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Abstract

Somatosensory thalamocortical (TC) neurons from the ventrobasal (VB) thalamus are central
components in the flow of sensory information between the periphery and the cerebral cortex,
and participate in the dynamic regulation of thalamocortical states including wakefulness and
sleep. This property is reflected at the cellular level by the ability to generate action potentials
in two distinct firing modes, called tonic firing and low-threshold bursting. Although the general
properties of TC neurons are known, we still lack a detailed characterization of their
morphological and electrical properties in the VB thalamus. The aim of this study was to build
biophysically-detailed models of VB TC neurons explicitly constrained with experimental data
from rats. We recorded the electrical activity of VB neurons (N = 49) and reconstructed
morphologies in 3D (N = 50) by applying standardized protocols. After identifying distinct
electrical types, we used a multi-objective optimization to fit single neuron electrical models (e-
models), which yielded multiple solutions consistent with the experimental data. The models
were tested for generalization using electrical stimuli and neuron morphologies not used during
fitting. A local sensitivity analysis revealed that the e-models are robust to small parameter
changes and that all the parameters were constrained by one or more features. The e-models,
when tested in combination with different morphologies, showed that the electrical behavior is
substantially preserved when changing dendritic structure and that the e-models were not
overfit to a specific morphology. The models and their analysis show that automatic parameter

search can be applied to capture complex firing behavior, such as co-existence of tonic firing
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and low-threshold bursting over a wide range of parameter sets and in combination with

different neuron morphologies.

Author summary

Thalamocortical neurons are one of the main components of the thalamocortical system,
which are implicated in key functions including sensory transmission and the transition
between brain states. These functions are reflected at the cellular level by the ability to
generate action potentials in two distinct modes, called burst and tonic firing. Biophysically-
detailed computational modeling of these cells can provide a tool to understand the role of
these neurons within thalamocortical circuitry. We started by collecting single cell experimental
data by applying standardized experimental procedures in brain slices of the rat. Prior work has
demonstrated that biological constraints can be integrated using multi-objective optimization
to build biologically realistic models of neuron. Here, we employ similar techniques as those
previously employed, but extend them to capture the multiple firing modes of thalamic
neurons. We compared the model results with additional experimental data test their
generalization and quantitatively reject those that deviated significantly from the experimental
variability. These models can be readily integrated in a data-driven pipeline to reconstruct and

simulate circuit activity in the thalamocortical system.
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Introduction

Thalamocortical (TC) neurons are one of the main components of the thalamus and have
been extensively studied in vitro and in computo, especially in first order thalamic nuclei in
different species (1). One of these nuclei, namely the ventral posterolateral nucleus (VPL),
relays somatosensory, proprioceptive, and nociceptive information from the whole body to the
somatosensory (non-barrel) cortex (2). The VPL is located close to ventral posteromedial
nucleus (VPM), which transmits information from the face to the barrel cortex. The VPL and
VPM nuclei constitute the ventrobasal (VB) complex of the thalamus (3).

Despite its key role in sensory functions, a systematic characterization of the cellular
properties of the VB complex is still missing. The morphologies of VPL neurons in adult rats
were described in early anatomical studies but were limited to two-dimensional drawings of
Golgi-impregnated cells (4). The general electrical properties of TC neurons maintained in vitro
are known and similar in different thalamic nuclei and species with respect to the generation of
two distinct firing modes, called tonic firing and low-threshold bursting (5-8). However, a
systematic description on the electrical types in the VB thalamus in the rodents is still missing.

Collecting morphological and electrophysiological data, by following standardized
experimental procedures, is essential for the definition of cells types and it is the first step to
constraining computational models of single neurons (9,10). Although models of TC neurons
have already been previously published, they typically were aimed at studying specific firing
properties and their parameters were hand tuned to achieve the desired result (11-15).

The purpose of our study is to systematically define the morphological and electrical

types by collecting in vitro experimental data and to constrain biophysically detailed models of
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VB TC neurons of the juvenile rat. To the best of our knowledge, automatic parameter search
has not been applied, thus far, to capture complex firing behavior in thalamic neurons, in
particular low-threshold bursting and tonic firing. We defined the electrical and morphological
types of TC neurons through in vitro patch-clamp recordings and 3D morphological
reconstructions. We then extended an existing method (16) to account for their distinctive
firing properties. These electrical models (e-models) were constrained by the electrical features
extracted from experimental data (9,17,18). Other experimental data were used to assess the
generalization of the models to different stimuli and morphologies. We further performed a
sensitivity analysis by varying each parameter at a time by a small amount and recording the
resulting electrical features. This analysis provides an assessment of the robustness of the
models and a verification that the selected features provide sufficient constraints for the

parameters.

Results

Physiological and morphological characterization
We characterized TC neurons in slices of the rat VB thalamus, by combining whole-cell patch-
clamp recordings, biocytin filling and 3D Neurolucida (MicroBrightField) reconstruction, along

with anatomical localization in a reference atlas (19) (Fig 1).


https://doi.org/10.1101/512269
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/512269; this version posted January 5, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

B Exemplar recondings from different electrical types

Continoous noo-adapting Coontinuons adapting
Jow-threshold bursting Jow-threshold bursting
{cNAD Xkb) (cAD _hb)

