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 2

Abstract 15 

Somatosensory thalamocortical (TC) neurons from the ventrobasal (VB) thalamus are central 16 

components in the flow of sensory information between the periphery and the cerebral cortex, 17 

and participate in the dynamic regulation of thalamocortical states including wakefulness and 18 

sleep. This property is reflected at the cellular level by the ability to generate action potentials 19 

in two distinct firing modes, called tonic firing and low-threshold bursting. Although the general 20 

properties of TC neurons are known, we still lack a detailed characterization of their 21 

morphological and electrical properties in the VB thalamus. The aim of this study was to build 22 

biophysically-detailed models of VB TC neurons explicitly constrained with experimental data 23 

from rats. We recorded the electrical activity of VB neurons (N = 49) and reconstructed 24 

morphologies in 3D (N = 50) by applying standardized protocols. After identifying distinct 25 

electrical types, we used a multi-objective optimization to fit single neuron electrical models (e-26 

models), which yielded multiple solutions consistent with the experimental data. The models 27 

were tested for generalization using electrical stimuli and neuron morphologies not used during 28 

fitting. A local sensitivity analysis revealed that the e-models are robust to small parameter 29 

changes and that all the parameters were constrained by one or more features. The e-models, 30 

when tested in combination with different morphologies, showed that the electrical behavior is 31 

substantially preserved when changing dendritic structure and that the e-models were not 32 

overfit to a specific morphology. The models and their analysis show that automatic parameter 33 

search can be applied to capture complex firing behavior, such as co-existence of tonic firing 34 
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and low-threshold bursting over a wide range of parameter sets and in combination with 35 

different neuron morphologies. 36 

 37 

Author summary 38 

Thalamocortical neurons are one of the main components of the thalamocortical system, 39 

which are implicated in key functions including sensory transmission and the transition 40 

between brain states. These functions are reflected at the cellular level by the ability to 41 

generate action potentials in two distinct modes, called burst and tonic firing. Biophysically-42 

detailed computational modeling of these cells can provide a tool to understand the role of 43 

these neurons within thalamocortical circuitry. We started by collecting single cell experimental 44 

data by applying standardized experimental procedures in brain slices of the rat. Prior work has 45 

demonstrated that biological constraints can be integrated using multi-objective optimization 46 

to build biologically realistic models of neuron. Here, we employ similar techniques as those 47 

previously employed, but extend them to capture the multiple firing modes of thalamic 48 

neurons. We compared the model results with additional experimental data test their 49 

generalization and quantitatively reject those that deviated significantly from the experimental 50 

variability. These models can be readily integrated in a data-driven pipeline to reconstruct and 51 

simulate circuit activity in the thalamocortical system. 52 

 53 

 54 

 55 
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Introduction 56 

Thalamocortical (TC) neurons are one of the main components of the thalamus and have 57 

been extensively studied in vitro and in computo, especially in first order thalamic nuclei in 58 

different species (1). One of these nuclei, namely the ventral posterolateral nucleus (VPL), 59 

relays somatosensory, proprioceptive, and nociceptive information from the whole body to the 60 

somatosensory (non-barrel) cortex (2). The VPL is located close to ventral posteromedial 61 

nucleus (VPM), which transmits information from the face to the barrel cortex. The VPL and 62 

VPM nuclei constitute the ventrobasal (VB) complex of the thalamus (3). 63 

Despite its key role in sensory functions, a systematic characterization of the cellular 64 

properties of the VB complex is still missing. The morphologies of VPL neurons in adult rats 65 

were described in early anatomical studies but were limited to two-dimensional drawings of 66 

Golgi-impregnated cells (4). The general electrical properties of TC neurons maintained in vitro 67 

are known and similar in different thalamic nuclei and species with respect to the generation of 68 

two distinct firing modes, called tonic firing and low-threshold bursting (5–8). However, a 69 

systematic description on the electrical types in the VB thalamus in the rodents is still missing. 70 

Collecting morphological and electrophysiological data, by following standardized 71 

experimental procedures, is essential for the definition of cells types and it is the first step to 72 

constraining computational models of single neurons (9,10). Although models of TC neurons 73 

have already been previously published, they typically were aimed at studying specific firing 74 

properties and their parameters were hand tuned to achieve the desired result (11–15).  75 

