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ABSTRACT 1	

When coupled to mass spectrometry (MS), energetics-based protein separation (EBPS) 2	

techniques, such as thermal shift assay, have shown great potential to identify the targets of a 3	

drug on a proteome scale. Nevertheless, the computational analyses assessing the confidence of 4	

drug target predictions made by these methods have remained rudimentary and significantly 5	

differ depending on the protocol used to produce the data. To identify drug targets in datasets 6	

produced using different EBPS-MS techniques, we have developed a novel flexible 7	

computational approach named TargetSeeker-MS. We showed that TargetSeeker-MS 8	

reproducibly identifies known and novel drug targets in C. elegans and HEK293 samples that 9	

were treated with the fungicide benomyl and processed using two different EBPS techniques. We 10	

also validated a novel benomyl target in vitro. TargetSeeker-MS, which is available online, 11	

allows for the confident identification of targets of a drug on a proteome scale, thereby 12	

facilitating the evaluation of its clinical viability. 13	

 14	

Keywords: 15	

Bioinformatics / Drug target discovery / Mass spectrometry / Proteomics / Thermal shift assay. 16	
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INTRODUCTION 1	

Methods that can identify the putative protein targets of a drug on a proteome-scale are 2	

critical to decipher the mechanism of action of a compound. Such methods include large-scale 3	

phenotypic screenings, which are often performed to evaluate the ability of a library of 4	

compounds to modulate a given target pathway and therefore provide a putative treatment for the 5	

associated disease process. High-throughput screening (HTS) methods, which use automated 6	

high-end instrumentation, can test the properties of up to 100,000 compounds per day. However, 7	

high-throughput screening is typically performed on isolated systems and offers minimal insights 8	

regarding secondary protein targets1. 9	

Mass spectrometry (MS)-based proteomics allows the large-scale identification and 10	

quantification of proteins in complex samples (e.g. cells, tissues, plasma). MS coupled to 11	

affinity-based enrichment strategies has routinely been used to identify protein interactions of 12	

compounds in the cell2–4. In the recent years, energetics-based protein separation (EBPS) 13	

techniques coupled to MS have emerged as a large-scale approach to rapidly and unbiasedly 14	

identify the protein targets of a given compound or drug. Such approaches rely on the hypothesis 15	

that the target of a drug will see its stability or thermodynamic properties changed upon binding 16	

with the compound. We previously demonstrated that Stability of Proteins from Rates of 17	

Oxidation (SPROX) combined with quantitative MS can be used to identify the protein targets of 18	

a drug5. This strategy uses the chemical denaturant-dependent oxidation rates of methionine 19	

residues to measure the thermodynamics of the unfolding or refolding reaction of proteins in 20	

drug-treated and untreated samples. A significant change in a given protein’s thermodynamics 21	

would indicate its binding to the drug. In this workflow, proteins were quantified using 6-plex 22	

tandem mass tags (TMT)6 stable isotope labeling coupled to MS. An increasingly popular EBPS 23	
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coupled to MS (EBPS-MS) approach assesses ligand binding by evaluating changes in thermal 1	

stability7,8. This approach is based on the hypothesis that a protein bound by a given drug would 2	

see its thermal stability changed by the binding. A thermal shift assay technique was also 3	

employed in cells (CETSA)9. Savitski et al. demonstrated that combining a thermal shift assay 4	

approach with quantitative mass spectrometry allows the large-scale unbiased identification of 5	

drug targets10. These studies showed that EBPS-MS is complementary to HTS. Indeed, while 6	

HTS can process tens of thousands of compounds simultaneously and EBPS-MS only 7	

investigates one compound at a time,  EBPS-MS allows the testing of this compound against the 8	

proteome of a sample, a much more complex system than what is tested in traditional HTS.  9	

While EBPS-MS-based techniques for drug target discoveries are emerging rapidly, no 10	

general computational frameworks for the unbiased identification of drug-protein interactions 11	

have been produced. One of the reasons why the adoption of EBPS-MS technologies has been 12	

slow is because there are currently no implementations available to assess the confidence or 13	

statistical significance that a protein is bound by a given drug based on its change in stability 14	

evaluated by an EBPS-MS approach. The current practices involve the use of in-house 15	

computational scripts with numerous custom thresholds, making the comparisons and 16	

benchmarking of results across different laboratories extremely difficult5,10. Savitski et al. 17	

presented a statistical approach using curve fitting and statistics, which rely on largely 18	

unsupported assumptions of the normality distribution of the data11. In addition, this statistical 19	

approach is tied to the thermal shift assay experimental protocol using a 10-plex tandem mass tag 20	

as protein quantification technique10 and is not readily applicable to the other protein EBPS-MS 21	

quantification techniques that may be used to identify drug targets. For instance, we recently 22	

developed DiffPOP12, a novel EBPS technique that allows efficient separation of complex 23	
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protein samples using an increasing concentration of a solution of acetic acid and methanol. 1	

DiffPOP was recently used to identify the targets of JIB-04, a compound that blocks the 2	

expression and transactivation of HIV-1 Tat12. DiffPOP differentiates itself from the Savitski et 3	

al. thermal shift assay approach by using MS to quantify proteins precipitated in each fraction 4	

instead of proteins remaining in the supernatant. The statistical method proposed by Savitski et 5	

al., which relies on melting curves based on supernatant analysis, is therefore not applicable for 6	

such a technique nor the SPROX quantitative MS approach. Furthermore, the use of TMT 10-7	

plex reagents in Savitski et al.’s quantitative proteomics analysis suffers from a number of 8	

drawbacks. As in any TMT labeling analysis, low abundance proteins are less likely to be 9	

quantified, making it difficult to detect low abundance drug targets13. Furthermore, the price of 10	

TMT 10-plex reagents14 and the high resolution instruments necessary for TMT 10-plex 11	

analysis15 limits the democratization of Savitski et al.’s drug target discovery approach.  12	

Herein, we propose a general computational framework, TargetSeeker-MS, for the 13	

identification of drug targets using EBPS coupled to quantitative MS. TargetSeeker-MS 14	

implements a Bayesian inference machine learning approach to assess the confidence that a 15	

protein is bound by a given compound. We demonstrate that TargetSeeker-MS, which is open-16	

source and available as a user-friendly web-server, is hypothesis-free and flexible enough to 17	

analyze datasets originating from any EBPS-MS techniques. TargetSeeker-MS identified 18	

putative targets of benomyl, a fungicide putatively linked to Parkinson’s disease16,17, in two C. 19	

elegans datasets analyzed using DiffPOP and thermal shift assay coupled to MS. We showed that 20	

although both fractionation methods vary in nature, TargetSeeker-MS predictions in both 21	

datasets share a significant overlap of confident targets. In addition, we demonstrated that the 22	

TargetSeeker-MS algorithm predicts drug targets with a greater sensitivity than previously 23	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 7, 2019. ; https://doi.org/10.1101/513663doi: bioRxiv preprint 

https://doi.org/10.1101/513663
http://creativecommons.org/licenses/by/4.0/


	 6	

proposed approaches. Benomyl is known to inhibit aldehyde dehydrogenase (ALDH), a 1	

mechanism putatively leading to Parkinson’s disease development16. TargetSeeker-MS identified 2	

aldehyde dehydrogenase as a benomyl target along with other known and novel targets. Finally, 3	

we highlight that TargetSeeker-MS identified human benomyl target orthologs when processing 4	

a HEK293 cells dataset treated with the drug and validated the impact of benomyl on the 5	

enzymatic activity of one of its novel predicted targets, GAPDH. 6	

 7	

RESULTS 8	

TargetSeeker-MS is a Bayesian inference-based approach that computes the probability that a 9	

protein is bound by a given drug through the analysis of EBPS-MS datasets. Briefly, 10	

TargetSeeker-MS takes as input a set of untreated (control) samples that were processed using 11	

EBPS and quantified using MS and builds for each protein a noise model of the similarity of the 12	

protein fractionation profiles in different biological replicates. It then evaluates the similarity of 13	

these control protein fractionation profiles with that of a drug-treated sample that was also 14	

separated using the same EBPS-MS approach. TargetSeeker-MS then assesses the confidence 15	

that each protein is bound by the drug. Figure 1 provides a graphical representation of 16	

TargetSeeker-MS’ pipeline. In this study, we used TargetSeeker-MS to identify the proteins 17	

bound by benomyl in three different datasets. The first two datasets analyzed C. elegans samples 18	

and were produced using DiffPOP separation (see Methods) coupled to MS (Dataset 1 – 19	

