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Abstract

Motivation: In the last few years, the error rates of
third generation sequencing data have been capped
above 5%, including many insertions and deletions.
Thereby, an increasing number of long reads correc-
tion methods have been proposed to reduce the noise
in these sequences. Whether hybrid or self-correction
methods, there exist multiple approaches to correct
long reads. As the quality of the error correction has
huge impacts on downstream processes, developing
methods allowing to evaluate error correction tools
with precise and reliable statistics is therefore a cru-
cial need. Since error correction is often a resource
bottleneck in long reads pipelines, a key feature of
assessment methods is therefore to be efficient, in
order to allow the fast comparison of different tools.
Results: We propose ELECTOR, a reliable and
efficient tool to evaluate long reads correction, that
enables the evaluation of hybrid and self-correction
methods. Our tool provides a complete and rel-
evant set of metrics to assess the read quality
improvement after correction and scales to large
datasets. ELECTOR is directly compatible with
a wide range of state-of-the-art error correction
tools, using whether simulated or real long reads.
We show that ELECTOR displays a wider range
of metrics than the state-of-the-art tool, LRCstats,
and additionally importantly decreases the runtime
needed for assessment on all the studied datasets.

Availability: ELECTOR is available at
https://github.com/kamimrcht/

ELECTOR.

Contact: camille.marchet@univ-lille.fr or

pierre.morisse2@univ-rouen.fr

1 Introduction

1.1 Motivations

Pacific Biosciences (PB) and Oxford Nanopore Tech-
nologies (ONT) long reads, despite their high error
rates and complex error profiles, were rapidly adopted
for various applications. An increasing number of
projects, especially for assembly or structural variant
calling [1], indeed benefit from the long range in-
formation these reads provide. These reads display
high error rates (from 9% to as much as 30%, accord-
ing to technologies and libraries), that largely surpass
those of Illumina reads. Given these high error rates,
the first step of many applications is error correction.
However, this stage can be a time bottleneck [1].

Moreover, contrary to Illumina, where the majority
of errors are substitutions, long reads mainly contain
insertions and deletions (indels) errors (ONT reads
are more deletion-prone whereas PB reads contain
more insertions). This combination of issues requires
novel and specific algorithmic developments. To this
extent, dozens of error correction methods directly
targeting these long reads emerged in the last five
years. A first range of error correction tools, called
hybrid correctors, uses both short and long reads to
perform error correction, relying on the important
coverage and low error rate of the short reads in or-
der to enhance long reads sequences. A second group
of methods, called self-correctors, intends to correct
long reads with the sole information contained in
their sequences (see [2] for a review of correctors).
Both paradigms include quite diverse algorithmic so-
lutions, which makes it difficult to globally compare
the correction results (in terms of throughput, qual-
ity and performances) without a proper benchmark.
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In addition, the quality of the error correction
has considerable impacts on downstream processes.
Hence, it is interesting to know beforehand which
corrector is best suited for a particular experimen-
tal design (coverage, read type, or genome, for in-
stance). Developing methods allowing to evaluate er-
ror correction tools with precise and reliable statistics
is therefore a crucial need.

Such evaluation methods should allow to perform
reproducible and comprehensive benchmarks, and
thus to efficiently identify which error correction
method is best suited for a given case. They must be
usable on datasets of various complexity (from bacte-
ria to eukaryotes) in order to reproduce a wide variety
of the scenarios that can be encountered. They also
should be fast and lightweight, and should not be
orders of magnitude more resource and time consum-
ing than the actual correction methods they assess.
This aspect is particularly critical when correction
evaluators also stand in the perspective of new cor-
rection methods developments. They can help pro-
viding accurate and quick comparisons with state-of-
the-art correctors. For developers as well as users,
correction evaluators should describe with precision
the correction method’s behavior (i.e. quantity of
corrected bases, introduced errors or read break ups,
and throughput), in order to identify its potential
pitfalls.

1.2 Previous works

Works introducing novel correction methods usually
evaluate the quality of their tools based on how well
the corrected long reads realign to the reference. De-
spite being interesting, this information remains in-
complete. In particular, it is likely not to mention
poor quality reads, or regions to which it is difficult
to align. Inspired by earlier works by [4] and [5], La et
al. introduced a new way to obtain metrics describing
the quality of the error correction itself [6], that does
not solely present the similarity between the aligned
corrected reads and the reference genome. Relying
on simulated data, they proposed the idea of a three
way alignment between the reference genome, the un-
corrected reads, and the corrected reads. They pre-
sented results on Pacific Biosciences data for hybrid
error correction tools, by introducing LRCstats, an
evaluation tool aiming at answering to the aforemen-
tioned problematics. With its three way alignment
scheme, LRCstats provides reads’ error rate before
and after correction, as well as the detailed count
of every type of error. However, only studying the

reads’ error rate after correction is not a satisfying
indication of the corrector’s behavior. For instance,
there is no clue about the putative insertions of new
errors by the corrector, because its precision is not
assessed. To overcome this issue, additional metrics
such as precision (relevant corrected bases among all
bases changed by the corrector), but also recall (cor-
rect bases that have been retrieved by the corrector
among all bases to be corrected) should be given, in
order to better understand the correction methods’
pros and cons.

Moreover, LRCstats suffers from high resource con-
sumption when processing large number of reads, i.e.
when coverage or genome size are large. However,
deep coverage is expected to help the correction of
very long sequences [1]. Thus, the correction of such
datasets must be assessed in a reasonable amount of
time. Additionally, LRCstats’s alignment scheme be-
comes limited when sequences to process grow longer.
However, extremely long reads start to appear in re-
cent works for larger genomes [7], and require correc-
tion as well.

