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Abstract 

Background 

Serum and plasma are commonly used biofluids for large-scale metabolomic-epidemiology studies. 

Their metabolomic profile is susceptible to changes due to variability in pre-analytical conditions and 

the impact of this is unclear.  

Methods 

Participant-matched EDTA-plasma and serum samples were collected from 37 non-fasting volunteers 

and profiled using a targeted nuclear magnetic resonance (NMR) metabolomics platform (N=151 

traits). Metabolic concentrations were compared between reference (pre-storage: 4°C, 1.5h; post-

storage: no sample preparation or NMR-analysis delays) and four, pre-storage, blood processing  

conditions, where samples were incubated at (i) 4°C, 24h; (ii) 4°C , 48h; (iii) 21°C, 24h; (iv) 21°C, 48h, 

before centrifugation; and two, post-storage, sample processing conditions in which samples (i) 

thawed overnight, then left for 24h before addition of sodium buffer followed by immediate NMR 

analysis; (ii) thawed overnight, addition of sodium buffer, then left for 24h before profiling. Linear 

regression models with random-intercepts were used to assess the impact of these six pre-analytical 

conditions on EDTA-plasma/serum metabolome. 

Results 

Fatty acids, beta-hydroxybutyrate, glycoprotein-acetyls and most lipid-related traits, in serum and 

plasma, were robust to the tested pre and post-storage conditions. Pre-storage conditions impacted 

concentrations of glycolysis metabolites, acetate, albumin and amino-acids by levels that could 

potentially bias research results (up to 1.4SD difference compared with reference). Post-storage 

conditions affected histidine, phenylalanine and LDL-particle-size, with differences up to 1.4SD. 
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Conclusions 

Most metabolic traits are robust to the pre- and post-storage conditions tested here and that may 

commonly occur in large-scale cohorts. However, concentrations of glycolysis metabolites, and amino-

acids may be compromised. 

 

Keywords: metabolomics, serum, plasma, NMR, lipids, metabolites, pre-analytical phase 

 

Key messages 
    

• In large scale epidemiological studies, blood processing delays, incubation at high 

temperature prior to long term storage, and NMR profiling delays after long term storage, 

may occur. 

• Concentrations of fatty acids, beta-hydroxybutyrate, glycoprotein acetyls and most lipid-

related traits are robust to variations in pre-storage temperature and duration of incubation 

(4oC or 21oC for up to 48h prior to centrifugation) and post-storage sample handling (24h 

delay in sample preparation or NMR profiling). 

• Glycolytic metabolite concentrations are altered by pre-storage conditions and amino-acids, 

particularly histidine and phenylalanine, by both, pre and post-storage conditions. 
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Introduction 

The development of high throughput methods for quantifying multiple ‘omic traits in large-scale 

epidemiological studies, using stored biosamples, has the potential to rapidly advance our 

understanding into how human physiology and metabolism vary across the lifecourse. Applying these 

methods to existing samples from very densely pheno and geno-typed cohorts also has the potential 

to enhance our understanding of causal mechanisms for disease. To do this in a scientifically rigorous 

way, further information is required regarding the potential impact of differing pre-analytical 

conditions (e.g. variations in incubation duration and temperature before centrifugation) of stored 

samples that are likely to vary between cohorts and potentially within the same cohort over time.  For 

example, since sample collection from longitudinal epidemiological cohorts are collected over many 

decades it may be impossible to ensure identical protocols are used throughout the life time of the 

study. In clinical cohorts and in pregnancy/birth cohorts, such as the Avon Longitudinal Study of 

Parents and Children (ALSPAC)1, 2 and Born in Bradford3 cohorts, some samples (e.g. during antenatal 

care or for cord-blood) are obtained during routine clinical practice where health care needs takes 

precedence over speedy sample processing and rapid storage. Yet these samples, collected early in 

life, are often the most valuable for research related to the long-term effects of childhood exposures. 

Other cohorts face different challenges, for example the Health Survey for England4 and 

Understanding Society5, collect biological samples in participants’ homes, which is likely to increase 

pre-analytical variability. 