DiffPOP/C. elegans; Supplementary Figure S1) and Thermal Shift Assay (TSA) separation 20	

coupled to MS (Dataset 2 – TSA/C. elegans; Supplementary Figure S1). The third dataset 21	
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represents the processing of Human Embryonic Kidney 293 cells (HEK 293) using DiffPOP-MS 1	

(Dataset 3 – DiffPOP/HEK293; Supplementary Figure S1).  2	

 3	

Figure 1. Experimental and computational pipeline. A graphical representation of the drug 4	

target identification pipeline illustrating the protein separation, the mass spectrometry analysis, 5	

and the TargetSeeker-MS algorithm. 6	

 7	
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Protein fractionation profiles display a high level of reproducibility. 1	

To begin, we investigated the level of reproducibility of protein (p) fractionation profiles 𝐹"# 2	

across different biological replicates of untreated biological samples (u) in order to assess the 3	

possibility of building a model of the noise of fractionation profile similarity values with a small 4	

number of replicates. With this objective in mind, we computed the similarity 𝑆"
#%,#' for all 5	

proteins p and all untreated samples 𝑢) and 𝑢* ∈ 𝑈, where 𝑈 is the set of untreated samples in a 6	

dataset. The vast majority of the protein fractionation profiles shared a high degree of similarity 7	

(Figure 2A and Supplementary Figures S2 and S3). For instance, 79% of all pairs of 8	

fractionation profiles in untreated samples have a similarity 𝑆"
#%,#' > 0.75 in the DiffPOP-C. 9	

elegans dataset (Dataset 1). These similarity values demonstrate that both EBPS-MS approaches 10	

yield a high level of fractionation reproducibility, which is likely to be sufficient to compute the 11	

probability matrix Pr 𝑆"
#%,#' 𝑆"#  and to build an accurate noise model of the similarity values of 12	

fractionation profiles under the null hypothesis (untreated samples) with a small number of 13	

replicates (see Methods). Supplementary Figure S4 displays the probability matrix Pr 𝑆"
#%,#' 𝑆"#  14	

for Dataset 1. Protein fractionation profiles also shared a high similarity in benomyl treated 15	

samples (Supplementary Figure S5, S6, and S7). To illustrate this, in Dataset 1 83% of all pairs 16	

of fractionation profiles obtained a similarity 𝑆"
/%,/' > 0.75, where 𝑡) and 𝑡* ∈ 𝑇 the set of all 17	

treated samples. The similarity values between the untreated and benomyl treated samples are 18	

similarly distributed in all three datasets with only the DiffPOP-HEK293 dataset (Dataset 3) 19	

showing a slight difference between the two distributions (Figure 2B, Supplementary Figure S8, 20	

and S9). Overall, the distributions of similarity values highlight the feasibility of  21	
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 1	

Figure 2. Fractionation profile similarity. (A) Heatmap representation of the similarity 2	

between protein fractionation profiles for all pairs of untreated samples of the DiffPOP/C. 3	

elegans dataset. All proteins with a sufficient abundance to compute a fractionation profile in all 4	

untreated samples are displayed. (B) Distributions of the fractionation profile similarity values in 5	

both untreated and benomyl treated samples of the DiffPOP/C. elegans dataset. (C) Fractionation 6	

profiles represented as normalized spectral counts in each fraction and (D) posterior distributions 7	

of 𝑆"# of four different C. elegans proteins identified using DiffPOP-MS. The shaded portion of 8	

the distributions represents the 𝑝-value 𝑆"
#,/  for each protein. The shaded portion of W10C8.5 9	

and alh-5 is not visible since it spans from (0 to 0.62) and (0 to 0.38), respectively. 10	
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creating a noise model for the similarity between the fractionation profiles of a given protein  1	

using a small number of biological replicates. 2	

 3	

TargetSeeker-MS assesses the statistical significance of protein fractionation profile changes 4	

upon benomyl treatment. 5	

The ability of the algorithm to assess the significance of the change in the fractionation profile of 6	

a protein upon drug treatment was illustrated with four protein examples from Dataset 1 (Figure 7	

2C and 2D). Pck-2 represents an example of a protein without a change in its fractionation 8	

profile upon benomyl treatment (Figure 2C). Indeed, both distributions of normalized spectral 9	

counts are almost identical (Similarity 𝑆"
#,/ = 0.89). The associated 𝑝-value (>0.99; FDR=1.0) 10	

computed by TargetSeeker-MS is therefore very high (see Methods for 𝑝-value calculation). On 11	

the other hand, F45D11.15 appears to display a small shift to the left in its fractionation profile 12	

upon benomyl treatment (Similarity 𝑆"
#,/ = 0.85). However, this change in fractionation profile is 13	

too minor to be deemed significant by TargetSeeker-MS (𝑝-value = 0.5; FDR = 1.0), since it may 14	

simply be due to noise as indicated by its high FDR. Alh-5, a protein known to be bound by 15	

benomyl16,18 clearly displays a significant change in its fractionation profile, showing an 16	

increased precipitation resistance upon benomyl treatment (Similarity 𝑆"
#,/ = 0.38). Due to the 17	

amplitude of this shift, TargetSeeker-MS assigned a 𝑝-value of 0.0022 (FDR=0.005) to alh-5. 18	

Conversely, W10C8.5, an ortholog of a human creatine kinase, also sees its fractionation profile 19	

drastically modified by benomyl (Similarity 𝑆"
#,/ = 0.62), but in this case a decrease in 20	

precipitation resistance is observed (p-value = 0.0002; FDR< 0.005). This result is consistent 21	
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with previous reports, which showed that creatine kinase enzymatic activity is altered by 1	

benomyl19,20. 2	

 3	

TargetSeeker-MS identifies high-confidence benomyl targets in C. elegans samples that were 4	

analyzed using DiffPOP-MS. 5	

We tested the ability of TargetSeeker-MS to identify benomyl targets in C. elegans through the 6	

analysis of a dataset produced with DiffPOP-MS (Dataset 1). TargetSeeker-MS built the 7	

similarity noise model with a set of four untreated biological replicates. With this noise model 8	

established, we used TargetSeeker-MS to evaluate the confidence that the precipitation resistance 9	

of proteins quantified in three biological replicates of benomyl treated C. elegans samples was 10	

altered. We first analyzed all drug treated samples as a group in a single TargetSeeker-MS 11	

analysis, computing the average of the similarity values between 𝐹"/ and 𝐹"# for all treated 12	

samples 𝑡 and all untreated samples 𝑢. TargetSeeker-MS identified 59 proteins with a FDR < 13	

0.01 and 101 with a FDR < 0.05 (Supplementary Table S1).  14	

We benchmarked the TargetSeeker-MS analysis against two alternate approaches: the Z-15	

score method and the Savitski et al. statistical approach (see Methods) (Figure 3A). Using high-16	

confidence FDRs, TargetSeeker-MS reported more drug target predictions than either of the 17	

other two methods. To maximize the stringency of TargetSeeker-MS drug target predictions, in 18	

addition to the FDR threshold, a Fold-change of Similarity Difference (FSD) threshold of 0.20 19	

was applied to each protein (see Methods). Using both thresholds, TargetSeeker-MS identified 20	

41 proteins with a FDR < 0.05 and a FSD > 0.2 (Figure 3B).  21	

 22	
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 1	

Figure 3. Analysis of the DiffPOP/C. elegans dataset (A) Cumulative distributions of the 2	

number of target predictions at a given FDR obtained by TargetSeeker-MS, the Z-score method, 3	

and the Savitski et al. approach.  (B) FDR and fold-change of similarity difference of all proteins 4	

to which a fractionation profile was assigned. High-confidence drug targets (FDR < 0.1, FSD > 5	

0.2) are represented in blue, while low-confidence predictions are shown in red. (C) Venn 6	

diagram representation of the high-confidence predictions of TargetSeeker-MS when processing 7	

each drug treated biological replicate independently. (D) Gene Ontology terms that are enriched 8	

among the drug targets identified by TargetSeeker-MS in all three biological replicates. 9	
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While TargetSeeker-MS can assess the significance of the average of the similarity 1	

values between 𝐹"/ and 𝐹"# for all treated samples 𝑡 and all untreated samples 𝑢, it can also assess 2	

the significance of the similarity between 𝐹"/ and 𝐹"# for all untreated samples and a single given 3	

treated sample 𝑡. This allows TargetSeeker-MS to independently identify drug targets in each 4	

treated sample. Proteins that are reproducibly predicted as drug targets in all treated samples 5	

