to

the interfering resonances of EDTA on their signals. Abbreviations: C=cholesterol; IDL=intermediate-
density lipoprotein; LDL=low-density lipoprotein;, HDL=high-density lipoprotein; VLDL=very-low-density

lipoprotein.
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Figure 4- Post-storage handling effects (Figure 3 continued): standardized mean differences
in metabolite concentrations (or trait value) comparing delays in sample preparation (i.e. thaw
to buffer addition delay) and NMR profiling (buffer addition to NMR profiling delay) to the
reference, for serum and plasma samples (associations for detailed lipoprotein traits are given
in sFigure 3). Mean differences in absolute units are listed in sTables 4 and 5. Pyruvate, glycerol
and glycine are not quantified in Ethylenediaminetetraacetic acid (EDTA) -plasma samples due

to the interfering resonances of EDTA on their signals. Abbreviations: MUFA=monounsaturated fatty
acids; PUFA=polyunsaturated fatty acids.
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