Additionally, we are increasingly interested in cohort collaborations (e.g. UCL-LSHTM-Edinburgh-

Bristol6 consortium, COnsortium of METabolomics Studies7, Cohorts for Heart and Aging Research in 

Genomic Epidemiology8 consortium) and broader international comparisons, for example between 

determinants of health and wellbeing in low-, middle- and high-income countries and how these 

differ. Consequently, we often need to combine data from samples collected in very different 

circumstances.  For all these reasons, it is important to recognise that biosample collection protocols 

are often a compromise between reducing any effects of pre-analytical variation with maximising the 
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amount of data, that can be obtained from samples, within the financial and practical restraints of a 

given collection sweep.  

In clinical chemistry, pre-analytics account for 60-80% of laboratory errors9-12 and current standard 

operating procedures (SOP) for blood handling in metabolomics, are generally based on best 

practices13 (not evidence based) for conventional biochemistry tests.9, 14 Whilst several studies have 

explored the impact of pre-analytical conditions on a small number of commonly assessed biomarkers 

in epidemiology13, 15-18, metabolomics – the simultaneous quantification of large numbers of metabolic 

traits – has particular challenges as different metabolites may have different susceptibilities to 

degradation. 19-23 The aim of this study was to determine the impact of different pre-analytical 

conditions, that reflect conditions potentially arising during sample collection and processing in large 

scale epidemiological studies, on serum and plasma metabolome. 
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Methods 

Samples from 37 healthy volunteers were collected. Exclusion criteria for the study were: 

clotting/bleeding disorders, anaemia, use of anti-coagulant medication or insulin treatment, and 

presence of blood borne viruses. Participants provided written informed consent and completed a 

questionnaire. Ethical approval for the study was obtained from South West Frenchay Proportionate 

Review Committee, Bristol, UK, reference 14/SW/0087. 

An overview of the experimental design is given in sFigure 1. Ten blood tubes were drawn for each 

non-fasting participant (5 EDTA-plasma, 5 serum). Further details are provided in Supplementary 

methods.  

 

Reference samples 

All samples were processed within 1.5h of blood withdrawal. Once centrifuged, serum and plasma 

samples were aliquoted into 1.5ml microtubes (STARLAB E1415-2240) and immediately frozen and 

stored at -80°C for one month prior to NMR analysis. Prior to profiling frozen samples were thawed in 

the refrigerator (4oC) overnight, prepared with sodium phosphate buffer24-26 and then immediately 

run through the NMR spectrometer. 

 

Pre-storage handling: effect of pre-centrifugation delay and temperature  

We compared metabolic trait concentrations, quantified by the NMR platform, between four pre- and 

two post-storage conditions and the reference samples. The four pre-storage conditions had the 

following combination of incubation temperature/duration before centrifugation (i) 4°C for 24h; (ii) 

4°C for 48h; (iii) 21°C for 24h; (iv) 21°C for 48h. These conditions were chosen to reflect pre-storage 

variations likely to occur in epidemiological studies. Participant-matched serum and EDTA-plasma 

samples were processed according to these four conditions. 
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Post-storage handling: sample preparation and sample NMR profiling delay 

Two variations to the standard Nightingale® NMR protocol24-26  were investigated to evaluate the 

impact of sample preparation and instrumental analysis delay. Matched serum and plasma aliquots of 

each participant previously prepared according to the reference pre-storage conditions, above 

described, were subjected to two post-storage conditions. Samples were either (i) thawed overnight 

(4oC), then left for 24 hours at 4oC in the dark before addition of sodium phosphate buffer followed 

by immediate NMR analysis (sample preparation delay); (ii) thawed overnight, addition of buffer 

before being left for 24 hours at 4oC in the dark, then NMR profiling (NMR analysis delay).  

 

Nuclear Magnetic Resonance metabolomics platform  

A high-throughput NMR metabolomics platform, Nightingale Health®, at the University of Bristol, was 

used to quantify up to 151 lipoproteins, lipid and metabolites in serum and plasma. The platform 

applies a single experimental setup, providing the simultaneous quantification of routine lipids, 14 

lipoprotein subclasses and lipids transported by these particles, various fatty acids (FA) and FA traits 

(e.g. chain length, degree of unsaturation), amino acids, ketone bodies, glycolysis and 

gluconeogenesis-related metabolites, fluid balance and one inflammation metabolite. Most of these 

are quantified in clinically meaningful concentrations (e.g. mmol/L), and particle size in nm. Details of 

this platform and its use in epidemiological studies have been described elsewhere27-30. Pyruvate, 

glycerol and glycine are not quantified in EDTA-plasma samples due to the interfering resonances of 

EDTA on their signals.  
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Statistical Analysis 

We used linear regression models with random intercepts to assess the impact of the different pre-

analytical conditions on metabolic trait concentrations. Such models account for within individual 

clustering of observations as each individual participant contributes with multiple samples for analysis. 