(biological replicates) therefore represent very high confidence predictions. To once again 6	

maximize the stringency of our analysis, we only considered proteins as drug targets if they were 7	

identified as high-confidence targets by TargetSeeker-MS (FDR <0.1, FSD > 0.2) in all treated 8	

samples (Figure 3C; Supplementary Table S2-S5). The resulting 21 proteins are reported in 9	

Table 1. This list includes alh-5, an aldehyde dehydrogenase. It was previously reported that 10	

benomyl inhibits	the low-Km hepatic mitochondrial aldehyde dehydrogenase of mice18 and that 11	

the inhibition of aldehyde dehydrogenase may lead to preferential development of Parkinson’s 12	

disease16. TargetSeeker-MS also identified a number of creatine kinases (F32B5.1, F44G3.2, 13	

W10C8.5, ZC434.8) as high-confidence benomyl targets. These results are consistent with 14	

studies demonstrating that the enzymatic activity of a creatine kinase was altered by benomyl in 15	

rats19 and in human serum20. Unc-25, a C. elegans ortholog of the GABA neurotransmitter 16	

biosynthetic enzyme that was not previously reported as a benomyl target, was also identified by 17	

TargetSeeker-MS to be affected by the compound. The 21 targets identified by TargetSeeker-MS 18	

are significantly enriched for Gene Ontology (GO) terms (functions and biological processes) 19	

that have been reported to be affected by benomyl, such as “Aldehyde catabolic process” and 20	

“Cellular aldehyde metabolic process” (Figure 3D; Supplementary Table S6 for complete 21	

enrichment analysis results)16,18. 22	

 23	
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Table 1: Benomyl targets as predicted by TargetSeeker-MS in the C. elegans/DiffPOP 1	
dataset.1 2	

Wormbase 
ID 

Gene 
Name2 

Untreated 
Similarity 

Drug vs 
Untreated 
Similarity 

𝒑-value FDR Fold-
change of 
similarity 
difference 

F44G3.2 

CKB*, 
CKM*, 
CKMT2*, 
CKMT1B* 0.90 0.70 3.2×10-5 <0.005 0.29 

Y54G2A.31 ubc-13 0.90 0.65 3.4×10-5 <0.005 0.38 

F20G2.2 
RDH8, 
DHRS1 * 0.85 0.56 8.0×10-5 <0.005 0.51 

T07C4.9b nex-2 0.87 0.60 2.0×10-4 <0.005 0.44 

T22D1.3a 
IMPDH2*, 
IMPDH1* 0.81 0.55 2.0×10-4 <0.005 0.48 

W10C8.5 

CKB*, 
CKMT2*, 
CKMT1B* 0.90 0.62 2.0×10-4 <0.005 0.46 

Y37D8A.23a unc-25 0.83 0.52 2.0×10-4 <0.005 0.60 
Y37D8A.23b unc-25 0.82 0.52 2.0×10-4 <0.005 0.56 

ZC434.8 

CKB*, 
CKMT2*, 
CKMT1B* 0.89 0.71 2.0×10-4 <0.005 0.25 

F32B5.1 

CKB*, 
CKM*, 
CKMT2*, 
CKMT1B* 0.89 0.61 4.0×10-4 <0.005 0.46 

T22D1.3b 
IMPDH2*, 
IMPDH1* 0.77 0.45 5.0×10-4 <0.005 0.69 

Y42G9A.4c mvk-1 0.82 0.63 1.1×10-3 <0.005 0.31 

C36A4.4 
UAP1*, 
UAP1L1* 0.81 0.57 1.2×10-3 <0.005 0.43 

Y37D8A.23c unc-25 0.67 0.36 1.2×10-3 <0.005 0.87 

K06B9.2 
UAP1*, 
UAP1L1* 0.80 0.57 1.5×10-3 <0.005 0.41 

Y48G10A.1 ESD* 0.73 0.44 1.9×10-3 0.005 0.67 
T08B1.3 alh-5 0.64 0.38 2.2×10-3 0.005 0.67 
F21C3.3 hint-1 0.54 0.28 5.4×10-3 0.019 0.94 
D2063.3a glrx-3 0.78 0.60 6.0×10-3 0.021 0.30 
R07E3.1a CTSF 0.72 0.49 6.2×10-3 0.021 0.48 
D2063.3b glrx-3 0.77 0.59 9.9×10-3 0.034 0.30 

1 A yellow row represents a protein that was not quantified with enough confidence in the TSA/C. elegans dataset to allow TargetSeeker-MS to 3	
assess the significance of benomyl binding. A green row represents a protein that was also predicted as a benomyl target in the TSA/C. elegans.  4	
2 A * indicates the human ortholog gene name of a C. elegans protein without a name.  5	
 6	
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TargetSeeker-MS identified high confidence benomyl targets in the TSA/C. elegans dataset. 1	

In order to test the ability of the TargetSeeker-MS algorithm to accurately identify drug targets in 2	

samples that were separated using a different EBPS-MS method, we applied our algorithm to the 3	

TSA-C. elegans dataset (Dataset 2). Combining two replicate TSA analyses of benomyl-treated 4	

samples into a single TargetSeeker-MS analysis allowed the algorithm to identify 278 benomyl 5	

targets with a FDR < 0.01 and 331 benomyl targets with a FDR < 0.05 (Supplementary Table 6	

S7).  7	

 Even though Dataset 2 was processed using a similar approach to that described in 8	

Savitski et al. (i.e. using the same mechanism: heat destabilization),  TargetSeeker-MS again 9	

identified more drug targets at high-confidence FDRs than the Z-score approach or the Savitski 10	

et al. method (Figure 4A). Interestingly, 285 proteins in Dataset 2 that were assigned a FDR < 11	

0.05, were associated with a relatively low FSD (< 0.2) (Figure 4B). This result is likely 12	

explained by the smaller variance in similarity values of fractionation profiles in replicate 13	

samples obtained with TSA-MS compared to DiffPOP-MS (Figure 2B and Supplementary 14	

Figure S8). This decreased variation in fractionation profiles therefore allows TargetSeeker-MS 15	

to assign high-confidence FDRs to even small changes in protein fractionation profiles upon 16	

drug treatment. To maximize sensitivity we therefore opted to not apply a FSD threshold for all 17	

data produced using TSA-MS. Nevertheless, in order to maintain a high level of confidence in 18	

TargetSeeker-MS predictions, we only retained as putative drug targets proteins that were 19	

assigned by the algorithm a FDR < 0.05 in both replicate TSA analyses of benomyl-treated 20	

samples when analyzed independently (Supplementary Table S8, S9, and S10). This process 21	

yielded a list of 154 benomyl-binding proteins in the TSA/C. elegans dataset. These proteins are 22	

statistically significantly enriched for GO terms such as “Microtubule” (adjusted 𝑝-value =  23	
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 1	

Figure 4. Analysis of the TSA/C. elegans dataset (A) Cumulative distributions of the number 2	

of target predictions at a given FDR obtained by TargetSeeker-MS, the Z-score method, and the 3	

Savitski et al. approach. (B) FDR and fold-change of similarity difference of all proteins to 4	

which a fractionation profile was assigned. High-confidence drug targets (FDR < 0.05) are 5	

represented in blue, while low-confidence predictions shown in red. (C) Gene Ontology terms 6	

that are enriched among the drug targets identified by TargetSeeker-MS in both biological 7	

replicates. 8	
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0.0075), “Regulation of cellular protein localization” (adjusted 𝑝-value = 0.043), “Structural 1	

constituent of cytoskeleton” (adjusted 𝑝-value = 0.0013), and “Cell periphery” (adjusted 𝑝-value 2	

= 0.033) (Figure 4C and Supplementary Table S11). These GO term enrichments are consistent 3	

with the role of benomyl, which was previously reported as a compound that depolymerizes 4	

microtubules near the cell periphery21–23. 5	

 6	

Drug targets identified in the TSA/C. elegans dataset significantly overlap with those 7	

identified in the DiffPOP/C. elegans dataset. 8	

Among the C. elegans benomyl targets identified in the TSA dataset, we count a number of 9	

creatine kinases (F44G3.2, W10C8.5, and F32B5.1) that were also identified in the DiffPOP-10	