P ¢AD b,

Density
0 10 20 30 40 50 60
|

0.00 0.02 0.04 0.06 0.08 0.10
96 Adaptation index

97

98  Figure 1: Simultaneous physiological and morphological characterization.

99 (A) View of a patched cell under optic microscope and anatomical localization of biocytin-filled
100 neurons (insets) in the rat Paxinos and Watson atlas (19). Letters D and E identify morphologies
101  in aslice. (B) Voltage responses of two different thalamocortical (TC) neurons to a standardized
102  battery of current stimuli. Each current amplitude was normalized by the threshold current of
103  each neuron (e.g. 150 % threshold, see Methods). Third row is a low-threshold burst response
104  from a hyperpolarized holding potential, Vhog = -84 mV (burst mode), the other responses are
105 elicited from a depolarized holding potential, Vhoqa = -64 mV (tonic mode). Two different
106  holding currents (lnoig - tonic, Ihoig - burst) are injected to obtain the desired Vyo4. The vertical
107  scale bar applies to all the traces, the first horizontal scale bar from the top refers to the first

108 two rows, the second applies to the last four rows. (C) Analysis of adaptation index (Al) from
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recordings in tonic mode. Solid line is a non-parametric estimation of the distribution, dashed
lines are two Gaussian distributions fitted to the data (see Methods). The vertical line indicates

the cut-off value.
Visual inspection of 50 reconstructed morphologies (24 from the VPL, 26 from the VPM

nuclei) revealed variability in the number of principal dendritic trunks and their orientation, in

agreement with previous anatomical studies (4).

A Thalamo-cortical morphological type (TC) and topological description
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Figure 2: Morphological properties.
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119 (A) Renderings of 3D reconstructed TC neurons along with their persistence barcode according
120 to (20). Grey: soma and dendrites, blue: axon only small sections available). The persistence
121  barcode is a topological description of the branching pattern of the neurons’ dendrites. (B) Sholl
122 analysis of TC neuron dendrites. For each Sholl ring, the number of intersections is shown
123  (mean * standard deviation, N = 50). Each grey circle represents one morphology, colored lines
124  correspond to the morphologies in A. See Fig S1 for further analysis.

125

126 The maximum radial extent of the dendrites ranged between 120 and 200 um and they
127  started to branch between 20 and 50 pum from the soma (Fig S1). We then analyzed the
128 morphologies with two methods in order to quantitavely classify different morphological types.
129 We used algebraic topology to extract the persistent homology of each morphology and to
130 visualize the persistence barcode (20) (Fig 2A, see Methods). Each horizontal bar in the
131  persistence barcode represents the start and end point of each dendritic component in terms
132  of its radial distance from the soma. The barcodes of all the morphologies followed a semi-
133  continuous distribution of decreasing length. To quantify the differences between the
134  barcodes, we computed the pairwise distances of the persistence images (see Methods and Fig
135 S1). We found that they were in general small (<0.4, values expected to vary between 0 and 1).
136  These findings indicate that the morphologies cannot be grouped in different classes based on
137  the topology of their dendrites. Furthermore, we performed Sholl Analysis (21) to compare the
138 complexity of the dendritic trees (Fig 2B). We observed that all the morphologies had dense
139  dendritic branches, with a maximum number of 50-100 intersections between 50-80 pm from

140 the soma. When comparing the Sholl profiles for each pair of neurons we could not find any
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141  statistically significant difference (Fig S1C). Considering the results of topological and Sholl
142  analyses, we grouped all the morphologies in one morphological type (m-type) called
143  thalamocortical (TC) m-type.

144 We used an adaptive stimulation protocol, called e-code, consisting of a battery of
145  current stimuli (e- code, see Methods for details), where the stimulation amplitude was
146  adapted to the excitability of different neurons. This standardized protocol has previously been
147  used to build biophysically-accurate models of cortical electrical types (e-types) (16). However,
148  TC neurons from different thalamic nuclei and species fire action potentials in two distinct firing
149  modes, namely tonic firing, when stimulated from a relatively depolarized membrane potential
150 or low-threshold bursting, from a hyperpolarized membrane potential (5). We thus extended
151 the e-code to include two different holding currents. All the neurons recorded in this study
152  displayed tonic and burst firing, when stimulated with the appropriate holding current (Fig 1).
153  Moreover, we were able to classify different e-types by considering the voltage traces recorded
154  in tonic mode in response to step current injections (Fig 1). The majority of the cells (59.3 %)
155 showed a non- adapting tonic discharge (continuous non-adapting low-threshold bursting,
156  cNAD_ltb e-type) while others (40.7 %) had higher adaptation rates (continuous non-adapting
157 low-threshold bursting, cAD Itb e-type), as reflected by the adaptation index (Fig 1C). We
158 followed the Petilla convention (22) for naming the tonic firing discharge (cNAD or cAD),
159 extending it to include “_Itb” for the low-threshold bursting property. In some rare examples,
160  we noticed acceleration in the firing rate with decreasing inter-spike intervals (ISls) towards the
161  end of the stimulus. Similar adapting and accelerating responses have already been described in

162  the VB thalamus of the cat (7). We also observed stereotypical burst firing responses within the
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163  same cell, with variation of the number of spikes per burst in different cells, but the burst firing
164  responses alone were insufficient to classify distinct e-types.

165

166  Constraining the models with experimental data

167 Multi-compartmental models comes with the need of tuning a large number of
168 parameters (23), therefore we constrained the models as much as possible from experimental
169 data. We first combined the morphology and the ionic currents models in the different
170  morphological compartments (soma, dendrites and axon). Given that the reconstruction of the
171  axon was limited, we replaced it with a stub representing the initial segment (16). We used
172 previously published ionic current models and selected those that best matched properties
173  measured in rat TC neurons (see Methods). The kinetics parameters were not part of the free
174  parameters of the models. The distribution of the different ionic currents and their
175 conductances in the dendrites of TC neurons is largely unknown. The current amplitudes of the
176  fast sodium, persistent and transient (A-type) potassium currents were measured, but only up
177  to 40-50 pm from the soma (24). Indirect measures of burst properties (15) or Ca’* imaging
178  studies (25) suggest that the low-threshold calcium (T-type) channels are uniformly distributed
179 in the somatodendritic compartments. We thus assumed different peak conductance in the
180 soma, dendrites and axon for all the ionic currents, except for /c.r, which had the same
181 conductance value in the soma and dendrites. We then extracted the mean and standard
182  deviation (STD) of different electrical features in order to capture the variability of firing
183  responses from different cells of the same e-type (9) (Fig 3).