The purpose of our study is to systematically define the morphological and electrical 76 

types by collecting in vitro experimental data and to constrain biophysically detailed models of 77 
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VB TC neurons of the juvenile rat. To the best of our knowledge, automatic parameter search 78 

has not been applied, thus far, to capture complex firing behavior in thalamic neurons, in 79 

particular low-threshold bursting and tonic firing. We defined the electrical and morphological 80 

types of TC neurons through in vitro patch-clamp recordings and 3D morphological 81 

reconstructions. We then extended an existing method (16) to account for their distinctive 82 

firing properties. These electrical models (e-models) were constrained by the electrical features 83 

extracted from experimental data (9,17,18). Other experimental data were used to assess the 84 

generalization of the models to different stimuli and morphologies. We further performed a 85 

sensitivity analysis by varying each parameter at a time by a small amount and recording the 86 

resulting electrical features. This analysis provides an assessment of the robustness of the 87 

models and a verification that the selected features provide sufficient constraints for the 88 

parameters. 89 

Results  90 

Physiological and morphological characterization  91 

We characterized TC neurons in slices of the rat VB thalamus, by combining whole-cell patch-92 

clamp recordings, biocytin filling and 3D Neurolucida (MicroBrightField) reconstruction, along 93 

with anatomical localization in a reference atlas (19) (Fig 1).  94 

 95 
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 96 

 97 

Figure 1: Simultaneous physiological and morphological characterization.  98 

(A) View of a patched cell under optic microscope and anatomical localization of biocytin-filled99 

neurons (insets) in the rat Paxinos and Watson atlas (19). Letters D and E identify morphologies100 

in a slice. (B) Voltage responses of two different thalamocortical (TC) neurons to a standardized101 

battery of current stimuli. Each current amplitude was normalized by the threshold current of102 

each neuron (e.g. 150 % threshold, see Methods). Third row is a low-threshold burst response103 

from a hyperpolarized holding potential, Vhold = −84 mV (burst mode), the other responses are104 

elicited from a depolarized holding potential, Vhold = −64 mV (tonic mode). Two different105 

holding currents (Ihold - tonic, Ihold - burst) are injected to obtain the desired Vhold. The vertica106 

scale bar applies to all the traces, the first horizontal scale bar from the top refers to the first107 

two rows, the second applies to the last four rows. (C) Analysis of adaptation index (AI) from108 
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recordings in tonic mode. Solid line is a non-parametric estimation of the distribution, dashed109 

lines are two Gaussian distributions fitted to the data (see Methods). The vertical line indicates110 

the cut-off value. 111 

 112 

Visual inspection of 50 reconstructed morphologies (24 from the VPL, 26 from the VPM113 

nuclei) revealed variability in the number of principal dendritic trunks and their orientation, in114 

agreement with previous anatomical studies (4).  115 

 116 

117 

Figure 2: Morphological properties.  118 

d 

s 

M 

n 

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 5, 2019. ; https://doi.org/10.1101/512269doi: bioRxiv preprint 

https://doi.org/10.1101/512269
http://creativecommons.org/licenses/by/4.0/


 8

(A) Renderings of 3D reconstructed TC neurons along with their persistence barcode according 119 

to (20). Grey: soma and dendrites, blue: axon only small sections available). The persistence 120 

barcode is a topological description of the branching pattern of the neurons’ dendrites. (B) Sholl 121 

analysis of TC neuron dendrites. For each Sholl ring, the number of intersections is shown 122 

(mean ± standard deviation, N = 50). Each grey circle represents one morphology, colored lines 123 

correspond to the morphologies in A. See Fig S1 for further analysis. 124 

 125 

The maximum radial extent of the dendrites ranged between 120 and 200 μm and they 126 

started to branch between 20 and 50 μm from the soma (Fig S1). We then analyzed the 127 

morphologies with two methods in order to quantitavely classify different morphological types. 128 

We used algebraic topology to extract the persistent homology of each morphology and to 129 

visualize the persistence barcode (20) (Fig 2A, see Methods). Each horizontal bar in the 130 

persistence barcode represents the start and end point of each dendritic component in terms 131 

of its radial distance from the soma. The barcodes of all the morphologies followed a semi-132 

continuous distribution of decreasing length. To quantify the differences between the 133 

barcodes, we computed the pairwise distances of the persistence images (see Methods and Fig 134 

S1). We found that they were in general small (<0.4, values expected to vary between 0 and 1). 135 

These findings indicate that the morphologies cannot be grouped in different classes based on 136 

the topology of their dendrites. Furthermore, we performed Sholl Analysis (21) to compare the 137 

complexity of the dendritic trees (Fig 2B). We observed that all the morphologies had dense 138 

dendritic branches, with a maximum number of 50-100 intersections between 50-80 μm from 139 

the soma. When comparing the Sholl profiles for each pair of neurons we could not find any 140 
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statistically significant difference (Fig S1C). Considering the results of topological and Sholl 141 

analyses, we grouped all the morphologies in one morphological type (m-type) called 142 

thalamocortical (TC) m-type. 143 

We used an adaptive stimulation protocol, called e-code, consisting of a battery of 144 

current stimuli (e- code, see Methods for details), where the stimulation amplitude was 145 

adapted to the excitability of different neurons. This standardized protocol has previously been 146 

used to build biophysically-accurate models of cortical electrical types (e-types) (16). However, 147 