MS/C. elegans dataset. However, alh-5 a known target of benomyl was not quantified with 11	

enough spectral counts to be associated with a fractionation profile and could therefore not be 12	

assessed by TargetSeeker-MS (see Methods). Even though TSA and DiffPOP use different 13	

mechanisms to separate proteins, the intersection of the sets of drug targets identified by 14	

TargetSeeker-MS in both datasets is significant (hypergeometric test 𝑝-value = 0.02). Indeed, 8 15	

out of the 11 drug targets from the DiffPOP/C. elegans that were quantified accurately enough in 16	

the TSA/C. elegans dataset to be analyzed by TargetSeeker-MS were also identified as drug 17	

targets in the latter dataset (Table 1). These results highlight the ability of TargetSeeker-MS to 18	

reproducibly detect protein targets in datasets originating from different EBPS-MS techniques. 19	

 20	

 21	
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TargetSeeker-MS identifies high-confidence benomyl targets in HEK 293 that are C. elegans 1	

orthologs. 2	

We executed the TargetSeeker-MS algorithm on the DiffPOP/HEK293 datasets (Dataset 3) to 3	

obtain some insights regarding human proteins that may be bound by benomyl. TargetSeeker-4	

MS identified 349 human drug targets with a FDR < 0.01 and 566 proteins with an FDR < 0.05 5	

(Supplementary Table S12). Once again, TargetSeeker-MS outperformed the 𝑍-score method 6	

and the Savitski et al. statistical approach by detecting more benomyl targets at high confidence 7	

FDRs (Figure 5A). To maximize the specificity of the analysis, a FSD threshold of 0.2 was 8	

applied yielding 77 high-confidence drug predictions with a FDR < 0.01 and 94 with a FDR < 9	

0.05 (Figure 5B; Supplementary Table S12). To maximize the specificity of the drug predictions 10	

as for the other datasets, we only retain as putative drug targets proteins that were assigned by 11	

the algorithm a FDR < 0.05 in both benomyl-treated replicates when analyzed independently 12	

(Supplementary Table S13, S14, and S15). This resulted in a list of 22 high-confidence benomyl 13	

targets (Supplementary Table S15). Among these targets we find three proteins, CKMT1A (FDR 14	

< 0.001), CKMT2 (FDR < 0.001), and UBE2O (FDR = 0.005) that correspond to orthologs of C. 15	

elegans proteins (E-value < 1089 and sequence identity > 50%; see Methods) that were also 16	

predicted by TargetSeeker-MS to be high-confidence benomyl targets in the DiffPOP/C. elegans 17	

dataset (Dataset 1). In addition, CKMT1A and CKMT2 orthologs were also identified as 18	

benomyl targets in the TSA/C. elegans dataset (Dataset 2). Of note, creatine kinases were 19	

identified as benomyl targets in all three datasets that involve two different EBPS-MS techniques 20	

analyzing two different organisms. Among the notable GO term enrichments present in the list of 21	

22 benomyl targets, we find “Creatine metabolic process” and “Creatine kinase activity”, which 22	
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are biological processes that have been reported to be linked to benomyl19,20 (Figure 5C and 1	

Supplementary Table S16). 2	

 3	

Figure 5. Analysis of the DiffPOP/HEK 293 dataset (A) Cumulative distributions of the 4	

number of target predictions at a given FDR obtained by TargetSeeker-MS, the Z-score method, 5	

and the Savitski et al. approach. (B) FDR and fold-change of similarity difference of all proteins 6	

to which a fractionation profile was assigned. High-confidence drug targets (FDR < 0.05, FSD > 7	

0.2) are represented in blue, while low-confidence predictions shown in red. (C) Gene Ontology 8	

terms that are enriched among the drug targets identified by TargetSeeker-MS in both biological 9	

replicates. (D) Efficiency of benomyl inhibition of GAPDH enzymatic activity upon mixing with 10	

different benomyl concentrations. Points represent the mean Optical Density (OD) and error bars 11	

represent the standard deviation across three replicates. 12	
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TargetSeeker-MS novel benomyl target discoveries can be confirmed in vitro. 1	

GAPDH is among the H. sapiens proteins for which a C. elegans ortholog was not a predicted as 2	

a benomyl target. To our knowledge, GAPDH activity was never previously reported to be 3	

affected by benomyl nor was the protein shown to be bound by the compound. We therefore 4	

validated the TargetSeeker-MS’ prediction from the Dataset 3 using an orthogonal in vitro 5	

approach (see Methods). Figure 5D shows that the enzymatic activity of GAPDH is reduced with 6	

an increasing concentration of benomyl, with activity reduced approximately by 50% at 25 uM. 7	

This effect confirms the TargetSeeker-MS prediction that GAPDH is bound by benomyl and that 8	

this binding affects the in vitro functionality of GAPDH. 9	

 10	

DISCUSSION 11	

TargetSeeker-MS is compatible with most MS quantification techniques. 12	

In this study, spectral counting was used to build protein fractionation profiles to illustrate that 13	

TargetSeeker-MS can confidently identify drug targets with simple and cost-effective MS 14	

quantitative approaches (label-free quantification). Nevertheless, most types of intensity-based 15	

protein quantification strategies (extracted ion chromatogram24,25, SILAC26, TMT27, iTRAQ28, 16	

etc.) can also be processed by TargetSeeker-MS. In fact, TargetSeeker-MS performance would 17	

likely benefit from quantification techniques with improved accuracy. Indeed, spectral counting 18	

may not possess the quantification accuracy to enable TargetSeeker-MS to detect slight changes 19	

in protein fractionation profiles that are consistent across all replicates. This may particularly be 20	

the case for low abundance proteins for which slight changes may be easier to detect with an 21	

increase quantification resolution provided by intensity-based quantification techniques. 22	
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TargetSeeker-MS’ applications for therapeutic discovery 1	

EBPS-MS approaches coupled to TargetSeeker-MS can play an important role in the drug 2	

discovery process. For instance, high-throughput screenings can allow the identification of a 3	

small set of compounds modulating a certain target pathway. These compounds can then be 4	

tested against a complex proteome such as the one of a human cell to identify drug bindings and 5	

any potential deleterious protein interactions. In the future, EBPS-MS approaches could be 6	

applied using TargetSeeker-MS to identify the targets of drugs in induced pluripotent stem cells 7	

(iPSCs) and potentially allow the design of better therapeutics.  8	

 9	

Scaling TargetSeeker-MS analysis to multiple compounds. 10	

While this study focused on analyzing a single compound in different samples using different 11	

EBPS-MS approaches, TargetSeeker-MS’ analysis can be scaled for the analysis of multiple 12	

compounds. A given set of untreated samples (four control biological replicates) under the same 13	

experimental conditions can be used to identify the drug targets of multiple compounds. Using 14	

four controls, TargetSeeker-MS can confidently build its noise model and assess the targets of 15	

the tested drugs with two treated biological replicates for a total of six samples, which is the 16	

standard number of samples processed in MS-based proteomics experiments comparing two 17	

experimental conditions (three replicates from one condition and three replicates from a second 18	

condition). Additionally, the noise model built by TargetSeeker-MS can be reused to evaluate 19	

supplementary compounds without the analysis of more untreated samples. Since the algorithm 20	

only requires the analysis of duplicate drug treated samples, the total number of samples needed 21	

to identify the targets of two compounds under the same experimental conditions would be eight, 22	
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and three compounds would require ten samples (i.e. required samples = 4 + number of 1	

compounds × 2). TargetSeeker-MS therefore eases the scalability of the analysis of multiple 2	

compounds in contrast to an approach that requires a paired control with each treated sample. 3	

 4	

Drug repositioning applications 5	

The rapidly growing field of drug repositioning depends on the use of techniques like EBPS-MS 6	

for the systematic identification of the targets of a drug. The TargetSeeker-MS software package 7	

will facilitate the implementation of these techniques and will have a significant impact on the 8	

field. Over time the drug discovery pipeline has become increasingly long and costly. Indeed, it 9	

takes on average 13.5 years for a drug to reach the market from the start of the investigation29. 10	

The drug discovery process is also highly failure-prone with a success rate of less than 10%29. 11	