All metabolic traits were scaled to standard deviation (SD) units (by subtracting the mean and dividing 

by the standard deviation); this was done separately for plasma and serum, and pre and post-storage 

conditions. Standardization allows comparison of metabolic traits with different units and/or different 

concentration ranges. Results in measured concentration units (e.g. mmol/l) are provided in 

Supplementary Data. All analyses were conducted using participant-matched serum and plasma 

samples.  

Full specification of the models can be found in the Supplementary methods. First, we evaluated the 

impact of pre-storage duration, before centrifugation, by keeping temperature constant (at 4°C and 

21°C). Incubation duration was entered as a continuous term (levels: 0=reference, 1=24h, 2=48h) in 

the model with betas representing the standardized mean difference in metabolite concentration per 

24h increment in incubation time at 4°C and 21°C respectively. Next, we investigated the impact of 

post-storage conditions to estimate the standardized mean difference in metabolite concentration 

comparing delays in sample preparation and NMR profiling to the reference (levels: 0=reference, 1= 

sample preparation delay or NMR profiling delay).  In addition, as the usefulness of measurements for 

epidemiological analysis often depends on the correct ranking of individuals (i.e. between-individual 

variations should be much bigger than within-individual variation due to pre-analytical 

handling/between days), we calculated the Spearman rank correlation coefficient between metabolic 

concentrations of reference samples and samples subjected to non-ideal conditions for pre and post-

storage studies. 

To better appreciate the effects of pre-storage temperature and duration of incubation on the overall 

metabolic profile,31 we conducted a principal component analysis (PCA)32. In PCA scores plots, the 

metabolic profile of each sample is shown as a single data-point, therefore each participant is 
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represented by five data-points corresponding to each pre-storage condition. Samples (data-points) 

close to one another have similar metabolic composition in comparison to samples further apart.33 

Therefore, if pre-storage conditions do not impact metabolic profiles, samples will not cluster by pre-

storage conditions.  

Statistical analyses were conducted using R version 3.0.1 (R Foundation for Statistical Computing, 

Vienna, Austria). 

 

Results 

Characteristics of study participants are shown in Table 1, with metabolic trait distributions in sTable 

1. Most participants were female (78%) and 46% were between 21-35 years old; 41% had drunk 

alcohol within the 24h period prior to blood sampling.  

The following main conclusions can be drawn from our analyses of the effect of pre-analytical 

conditions on blood metabolic traits: 

• Fatty acids, beta-hydroxybutyrate, glycoprotein acetyls and most lipids and lipoproteins, in 

serum and plasma, are robust to incubation temperatures of 4oC or 21oC for up to 48h prior 

to centrifugation (Figure 1, 2; sFigure 2; sTables 2, 3). They are also resilient to being left to 

thaw for up to 24h before buffer is added or having buffer added after overnight thaw and 

then left for a further 24h before NMR profiling (Figure 3, 4; sFigure 3; sTables 4, 5; sTables 6, 

7).  

• Labile traits include glycolysis related metabolites (glucose, lactate, pyruvate) and amino-acids 

which showed marked differences in concentration in relation to pre-storage conditions and 

post-storage conditions (amino-acids only) (Figure 2, 4; sFigure 4; sTables 2-5).  

• Branched and aromatic amino-acids appear more robust to pre-storage condition in EDTA-

plasma than in serum (Figure 2; sTables 2, 3). 
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• For pyruvate, pre-storage delay and temperature appeared to interact, with levels slightly 

decreasing/stable from reference levels per 24h at 4oC and increasing per 24 hours at 21oC 

(Figure 2; sTables 2, 3). 

• As an illustration of the magnitude of effects in serum, glucose levels decreased by 0.91mmol/l 

(95%CI: 0.87 to 0.95) and 1.9mmol/l (95%CI: 1.7 to 2.1) for each 24h delay, compared with 

the reference sample, at 4oC and 21oC, respectively. Pyruvate levels decreased by 

0.013mmol/l per 24h (95%CI: 0.008 to 0.018) at 4oC but increased by 0.73mmol/l per 24h 

(95%CI: 0.64, 0.82) at 21oC. 