TC neurons from different thalamic nuclei and species fire action potentials in two distinct firing 148 

modes, namely tonic firing, when stimulated from a relatively depolarized membrane potential 149 

or low-threshold bursting, from a hyperpolarized membrane potential (5). We thus extended 150 

the e-code to include two different holding currents. All the neurons recorded in this study 151 

displayed tonic and burst firing, when stimulated with the appropriate holding current (Fig 1). 152 

Moreover, we were able to classify different e-types by considering the voltage traces recorded 153 

in tonic mode in response to step current injections (Fig 1). The majority of the cells (59.3 %) 154 

showed a non- adapting tonic discharge (continuous non-adapting low-threshold bursting, 155 

cNAD_ltb e-type) while others (40.7 %) had higher adaptation rates (continuous non-adapting 156 

low-threshold bursting, cAD_ltb e-type), as reflected by the adaptation index (Fig 1C). We 157 

followed the Petilla convention (22) for naming the tonic firing discharge (cNAD or cAD), 158 

extending it to include “_ltb” for the low-threshold bursting property. In some rare examples, 159 

we noticed acceleration in the firing rate with decreasing inter-spike intervals (ISIs) towards the 160 

end of the stimulus. Similar adapting and accelerating responses have already been described in 161 

the VB thalamus of the cat (7). We also observed stereotypical burst firing responses within the 162 
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 10

same cell, with variation of the number of spikes per burst in different cells, but the burst firing 163 

responses alone were insufficient to classify distinct e-types. 164 

 165 

Constraining the models with experimental data 166 

Multi-compartmental models comes with the need of tuning a large number of 167 

parameters (23), therefore we constrained the models as much as possible from experimental 168 

data. We first combined the morphology and the ionic currents models in the different 169 

morphological compartments (soma, dendrites and axon). Given that the reconstruction of the 170 

axon was limited, we replaced it with a stub representing the initial segment (16). We used 171 

previously published ionic current models and selected those that best matched properties 172 

measured in rat TC neurons (see Methods). The kinetics parameters were not part of the free 173 

parameters of the models. The distribution of the different ionic currents and their 174 

conductances in the dendrites of TC neurons is largely unknown. The current amplitudes of the 175 

fast sodium, persistent and transient (A-type) potassium currents were measured, but only up 176 

to 40-50 μm from the soma (24). Indirect measures of burst properties (15) or Ca2+ imaging 177 

studies (25) suggest that the low-threshold calcium (T-type) channels are uniformly distributed 178 

in the somatodendritic compartments. We thus assumed different peak conductance in the 179 

soma, dendrites and axon for all the ionic currents, except for ICaT, which had the same 180 

conductance value in the soma and dendrites. We then extracted the mean and standard 181 

deviation (STD) of different electrical features in order to capture the variability of firing 182 

responses from different cells of the same e-type (9) (Fig 3).  183 

 184 
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185 

Figure 3: Histograms of electrical features.  186 

Each vertical line represents the mean feature value for a cell. Tonic and burst refer to the187 

holding voltage as in Fig 1. (A) Feature values extracted from recordings in tonic mode (N = 11188 

cAD_ltb cells, N = 16 cNAD_ltb cells). The features highlighted by a black box show different189 

distributions for the cNAD_ltb and cAD_ltb electrical types (e-types) (p-value<0.05, two- sided190 

Mann-Whitney U test with Bonferroni correction for multiple comparisons). Passive properties191 

(Vrest, Rinput) and spike shape features (AHP depth, AP amp., etc.) did not show clear differences192 

between the two e-types. (B) Features measuring burst firing properties (N = 22 cells).  193 

 194 

We observed that some features extracted from tonic firing responses had distinct195 

distributions between the cAD_ltb and cNAD_ltb e-types (Fig 3A). The features were chosen in196 

order to quantify salient physiological properties of TC neurons and to constrain the197 
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 12

parameters of the model, namely the peak conductance of each ionic current. The average198 

value and STD of the features were used as optimization objective (multi-objective199 

optimization, MOO). Twenty-five parameters were allowed to vary between the upper and200 

lower bounds shown in Fig 5. The models were associated with a training error, i.e. a set of al201 

the feature errors (measured as absolute z-scores) (9,18,26). 202 

203 
Figure 4: Models of different TC e-types and their fitting errors.  204 

(A) Single neuron modelling pipeline. (B) Experimental and model voltage responses to a variety205 

of stimuli pattern used during the optimization of cNAD_ltb and cAD_ltb e-types. (C) Feature206 

errors of the models shown in (B) reported as deviation from the experimental mean. The207 
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models are compared with the mean of features shown in Fig 3. Note that the models shown in 208 