Drug repositioning is an effort to test whether compounds for which the safety is known and that 12	

were approved by organizations such as the FDA could have applications for treatment of 13	

disease processes other than the one they were originally designed for. This accelerates the drug 14	

discovery process and minimizes the expense and failure risks. Success stories such as 15	

duloxetine, which was originally developed to treat depression and is now also used to improve 16	

the condition of stress urinary incontinence victims30, and crizotinib, which was created to treat 17	

anaplastic large-cell lymphoma and was repurposed for the treatment of non-small-cell lung 18	

cancer31, will hopefully become more common with the increased popularity of EBPS-MS and 19	

the use of TargetSeeker-MS. 20	

 21	
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While EBPS-MS approaches are emerging as fast efficient methods to identify drug 1	

targets in complex proteome, no user-friendly approaches have been proposed to assess the 2	

confidence of drug binding predictions. We have shown that TargetSeeker-MS can identify high-3	

confidence drug targets with a limited number of control samples. We also demonstrate that 4	

TargetSeeker-MS recapitulates predictions of benomyl targets using different EBPS-MS 5	

techniques and processing samples from different organisms. In conclusion, our algorithm will 6	

favor the growth of the applications of EBPS-MS techniques and improve their impact the field 7	

of drug discovery. 8	

METHODS 9	

Method overview 10	

We propose a computational approach, TargetSeeker-MS, for the identification of drug targets in 11	

energetics-based protein separation (EBPS) coupled to mass spectrometry (MS) datasets. The 12	

Bayesian inference approach assesses the confidence that a protein is bound by a given 13	

compound. We first describe the two EBPS procedures used in this manuscript (DiffPOP and 14	

Thermal shift assay) and the mass spectrometry analysis. We then present TargetSeeker-MS 15	

machine learning algorithm. Figure 1 graphically depicts our approach. 16	

 17	

Sample preparation 18	

Mixed stage C. elegans were grown and homogenized using a chilled Precellys24 homogenizer 19	

(Bertin Instruments) in 80% Phosphoprotein Kit Buffer A (ClonTech, catalog number 635626). 20	

Human embryonic kidney cell lysate (HEK293) was prepared from HEK293 cells grown in 21	

Dulbecco’s modified Eagle’s medium (D-MEM) with 10% fetal bovine serum (FBS) 22	
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supplemented with penicillin and streptomycin. Cells were grown (37oC/5% CO2) to 1	

approximately 80% confluence in tissue culture flasks. Cells were washed twice with DPBS, 2	

scrapped from flasks, supplemented with protease inhibitor cocktail (Roche) and lysed by 3	

sonication. Protein concentration was determined by BCA assay, lysate was kept at -80oC until 4	

use. 5	

C. elegans and HEK293 lysate samples were aliquoted and volume adjusted so that they 6	

contained five hundred micrograms of proteins in a final volume of 250 µL containing 40 % 7	

Phosphoprotein Buffer A (ClonTech). Nineteen aliquots of C. elegans lysate were utilized, seven 8	

of them were treated with benomyl, while twelve were left untreated (controls). In addition, six 9	

aliquots of HEK293 human embryonic kidney cell lysate were utilized, four were left untreated 10	

(controls), while two were treated with benomyl (see below). 11	

 12	

Benomyl treatment and DiffPOP protein separation 13	

Lysates of HEK293 and C. elegans were incubated with benomyl prior to fractionation. Benomyl 14	

(5ul of 10mM stock dissolved in DMSO) was added for the drug treated samples, 5ul of DMSO 15	

was added to the control samples. The DiffPOP method was carried out with sequential additions 16	

of denaturing solution of 90 % methanol/1% acetic acid (3.75, 8.25, 12.5, 16.25, 20, 42.5, 65, 17	

212.5 and 2000 µL). Each addition was followed by vigorous vortexing and centrifugation 18	

(18000 x g for 10 min at 4ºC). The supernatant was transferred to a new Eppendorf tube, 19	

denaturing solution was added, sample was vortexed and centrifuged. The process was repeated 20	

to produce ten pelleted fractions. All resulting pellets were washed with 400 µL ice-cold acetone 21	

and centrifuged (18000 x g for 10 min at 4ºC). Pellets were air-dried and digested with trypsin 22	

(see below).  23	
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Thermal shift assay protein separation 1	

Four C. elegans untreated samples and two benomyl treated samples were each separated into 10 2	

fractions using a thermal shift assay procedure slightly modified from the version presented by 3	

Savitski et al.10 Lysates of C. elegans were prepared and incubated with benomyl, as described 4	

above, prior to the thermal shift assay. Lysates were heated in an Eppendorf heated shaker block 5	

at 20oC for 10 min. Samples were centrifuged at 4oC for 5min. The supernatant was transferred 6	

to a new Eppendorf tube and heated to 25oC for 5min. The process was repeated for 30, 35, 40, 7	

50, 60, 75, 90oC to produce 9 pelleted fractions and one supernatant sample. The protein in the 8	

final soluble sample was pelleted by addition of methanol/chloroform. All resulting pellets were 9	

washed with 400 µL ice-cold acetone and centrifuged (18000 x g for 10 min at 4ºC). Pellets were 10	

air-dried and digested with trypsin (see below). 11	

 12	

Liquid chromatography coupled to MS/MS analysis 13	

Dried pellets from the DiffPOP and thermal shift assay were dissolved in 8 M urea/100 mM 14	

TEAB, pH 8.5. Proteins were reduced with 5 mM tris(2-carboxyethyl)phosphine hydrochloride 15	

(TCEP, Sigma-Aldrich) and alkylated with 10 mM chloroacetamide (Sigma-Aldrich). Proteins 16	

were digested overnight at 37 oC in 2 M urea/100 mM TEAB, pH 8.5, with trypsin (Promega) at 17	

a ratio of 1:100 (enzyme:protein). Digestion was stopped with formic acid (5 % final 18	

concentration). Debris was removed by centrifugation. Final volume of each digest was 100ul, 19	

and 10ul of each digested fraction was used for analysis by liquid chromatography coupled to 20	

tandem mass spectrometry (LC-MS/MS). 21	

The digested samples were analyzed on a Q Exactive mass spectrometer (Thermo Fisher 22	

Scientific). The digests were injected directly onto a 2 cm desalting column attached to a 20cm, 23	
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100um ID analytical column with pulled tip. Both were packed with 5 µm ODS-AQ C18 resin, 1	

(YMC). Samples were separated at a flow rate of 400nl/min on an Easy nLCII (Thermo Fisher 2	

Scientific). Buffer A was 5 % acetonitrile and 0.1 % formic acid, buffer B was 80 % acetonitrile 3	

and 0.1 % formic acid. The following gradient was utilized: 1-10% B over 5 min, an increase to 4	

45% B over 90 min, an increase to 80% B over another 15 min and held at 80% B for 5 min of 5	

washing before returning to 1% B during the final 5 min for a 120 min total run time. Column 6	

was re-equilibrated with 10ul of buffer A prior to the injection of sample. Peptides were eluted 7	

directly from the tip of the column and nanosprayed directly into the mass spectrometer by 8	

application of 2.5kV voltage at the back of the column. The Q Exactive was operated in a data 9	

dependent mode.  Full MS1 scans were collected in the Orbitrap at 70K resolution with a mass 10	

range of 400 to 1800 m/z and an AGC target of 1e6. A top 10 acquisition method was utilized 11	

with HCD fragmentation at 25NCE, resolution of 17.5k, AGC target of 1e5 and an underfill ratio 12	

of 0.1%. Maximum fill times were set to 60ms and 120ms for MS and MS/MS scans 13	

respectively. Quadrupole isolation at 2 m/z was used, singly charged and unassigned charge 14	

states were excluded, and dynamic exclusion was used with exclusion duration of 15 sec. 15	

 16	

Peptide and protein identification and quantification 17	

Protein and peptide identification were done with the Integrated Proteomics Pipeline – IP2 18	

(Integrated Proteomics Applications). Tandem mass spectra were extracted from raw files using 19	