184

10
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Figure 3: Histograms of electrical features.

Each vertical line represents the mean feature value for a cell. Tonic and burst refer to the
holding voltage as in Fig 1. (A) Feature values extracted from recordings in tonic mode (N = 11
cAD _Itb cells, N = 16 cNAD_Itb cells). The features highlighted by a black box show different
distributions for the cNAD_Itb and cAD_Itb electrical types (e-types) (p-value<0.05, two- sided
Mann-Whitney U test with Bonferroni correction for multiple comparisons). Passive properties
(Vrest, Rinput) and spike shape features (AHP depth, AP amp., etc.) did not show clear differences

between the two e-types. (B) Features measuring burst firing properties (N = 22 cells).

We observed that some features extracted from tonic firing responses had distinct

distributions between the cAD_Itb and ¢cNAD _Itb e-types (Fig 3A). The features were chosen in

order to quantify salient physiological properties of TC neurons and to constrain the

11
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parameters of the model, namely the peak conductance of each ionic current. The average

value and STD of the features were used as optimization objective (multi-objective

optimization, MOO). Twenty-five parameters were allowed to vary between the upper and

lower bounds shown in Fig 5. The models were associated with a training error, i.e. a set of all

the feature errors (measured as absolute z-scores) (9,18,26).
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Figure 4: Models of different TC e-types and their fitting errors.
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208 models are compared with the mean of features shown in Fig 3. Note that the models shown in
209 B are fitted in order to reproduce the mean firing properties, not only a specific experimental
210 recording. See Fig S2 for a complete list of fitting errors. By applying this MOO procedure, we
211  generated multiple models with distinct parameter combinations that reproduced tonic and
212  low-threshold burst firing in cNAD_Itb and cAD_ltb e-types (Fig 4).

213

214  Model and experimental diversity

215 We found that different sets of parameter values reproduced the target firing behavior
216  (Fig 5B). We further analyzed models that had all the feature errors below 3 STD. Models’
217  voltage responses reflected the characteristic firing properties of TC neurons (Fig S3), indicating
218 that the selected set of features were sufficient to capture the two firing modes, in both the
219 adapting and non-adapting e-types. The voltage traces from different models showed small
220 differences in spike amplitude, firing frequency, and depth of the after-hyperpolarization, as
221  reflected by the variability of features values (Fig 5C).

222

13
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Param. name

Distance from exp. mean (# 5TD) Distance from exp. mean (# STD}

224  Figure 5: Diversity of model parameters and experimental variability.

225 (A) Example of model fitting errors (sum of all feature errors) during optimization. (B) Initial

226  parameter ranges and diversity of solutions. Each vertical line represents the range for the

227  parameters, when the horizontal lower bar is missing the bound is 0. The characters following

228 ”.” in the parameter name specifies the morphological compartment for the parameter (”s”:

»on,

229 soma, "d”: dendrites, “a”: axon). Black circles: parameter values for one of the models in Fig 4,

230  grey circles: parameter values of the models with all feature errors below 3 STD. (C) Features

231  variability in the models and experiments. Blue crosses: feature errors of a sample of 10

232 models. Each grey circle is the z-scored feature value of one experimental cell, obtained from

233  the feature values shown in Fig 3. The protocol names are shown in parenthesis and

234 corresponds to the stimuli shown in Fig 1 and Fig 4, tonic and burst refer to the holding current

235 asinFigl.
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236

237 Spike-shape related features (e.g. AP. amplitude) in the different models covered the
238  space of the experimental variability, while for some features (e.g. input resistance, Rinput), all
239  models tended to cluster on one of the tails of the experimental distribution. Rinpu: relates to
240 the neuron passive properties and depends both on the number of channels open at rest
241  (inverse of the leak conductance in the model) and the size of the cell. Given that all the models
242  were constrained on a single morphology, this result is not surprising. The number of action
243  potentials (Num. of APs) in different conditions (No stim, lhoq) ensured that the models did not
244 spike in the absence of a stimulus or in response to the holding current. For this reason, all the
245  experimental and model feature values in 5C are equal to 0. Other features, such as latency to
246 the first spike and sag amplitude were less variable in the models compared to experiments.
247  We hypothesized that this depended on the variable stimulation amplitudes applied to
248  different experimental cells, while all the models were stimulated with the same current
249  amplitudes.

250 We examined the diversity of the parameter values with respect to the initial parameter
251  range (Fig 5B). Most of the optimized parameter values spanned intervals larger than one order
252  of magnitude. On the other hand, some parameter values were restricted to one order of
253  magnitude, for example the permeability of the low-threshold calcium current Pc,r. This result
254  is in agreement with experiments showing a minimum value of /¢, is critical to generate burst
255  activity and this critical value is reached only at a certain postnatal age (27). The value of Pg,r
256  was constrained by features measuring burst activity (such as number of spikes, frequency,

257  etc.).
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270

Assessment of model generalization

We used different stimuli for model fitting (current steps) and for generalization

assessment (current ramps and noise). We simulated the experimental ramp currents in-silico,

by stimulating the models with the appropriate holding currents for the two firing modes and a

linearly increasing current. We first compared visually the model responses with the

experimental recordings (Fig 6A).
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271  errors <3 STD). (D) Proportion of models that passed the generalization test (see Fig S4 for
272  examples of models that failed this test).