B are fitted in order to reproduce the mean firing properties, not only a specific experimental 209 

recording. See Fig S2 for a complete list of fitting errors. By applying this MOO procedure, we 210 

generated multiple models with distinct parameter combinations that reproduced tonic and 211 

low-threshold burst firing in cNAD_ltb and cAD_ltb e-types (Fig 4).  212 

 213 

Model and experimental diversity 214 

We found that different sets of parameter values reproduced the target firing behavior 215 

(Fig 5B). We further analyzed models that had all the feature errors below 3 STD. Models’ 216 

voltage responses reflected the characteristic firing properties of TC neurons (Fig S3), indicating 217 

that the selected set of features were sufficient to capture the two firing modes, in both the 218 

adapting and non-adapting e-types. The voltage traces from different models showed small 219 

differences in spike amplitude, firing frequency, and depth of the after-hyperpolarization, as 220 

reflected by the variability of features values (Fig 5C).  221 

 222 
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223 

Figure 5: Diversity of model parameters and experimental variability.  224 

(A) Example of model fitting errors (sum of all feature errors) during optimization. (B) Initia225 

parameter ranges and diversity of solutions. Each vertical line represents the range for the226 

parameters, when the horizontal lower bar is missing the bound is 0. The characters following227 

”.” in the parameter name specifies the morphological compartment for the parameter (”s”228 

soma, ”d”: dendrites, ”a”: axon). Black circles: parameter values for one of the models in Fig 4,229 

grey circles: parameter values of the models with all feature errors below 3 STD. (C) Features230 

variability in the models and experiments. Blue crosses: feature errors of a sample of 10231 

models. Each grey circle is the z-scored feature value of one experimental cell, obtained from232 

the feature values shown in Fig 3. The protocol names are shown in parenthesis and233 

corresponds to the stimuli shown in Fig 1 and Fig 4, tonic and burst refer to the holding current234 

as in Fig 1. 235 
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 236 

Spike-shape related features (e.g. AP. amplitude) in the different models covered the 237 

space of the experimental variability, while for some features (e.g. input resistance, Rinput), all 238 

models tended to cluster on one of the tails of the experimental distribution. Rinput relates to 239 

the neuron passive properties and depends both on the number of channels open at rest 240 

(inverse of the leak conductance in the model) and the size of the cell. Given that all the models 241 

were constrained on a single morphology, this result is not surprising. The number of action 242 

potentials (Num. of APs) in different conditions (No stim, Ihold) ensured that the models did not 243 

spike in the absence of a stimulus or in response to the holding current. For this reason, all the 244 

experimental and model feature values in 5C are equal to 0. Other features, such as latency to 245 

the first spike and sag amplitude were less variable in the models compared to experiments. 246 

We hypothesized that this depended on the variable stimulation amplitudes applied to 247 

different experimental cells, while all the models were stimulated with the same current 248 

amplitudes. 249 

We examined the diversity of the parameter values with respect to the initial parameter 250 

range (Fig 5B). Most of the optimized parameter values spanned intervals larger than one order 251 

of magnitude. On the other hand, some parameter values were restricted to one order of 252 

magnitude, for example the permeability of the low-threshold calcium current PCaT. This result 253 

is in agreement with experiments showing a minimum value of ICaT is critical to generate burst 254 

activity and this critical value is reached only at a certain postnatal age (27). The value of PCaT 255 

was constrained by features measuring burst activity (such as number of spikes, frequency, 256 

etc.). 257 
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 258 

Assessment of model generalization 259 

We used different stimuli for model fitting (current steps) and for generalization260 

assessment (current ramps and noise). We simulated the experimental ramp currents in-silico,261 

by stimulating the models with the appropriate holding currents for the two firing modes and a262 

linearly increasing current. We first compared visually the model responses with the263 

experimental recordings (Fig 6A).  264 

265 
Figure 6: Model generalization. 266 

(A) Responses to a ramp current injection in burst mode (left) and tonic mode (center). (B)267 

Responses to a noise current generated according to an Ornstein-Uhlenbeck process and scaled268 

based on the excitability of the different experimental cells and models (see Methods). (C)269 