1.3 Contribution

In order to cope with the identified limits of LRC-
stats, we propose ELECTOR, a new evaluation tool
for long read error correction methods. ELECTOR
can be used on simulated as well as real long read
datasets, provided a reference genome is available
for the sequenced species. It takes as input a ref-
erence genome in FASTA format, a set of corrected
reads in FASTA format, and the corresponding un-
corrected reads, either via a FASTA format file in
the case of real data, or via the suite of files pro-
vided by the simulator in case of simulated data.
ELECTOR provides a wider range of metrics than
LRCstats, that assess the actual quality of the cor-
rection, such as recall, precision, and correct bases
rate for each read. Such metrics have already been
proposed in earlier works dedicated to short reads,
such as ECTools [4]. However, ECTools’ contribution
is out of the scope of this work since algorithms to
process short reads are different from those at stake
in our case, due to the long reads high error rates
and complex error profiles. ELECTOR also informs
about typical difficulties long read correctors can en-
counter, such as homopolymers, and reads that have
been trimmed, split or extended during the correc-
tion. In order to provide these additional metrics,
the three way alignment paradigm used in LRCstats
is replaced by a scalable multiple sequence alignment
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Figure 1: Overview of the ELECTOR’s pipeline. Input are the sequences at the different stages: without
errors (from the reference genome), with errors (simulated or real reads) and corrected (after running a
correction method). In a first module, a multiple sequence alignment of the three versions of each sequence

is computed

, and the results are analyzed to provide correction quality measures. In a second module, reads are

assembled using Minimap2 and Miniasm [3], and both the reads and the contigs are aligned to the

reference genome, to provide remapping and assembly statistics. A text summary, plots and a pdf
summary are output.

(MSA) in ELECTOR. This allows to compare three
different versions of each read: the uncorrected ver-
sion, as provided by the sequencing experiment or by
the read simulator, the corrected version, as provided
by the error correction method, and the reference ver-
sion, which is a portion of the reference genome, rep-
resenting a perfect version of the original read, on
which no error would have been introduced. In ad-
dition, ELECTOR also performs and evaluates reads
remapping and assembly, which were not assesses by
the LRCstats pipeline.

In order to allow the multiple sequence alignment

strategy to scale to ultra-long reads, that can reach
lengths up to ; 1 million bp, and to large datasets, of
several billion of bp, we also propose a novel heuristic
that combines anchoring and partial order alignment.
This way, we also propose a faster and more scalable
evaluation pipeline than LRCstats.
For simulated reads, it is compatible with state-
of-the-art long reads simulation tools, such as
Nanosim [8] or SimLord [9], on which introduced
errors are precisely known. Moreover, ELECTOR
is meant to be a user friendly tool, that delivers
its results through different output formats, such as
graphics than can be directly integrated to the users’
projects. This tool was designed to be directly com-
patible with a wide range of state-of-the-art error
correction tools, without requiring any preprocessing
by the user. In particular, ELECTOR is compati-
ble with the latest self-correction methods, and we
thus present novel results on such tools, that were
not tackled by LRCstats.

2 Material and methods

2.1 Input sequences

ELECTOR is implemented as a pipeline that is di-
vided in two modules. An overview is shown in Fig-
ure 1. Input sequences are passed to the two modules
independently. The full evaluation pipeline was ini-
tially designed for simulated long reads. This choice
was motivated by the need to know the reference se-
quences (which are portions of the reference genome,
representing perfect versions of the original reads, on
which no error would have been introduced) in or-
der to precisely control the results brought by the
assessed correction method.

Our pipeline is compatible with long reads sim-
ulators SimLoRD and NanoSim. This means that
when using long reads simulated with one of these two
tools, the reference sequences are directly retrieved
by ELECTOR, by parsing the files generated during
the simulation. By using these state-of-the-art long
reads simulation tools, we ensure to take as input se-
quences that closely simulate the actual characteris-
tics of the long reads. However, other long reads sim-
ulation tools can also be used. In this case, the user
must provide the reference sequences to ELECTOR
itself. Further configuration of the simulation tools
such as the error rate, or the long reads coverage, is
the user’s call and has no impact on the ELECTOR
pipeline. The genome used for the simulation, the
files generated by the simulator, and the corrected
reads, output by the desired correction method, are
then provided as an input to our pipeline. For hybrid
correction methods, whether the short reads are real
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Figure 2: Segmentation strategy to compute a multiple sequence alignment for a triplet of
reference, uncorrected and corrected versions of a read. Instead of computing a multiple alignment
on the whole lengths of the sequences, we rather divide this problem into smaller multiple sequence alignments
(MSA). As each version is different, in order to decide were to start and end the alignments, we find seed
k-mers (in black) that are local exact matches between the three sequences. We thus compute local, separate
MSAs, for subsequences bordered by seeds (or located at the extremities of the sequences). These multiple
MSAs are then concatenated, along with the seed k-mers, in order to obtain a single, full MSA, of the whole

length of the sequences.

or simulated has no impact on ELECTOR.

In the case of real data, the reads are also passed
along with their corrected versions and with the
genome to our pipeline. The reference sequences are
then retrieved by aligning the uncorrected reads to
the reference genome, using Minimap2 [10]. Only
the best hit for each read is kept, and used to de-
termine the corresponding reference sequence. In the
case a read cannot align to the reference genome, and
thus cannot produce a reference, the read is excluded
from the analysis. Apart from that, the rest of the
pipeline remains the same, although, as the alignment
can soft-clip the reads’ extremities, the computation
of some metrics slightly vary. These differences are
further detailed in Section 2.3.1. We then propose to
compare the three different versions of each read (ref-
erence, uncorrected, and corrected) in a triplet mul-
tiple alignment. These three versions of each read
undergo a multiple sequence alignment, in order to
collect their differences and similarities at each posi-
tion of the alignment.