273

274 In burst mode, the models reproduced the different behaviors observed experimentally:
275 absence of a burst, small low-threshold spike, burst, burst followed by tonic firing (Fig S4).
276  Moreover, the latency of burst generation substantially overlapped with the experimental one.
277  However, a small fraction of models (1.2 %) generate repetitive burst that we have never
278 observed in the experimental recordings (Fig S4). These models were quantitatively rejected by
279  considering the number of spikes and the inter-spike intervals. In tonic mode, the latency to
280 first spike, the voltage threshold, the shape of the subsequent action potentials and the
281 increase in firing frequency were comparable with the experimental recordings (Fig 6A). In
282  addition, we quantified the generalization error to ramp stimuli (Fig 6C), by considering the
283  latency to first spike, firing frequency increase over time (tonic mode) or number of spikes
284  (burst mode).

285 Although conductance-based models can be fit by using step and ramp currents (26),
286 these stimuli are different from synaptic inputs, which can be simulated by injecting noisy
287  currents. To test the response to such network-like input, we used a noisy current varying
288  accordingly to an Ornstein-Uhlenbeck (OU) process (28) to compare models’ responses with the
289  experimental data. Each experimentally recorded cell was stimulated with the same OU input,
290 scaled by a factor w. Experimentally, w was calculated during the experiment by evaluating the
291  responses to previous stimuli. We developed a similar approach to generate the noise stimuli in

292  silico (see Methods). The noise current was injected on top of the holding currents used during
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293  the optimization. We found that the models reproduced well the subthreshold potential, spike
294  times and the distribution of single spikes and bursts (Fig 6B). Moreover, we quantitatively
295  evaluated the generalization to the noise stimulus by extracting features (e.g. number of spikes)
296 and comparing them with the experimental mean.

297 We computed generalization errors for each model, which were calculated similarly to
298  the optimization errors (Fig 6C). We considered a model acceptable after generalization if it had
299  all generalization errors <3 STD and we found that the majority of the models (>90%) passed
300 the generalization test.

301

302 Sensitivity of electrical features to small parameter perturbations

303 We assessed the robustness of the models to small changes in their parameter values. To
304 that end, we varied each parameter at a time by a small amount (x 2.5 % of the optimized
305 value) and computed the values of the features. A sensitivity value of 2 between parameter p
306 and feature y means that a 3 % change in p caused a 6 % change in f. We ranked the
307 parameters from the most to the least influential and the features from the most sensitive to

308 the least sensitive.
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311 (A) Sensitivity of the feature values to small changes to the parameter values for the cAD_lItb
312 model in Fig 4. Sensitivities (Ay/Ap) are color coded as a heat map. Features are ranked from
313 the most to the least sensitive and parameters are ranked from the most to the least
314  influential. The last three rows are features that ensure that the models were not firing without
315 input or in the response to the holding current. Small changes to the parameter values are not
316 expected to make the model firing and thus the sensitivity of these features is 0. (B) Same
317  sensitivity values as in (a), with features and parameters clustered by similar sensitivity and
318 influences.

319

320 The conductance of the leak current geq emerged as the most influential parameter (Fig 7A).

321 Anincrease in giq caused a decrease in firing frequency (inverse of inter-spike intervals, ISls) in

322  both the tonic and burst firing modes. These results are easy to interpret when considering
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323  Ohm’s law: increasing geqx means decreasing the input resistance of the model, so that for the
324 same input current the voltage response becomes smaller. The second most influential
325 parameter was the conductance of the persistent sodium current gngp in the dendrites, which
326 increased the tonic firing rate as expected from a depolarizing current and had an effect on the
327 late phase of the low- threshold burst (inverse last ISI - burst). An increase in the permeability
328  of the low-threshold calcium current P, known to be one the main currents underlying low
329 threshold bursting, enhanced burst firing responses (it decreased the inverse of ISls) and had
330 effects on some of the tonic features. Pc,r was the third most influential parameter. These
331 findings show that I,7 is the main driver of the low-threshold burst, but other currents, such as
332 Ingp contributes as well. Increasing the dendritic permeability of the high threshold calcium
333  current Pc, decreased the tonic firing rate, despite being a depolarizing current. Increasing Pcu
334  means higher Ca’* influx and higher amplitude of the Ca’*activated potassium current (/s¢). The
335 parameter gsx had indeed a similar effect on the features and thus clustered together with Pc,;
336 (Fig 7B). Increasing the conductance of the transient sodium conductance gn,r increased action
337 potential amplitude and decreased its duration. Sag amplitude, that is known to depend on the
338  activity of /5, was mainly influenced by change in gjeqk, Pcor and gu. In summary, each parameter
339 influenced at least one feature. Some features were weakly influenced by small parameter
340 changes, e.g. baseline voltage, which depend more on the holding current amplitude, than on
341 the model parameters. These results indicate that the model ability to generate tonic and burst
342 firing is robust to small changes in parameter values and that all the parameters were

343  constrained during the optimization by one or more features.
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344 We then analyzed which features depended similarly on parameter changes, as they may
345 add superfluous degrees of freedom during parameters search. Fig 7B shows the same
346  sensitivities as in Fig 7A, clustered by their similarities (see Methods). Features clustered
347  together if they were sensitive to similar parameter combinations and parameters clustered
348  based on their similar influence on the features. Not surprisingly, the same tonic features
349 measured at different level of current stimulation clustered together (e.g. AP amplitude and
350 half-width, AHP depth, latency of the first ISI) and tonic firing features belonged to a cluster
351 that was different from burst features.