Generalization errors for all the models that passed the generalization test (all generalization270 

n 

, 

a 

e 

) 

d 

) 

n 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 5, 2019. ; https://doi.org/10.1101/512269doi: bioRxiv preprint 

https://doi.org/10.1101/512269
http://creativecommons.org/licenses/by/4.0/


 17

errors <3 STD). (D) Proportion of models that passed the generalization test (see Fig S4 for 271 

examples of models that failed this test). 272 

 273 

In burst mode, the models reproduced the different behaviors observed experimentally: 274 

absence of a burst, small low-threshold spike, burst, burst followed by tonic firing (Fig S4). 275 

Moreover, the latency of burst generation substantially overlapped with the experimental one. 276 

However, a small fraction of models (1.2 %) generate repetitive burst that we have never 277 

observed in the experimental recordings (Fig S4). These models were quantitatively rejected by 278 

considering the number of spikes and the inter-spike intervals. In tonic mode, the latency to 279 

first spike, the voltage threshold, the shape of the subsequent action potentials and the 280 

increase in firing frequency were comparable with the experimental recordings (Fig 6A). In 281 

addition, we quantified the generalization error to ramp stimuli (Fig 6C), by considering the 282 

latency to first spike, firing frequency increase over time (tonic mode) or number of spikes 283 

(burst mode). 284 

Although conductance-based models can be fit by using step and ramp currents (26), 285 

these stimuli are different from synaptic inputs, which can be simulated by injecting noisy 286 

currents. To test the response to such network-like input, we used a noisy current varying 287 

accordingly to an Ornstein-Uhlenbeck (OU) process (28) to compare models’ responses with the 288 

experimental data. Each experimentally recorded cell was stimulated with the same OU input, 289 

scaled by a factor w. Experimentally, w was calculated during the experiment by evaluating the 290 

responses to previous stimuli. We developed a similar approach to generate the noise stimuli in 291 

silico (see Methods). The noise current was injected on top of the holding currents used during 292 
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the optimization. We found that the models reproduced well the subthreshold potential, spike 293 

times and the distribution of single spikes and bursts (Fig 6B). Moreover, we quantitatively 294 

evaluated the generalization to the noise stimulus by extracting features (e.g. number of spikes) 295 

and comparing them with the experimental mean. 296 

We computed generalization errors for each model, which were calculated similarly to 297 

the optimization errors (Fig 6C). We considered a model acceptable after generalization if it had 298 

all generalization errors <3 STD and we found that the majority of the models (>90%) passed 299 

the generalization test. 300 

 301 

Sensitivity of electrical features to small parameter perturbations 302 

We assessed the robustness of the models to small changes in their parameter values. To 303 

that end, we varied each parameter at a time by a small amount (± 2.5 % of the optimized 304 

value) and computed the values of the features. A sensitivity value of 2 between parameter p 305 

and feature y means that a 3 % change in p caused a 6 % change in f. We ranked the 306 

parameters from the most to the least influential and the features from the most sensitive to 307 

the least sensitive.  308 
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309 

Figure 7: Local sensitivity analysis.  310 

(A) Sensitivity of the feature values to small changes to the parameter values for the cAD_ltb311 

model in Fig 4. Sensitivities (∆y/∆p) are color coded as a heat map. Features are ranked from312 

the most to the least sensitive and parameters are ranked from the most to the least313 

influential. The last three rows are features that ensure that the models were not firing without314 

input or in the response to the holding current. Small changes to the parameter values are not315 

expected to make the model firing and thus the sensitivity of these features is 0. (B) Same316 

sensitivity values as in (a), with features and parameters clustered by similar sensitivity and317 

influences. 318 

 319 

The conductance of the leak current gleak emerged as the most influential parameter (Fig 7A)320 

An increase in gleak caused a decrease in firing frequency (inverse of inter-spike intervals, ISIs) in321 

both the tonic and burst firing modes. These results are easy to interpret when considering322 
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Ohm’s law: increasing gleak means decreasing the input resistance of the model, so that for the 323 

same input current the voltage response becomes smaller. The second most influential 324 

parameter was the conductance of the persistent sodium current gNaP in the dendrites, which 325 

increased the tonic firing rate as expected from a depolarizing current and had an effect on the 326 

late phase of the low- threshold burst (inverse last ISI - burst). An increase in the permeability 327 

of the low-threshold calcium current PCaT, known to be one the main currents underlying low 328 

threshold bursting, enhanced burst firing responses (it decreased the inverse of ISIs) and had 329 

effects on some of the tonic features. PCaT was the third most influential parameter. These 330 

findings show that ICaT is the main driver of the low-threshold burst, but other currents, such as 331 

INaP contributes as well. Increasing the dendritic permeability of the high threshold calcium 332 

current PCaL decreased the tonic firing rate, despite being a depolarizing current. Increasing PCaL 333 

means higher Ca2+ influx and higher amplitude of the Ca2+-activated potassium current (ISK). The 334 

parameter gSK had indeed a similar effect on the features and thus clustered together with PCaL 335 