2.2 Scalable triplet multiple align-
ment

2.2.1 Principle

For each of the three versions of a read, the triplet
multiple alignment module computes a multiple se-
quence alignment (MSA) using a partial order align-

ment algorithm, starting with the reference sequence,
then adding the corrected version, and finally the un-
corrected version. This step yields a multiple align-
ment matrix that is output in pseudo FASTA (PIR)
format for each triplet. The triplet multiple align-
ment is computed using an implementation of partial
order alignment graphs [11]. Partial order alignment
graphs are used as structures containing the infor-
mation of the multiple aligned sequences. In this
method a directed acyclic graph (DAG) contains the
previous multiple sequence alignment result. Succes-
sive nucleotides from the sequences are stored in ver-
tices, and each new sequence is aligned to this DAG
in a generalization of the Needleman-Wunsch algo-
rithm. Paths in the graph represent the successive
alignments.

However, such a procedure can be time-consuming
when applied to noisy long reads. Thus, we propose a
novel multiple sequence alignment heuristic, that we
implemented for ELECTOR’s purpose, and describe
below. Although initially developed for ELECTOR,
this multiple sequence alignment heuristic presents
an interest that goes beyond the scope of this work.
In particular, it would be interesting to generalize it,
in order to perform scalable multiple sequence align-
ment for a larger number of long, noisy sequences.


https://doi.org/10.1101/512889
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/512889; this version posted February 17, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY-ND 4.0 International license.

2.2.2 Segmentation strategy for the MSA

Very long reads induce long MSA running times, that
rise according to their length. Moreover, they also
imply more errors and branches in the graph, which
further increases the computation duration.

In order to reduce the time footprint of our approach,
we propose a segmentation strategy. It consists in
dividing the triplet multiple alignment into several
smaller multiple sequence alignments. Drawing in-
spiration from MUMmer’s [12] and Minimap’s [3]
longest increasing subsequence approaches, we di-
vide the multiple alignment problem into instances of
short windows separated by regions of exact matches.
See Figure 2 for an example. If we were able to bound
the size of the windows we could guarantee an asymp-
totic time linear to the read length. In practice our
implementation can produce large windows, but we
observe a running time almost linear in the size of
the reads, as shown in our experimental results, in
Section 3

The windows are computed as follows. For each
triplet, we compute seed k-mers that have the fol-
lowing properties: 1-they appear in each of the three
versions of the sequence, 2- they are not repeated
across any of the versions of the sequence, 3-they are
not overlapping in any of the versions of the sequence.
Using dynamic programming, the longest seed k-mers
subsequence S common to the three sequences is com-
puted. Pairs of successive seed k-mers from S de-
lineate windows. Thus, we align the subsequences
triplets from windows independently, as described in
the previous paragraph, using subsequently smaller
alignment matrices. Then, the multiple small MSAs
are concatenated, along with the seed k-mers, to ob-
tain a single MSA of the whole length of the triplet.

The size of these seed k-mers is adapted according
to the current observed error rates [3, 13], i.e. 9 to
15 nucleotides. As it is difficult to a priori set a k-
mer size, we designed a quick iterative strategy that
tries several values of k, in order to choose the most
suitable for a given triplet.

To avoid computing metrics on poorly corrected
reads we filter out corrected reads which length is be-
low (% of the reference length (I being a parameter
set to 10 by default) or reads for which an insuffi-
cient number of seeds k-mers were found. These two
types of filtered reads are tagged and reported apart
in ELECTOR’s summary to inform the user about
their numbers.

2.2.3 Handle reads of different sizes in the
segmentation strategy

In the case of a trimmed/split read, the corrected
version is shortened in comparison to the two other
versions, and a part of the reference version is thus
missing in the corrected version. A prefix and/or a
suffix of the reference can be missing depending on
the case. Different scenarios are outlined in Figure 4.
In the case of a missing prefix, the first window se-
lected by the segmentation strategy will contain a
very large prefix from the reference and uncorrected
versions and a very small sequence from the corrected
version. This is due to the fact that we only use
anchors shared among the three sequences. As the
corrected subsequence is substantially shorter than
the uncorrected and reference subsequences, it would
be irrelevant to compute a MSA between those three
sequences. Furthermore computing a MSA on two
very large sequences is extremely expensive. To cope
with this problem, we detect such cases by checking
the sequences length. If we detect a very large first
window and reference and uncorrected sequences are
longer than corrected, we use a segmentation scheme
only with k-mers from reference and uncorrected, and
only align these two prefixes. This way, we are able to
efficiently compute a MSA when the corrected reads
do not cover all the original region, avoiding to run
a MSA on large/unrelated sequences. The procedure
is symmetrical for a missing suffix in the corrected
sequence (see Figure 4 for an example with a suffix).
This procedure is extremely important for correctors
that output numerous split reads, which would in-
duce extremely long runtime due to large sequence
MSA computations described before.

2.3 Inference of quality assessment
metrics from MSA

2.3.1 Classification of corrected reads

We report different categories of corrected reads in
ELECTOR.

“Regular” reads are neither trimmed/split nor ex-
tended. Figure 4 shows how we deduce trimmed /split
/extended categories from the MSA result.

Split/trimmed reads (two first scenarios in Fig-
ure 4). They are reads composed of fragments that
come from a single original read that could only be
corrected on one or several distinct parts that are
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Figure 3: Segmentation strategy when the corrected read is smaller. The corrected read is shortened
on its right end. In order to avoid passing subsequences starting from seed 2 to the end of each sequence
to the MSA module, which would be costly to compute, we perform a second segmentation strategy. This
allows us to retrieve a new set of seeds (gray seeds 3 and 4). This new set of seeds divides the remaining
subsequences (suffixes in this case) in reference and uncorrected into windows on which we compute MSA
separately. The full MSA is reconstructed by concatenation, and dots are added to complete the corrected

MSA line.