RawConverter32 and searched with ProLuCID33 against human SwissProt UniProt34 (downloaded 20	

on March 25, 2014) and Wormbase35 (version WS234) protein sequence databases. The search 21	

space included all fully-tryptic and half-tryptic peptide candidates. Carbamidomethylation on 22	

cysteine was considered as a static modification. Data was searched with 50 ppm precursor ion 23	
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tolerance and 600 ppm fragment ion tolerance. Data was filtered to 10 ppm precursor ion 1	

tolerance post database search. Identified proteins were filtered using DTASelect35  and utilizing 2	

a target-decoy database search strategy to control the false discovery rate to 1% at the protein 3	

level. To maximize identification specificity only proteins that were identified by at least two 4	

different peptides in a given fraction were considered. A single protein identification was 5	

retained for the analysis when multiple proteins were inferred from the same peptides across all 6	

fractions. Redundant protein identifications were discarded. Proteins were quantified in each 7	

fraction by the sum of the spectral counts of their corresponding peptides identified in the 8	

fraction.  9	

 10	

Validation of enzymatic activity alteration 11	

A GAPDH activity assay kit (BioVision Inc. Milpitas, CA, Catalog # K680-100) was used to 12	

measure GAPDH activity in the presence of benomyl. Benomyl was dissolved in dimethyl 13	

sulfoxide (DMSO) and diluted in DMSO to concentrations ranging from 10 mM to 250 uM. The 14	

enzyme mixture consisted of 0.5 ul of GAPDH positive control (prepared as instructed by the 15	

kit) and 44.5 ul Assay Buffer. The reaction mixture was 2 ul GAPDH Substrate, 2 ul GAPDH 16	

Developer and 46 ul Assay Buffer. For each test concentration, 5 ul of drug in DMSO was added 17	

followed by 45 ul of enzyme mixture. After a 5 minute incubation at RT, 50 ul of reaction 18	

mixture was added. The optical density (OD) at 450 nm was measured at 30 minutes. 19	

 20	

Protein fractionation profiles 21	

Protein fractionation profiles are defined as follows. For a drug treated sample 𝑡, let a protein 𝑝 22	

be associated with a fractionation profile 𝐹"/ = 𝐹"%
/ 	𝐹"'

/ 	…	𝐹"=
/ , where 𝑓 is the number of 23	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 7, 2019. ; https://doi.org/10.1101/513663doi: bioRxiv preprint 

https://doi.org/10.1101/513663
http://creativecommons.org/licenses/by/4.0/


	 28	

fractions the sample is divided into and 𝐹"?
/ , where 𝑖 = 1, …, 𝑓, is the spectral count of 𝑝 in 1	

fraction 𝑖. 𝐹"# is defined similarly for untreated samples 𝑢. Fractionation profiles 𝐹"# and 𝐹"/ are 2	

computed for all 𝑝 ∈ 𝑃, where 𝑃 is the set of all proteins that were identified with more than 5 3	

spectral counts across all fractions of a sample. Finally, let the fractionation profiles be 4	

normalized such that final protein fractionation profiles are defined as follows: 𝐹"/ =5	

𝐹"%
/ 	𝐹"'

/ 	…	𝐹"=
/ , where 𝐹"?

/  = 𝐹"?
/ / 𝐹"C

/D
EF) . 𝐹"# is obtained similarly. 6	

  7	

We hypothesize that upon the binding of a drug to a protein, the stability of this protein 8	

will be changed. This will affect the fractionation profile of that protein. To measure the change 9	

in the fractionation profiles of a protein in the treated and untreated samples we compute the 10	

distance between the fractionation profiles of a protein 𝑝 between the drug treated sample 𝐹"/ and 11	

the untreated samples 𝐹"#as the Euclidean distance 𝑑 𝐹"#, 𝐹"/ = (𝐹"C
# − 𝐹"C

/ )*D
EF) 	. We then 12	

compute 𝑑′ 𝐹"#, 𝐹"/ 	= L MNO,MNP

*
, to ensure that the measure falls between 0 and 1 inclusively. We 13	

then define the similarity 𝑆"
#,/ for 𝑝 between two samples’ fractionation profiles 𝐹"# and 𝐹"/ as 1-14	

	𝑑′ 𝐹"#, 𝐹"/ . 15	

 16	

Significance assessment of fractionation profile changes 17	

Biological and technical variation may cause fractionation profiles to differ. Such a variation can 18	

be captured by computing the similarity 𝑆"
#%,#' of two fractionation profiles 𝐹"

#% and 𝐹"
#' of a 19	

protein obtained from two untreated samples 𝑢) and 𝑢* under the same experimental conditions. 20	

A model specifying for each protein 𝑝 the null distribution of the similarity between untreated 21	

protein fractionation profiles could therefore be built. Nevertheless, a large number of untreated 22	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 7, 2019. ; https://doi.org/10.1101/513663doi: bioRxiv preprint 

https://doi.org/10.1101/513663
http://creativecommons.org/licenses/by/4.0/


	 29	

samples would be required to estimate this distribution accurately. Processing such large 1	

numbers of samples with an EBPS-MS would be lengthy and consume vast amounts of 2	

resources. However, we showed that using a small number of untreated samples (e.g. four) and 3	

assuming that the proteins with similar similarity average values between the different samples 4	

will share a similar null distribution, we can build a noise model of the fractionation profiles by 5	

pooling proteins within a given similarity range. Such a model can then allow us to evaluate the 6	

significance of the difference of the similarity between a treated sample and the untreated ones. 7	

We used an approach inspired by a previously described method used to assess the confidence of 8	

protein-protein interactions36 to build this model and to assess the significance of the similarity 9	

difference between treated and untreated samples. Our novel computational approach is 10	

described below. 11	

 12	

Step 1: Building the similarity noise model from untreated samples 13	

For all untreated sampled that were processed using a EBPS-MS approach TargetSeeker-14	

MS first computes the protein fractionation profiles 𝐹"# of all identified protein 𝑝. TargetSeeker-15	

MS then estimates Pr[𝑆"
#%,#'|𝑆"#], which represents the probability of observing a similarity 16	

𝑆"
#%,#' given the true mean similarity of fractionation profiles of 𝑝 in untreated samples 𝑆"#. Our 17	

algorithm estimates Pr[𝑆"
#%,#'|𝑆"#] using a leave-one-out scheme on pairs of untreated samples. 18	

More specifically, for all untreated sample pairs	(𝑢), 𝑢*) ∈ 𝑈×𝑈, where 𝑈 is the set of all 19	

untreated samples, we compare 𝑆"
#%,#' to  20	

𝜇"
U#%,#' = 

VN
O,O

O,O	∈(W×W)\{ O%,O' , O',O% },

* W
' 8)

, 21	
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the average of the similarity between all fractionation profiles except those of the sample pair 1	

(𝑢), 𝑢*). We therefore assume that  𝜇"
U#%,#'represents a fair approximation of 𝑆"#. Now let 𝑀 be a 2	

100×100 matrix and 𝑀 𝑎, 𝑏  represent the frequency where 𝑆"
#%,#' ∙ 100 = 𝑎 and 3	

𝜇"
U#%,#' ∙ 100 = 𝑏. Our goal is to use the frequency matrix 𝑀 to estimate Pr 𝑆"

#%,#' 𝑆"# , 4	

however due to its dimensions, an important number of entries in 𝑀 have a zero value. This 5	

results in an estimator for Pr 𝑆"
#%,#' 𝑆"# , which would often yield probabilities that are equal to 6	

zero. In order to solve this problem, we used a 𝑘 -nearest neighbor smoothing algorithm we have 7	

previously described36. to build the smoothed frequency matrix 𝑀′. Briefly, let 𝑁a 𝑎, 𝑏 =8	

{ 𝑎b, 𝑏b : 𝑎 − 𝑎b ≤ 𝛿, 𝑏 − 𝑏b ≤ 𝛿} be the set of cells surrounding 𝑀 𝑎, 𝑏  with a distance 𝛿. 9	

For each entry in 𝑀, 𝛿 is computed such that 𝑊a 𝑎, 𝑏 = 𝑀 𝑎b, 𝑏b ≤ 𝑘(gh,ih)∈jk g,i  and 10	

𝑊al) 𝑎, 𝑏 = 𝑀 𝑎b, 𝑏b > 𝑘(gh,ih)∈jkn% g,i . The smoothed matrix 𝑀b is therefore computed 11	

as following: 12	

𝑀b 𝑎, 𝑏 =
𝓌p,L ∙ 𝑀(𝑐, 𝑑)(p,L)∈rk(g,i)

𝓌p,L(p,L)∈rk(g,i)
 13	

where 14	

𝓌p,L =
		1													if	 𝑐, 𝑑 ∈ 𝑁a 𝑎, 𝑏 	

𝑘 −𝑊a 𝑎, 𝑏
𝑊al) 𝑎, 𝑏 −𝑊a 𝑎, 𝑏

		if	 c, d ∈ 𝑁al) 𝑎, 𝑏 \𝑁a 𝑎, 𝑏
 15	

Upon the empirical analysis from a large range of 𝑘 values, 𝑘 = 20 was determined to yield a 16	

good balance of smoothing, while conserving the original signal of the data and therefore 17	

providing the best results. Therefore, Pr 𝑆"
#%,#' = 𝑥 𝑆"# = 𝑦 	= 𝑀′(𝑥, 𝑦)/ 𝑀′(zz