352

353  Preservation of model firing properties with different morphologies

354  We optimized the parameters for the adapting and non-adapting e-models in combination with
355 two different experimental morphologies and then tested them with the other 48
356 morphologies. Considering that morphologies could not be classified in different m-types based
357 on topological analysis of their dendrites and that TC neurons have been shown to be
358 electrically compact (15), we expected the electrical behavior to be conserved when changing
359  morphology. Nonetheless, different neurons vary in their input resistance Rinput and rheobase
360 current Iy due to variation in the surface area. Variation in Rinpue and I made the current
361 amplitude applied during the optimization inadequate to generate the appropriate voltage
362  trajectories. We thus devised an algorithm to search for the holding current to obtain the target
363 holding voltage (for example -64 mV or -84 mV for tonic and burst firing, respectively) and ly,,
364 from the desired holding voltage. The different e-model/morphology combinations (me-

365 combinations) were evaluated by computing the same feature errors calculated during

21


https://doi.org/10.1101/512269
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/512269; this version posted January 5, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

366 optimization. For each morphology, we selected the e-model that generated the smallest
367 maximum error. All me-combinations reproduced burst and tonic firing (Fig 8C). However, two
368 me-combinations generated responses with a small number of features that deviated from the
369 experimental mean. We chose the value of 3 STD as a threshold to define which me-
370 combinations were acceptable (29), vielding 48 acceptable me-combinations out of the 50
371  tested (Fig 8A). We analyzed more closely which features were significantly different from the
372  experimental mean. In Fig 8B we show that the rejected me-combinations had too many action

373  potentials in the burst.
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376  Figure 8: Model generalization to different experimental morphologies.
377 (A) Feature errors from the best electrical models (e-model) showed in Fig 4 applied to 50

378 different TC cell morphologies. Each morphology is represented with a different color. E-
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379 models/morphology combinations with at least one feature error > 3 STD (dashed line) were
380 rejected. (B) Example of voltage responses from an accepted and from a rejected e-
381 model/morphology combination. Feature errors for the rejected combination are shown in red
382 in(A) and are indicated on the voltage trace.

383

384 Discussion

385 Our objective was to apply and extend an existing data-driven pipeline to identify the cell
386 types and build models of VB thalamocortical neurons that reproduce the multiple firing modes
387 that have been experimentally observed. We successfully modelled these novel firing types, by
388 including additional stimulation protocols and features to constrain the low-threshold burst.

389 Our morphological and electrical data were used to define the properties of VB TC
390 neurons in the rat. We found two electrical types (e-types) of TC neurons, but no objectively
391 different morphological types (m-types) were revealed either using Sholl analysis (21) or
392  topological analysis of dendritic branching (20). We cannot exclude that refinements to these
393 methods will reveal different m-types similar to the ones described in the visual thalamus of the
394 mouse (30). We also showed that automatic parameter search can be applied to build
395  biophysically and morphologically detailed models. This method was already applied to model
396 canonical firing behavior in cortical, hippocampal and cerebellar granule neurons
397 (9,10,16,17,31,32). To the best of our knowledge, such an automatic parameter search has not
398  previously been used to capture different firing modes and complex firing behavior such as low-
399 threshold bursting in thalamic neurons. Standardized electrophysiological protocols allowed us

400 to identify for the first time in juvenile rat adapting and non-adapting e-types of TC VB neurons
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401 that were previously observed in other species (7). This finding suggests that the intrinsic
402  properties of TC neurons contribut to adaptation, a key phenomenon for filtering out irrelevant
403  stimuli, before sensory information reaches the neocortex. Further experiments are needed to
404  elucidate the relative contribution of intrinsic mechanisms and network properties to
405 adaptation in somatosensory systems. We named the two main e-types continuous non-
406 adapting low-threshold bursting (cNAD_Itb) and continuous adapting low-threshold bursting
407  (cAD_ltb) by following and extending existing conventions (16,22,31).

408 In this study, we improved upon previous morphologically and biophysically detailed
409 models of tonic and burst firing in TC neurons (12,13,15) by explicitly constraining the
410 parameters with experimental data, without hand-tuning of parameter values. Unlike previous
411 models, we chose a multi-objective optimization for a methodological and a scientific reason: it
412 is more time-efficient, reproducible, and it approximates the variability in ionic channel
413  expression of biological neurons (31,33—-35), as shown by the family of acceptable solutions we
414 found. However, experiments aimed at quantifying ion channel conductances are essential to
415 assess if these solutions fall between biological ranges. Furthermore, we tested the
416  generalization capability of the models and found that more than 90% of the models were
417  comparable with the experimental data.

418 Nonetheless, we noticed some inaccuracies when comparing the voltage traces with the
419 experimental data when assessing the generalization of some models. For instance, some
420 models tended to generate small transient oscillations in response to ramp stimuli in burst
421 mode. This result is not surprising, considering that the exact kinetics for all the ionic currents

422  are not available and that there are known limitations in models of ionic channels derived from
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423  the literature or from other models (36,37). In particular, modifications of the kinetics of the
424  low-threshold calcium current was shown to explain the propensity to generate oscillatory
425  bursts in TC neurons of other nuclei and species (38).

426 TC neurons have been shown to be electrically compact (15) and could, in principle, be
427 modeled as a single compartment. However, active mechanisms need to be located in the
428 dendrites in order to ensure synaptic integration and amplification (39). Information regarding
429  specific conductances or firing properties in the dendrites of TC neurons is limited. For this
430 reason, dendritic parameters in our models may be underconstrained. However, the sensitivity
431 analysis (see below) revealed that dendritic parameters did not appear to be the least
432  constrained because they influenced different tonic and burst-related features.