Trimmed
reference R~ (ACT-GTTTG ... ATTGTCTGAT )
uncorrected U (CTTGTT-G ... AT-GTCT--T )
corrected C  (Ezmzmaoooaoooo-- ATTGTCAGAT . )

Split
reference R ACT_GTTTG ... ATTGTCTGAT )
uncorrected U | -CTTGTT-G AT-GTCT--T )
corrected C_1( ACT-GTTTG )
reference R (ACT-GTTTG ATTGTCTGAT )
uncorrected U (-CTTGTT-G . AT-GTCT--T )
corrected C 2 | ATTGTCAGAT )

Extended
reference R~ [fz=====-o-oo---- ACT-GTTTG ATTGTCTGAT )
uncorrected U [f------------ -~ CTTGTT-G AT-GTCT--T)

corrected C (TCTCTGGTATTAGTTAACT-TTTTG -TTGTCAGAT )

Figure 4: Three scenarios of corrected read cat-
egories in MSA result. Trimmed/split reads have
a corrected version with missing left or right part. Ex-
tended corrected reads have a corrected version with
a longer left or right part, which is not present in the
two other versions.

reported apart. We collect all fragments that come
from a single initial read and report how many reads
were split. For each trimmed or split corrected read,
we report the total uncorrected length of its associ-
ated reference read (i.e. the length that is covered
by no fragment).

Extended reads are reads that have a subsequence
at their left and/or right end that was not present
in the reference sequence (last scenario in Figure 4).

These reads can be chimeras from the correction
step. However they can also be reads that were over-
corrected by a graph-based correction method, that
kept on traversing the graph after reaching the uncor-
rected reads’ extremities. We do not compute qual-
ity assessment metrics on the extended regions, but
we report the number of extended reads, as well as
their mean extension size, with respect to the refer-
ence reads.

Soft-clipped reads are reads from a real dataset
for which the extremities were soft clipped during
the alignment to the reference genome. This category
can only arise when processing real data, as we only
retrieve reference reads by aligning the uncorrected
reads to the reference genome in this case. For such
reads, we do not compute quality assessment met-
rics on the soft clipped regions, as they could not be
properly aligned to the reference genome, and were
therefore not used to determine the reference read.

Bad quality reads are reads which quality is so
bad they were removed before the MSA step. As
mentioned before, these are the reads for which an
insufficient number of seed k-mers were found. We
only report their number as no metric can be com-
puted, since they are not aligned.

2.3.2 Recall, precision, error rate

Once the MSA is computed, we have a base-wise in-
formation of the differences and similarities in nu-
cleotide content for each of the three versions of a
sequence. Insertions or deletions are represented by
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” N

a ”.” in the deleted parts, and by the corresponding
nucleotide (A,C,T or G) in the inserted parts. Let
us denote nt(R, p;), nt(C,p;), nt(U, p;) the characters
of reference, corrected and uncorrected versions in
{A,C,G,T,.}, at position p; (0 <i < N), in a MSA
of size N. Figure 5 shows how recall and precision are
computed. The set of positions to correct P contains
positions p; such as nt(R, p;) # nt(U,p;). The set of
existing position in the corrected version & is defined
by including any position p, from the corrected ver-
sion that is not counted in a trimmed/split/extended
region. The processed positions set C is defined as
P U {p;/nt(C,p;) # nt(R,p;)} N E. The correct
positions set Co is defined as C N {p;/nt(C,p;) =
nt(R,p;)}. The recall, precision and error rate are
computed as such:

_ card(CNP)
Recall = card(P) (1)
.. card(ConC)
Precision = “eard(©) (2)
card(Co)

Errorrate =1 —
c—1
S
i=0

with ¢ the length of the corrected read.

reference R (ACT-GTTTGA-CTTTG-CTGAT )
uncorrected U (GCCTGT-TGGACT- -GTCAG-T )

(ACTTGTTTGAATTTTGTCAGAT )

corrected C

positions to correct (nt(R) !'= nt(U))
processed positions (nt(R) !'= nt(U) OR nt(C) != nt(R))

processed positions such that nt(C) == nt(R)
processed positions such that nt(C) != nt(R)

Recall = Precision =

+

Figure 5: Compute recall and precision using triple
base-wise comparison at each MSA’s position. nt(R)
(respectively nt(U),nt(C')) represents the character
in reference (respectively uncorrected, corrected) line
of the MSA at a given position.

2.3.3 Additional metrics

ELECTOR’s first module also provides information
on the number of split or trimmed corrected reads,
and on the mean missing size of these reads, as well
as on the number of extended reads, and on the

mean extension size of these reads. The size dis-
tribution of sequences before and after correction is
presented graphically. In the case of split reads, we
report the length of each split fragment in the dis-
tribution. The %GC is also output, as well as the
insertion/deletion/substitution counts, before and af-
ter correction. Oxford Nanopore reads are known to
be more error-prone than PacBio reads in homopoly-
mers. Thus, we propose metrics to examine these
particular regions We show the ratio of homopoly-
mer sizes in the corrected version over the reference
version. The closer it is to one, the better the correc-
tor overcame possible non-systematic errors in ONT
reads. More details on the computation of these met-
rics are shown in Supplementary Material (Supple-
mentary Figure 3).

2.3.4 Remapping of corrected reads

We perform remapping of the corrected reads to the
reference genome using BWA-MEM [14], due to the
high quality of the long reads after error correction.
We report the percentage of aligned reads, the aver-
age identity of the alignments, as well as the genome
coverage, i.e. the percentage of bases of the reference
genome to which at least a nucleotide aligned.