(Fig 7B). Increasing the conductance of the transient sodium conductance gNaT increased action 336 

potential amplitude and decreased its duration. Sag amplitude, that is known to depend on the 337 

activity of IH, was mainly influenced by change in gleak, PCaT and gH. In summary, each parameter 338 

influenced at least one feature. Some features were weakly influenced by small parameter 339 

changes, e.g. baseline voltage, which depend more on the holding current amplitude, than on 340 

the model parameters. These results indicate that the model ability to generate tonic and burst 341 

firing is robust to small changes in parameter values and that all the parameters were 342 

constrained during the optimization by one or more features. 343 
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We then analyzed which features depended similarly on parameter changes, as they may 344 

add superfluous degrees of freedom during parameters search. Fig 7B shows the same 345 

sensitivities as in Fig 7A, clustered by their similarities (see Methods). Features clustered 346 

together if they were sensitive to similar parameter combinations and parameters clustered 347 

based on their similar influence on the features. Not surprisingly, the same tonic features 348 

measured at different level of current stimulation clustered together (e.g. AP amplitude and 349 

half-width, AHP depth, latency of the first ISI) and tonic firing features belonged to a cluster 350 

that was different from burst features. 351 

 352 

Preservation of model firing properties with different morphologies 353 

We optimized the parameters for the adapting and non-adapting e-models in combination with 354 

two different experimental morphologies and then tested them with the other 48 355 

morphologies. Considering that morphologies could not be classified in different m-types based 356 

on topological analysis of their dendrites and that TC neurons have been shown to be 357 

electrically compact (15), we expected the electrical behavior to be conserved when changing 358 

morphology. Nonetheless, different neurons vary in their input resistance Rinput and rheobase 359 

current Ithr due to variation in the surface area. Variation in Rinput and Ithr made the current 360 

amplitude applied during the optimization inadequate to generate the appropriate voltage 361 

trajectories. We thus devised an algorithm to search for the holding current to obtain the target 362 

holding voltage (for example −64 mV or −84 mV for tonic and burst firing, respectively) and Ithr 363 

from the desired holding voltage. The different e-model/morphology combinations (me-364 

combinations) were evaluated by computing the same feature errors calculated during 365 
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optimization. For each morphology, we selected the e-model that generated the smallest366 

maximum error. All me-combinations reproduced burst and tonic firing (Fig 8C). However, two367 

me-combinations generated responses with a small number of features that deviated from the368 

experimental mean. We chose the value of 3 STD as a threshold to define which me-369 

combinations were acceptable (29), yielding 48 acceptable me-combinations out of the 50370 

tested (Fig 8A). We analyzed more closely which features were significantly different from the371 

experimental mean. In Fig 8B we show that the rejected me-combinations had too many action372 

potentials in the burst. 373 

 374 

375 

Figure 8: Model generalization to different experimental morphologies.  376 

(A) Feature errors from the best electrical models (e-model) showed in Fig 4 applied to 50377 

different TC cell morphologies. Each morphology is represented with a different color. E-378 
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models/morphology combinations with at least one feature error > 3 STD (dashed line) were 379 

rejected. (B) Example of voltage responses from an accepted and from a rejected e-380 

model/morphology combination. Feature errors for the rejected combination are shown in red 381 

in (A) and are indicated on the voltage trace. 382 

 383 

Discussion 384 

Our objective was to apply and extend an existing data-driven pipeline to identify the cell 385 

types and build models of VB thalamocortical neurons that reproduce the multiple firing modes 386 

that have been experimentally observed. We successfully modelled these novel firing types, by 387 

including additional stimulation protocols and features to constrain the low-threshold burst. 388 

Our morphological and electrical data were used to define the properties of VB TC 389 

neurons in the rat. We found two electrical types (e-types) of TC neurons, but no objectively 390 

different morphological types (m-types) were revealed either using Sholl analysis (21) or 391 

topological analysis of dendritic branching (20). We cannot exclude that refinements to these 392 

methods will reveal different m-types similar to the ones described in the visual thalamus of the 393 

mouse (30). We also showed that automatic parameter search can be applied to build 394 

biophysically and morphologically detailed models. This method was already applied to model 395 

canonical firing behavior in cortical, hippocampal and cerebellar granule neurons 396 