{hF| 𝑥′, 𝑦) 18	

provides us a good estimate of the noise of the similarity between two fractionation profiles. 19	

 20	
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Step 2: Posterior distribution of the mean similarity between fractionation profiles from 1	

untreated samples 2	

Using Bayes’ rule and assuming the conditional independence of the similarity observations 3	

given their true means, the posterior distribution of 𝑆"# is computed as follows: 4	

Pr 𝑆"# 𝑆"
#%,#', … , 𝑆"

#|W|}%,#|W| = 	Pr	[𝑆"#] ⋅ Pr 𝑆"
#?,#C 𝑆"# /𝜁

��|�|,E�|�|

�F),E��

 5	

where 𝜁 is a normalizing constant, and Pr	[𝑆"# = 𝛼] corresponds to the fraction of proteins with 6	

	𝑆"#	  = 𝛼. This calculation provides us the distribution of the mean similarity of the fractionation 7	

profile of a protein between untreated samples given the set of similarity observations 8	

𝑆"
#%,#', … , 𝑆"

#|W|}%,#|W| 9	

 10	

Step 3: Significance assessment 11	

The goal of TargetSeeker-MS is to assess the significance of the change in the fractionation 12	

profile of each protein in untreated samples and a drug treated sample. In order to do so, we first 13	

compute the average of the similarity values between 𝐹"/ and 𝐹"# ∀	𝑢 ∈ 𝑈 as follows, 𝑆"
#,/ =14	

�N
O,P

O∈W
|W| . We then assess the significance of the change in similarity for the drug treated 15	

fractionation profile for each protein by computing a 𝑝-value using our noise model of the 16	

similarity of the fractionation profiles of a protein in untreated samples (computed in Step 2): 17	

𝑝-value 𝑆"
#,/ = Pr 𝑆"# ≤ 𝑆"

#,/ 𝑆"
#%,#', … , 𝑆"

#|W|}%,#|W| = 	 Pr	[
VN
O,P

�F| 𝑆"# = 𝑖|𝑆"
#%,#', … , 𝑆"

#|W|}%,#|W|]. 18	

 19	

 20	

 21	
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Step 4: False discovery rate estimation 1	

The 𝑝-values computed in Step 3 may be underestimated as a result of the possible violation of 2	

some of the assumptions made when building our noise model. To assess the specificity of its 3	

predictions, TargetSeeker-MS uses a hypothesis-free approach to compute a False Discovery 4	

Rate (FDR) for each protein. Given a 𝑝-value threshold 𝑝, TargetSeeker-MS computes 𝐹𝐷𝑅(𝑝), 5	

which represents the fraction of false positive predicted drug binders that obtained a 𝑝-value < 𝑝. 6	

𝐹𝐷𝑅(p) is computed using a leave-one-out strategy, where each untreated biological replicate is 7	

alternately left out from the rest of the untreated samples for the 𝑝-value calculation and 8	

considered as if it was a treated sample. Specifically, ∀	𝑢′ ∈ 𝑈, TargetSeeker-MS computes 𝑝-9	

value(𝑆"
#,#h) for all proteins 𝑝 quantified in the untreated sample 𝑢′ (left out) and 𝑝-value(𝑆"

#,/) 10	

for all proteins 𝑝 quantified in the treated sample 𝑡 using the set of untreated samples excluding 11	

𝑢′ to build the noise model. TargetSeeker-MS then computes for the FDR for the 𝑝-value 𝑝 as 12	

follows: 13	

𝐹𝐷𝑅 𝑝 =

𝑓(𝑝 − value 𝑆"
#,#h )"∈�W#h∈�

|𝑈| ⋅ |𝑃�|
𝑓(𝑝 − value 𝑆"

#,/ )"∈�P#h∈�

|𝑈| ⋅ |𝑃/|

 14	

where  15	

𝑓(𝑧) = 			1											if	𝑧 < 𝑝
			0											if	z ≥ p 16	

 17	

and 𝑃� and 𝑃/ are the sets of proteins with fractionation profiles in the untreated and treated 18	

samples respectively. TargetSeeker-MS’ algorithm design, involving two independent leave-one-19	
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out schemes, therefore requires a minimum of four untreated sample replicates to allow the 1	

confidence assessment of putative drug targets. 2	

 3	

Step 5: Biological replicates of drug treated samples 4	

To maximize the stringency of its drug target predictions when given biological replicates of 5	

drug treated samples, TargetSeeker-MS allows the user to analyze both replicates independently 6	

and to report the proteins that are considered high-confidence drug targets in all replicates. 7	

Alternatively, TargetSeeker-MS can also analyze all biological replicates of drug treated samples 8	

simultaneously. In this context, TargetSeeker-MS computes the average of the similarity values 9	

between 𝐹"/ and 𝐹"# ∀	𝑢 ∈ 𝑈, 𝑡	 ∈ 𝑇, such that 𝑆"
#,/ = �N

O,P
O∈W,P∈�
|W|⋅|�| , where 𝑇 is the set of treated 10	

samples. The two approaches tend to yield similar results with the former being slightly more 11	

stringent (see Results). 12	

 13	

Computation of fold-change of similarity difference 14	

To maximize the specificity of TargetSeeker-MS’ predictions, putative drug targets must be 15	

associated with a FDR < 0.10, but a Fold-change of Similarity Difference (FSD) above a given 16	

threshold can also be used. The FSD of a protein 𝑝 is calculated as follows: 17	

𝐹𝑆𝐷 𝑝 =
𝑆"
#,/ − 𝑆"#

𝑆"
#,/  18	

Implementation and availability 19	

TargetSeeker-MS is implemented as a web-based fast Java program that is available at this 20	

address: http://targetseeker.scripps.edu/. Example input and output files are provided online. 21	

Given a set of untreated and drug treated samples that were fractionated using an EBPS 22	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 7, 2019. ; https://doi.org/10.1101/513663doi: bioRxiv preprint 

https://doi.org/10.1101/513663
http://creativecommons.org/licenses/by/4.0/


	 34	

approach, TargetSeeker-MS computes a FDR for all proteins with a fractionation profile in both 1	

conditions. Note that intensity-based protein quantification can also be provided as input to 2	

TargetSeeker-MS. The methods are also implemented as stand-alone, open-source, platform 3	

independent, command-line-based Java program, which is available at this address 4	

http://targetseeker.scripps.edu/files/ and on GitHub: https://github.com/proteomicsyates. The 5	

mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium 6	

via the PRIDE partner repository with the dataset identifier PXD010799. Data are stored in Pride 7	

Archive. To access the data files, please visit https://www.ebi.ac.uk/pride/archive/login and use 8	

the following user name:  reviewer02058@ebi.ac.uk and password: 4nyA0clB. 9	

 10	

Alternative approaches 11	

Z-score filtering  12	

We developed an alternative method to benchmark the TargetSeeker-MS algorithm. The Z-score 13	

method computes a Z-score for each protein 𝑝 by comparing the similarity of its fractionation 14	

profiles between the treated and untreated samples 𝑆"
#,/ to the mean 𝑆"# and the standard 15	

deviation 𝜎(𝑆"#) of the similarity of the fractionation profiles in untreated samples: 𝑍-score(𝑆"
#,/) 16	

= (𝑆"
#,/-𝑆"#)/𝜎(𝑆"#). This alternative approach may outperform the TargetSeeker-MS algorithm if 17	

the variance of the fractionation profile similarity values in untreated samples of proteins with 18	

close mean similarity values differs significantly from protein to protein. This is due to the 19	

pooling of similarity values from different proteins in TargetSeeker-MS, which makes the 20	

assumption that this variation is low. Nevertheless, since no data pooling is performed with the 21	