2.3.5 Post-correction assembly metrics

We perform the assembly of the corrected reads using
Miniasm [3], as we mainly seek to develop a pipeline
providing fast results. We acknowledge that assem-
blers such as Smartdenovo [15] or Canu [16] are more
sensitive, but as they display much larger runtimes,
Miniasm provides a satisfying compromise.

As for the metrics of the assembly, we output the
overall number of contigs, the number of contigs that
could be aligned, the number of breakpoints of the
aligned contigs, and the NGA50 and NGAT5 sizes of
the aligned contigs. The alignment of the contigs is
also performed with BWA-MEM [14], and the compu-
tation of the different metrics is performed by parsing
the generated SAM file.

3 Results

3.1 Validation of segmentation strat-
egy for MSA

In order to validate our segmentation strategy for
MSA, we show to which extent its results differ from
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the classic MSA approach. We expect that recall, pre-
cision and correct base rate hardly differ, thus show-
ing that both behaviors produce very similar results.
Conversely, we expect an important gain in time with
our segmentation strategy compared to the original
algorithm. We thus compared multiple alignment re-
sults obtained with our strategy to results obtained
with the regular implementation of the partial or-
der alignment on multiple datasets of different read
lengths, which affects the runtime of the alignments.
Results are presented in Table 1.

They show that our segmentation strategy and the
regular approach only differ by a few digits in the
presented metrics for all the experiments. However,
using segmentation, a substantial gain in time is
achieved. On the largest dataset, the runtime is
hence reduced from several days to roughly an hour.
Moreover, while the classic MSA strategy runtime
raises with respect to the read length, our approach
no longer suffers from this drawback.

3.2 Validation on synthetic datasets
3.2.1 Datasets

We present results of ELECTOR on several simulated
datasets of several species (A. baylyi, E. coli, S. cere-
visiae, C. elegans). Further details on each dataset
are given in Supplementary Table 1.

3.2.2 ELECTOR general results

We display ELECTOR’s results using reads corrected
by the following tools: HALC [17], HG-CoLoR [18],
LoRDEC [19], Canu, Daccord [20], MECAT [21] and
LoRMA [22]. As previously detailed in Section 2.3.2,
the first module of ELECTOR computes general met-
rics: mean recall, precision, correct base rate and
other additional metrics. For the three first results,
a graphic representation of their distribution is also
made available.

A subset of the results output by this first module
of ELECTOR are presented, for the six correction
methods, and for the F.coli, S. cerevisiae, and C.
elegans datasets, in Table 3. The complete results,
including all the metrics output by ELECTOR, are
presented in Supplementary Material Tables. These
results show that ELECTOR reported recalls from 95
to almost 100% and precisions from 94 to more than
99% for all tools. These results are consistent with
results presented in the different tools’ publications

on datasets from the same species. Others metrics
output by ELECTOR’s first module are further de-
tailed in Section 3.2.3.

The second module of ELECTOR performs remap-
ping of the reads on the reference and assembles
them, thus providing additional information that are
not available through LRCstats. An output example
of this module is given in Table 6.

3.2.3 Comparison to state-of-the-art

Other works Recently, several benchmark analysis
were proposed for long reads (comparison of hybrid
correction methods [23], comparison of hybrid and
self correction methods [24], analysis of long read cor-
rection on transcriptomic reads [25]. In this work, we
rather focus on the methodological basis to efficiently
perform and reproduce such benchmarks, than high-
light pros and cons of correction methods. Though,
we present corrector’s result in order to illustrate the
validity of our approach. The presented results are
in accordance with those reported in the other works.
In the rest of the result section, we report compar-
isons to the only other automated assessment tool for
long reads correction: LRCstats.

Comparison of the metrics displayed by ELECTOR
and LRCstats are shown in Table 2, for a hybrid
and a self-correction method, respectively HALC and
Canu, on the S. cerevisiae dataset. This table shows
the results obtained for each tool, and the supple-
mentary metrics offered by ELECTOR that are not
displayed by LRCstats. The complete results pro-
vided by LCRstats and ELECTOR, for each correc-
tion tool, and on each dataset, are presented in Sup-
plementary Material Tables 2-3.

Common metrics Both LRCstats and ELECTOR
compute metrics for uncorrected and corrected ver-
sions of the reads. The first result to notice is that
the error rate announced in uncorrected sequences
can differ from one correction method to the other,
both for ELECTOR and LRCstats. This is explained
by the fact that HALC and Canu do not correct the
same set of reads. As a result, the corresponding un-
corrected reads used to compute the error rates are
not the same either.

Second, as it can be seen from the throughput met-
rics, ELECTOR and LRCstats do not process the
same quantity of reads. This is due to the fact that
they rely on different rules to exclude reads that are
too difficult to process in the alignment schemes, but
also because of their respective behaviors toward split
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Experiment Recall (%) Precision (%) Correct bases (%) | Time

71k” MSA 99,712 98,996 98.980 2h 05 min

71k” segmentation +MSA 99,769 98,992 98.979 28 min

710k” MSA 99.921 99.781 99.794 20 h 50 min

710Kk” segmentation + MSA | 99.921 99.795 99.793 29 min

7100k” MSA 99.913 99.925 99.956 8 days 18 h 38 min
7100k” segmentation +MSA | 99.924 99.903 99.902 1 h 11 min

Table 1: Comparison of the two multiple alignment strategies on a simulated F. coli datasets. The reads
were simulated with a given length, a 10% error rate and a coverage of 100x. The reads were corrected with
Canu with default parameters.

reads, which are not aligned and reported the same
way. LRCstats concatenates the different parts of
a split read before aligning the concatenation, even
if a missing zone can exist between two fragments.
This behavior can complicate the alignment task and
introduce a bias in the output metrics. On the con-