(9,10,16,17,31,32). To the best of our knowledge, such an automatic parameter search has not 397 

previously been used to capture different firing modes and complex firing behavior such as low-398 

threshold bursting in thalamic neurons. Standardized electrophysiological protocols allowed us 399 

to identify for the first time in juvenile rat adapting and non-adapting e-types of TC VB neurons 400 
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that were previously observed in other species (7). This finding suggests that the intrinsic 401 

properties of TC neurons contribut to adaptation, a key phenomenon for filtering out irrelevant 402 

stimuli, before sensory information reaches the neocortex. Further experiments are needed to 403 

elucidate the relative contribution of intrinsic mechanisms and network properties to 404 

adaptation in somatosensory systems. We named the two main e-types continuous non-405 

adapting low-threshold bursting (cNAD_ltb) and continuous adapting low-threshold bursting 406 

(cAD_ltb) by following and extending existing conventions (16,22,31). 407 

In this study, we improved upon previous morphologically and biophysically detailed 408 

models of tonic and burst firing in TC neurons (12,13,15) by explicitly constraining the 409 

parameters with experimental data, without hand-tuning of parameter values. Unlike previous 410 

models, we chose a multi-objective optimization for a methodological and a scientific reason: it 411 

is more time-efficient, reproducible, and it approximates the variability in ionic channel 412 

expression of biological neurons (31,33–35), as shown by the family of acceptable solutions we 413 

found. However, experiments aimed at quantifying ion channel conductances are essential to 414 

assess if these solutions fall between biological ranges. Furthermore, we tested the 415 

generalization capability of the models and found that more than 90% of the models were 416 

comparable with the experimental data. 417 

Nonetheless, we noticed some inaccuracies when comparing the voltage traces with the 418 

experimental data when assessing the generalization of some models. For instance, some 419 

models tended to generate small transient oscillations in response to ramp stimuli in burst 420 

mode. This result is not surprising, considering that the exact kinetics for all the ionic currents 421 

are not available and that there are known limitations in models of ionic channels derived from 422 
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the literature or from other models (36,37). In particular, modifications of the kinetics of the 423 

low-threshold calcium current was shown to explain the propensity to generate oscillatory 424 

bursts in TC neurons of other nuclei and species (38). 425 

TC neurons have been shown to be electrically compact (15) and could, in principle, be 426 

modeled as a single compartment. However, active mechanisms need to be located in the 427 

dendrites in order to ensure synaptic integration and amplification (39). Information regarding 428 

specific conductances or firing properties in the dendrites of TC neurons is limited. For this 429 

reason, dendritic parameters in our models may be underconstrained. However, the sensitivity 430 

analysis (see below) revealed that dendritic parameters did not appear to be the least 431 

constrained because they influenced different tonic and burst-related features. 432 

We included in the model fitting and validation pipeline a sensitivity analysis, which is 433 

often neglected in computational neuroscience (40). Although we cannot use our simple 434 

univariate approach to explore multidimensional parameter correlations and principles of co-435 

regulation of ion channels expression, it is useful to find better constraints for parameters 436 

optimization. The selection of the features is indeed a step that still requires care and 437 

experience by modelers. Furthermore, this type of sensitivity analysis allows to identify 438 

parameters that can be traded-off during the optimization and that can be removed in order to 439 

reduce the dimensionality of the problem. In our study, four parameters related to the calcium 440 

dynamics were shown to influence the features in a very similar fashion. This type of analysis is 441 

of particular importance in future work aimed at using the full diversity of ion channels that can 442 

be inferred from gene expression data. More in detail, we propose that sensitivity analysis 443 

should be a fundamental tool in selecting which conductances are successfully optimized by the 444 
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available experimental constraints. The example we showed is a local approach, applied to a 445 

specific solution to the optimization problem, which showed that our models are robust to 446 

small parameter changes. This analysis can be extended to study how the sensitivities vary in 447 

the neighborhood of different solutions. 448 

In conclusion, we systematically studied the morphological and electrical properties of VB 449 

TC neurons and used these experimental data to constrain single neuron models, test their 450 

generalization capability and assess their robustness. Further work will validate these models in 451 

response to synaptic activity, in order to include them in a large-scale model of thalamocortical 452 

microcircuitry (16). 453 

 454 

Methods 455 

Experimental procedures 456 

Experimental data were collected in conformity with the Swiss Welfare Act and the Swiss 457 

National Institutional Guidelines on Animal Experimentation for the ethical use of animals. The 458 

Swiss Cantonal Veterinary Office approved the project following an ethical review by the State 459 

Committee for Animal Experimentation. 460 

All the experiments were conducted on coronal or horizontal brain slices (300 μm thick- 461 

ness) from the right hemisphere of male and female juvenile (P14-18) Wistar Han rats. The 462 

region of interest was identified using the Paxinos and Watson rat brain atlas (19). After 463 

decapitation, brains were quickly dissected and sliced (HR2 vibratome, Sigmann Elektronik, 464 