𝑍-score method, the estimation of the variance is performed using a small number of values (i.e. 22	

the total number of untreated sample pairs). Furthermore, the 𝑍-score method assumes that the 23	
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noise of the fractionation profile similarity values in untreated samples is normally distributed, 1	

which cannot be unequivocally verified. FDR values for all Z-scores were estimated using the 2	

same leave-one out approach as described in Step 4. 3	

 4	

Savitski et al. statistical approach. 5	

We implemented the statistical approach adapted from the article from Cox et al.11 We analyzed 6	

all EBPS-MS datasets (Dataset 1, 2 and 3) with this implementation in the fashion it was applied 7	

in the Savitski et al.’s article10, with the only difference that melting curve slopes were replaced 8	

with similarity values. It should be noted that this modification does not affect the validity of the 9	

statistical approach nor does it change any of its assumptions about input values. Due to the 10	

different nature of the algorithm, FDR values were estimated with a slightly modified procedure 11	

than the one described in Step 4. The algorithm was fed the average similarity values of all 12	

proteins 𝑝 ∈ 𝑃# for which a fractionation profile was computed in untreated samples to which 𝑝-13	

values were associated. 𝑝-values were then calculated for all proteins 𝑝 ∈ 𝑃/ for which a 14	

fractionation profile was computed based on the average similarity values of these profiles 15	

between treated and untreated samples. FDRs were then associated to each 𝑝-value 𝑝 as follows:  16	

FDR 𝑝 =

𝑓(𝑝 − value 𝑆"# )"∈�O
|𝑃#|

𝑓(𝑝 − value 𝑆"
#,/ )"∈�P

|𝑃/|

 17	

where  18	

𝑓(𝑧) = 			1											if	𝑧 < 𝑝
			0											if	z ≥ p 19	

 20	

 21	
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Gene Ontology enrichment analysis 1	

To investigate the mechanism of action of benomyl, we evaluated the statistical enrichment of 2	

Gene Ontology terms37 among the proteins predicted as its targets by TargetSeeker-MS in the 3	

three different datasets using Ontologizer38. We tested the enrichment of molecular functions, 4	

biological processes, and cellular components (with the complete set of proteins associated with 5	

a fractionation profile as background). Ontologizer uses a modified Fisher’s exact test to assess 6	

the statistical significance of the enrichment of Gene Ontology terms and the Bonferroni 7	

correction to correct for multiple hypothesis testing38. 8	

 9	

Protein ortholog determination 10	

Orthologous protein targets between H. sapiens and C. elegans were determined using the Blastp 11	

algorithm39. Proteins associated with a sequence identity between the two species > 50% and an 12	

E-value < 10-10 were considered orthologs. 13	

 14	

 15	
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 30	

SUPPLEMENTARY FIGURES 31	

 32	

Supplementary Figure S1. Graphical depiction of the datasets presented in this study. 33	

 34	

Supplementary Figure S2. Heatmap representation of the similarity between protein 35	

fractionation profiles for all pairs of untreated samples of the TSA/C. elegans dataset. All 36	
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proteins with a sufficient abundance to compute a fractionation profile in all untreated samples 1	

are displayed. 2	

 3	

Supplementary Figure S3. Heatmap representation of the similarity between protein 4	

fractionation profiles for all pairs of untreated samples of the DiffPOP/HEK293 dataset. All 5	

proteins with a sufficient abundance to compute a fractionation profile in all untreated samples 6	

are displayed. 7	

 8	

Supplementary Figure S4. Three-dimensional plot representation of the probability matrix of 9	

𝐏𝐫 𝑺𝒑
𝒖𝟏,𝒖𝟐 𝑺𝒑𝒖  based on the smoothed frequency matrix 𝑀′ for four untreated samples from the 10	

DiffPOP/C. elegans dataset. 11	

 12	

Supplementary Figure S5. Heatmap representation of the similarity between protein 13	

fractionation profiles for all pairs of benomyl treated samples of the DiffPOP/C. elegans dataset. 14	

All proteins with a sufficient abundance to compute a fractionation profile in all benomyl treated 15	

samples are displayed. 16	

 17	

Supplementary Figure S6. Heatmap representation of the similarity between protein 18	

fractionation profiles for the two benomyl treated samples of the TSA/C. elegans dataset. All 19	

proteins with a sufficient abundance to compute a fractionation profile in both benomyl treated 20	

samples are displayed. 21	

 22	
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Supplementary Figure S7. Heatmap representation of the similarity between protein 1	

fractionation profiles for the two benomyl treated samples of the DiffPOP/HEK293 dataset. All 2	

proteins with a sufficient abundance to compute a fractionation profile in both benomyl treated 3	

samples are displayed. 4	

 5	

Supplementary Figure S8. Distributions of the fractionation profile similarity values in both 6	

untreated and benomyl treated samples of the TSA/C. elegans dataset. 7	

 8	

Supplementary Figure S9. Distributions of the fractionation profile similarity values in both 9	

untreated and benomyl treated samples of the DiffPOP/HEK293 dataset. 10	

 11	

SUPPLEMENTARY TABLES 12	

 13	

Supplementary Table S1: C. elegans proteins identified through DiffPOP-MS analysis along 14	

with their associated statistics as calculated by TargetSeeker-MS when combining all treated 15	

samples. 16	

 17	

Supplementary Table S2: Benomyl treated sample 1 C. elegans proteins identified through 18	

DiffPOP-MS analysis along with their associated statistics as calculated by TargetSeeker-MS.  19	

 20	

Supplementary Table S3: Benomyl treated sample 2 C. elegans proteins identified through 21	

DiffPOP-MS analysis along with their associated statistics as calculated by TargetSeeker-MS.  22	

 23	
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Supplementary Table S4: Benomyl treated sample 3 C. elegans proteins identified through 1	

DiffPOP-MS analysis along with their associated statistics as calculated by TargetSeeker-MS.  2	

 3	

Supplementary Table S5: C. elegans proteins identified as benomyl targets in each treated 4	

sample processed with DiffPOP-MS.  5	

 6	

Supplementary Table S6: Gene Ontology enrichment analysis complete results for the benomyl 7	

targets identified in the DiffPOP-MS-C. elegans dataset. 8	

 9	

Supplementary Table S7: C. elegans proteins identified through Thermal Shift Assay-MS 10	

analysis along with their associated statistics as calculated by TargetSeeker-MS when combining 11	

all treated samples. 12	

 13	

Supplementary Table S8: Benomyl-treated sample 1 C. elegans proteins identified through 14	

Thermal Shift Assay-MS analysis along with their associated statistics as calculated by 15	

TargetSeeker-MS. 16	

 17	

Supplementary Table S9: Benomyl-treated sample 2 C. elegans proteins identified through 18	

Thermal Shift Assay-MS analysis along with their associated statistics as calculated by 19	

TargetSeeker-MS. 20	

 21	

Supplementary Table S10: C. elegans proteins identified as benomyl targets in both treated 22	

samples processed with TSA-MS. 23	
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 1	

Supplementary Table S11: Gene Ontology enrichment analysis complete results for the 2	

benomyl targets identified in the TSA/C. elegans dataset. 3	

 4	

Supplementary Table S12: HEK 293 proteins identified through DiffPOP-MS analysis along 5	

with their associated statistics as calculated by TargetSeeker-MS when combining both treated 6	

samples. 7	

 8	

Supplementary Table S13: Benomyl-treated sample 1 HEK 293 proteins identified through 9	

DiffPOP-MS analysis along with their associated statistics as calculated by TargetSeeker-MS. 10	

 11	

Supplementary Table S14: Benomyl-treated sample 2 HEK 293 proteins identified through 12	

DiffPOP-MS analysis along with their associated statistics as calculated by TargetSeeker-MS. 13	

 14	

Supplementary Table S15: HEK 293 proteins identified as benomyl targets in both treated 15	

samples processed with DiffPOP-MS. 16	

 17	

Supplementary Table S16: Gene Ontology enrichment analysis complete results for the 18	

benomyl targets identified in the DiffPOP/HEK 293 dataset. 19	

 20	

SOURCE DATA 21	

 22	

Figure 2A - Source Data: Csv file containing the data presented in the heatmap of Figure 2A. 23	

 24	
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 1	

Figure 2B - Source Data: Excel file containing the data of the distributions presented in Figure 2	

2B. 3	

 4	

Figure 2C-D - Source Data: Excel file containing the data of the distributions and protein 5	

fractionation profiles presented in Figures 2C and 2D. 6	

 7	

Figure 3A - Source Data: Excel file containing the data of the benchmarking presented in 8	

Figure 3A. 9	

 10	

Figure 4A - Source Data: Excel file containing the data of the benchmarking presented in 11	

Figure 4A. 12	

 13	

Figure 5A - Source Data: Excel file containing the data of the benchmarking presented in 14	

Figure 5A. 15	

 16	

Figure 5D - Source Data: Excel file containing the data of the results of the GAPDH activity 17	

assay presented in Figure 5D. 18	

 19	
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