. Metri ncorrecte rrect s HAL
trary, ELECTOR processes the different fragments i ELEC’EOE{O ethglcsmts EL%%Tegﬁd b”LRCSStS
separately before reconstituting the whole alignment, Throughput 238,300,333 237,655,341 | 212,266,193 214,152,119

. s . Error Rate 0.1403 0.1751 0.0042 0.0023
and takes into account missing parts. These differ- Tnsertions 28,772,841 32,589,070 | 100,874 215,507
ences thus have an impact on the metrics displayed Deletions 5235800 8,991,984 | 1,035,978 120,743
) : . Substitutions 4,058,953 1,633,123 | 198,853 221,646
for corrected reads. ELECTOR’s throughput is a lit- Recall i N 0.9997 %
tle smaller than LRCstats’, however reads uncounted Precision - - 0.9959 x
in the throughput are directly reported in precise cat- MZ:TES:I/;;’ e : . 120 :
egories in ELECTOR (very short reads and low qual- Extension - - L x
ity reads), while they are lost in LRCstats’ output. Mmzotft:f:;ﬁ;suc . . o x
Different alignment strategies in both tools also Small reads - - 3436 x
. . . . %GC 38.2 ® 38.2 x
have impacts on the results, which explains the dif- Tncomected Corrected by Cam
ferences seen in indels and substitution counts. How- Throughput 244,560,743 244,633,066 | 229,555,492 229,825,812
Error Rate 0.1425 0.1781 0.0506 0.0694
ever, ELECTOR and LRCstats globally report the Insertions 30,090,583 34,105,075 | 12,252,413 12,942,568
same trends of two successful corrections that de- Deletions 5483119 9,489,618 | 2,574,320 3,134,365
Substitutions 4,375,017 1,748,302 | 2,197,172 1,591,650
creased the error rates. Recall . _ 0.0515 P
Precision - - 0.9495 3
Trimmed/split - - 2,216 ®
ELECTOR exclusive metrics ELECTOR’s Mean missing size - - 35.1 x
novel metrics point out important differences be- Fxtension . i 8 x
Mean extension size - - 30.7 x
tween the two correction methods, such as the high Low quality - - 43.0 x
. . . . Small reads - - 0.0 x
quantity of trimmed and/or split reads when using o 38.9 % 8.7 %

HALC in comparison to Canu.

3.3 Performances comparison

We compared LRCstats and ELECTOR’s runtime
and memory consumption on several datasets in Ta-
ble 4 and Table 5. The datasets are chosen to repre-
sent different factors of pitfalls. We thus vary genome
sizes and read throughput, with datasets presented in
Supplementary Table 1, as well as reads size distri-
bution, with new E. coli datasets composed of reads
of length 1 kbp, 10 kbp, 100 kbp, and 1 Mbp. By as-
sessing ELECTOR on reads of such length, we mainly
wish to demonstrate its scalability. ELECTOR’s run-
time and memory peaks are computed for the two in-

Table 2: Comparative results of ELECTOR’s and
LRCStats’ ouptuts on the S. cerevisiae dataset us-
ing a hybrid corrector (HALC) and a self corrector
(Canu). A dash in the Uncorrected columns indicates
that the metric is not computed for the uncorrected
reads. A cross indicates that the assessment tool does
not provide the metric.
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HALC
uncorrected

HG-CoLoR
uncorrected corrected

Metric

corrected | _uncorrected

LoRDEC
corrected

CANU
uncorrected

MECAT
uncorrected corrected

Daccord

corrected | uncorrected  corrected

E. coli
Throughput
Error Rate
Recall
Precision

81,199,351
0.0015
0.9999
0.9985

84,089,814
0.0007
1.0
0.9993

89,077,682
0.1384

91,950,978
0.1415

93,003,632
0.1428

77,969,503
0.0015
0.9999
0.9986

91,933,413
0.1432

83,773,362
0.004
0.9988
0.9961

80,380,557
0.1332

58,979,203
0.0052
0.9983
0.9949

86,443,218
0.0524
0.9495
0.9476

92,936,636
0.1433

S. cerevisiae
Throughput
Error Rate
Recall
Precision

238,309,333
0.1403

245,700,616
0.1414

196,676,910
0.1325

212,266,193
0.0042
0.9997
0.9959

219,744,436
0.003
0.9999
0.9971

188,228,237
0.0054
0.9995
0.9947

229,555,492
0.0506
0.9515
0.9495

246,455,883 222,050,951
0.1426 0.0054
0.9986
0.9946

244,560,743
0.1425

217,284,712
0.1339

162,057,920
0.0066
0.998
0.9936

C.elegans
Throughput
Error Rate

1,726,223,265
0.0065

1,731,103,921  1,588,220,052
0.1377 0.0153
- 0.9989
0.985

1,988,381,391
0.1397 0.1242

Recall - -

Precision

0.9997
0.9936

1,299,187,175  1,154,508,245
0.0126
0.9989
0.9875

1,997,798,872  1,873,188,109
0.1427 0.0496

1,270,739,795 870,965,775
0.1199 0.0065
0.9527
0.9505

0.9982
0.9936

Table 3: Examples of the main statistics reported by ELECTOR on simulated datasets.

A dash in a

row/column indicates that the metric in not computable from the data. On the C. elegans dataset, Daccord

could not be run, and reported an error.

dependent modules of the ELECTOR, pipeline: the
read triplets multiple alignment step, allowing to ac-
cess general metrics, and the remapping and assembly
step. The first module is comparable to the LRCstats
pipeline, as both perform similar operations. How-
ever, LRCstats does not include modules to perform
read remapping and assembly. We thus we present
this second module of ELECTOR, apart, in Table 6,
where we display metrics, runtime and memory con-
sumption for the assessment of the HALC corrected
reads on the S. cerevisiae dataset.