433 We included in the model fitting and validation pipeline a sensitivity analysis, which is
434  often neglected in computational neuroscience (40). Although we cannot use our simple
435  univariate approach to explore multidimensional parameter correlations and principles of co-
436 regulation of ion channels expression, it is useful to find better constraints for parameters
437  optimization. The selection of the features is indeed a step that still requires care and
438 experience by modelers. Furthermore, this type of sensitivity analysis allows to identify
439  parameters that can be traded-off during the optimization and that can be removed in order to
440 reduce the dimensionality of the problem. In our study, four parameters related to the calcium
441  dynamics were shown to influence the features in a very similar fashion. This type of analysis is
442  of particular importance in future work aimed at using the full diversity of ion channels that can
443  be inferred from gene expression data. More in detail, we propose that sensitivity analysis

444  should be a fundamental tool in selecting which conductances are successfully optimized by the
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445  available experimental constraints. The example we showed is a local approach, applied to a
446  specific solution to the optimization problem, which showed that our models are robust to
447  small parameter changes. This analysis can be extended to study how the sensitivities vary in
448  the neighborhood of different solutions.

449 In conclusion, we systematically studied the morphological and electrical properties of VB
450 TC neurons and used these experimental data to constrain single neuron models, test their
451  generalization capability and assess their robustness. Further work will validate these models in
452  response to synaptic activity, in order to include them in a large-scale model of thalamocortical
453  microcircuitry (16).

454

455 Methods

456  Experimental procedures

457 Experimental data were collected in conformity with the Swiss Welfare Act and the Swiss
458  National Institutional Guidelines on Animal Experimentation for the ethical use of animals. The
459  Swiss Cantonal Veterinary Office approved the project following an ethical review by the State
460 Committee for Animal Experimentation.

461 All the experiments were conducted on coronal or horizontal brain slices (300 um thick-
462 ness) from the right hemisphere of male and female juvenile (P14-18) Wistar Han rats. The
463 region of interest was identified using the Paxinos and Watson rat brain atlas (19). After
464  decapitation, brains were quickly dissected and sliced (HR2 vibratome, Sigmann Elektronik,

465 Germany) in ice-cold standard ACSF (in mM: NaCl 125.0, KCI 2.50, MgCl, 1.00, NaH,PO4 1.25,
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466 CaCl, 2.00, D-(+)-Glucose 50.00, NaHCOs; 50.00; pH 7.40, aerated with 95% O, / 5% CO,).
467  Recordings of thalamocortical neurons in the VB complex were performed at 34 °C in standard
468  ACSF with an Axon Instruments Axopatch 200B Amplifier (Molecular Devices, USA) using 5-7
469  MQ borosilicate pipettes, containing (in mM): K*-gluconate 110.00, KCl 10.00, ATP-Mg** 4.00,
470  Na,-phosphocreatine 10.00, GTP-Na* 0.30, HEPES 10.00, biocytin 13.00; pH adjusted to 7.20
471  with KOH, osmolarity 270-300 mOsm. Cells were visualized using infrared differential
472  interference contrast video microscopy (VX55 camera, Till Photonics, Germany and BX51WI
473  microscope, Olympus, Japan).

474 Membrane potentials were sampled at 10 kHz using an ITC-18 digitizing board
475  (InstruTECH, USA) controlled by custom-written software operating within IGOR Pro
476  (Wavemetrics, USA). Voltage signals were low-pass filtered (Bessel, 10 kHz) and corrected after
477  acquisition for the liquid junction potential (LIP) of -14 mV. Only cells with a series resistance
478 <25 MQ were used.

479 After reaching the whole-cell configuration, a battery of current stimuli was injected into
480 the cells and repeated 2-4 times (e-code). During the entire protocol, we defined offset
481 currents in order to keep the cell at -50 mV (tonic firing) or =70 mV (burst firing) before LIP
482  correction and applied them during the entire protocol. The step and ramp currents were
483 injected with a delay of 250 ms in the experiment. In the models, the stimuli were injected with
484  a delay of 800 ms, to allow for the decay of transients due to initialization. Each stimulus was
485 normalized to the rheobase current of each cell, calculated on-line as the current that elicited
486  one spike (stimulus TestAmp, duration 1350 ms). The stimuli used for in the experiments, for

487 fitting and testing the models were:
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488 e [DRest: current step of 1350 ms, injected at different amplitude levels in 25 %
489 increments (range 50-300 % threshold). IDRest was renamed to Step in the model.

490 e |DThresh: current step with duration of 270 ms, 4 % increments (range 50 - 130 %).

491 e |V: hyperpolarizing and depolarizing steps of 3000 ms injected in 20 % increments (range
492 -140 - 60%).

493 e SponNoHold: the first 10 seconds of this stimulus was used to calculate the resting
494 membrane potential. No holding or stimulation currents were applied.

495 e SponHold: the first 10 seconds of this stimulus was used to calculate the holding current
496 applied to keep the cells at the target potential.

497 e PosCheops: ramps of current from 0 to 300 % and from 300 to 0 % having progressively
498 shorter durations (4000 ms, 2000 ms, 1250 ms). To test the models in tonic mode we
499 used the first increasing ramp in the stimulus, while we used the last one in the bursting
500 firing mode. We chose the last one because the biological cells were more likely to
501 generate a burst.

502 e NOISEOUS3: the original wave was scaled and offset for each cell based on the spike
503 frequency responses to IDRest responses. The scaling factor w was extracted from the
504 frequency-current curve and corresponded to the current value that made the cell fire
505 at 7.5 Hz.