• Post-storage conditions affected histidine, phenylalanine and LDL-particle size, with changes 

up to 1.4SD from reference (Figure 3, 4; sTables 4, 5).  

• 71.5% and 93% of metabolites across pre and post-storage conditions, respectively, had 

spearman correlations coefficients, between ideal and variant conditions, above 0.8 (sTables 

6-9).  

• Diacylglycerol (DAG) and histidine (range: 0.1-0.8); and DAG, histidine, acetate, pyruvate, 

lactate (range: 0.3-0.5), across pre and post-storage conditions, respectively, have the lowest 

correlations (sTables 6-9). 

Discussion 

In this experiment we have shown that most metabolites, including lipids, lipoproteins and fatty acids 

are unaffected by different sample pre-analytical conditions that were designed to reflect plausible 

variation in large-scale epidemiological studies that have collected samples at different times and 

different populations. 91% and 97% of metabolites across pre and post-storage conditions, 

respectively, had SD differences from the reference below 0.5SD. We did however find effects on 

glucose and related glycolysis metabolites, as well as on amino acids (up to 1.4SD). 
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Previous studies have addressed this using clinical chemistry tests, mass spectrometry and NMR, with 

targeted and untargeted platforms. Where it is possible to make comparisons, these are summarized 

in sTable 10.   

Pre-storage delay and incubation temperature of uncentrifuged samples, can cause changes to serum 

and plasma metabolomes because blood cells and enzymes are still metabolically active inside the 

sample tube, resulting in the uptake and release of metabolites.  Concordant findings include the 

reported stability of triglycerides 16-18, high density lipoprotein-cholesterol (C) 18, low density 

lipoprotein-C (4oC) 18, total cholesterol (4oC) 18, apolipoprotein A-I and B 18, and creatinine 18. The 

observed changes in glucose, pyruvate, lactate and alanine, agree with previous studies 17-19, 34, 35, and 

are likely due to blood cell activity, primarily red blood cells (RBC).23, 36 The absence of RBC in post-

storage samples explains why these metabolites are robust to the tested post-storage conditions.17, 20 

Increases in concentrations of most amino-acids with the pre- and post-storage (non-ideal) conditions 

that we tested here are also consistent with previous studies.14, 34 One possible reason for this is 

protein degradation, and in the case of phenylalanine14, 34 accumulation, as it is an uncommon 

component of proteins and has few degradation pathways.14 Glutamine decreased,14, 34 converted into 

glutamate, and high levels of the latter prevent reliable quantification of pyruvate, since pyruvate only 

gives one peak in the 1H-NMR-spectrum, which can be overlapped by glutamate signals. Our results 

also show that amino-acids in serum are less robust than in EDTA-plasma, possibly due to the 

inhibition of metal-dependent proteases by EDTA in the latter, and activation of a range of proteases 

during coagulation, in the former.  Histidine and acetate had opposite changes in serum and plasma 

likely due to the influence of the presence/absence of anti-coagulant. Post-storage effects were less 

pronounced than pre-storage ones indicating that most sample degradation are related to blood cells 

activities.23, 37 Nevertheless we found changes in histidine and phenylalanine and, although not directly 

comparable to the conditions we tested, others 14, 19 have report changes in some metabolites when 

delays occur after centrifugation. These are potentially caused by enzymes released due to cell 

damage during centrifugation and other proteins. 14, 19, 37 
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Study strengths and limitations 
 

We have explored the effects of plausible variation in sample processing conditions on over 151 

metabolic traits, which is an important contribution to the literature given the increasing use of high 

throughput metabolomics in stored samples from epidemiological studies. Samples from just 37 

participants were used but the narrow confidence intervals of our results suggest this was sufficient 

to provide enough sample comparisons for precise estimation of effects. Participants did not fast 

before providing a sample, but this would only affect our results if fasting were related to the different 

conditions we have tested (e.g. processing delay or incubation temperature); as samples from each 

individual were subjected to all experimental conditions and none of the participants were asked to 

fast, we think this is unlikely. Whilst this study highlights which metabolic traits are sensitive to 

variations in pre-analytical conditions this does not tell us whether this will bias association analyses. 