We first assess in Table 5 the performances of both
tools on simulated data with different read length.
We observe that the runtime and memory consump-
tion of LRCstats grow with the read length, and we
were unable to run it on the 100 kbp and 1 Mbp
datasets, even on a cluster node with 250 GB of
RAM. This behavior may be a problem to work on
very long reads. Due to its segmentation strategy
ELECTOR is able to handle larger reads, up to one
megabase length. Furthermore its time and memory
consumption do not raise much with the read length.
This shows that ELECTOR is able to scale to ex-
tremely long reads. Considering the availability and
usefulness of such very long reads library, we believe
that this ability to efficiently handle long sequences
is one of the main advantages of ELECTOR.

In the experiment describing the runtimes of
ELECTOR and LRCstats, presented in Table 4, we
also added, for the perspective, the runtime of the
correction method itself. Interestingly we observe
that LRCstats is often more time consuming than
the correction method, which is not desirable. ELEC-
TOR presents reduced runtime, showing that it could
be used to mitigate that heavy analysis time.

10

3.4 Assessment of real data

3.4.1 Validation of ELECTOR’s real data
mode

In order to validate the real data mode of ELEC-
TOR, we ran the following experiment. We used a
simulated dataset, and assessed its correction using
the two different ELECTOR mode, simulated and
real data. First, we ran it classically, by providing
the simulation files as input, so ELECTOR could re-
trieve the actual reference reads by parsing the files.
Second, we ran it by only providing the FASTA file
of simulated reads as input, so ELECTOR had to
retrieve the reference reads by aligning the uncor-
rected long reads to the reference genome, as if they
were actual real long reads. We ran this experiment
on the S. cerevisiae dataset, and to further validate
ELECTOR’s behavior on real data, we assessed cor-
rection of both a hybrid corrector, HALC, and a self-
corrector, Canu.

Results of these experiments are shown in Table 7.
We observe that ELECTOR’s results in simulated
and real mode are consistent. In particular, the re-
calls and precisions are very similar. The same trend
appears as for the comparison to LRCstats: the two
modes show some differences in the input uncorrected
reads (as shown by the throughputs), that have an
impact on the differences observed between their re-
sults. This is due to the bias induced by the ad-
ditional alignment step that is required in the real
mode. The main differences that appear in the met-
rics occur on metrics that are highly dependent on
the alignment results, such as the number of trimmed,
split and extended reads, and the sizes of these events;
as well as indels counts.
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Method HALC HG-CoLoR LoRDEC Canu Daccord MECAT
A. baylyi

Corrector 22min 47min 6min 10min 20min 43sec
LRCstats 3h50 3h52 3h38 3h10 3h59 2h02
ELECTOR 14min 10min 45min 9min 12min 9min
E. coli

Corrector 24min 45min 8min 12min 27min 52sec
LRCstats 4h58 5h02 4h37 4h05 4h20 2h30
ELECTOR 28min 13min 1h17 11lmin 12min 11min
S. cerevisiae

Corrector 1h19 4h32 28min 31min 1h15 2min
LRCstats 10h56 12h26 12h14 10h46 12h04 6h59
ELECTOR 1h55 1h07 4h59 32min  44min 32min
C. elegans

Corrector 5h59 88h56 6h01 4h33 - 22min
LRCstats 83h29 81h05 70h00 85h08 - -
ELECTOR 32h35 10h30 29h48 4h19 - 3h12

Table 4: Runtimes of ELECTOR and LRCstats on

different datasets and different correctors. Both tools

were launched with 9 threads. The runtimes of the correctors are also included as a matter of comparison.
The fastest assessment method is shown in bold for each case. When the assessment method is also quicker

than the correction method itself, it is underlined.

Daccord could be run on the C. elegans dataset, and

reported an error, and LRCstats crashed on the C. elegans dataset corrected by Canu.

Tool Genome Read length  Memory (MB) Elapsed time CPU time
LRC E. coli 1k 1,803 42 min 8 h 18 min
ELECTOR | E. coli 1k 1,030 12 min 28 min

LRC E. coli 10k 13,484 4h 51l min 2 days 22 h 38 min
ELECTOR | E. coli 10k 3,091 13 min 29 min
ELECTOR | E. coli 100k 12,231 28 min 1 h 11 min
ELECTOR | E. coli 1M 24,881 2 h 44 min 11 h 05 min

Table 5: Performance results obtained from a simulated coverage of 100x of the respective reference genome,

on a 20 cores cluster node equipped with 250 GB of

Remapping

Aligned reads (%) 100
Average identity (%) 99.54
Genome coverage (%) 99.01
Assembly

Number of contigs 165
Aligned contigs 165
Number of breakpoints 14
NGA50 94,358
NGAT5 55,321
Time 5 min
Memory (MB) 2,759

Table 6: Metrics reported by the remapping and as-
sembly module of ELECTOR, on the S. cerevisiae
dataset, corrected with HALC.

RAM.

3.4.2 Results on a real human dataset

In order to demonstrate ELECTOR’s results in a re-
alistic scenario for large genomes, we assess the cor-
rection of a real human dataset. We report results,
as well as runtime of the assessment, in Table 8. The
reads were corrected with MECAT before running
ELECTOR. Using 20 threads, we were able to ob-
tain the results for the 650,771 corrected reads of the
dataset in less than 19 hours. Results reported by
ELECTOR show that MECAT is able to correct hu-
man reads with a 20% error rate with more than 90%
of recall and precision.
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Metric Uncorrected Corrected by Halc
Simulated Real Simualted Real
Throughput 238,309,333 238,119,170 | 212,266,193 212,141,319
Error Rate 0.1403 0.1449 0.0042 0.0104
Recall - - 0.9997 0.9938
Precision - - 0.9959 0.9897
Insertions 28,772,841 26,796,500 100,874 90,737
Deletions 5,235,890 5,042,365 1,035,978 1,490,680
Substitutions 4,058,953 3,682,863 198,853 182,590
Trimmed/split - - 12,043 13,320
Mean missing size - - 577.5 896.0
Extension - - 71.0 39.0
Mean extension size - - 53.2 72.0
Low quality - - 160.0 152.0
Small reads - - 3436.0 3438.0
%GC - - 38.2 38.2