506 Neurons that were completely stained and those with high contrast were reconstructed

507 in 3D and corrected for shrinkage as previously described (41). Reconstruction used the

508 Neurolucida system (MicroBrightField). The location of the stained cells was defined by
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509 overlaying the stained slice and applying manually an affine transformation to the Paxinos and

510 Watson’s rat atlas (19).

511  Electrical features extraction

512 Electrical features were extracted using the Electrophys Feature Extraction Library (eFEL)
513 (42). We calculated the adaptation index (Al) from recordings in tonic mode (Step 200 %
514  threshold) and classified TC VB neurons into adapting (Al>=0.029) and non-adapting (Al<0.029)
515 electrical types. Al was calculated using the eFEL feature adaptation_index2 and corresponded
516 to the average of the difference between two consecutive inter-spike intervals (ISI) normalized
517 by their sum. The cut-off value was calculated after fitting a Gaussian mixture model to the
518 bimodal data, using available routines for R (43,44). In order to group data from different cells
519 and generate population features, we normalized all the stimuli by the rheobase current Iy, of
520 each cell. To calculate Iy, we used IDRest and IDThresh and selected the minimal amplitude
521 that evoked a single spike. The extracted features quantified passive (input resistance, resting
522  membrane potential), burst and tonic firing properties (number of spikes, inverse of inter-spike
523 intervals, latency to first spike), action potentials shape (amplitude, half-width, depth of the fast
524  after-hyperpolarization). We aimed at finding the minimal set of features that capture the most
525 important properties. This set was a trade-off between comprehensively describing the
526  experimental data (i.e. extracting all possible features), which can lead to over-fitting and loss
527  of generalizability, and a too small set that would miss some important characteristics. For the
528 tonic firing responses, we used three stimulation amplitudes (150 %, 200 %, 250 % of firing
529 threshold) which have been shown to reproduce the complete input-output function of the

530 neurons (17,41). Responses to two hyperpolarizing steps of different amplitudes (-40 % and
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531 -140 % threshold) constrained the input resistance and the conductance of currents activated
532  in hyperpolarization (sag_amplitude feature). We included baseline voltage values in the
533  optimization objectives to ensure that the model was in the right firing regime and spike count
534  to penalize models that were firing in response to the holding currents. Along with the voltage
535 features, we extracted mean holding and threshold current values for all the experimental
536  stimuli. Description of the features and the details on their calculation are available on-line [49].
537  Current stimuli applied during the optimization and generalization were directly obtained from
538 the experimental values or automatically calculated by following the experimental procedures

539 (e.g. noise stimulus).

540 Morphology analysis

541 Reconstructed morphologies were analyzed to objectively identify different
542  morphological types. The Sholl profiles of each pair of cells was statistically tested by using k-
543  samples Anderson-Darling statistics. This test was preferred to the most common Kolmogorov-
544  Smirnov test, because it does not assume that the samples are drawn from a continuous
545  distribution. The different Sholl profiles are indeed an analysis of the intersections with discrete
546  spheres.

547 To compare the topological description of each morphology we transformed the
548  persistence barcodes into persistence images and calculated their distances as in (20). Briefly,
549  we converted the persistence barcode, which encodes the start and end radial distances of a
550 branch in the neuronal tree, into a persistence diagram. In the persistence diagram, each bar of
551 the barcode is converted into a point in a 2D space, where the X and Y coordinates are the start

552 and end radial distances of each bar. The persistence diagram was then converted in a
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553  persistence image by applying a Gaussian kernel. We used the library NeuroM (45) to perform
554  Sholl and morphometrics analyses. The reconstructed morphologies will be made publicly

555  available on neuromorpho.org.

556 lonic currents models
557 We used Hodgkin-Huxley types of ionic current models, starting from kinetics equations
558 already available in the neuroscientific literature. Along with kinetics of the ionic currents, we
559 stored information on the experimental conditions, such as temperature and LP, by using the
560 software NeuroCurator (46). Whenever the data was available, we compared simulated
561 voltage-clamp experiments to experimental data from juvenile rats. lonic currents /; were
562  defined as functions of the membrane potential v, its maximal conductance density g; and the
563  constant value of the reversal potential E;:
Iy = gimi hiy(v —E)

564  mj,, and h;,, represent activation and inactivation probability (varying between 0 and 1), with
565 integer exponents x and y. Each probability varied according to:

n'(v) = (e, (v) —n) /70 (V)
566 where n-(v) is a function of voltage that represents the steady-state activation/inactivation
567 function (normally fitted with a Boltzmann curve) and t,(v) is a voltage-dependent time
568  constant. Exceptions to this formalism are ionic currents that do not inactivate (y = 0) and ionic
569 currents with (in)activation processes mediated by two or more time constants. Calcium
570 currents (Icer and Ic,) were modeled according to the Goldman-Hodgkin-Katz constant field

571 equation and had permeability values instead of conductance (47).
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572 Fast transient sodium current /y,r and delayed potassium current lgy. /n.r and Iy were
573  taken from a previous models of rat TC neurons from the VB nucleus (12), available on
574  Senselab ModelDB (accession no. 279). Iy,r was compared with recordings of transient sodium
575  currents in P7-11 rat neurons from the dorsolateral geniculate (ALGN) nucleus (48).
576 Low-threshold activated (T-type) calcium current I¢,r. Ic,r model was taken from (12) and
577 available on-line (ModelDB, accession no. 279). This model was based on data recorded from
578 VB neurons of Sprague-Dawley rats (P7-12) at room temperature and corrected for -9 mV LJP
579  (11).
580 Hyperpolarization-activated cationic current /. The steady-state activation for /4 was
581 derived from VB thalamic neurons in P10-20 Long-Evans rats and was already corrected for -10
582 mV UP in the original publication (49). The equation used was:
my, = 1/(1+ exp[(v +86.4)/11.2])