If measurements for all participants tend to change by a similar amount such analyses may not be 

affected (and this appears to be the case for most metabolites as given by the spearman correlation 

results). Therefore, we would suggest that where results are being pooled across studies that have 

had different pre-analytical processing conditions, between study heterogeneity of glycolysis, amino 

acid, acetate and DAG associations should be looked at in detail. 

 

Conclusion 

Most serum and EDTA-plasma metabolic traits, quantified by Nightingale Health® NMR platform (87% 

of measured traits are lipid-related), are stable to the pre and post-storage conditions tested with 

exception of glycolysis metabolites (labile to pre-storage conditions) and amino-acids (labile to both 

pre and post-storage conditions).  In large collaborations and longitudinal studies, the possible impact 

of processing conditions on between metabolomic-data heterogeneity should be explored. 
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Table 1. Characteristics of study participants (N=37) who contributed to at least one pair of 
exposure-outcome analysis. Age was collected in categories.  

 

Characteristics n % 

Female 29 78 

Age   

[21-35] 17 46 

[36-50] 10 27 

[51-65] 10 27 

Ever smoked, No 15 41 

Time since last alcohol consumption 

Never Drinks 2 5 

<1 Week 16 43 

1-4 Weeks 4 11 

24h before blood collection 15 41 
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Figure 1- Pre-storage handling effects: standardized mean differences in metabolite 
concentrations (or trait value) per 24h increment in incubation duration at 4oC and 21oC. 
Standardized mean differences are given for serum and plasma traits (associations for 
detailed lipoprotein traits are given in sFigure 2). Mean differences in absolute units are listed 
in sTables 2 and 3. Pyruvate, glycerol and glycine are not quantified in 
Ethylenediaminetetraacetic acid (EDTA) -plasma samples due to the interfering resonances of 
EDTA on their signals. Abbreviations: C=cholesterol; IDL=intermediate-density lipoprotein; LDL=low-density 

lipoprotein; HDL=high-density lipoprotein; VLDL=very-low-density lipoprotein. 
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Figure 2- Pre-storage handling effects (Figure 1 continued): standardized mean differences 
in metabolite concentrations (or trait value) per 24h increment in incubation duration at 4oC 
and 21oC. Standardized mean differences are given for serum and plasma traits (associations 
for detailed lipoprotein traits are given in sFigure 2). Mean differences in absolute units are 
listed in sTables 2 and 3. Pyruvate, glycerol and glycine are not quantified in 
Ethylenediaminetetraacetic acid (EDTA) -plasma samples due to the interfering resonances of 
EDTA on their signals. Abbreviations: MUFA=monounsaturated fatty acids; PUFA=polyunsaturated fatty 

acids. 
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Figure 3- Post-storage handling effects: standardized mean differences in metabolite 

concentrations (or trait value) comparing delays in sample preparation (i.e. thaw to buffer 

addition delay) and NMR profiling (buffer addition to NMR profiling delay) to the reference, 

for serum and plasma samples (associations for detailed lipoprotein traits are given in sFigure 

3). Mean differences in absolute units are listed in sTables 4 and 5. Pyruvate, glycerol and 

glycine are not quantified in Ethylenediaminetetraacetic acid (EDTA) -plasma samples due to 

the interfering resonances of EDTA on their signals. Abbreviations: C=cholesterol; IDL=intermediate-

density lipoprotein; LDL=low-density lipoprotein; HDL=high-density lipoprotein; VLDL=very-low-density 

lipoprotein. 
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Figure 4- Post-storage handling effects (Figure 3 continued): standardized mean differences 
in metabolite concentrations (or trait value) comparing delays in sample preparation (i.e. thaw 
to buffer addition delay) and NMR profiling (buffer addition to NMR profiling delay) to the 
reference, for serum and plasma samples (associations for detailed lipoprotein traits are given 
in sFigure 3). Mean differences in absolute units are listed in sTables 4 and 5. Pyruvate, glycerol 
and glycine are not quantified in Ethylenediaminetetraacetic acid (EDTA) -plasma samples due 
to the interfering resonances of EDTA on their signals. Abbreviations: MUFA=monounsaturated fatty 

acids; PUFA=polyunsaturated fatty acids. 
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