Uncorrected Corrected by Canu

Throughput 244,560,743 244,402,568 | 229,555,492 229,403,697

Error Rate 0.1425 0.1442 0.0506 0.052
Recall - - 0.9515 0.9499
Precision - - 0.9495 0.9481
Insertions 30,090,583 28,452,967 | 12,252,413 10,965,458
Deletions 5,483,119  5800,286 | 2,574,320 2,916,564
Substitutions 4,375,017 4,081,445 2,197,172 1,940,888
Trimmed/split - - 2216.0 4943.0
Mean missing size - - 35.1 4.7
Extension - - 178.0 169.0
Mean extension size - - 30.7 31.9
Low quality - - 43.0 42.0
Small reads - - 0.0 0.0
%GC - - 38.7 38.7

Table 7: Comparative results output by ELECTOR,
using simulated and real modes on the same S. cere-
visiae dataset, using a hybrid corrector (HALC) and
a self corrector (Canu).
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4 Discussion and perspectives

We described and demonstrated ELECTOR’s heuris-
tics for multiple sequence alignment and its impor-
tant speedup in comparison to LRCstats. While
showing same trends in the results they display
for correctors, we have pointed that LRCstats and
ELECTOR have differences in their common metrics.
This is explained by a set of different choices and
heuristics between the two tools. Regarding LRC-
stats, we fulfilled our speed-up and scalability objec-
tive, being able to report results faster than LRC-
stats, and better scaling to both very long reads and
large datasets.

ELECTOR is designed to work with simulated
reads, and is expected to give the best results when
working with it. The real data mode uses a prior
alignment of the reads on a reference genome to re-
trieve the reference versions of the reads. We demon-
strated that ELECTOR’s main metrics in its real
data mode remain similar to what would be obtained
in the simulated mode. However, we can point out
two limitations of ELECTOR: first, even if the data
can come from an actual sequencing experiment, a
reference genome needs to exist for the sequenced
species in order to retrieve the reference reads, and
thus perform evaluation. Second, we encourage users
to be very cautious about ELECTOR’s results with
real data when looking at trimmed/split reads num-
bers and their sizes, since these metrics highly depend
on the results of the alignment to the reference.

In ELECTOR we propose an efficient segmenta-
tion heuristic for multiple sequence alignment. We
adapted this task for the original and specific long
read application. There is a current interest for seg-
mented multiple alignment scheme [26]. However,
these methods are not specifically designed for noisy
long reads. In such a perspective, a generalization
of our segmentation strategy for long reads multiple
alignments of any size would be very interesting.

A future application is the assessment of correc-
tion methods directly targeted at RNA long reads
sequencing. As shown in a recent study [25], RNA
long reads have specific requirements that are not
met by current methods, which calls for new correc-
tors in the future. ELECTOR could be coupled with
a reference transcriptome or a RNA long read sim-
ulator, although, currently, such simulation software
does not exist to our knowledge.
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uncorrected  corrected with MECAT
Throughput 5,605,157,590 5,451,767,836
Recall(%) - 92.70
Precision(%) - 91.50
Error rate 0.1974 0.0861
Average correct bases rate 0.8026 0.9139
Number of trimmed/split reads - 570,635
Mean missing size in trimmed/split reads - 362.0
Number of over-corrected reads by extention - 275
Mean extension size in over-corrected reads - 62.4
%GC 41.6 41.1
Small reads - 356
Low quality corrected reads - 4,279
Insertions 247,953,086 10,144,736
Deletions 746,165,024 473,239,036
Substitutions 162,822,923 7,521,389
Homopolymer ratio - 0.7570
Runtime - 18 h 27 min

Table 8: ELECTOR’s results for MECAT correction of a real human dataset. ELECTOR, assessed 650,771
reads. Small reads are corrected reads which length is lower than 10.0% of the original read. Homopolymer
ratio is the ratio of homopolymer sizes in corrected vs reference. We reported the wallclock time of the run,

using 30 threads.

5 Conclusion

We presented ELECTOR, a tool that enables the
evaluation of self and hybrid correction methods, and
that can be used in the conception of a benchmark.
ELECTOR provides a wide variety of metrics that in-
clude base-wise computation of recall, precision, error
rate of corrected reads as well as indels, substitutions
and homopolymers correction. In particular, recall
and precision allow to spot correction methods spe-
cific pitfalls, that remain unclear when only looking
at the error rates of the corrected reads. These re-
sults are presented in a text summary and in pdf and
png versions, which allows users to easily integrate
them in their reports.

We used ELECTOR on a representative list of
state-of-the-art hybrid and self correctors, ran on
reads from small bacterial genomes to large mammal
genomes. With the applications on large genomes
and ever increasing lengths of long reads in mind,
we designed ELECTOR to be time-saving and scal-
able. We shown that for most datasets and correc-
tors, ELECTOR runs in a similar amount of time as
the corrector itself. We also demonstrated that it can
scale to novel ultra long reads.

Thus, it represents a major improvement in com-
parison to LRCstats. Since ELECTOR is based on
multiple sequence alignment, we adapted this strat-
egy to our scaling objectives. We proposed an inno-

vative and promising algorithm of segmentation for
multiple sequence alignment of noisy long reads. This
procedure drastically reduces the time footprint of
the multiple alignment step in ELECTOR. We be-
lieve it could be generalized for broad applications
implying multiple sequence alignment of long, noisy
sequences.
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