583 The time constant of activation was modeled as in (50), which derived a mathematical
584  description of /; based on data from the dLGN in adult guinea pigs, recorded at 35.5 °C (51). The
585 equation describing the time dependence of activation was not corrected for simulations at
586 different temperatures and was:

Tm = 1/[exp(—14.59 — 0.086v) + exp(—1.87 + 0.0701v)]
587 The equilibrium potential of the channel E; was —43 mV. In silico voltage-clamp
588  experiments were compared with data in (49).
589 Persistent sodium current Iyz. We modeled /yqp as in (17) which based their model on
590 recordings from entorhinal neurons of Long-Evans rats (P25-P35) (52). The steady-state

591  activation was modified according to (48) and the steady-state inactivation according to (14).
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592  The original steady-state activation data were recorded at room temperature (22-24°) and
593  corrected for -6/-7 mV UP. Limited data on Iy,p are available from dissociated neurons from
594  the dLGN nucleus in Wistar rats (48).

595 Fast transient (A-type) potassium current lxa. The mathematical formulation of /x4 was
596 based on data recorded from VB neurons in Sprague-Dawley rats (P7-15), recorded at room
597 temperature (22-24 °C) (53). A Qi = 2.8 was experimentally determined and used for
598 simulations at different temperatures. In the original experiments a small UP (<-4 mV) was
599 measured and not corrected. The current had a rapid and a slow component, represented by
600 two activation and two inactivation variables. The model of this current was provided by the
601 authors of (14).

602 High-threshold (L-type) calcium current /I¢y. Ico; model is the same as TC neurons model
603  previously published (14,50). The model was based on data from isolated guinea-pig
604  hippocampal neurons, recorded at room temperature (20-22 °C) with modifications to the
605  Boltzmann curve parameters of activation contained in the correction to the original models
606 [59]. A small LJP (<3 mV) was not corrected (50). A Q1o = 3 was used for simulations at different
607 temperatures.

608 Calcium-activated potassium currents. TC neuron express genes for BK-type (54) and SK-
609 type calcium-activated potassium channels (55). Models of BK-type currents, similar to the /¢
610 current, have already been used to model TC neurons (14,50,54). However, data characterizing
611  this current in mammalian neurons are not available. We thus included only a model of /s
612  (available in ModelDB, accession no. 139653) based on rat mRNA expression data in Xenopus

613  oocytes (56).

33


https://doi.org/10.1101/512269
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/512269; this version posted January 5, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

614 Intracellular calcium dynamics. A simple exponential decay mechanism was used to
615 model the intracellular calcium dynamics (ModelDB, accession no. 139653). Both Ic,r and Jcar
616 contributed to the intracellular calcium concentration.

617 In addition, we included a voltage-insensitive membrane current /s The equilibrium
618 potential was —-79 mV and corresponded to the average resting potential from our experimental
619 recordings.

620 Simulation and parameters optimization

621 NEURON 7.5 software was used for simulation (57). We used NEURON variable time step
622 method for all simulations. For the sake of spatial discretization, each section was divided into
623  segments of 40 um length. The following global parameters were set: initial simulation voltage
624 (=79 mV), simulation temperature (34 °C), specific membrane capacitance (1 uF/cmz), specific
625 intracellular resistivity 100 Qcm for all the sections, equilibrium potentials for sodium and
626  potassium were 50 mV and =90 mV, respectively.

627 BluePyOpt (18) with Indicator Based Evolutionary Algorithm (IBEA) were used to fit the
628 models to the experimental data. Each optimization run was repeated with three different
629 random seeds and evaluated 100 individuals for 100 generations. The evaluation of these 300
630 individuals for 100 generations was parallelized using the iPython ipyparallel package and took
631 between 21 and 52 h on 48 CPU cores (Intel Xeon 2.60 GHz) on a computing cluster. Each
632  optimization run typically resulted in tens or hundreds of unique acceptable solutions, defined
633  as models having all feature errors below 3 STD from the experimental mean.

634 The models will be made publicly available at ModelDB (58). The configuration files for

635 the optimization and analysis will be made publicly available on Github, Bluepyopt page (59).
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636  Sensitivity analysis

637 We performed a sensitivity analysis of an optimization solution by varying one parameter
638  value (p») at a time and calculating the electrical features from the voltage traces (y" and y").
639 We defined the sensitivity as the ratio between the normalized feature change and the
640 parameter change, which for smooth functions approximates a partial derivative (60,61). The
641 features changes were normalized by the optimized feature value. For small changes of
642  parameter values, we assumed that the features depend linearly on its parameters. We could
643  thus linearize the relationship between the features and the parameters around an optimized
644  parameter set and calculate the derivatives. The derivatives were calculated with a central

645  difference scheme (60).

0n Vi —Yn
Opm  20py,

646 We collected the derivatives (sensitivities) in the N X M Jacobian matrix, with N
647  representing the number of features and M the number of parameters.

648 To rank parameters and features we computed their relative importance by calculating
649  their norms (the square root of the summed squared values) from the Jacobian columns and
650 rows, respectively. To cluster parameters based on similar influences on the features and to
651 cluster features that were similarly dependent on the parameters, we used angles between
652  columns (or rows) to compute distances D between parameters (or features):

D =1—|cosH|
653 Features where thus considered similar if they depended in a similar manner on the

654  parameters, independent of sign or magnitude.
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