Germany) in ice-cold standard ACSF (in mM: NaCl 125.0, KCl 2.50, MgCl2 1.00, NaH2PO4 1.25, 465 
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CaCl2 2.00, D-(+)-Glucose 50.00, NaHCO3 50.00; pH 7.40, aerated with 95% O2 / 5% CO2). 466 

Recordings of thalamocortical neurons in the VB complex were performed at 34 °C in standard 467 

ACSF with an Axon Instruments Axopatch 200B Amplifier (Molecular Devices, USA) using 5–7 468 

MΩ borosilicate pipettes, containing (in mM): K+-gluconate 110.00, KCl 10.00, ATP-Mg2+ 4.00, 469 

Na2-phosphocreatine 10.00, GTP-Na+ 0.30, HEPES 10.00, biocytin 13.00; pH adjusted to 7.20 470 

with KOH, osmolarity 270-300 mOsm. Cells were visualized using infrared differential 471 

interference contrast video microscopy (VX55 camera, Till Photonics, Germany and BX51WI 472 

microscope, Olympus, Japan). 473 

Membrane potentials were sampled at 10 kHz using an ITC-18 digitizing board 474 

(InstruTECH, USA) controlled by custom-written software operating within IGOR Pro 475 

(Wavemetrics, USA). Voltage signals were low-pass filtered (Bessel, 10 kHz) and corrected after 476 

acquisition for the liquid junction potential (LJP) of −14 mV. Only cells with a series resistance 477 

<25 MΩ were used. 478 

After reaching the whole-cell configuration, a battery of current stimuli was injected into 479 

the cells and repeated 2-4 times (e-code). During the entire protocol, we defined offset 480 

currents in order to keep the cell at −50 mV (tonic firing) or −70 mV (burst firing) before LJP 481 

correction and applied them during the entire protocol. The step and ramp currents were 482 

injected with a delay of 250 ms in the experiment. In the models, the stimuli were injected with 483 

a delay of 800 ms, to allow for the decay of transients due to initialization. Each stimulus was 484 

normalized to the rheobase current of each cell, calculated on-line as the current that elicited 485 

one spike (stimulus TestAmp, duration 1350 ms). The stimuli used for in the experiments, for 486 

fitting and testing the models were: 487 
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• IDRest: current step of 1350 ms, injected at different amplitude levels in 25 % 488 

increments (range 50-300 % threshold). IDRest was renamed to Step in the model. 489 

• IDThresh: current step with duration of 270 ms, 4 % increments (range 50 - 130 %).  490 

• IV: hyperpolarizing and depolarizing steps of 3000 ms injected in 20 % increments (range 491 

−140 - 60%).   492 

• SponNoHold: the first 10 seconds of this stimulus was used to calculate the resting 493 

membrane potential. No holding or stimulation currents were applied.   494 

• SponHold: the first 10 seconds of this stimulus was used to calculate the holding current 495 

applied to keep the cells at the target potential.   496 

• PosCheops: ramps of current from 0 to 300 % and from 300 to 0 % having progressively 497 

shorter durations (4000 ms, 2000 ms, 1250 ms). To test the models in tonic mode we 498 

used the first increasing ramp in the stimulus, while we used the last one in the bursting 499 

firing mode. We chose the last one because the biological cells were more likely to 500 

generate a burst.   501 

• NOISEOU3: the original wave was scaled and offset for each cell based on the spike 502 

frequency responses to IDRest responses. The scaling factor w was extracted from the 503 

frequency-current curve and corresponded to the current value that made the cell fire 504 

at 7.5 Hz.   505 

Neurons that were completely stained and those with high contrast were reconstructed 506 

in 3D and corrected for shrinkage as previously described (41). Reconstruction used the 507 

Neurolucida system (MicroBrightField). The location of the stained cells was defined by 508 
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overlaying the stained slice and applying manually an affine transformation to the Paxinos and 509 

Watson’s rat atlas (19).   510 

Electrical features extraction 511 

Electrical features were extracted using the Electrophys Feature Extraction Library (eFEL) 512 

(42). We calculated the adaptation index (AI) from recordings in tonic mode (Step 200 % 513 

threshold) and classified TC VB neurons into adapting (AI>=0.029) and non-adapting (AI<0.029) 514 

electrical types. AI was calculated using the eFEL feature adaptation_index2 and corresponded 515 

to the average of the difference between two consecutive inter-spike intervals (ISI) normalized 516 

by their sum. The cut-off value was calculated after fitting a Gaussian mixture model to the 517 

bimodal data, using available routines for R (43,44). In order to group data from different cells 518 

and generate population features, we normalized all the stimuli by the rheobase current Ithr of 519 

each cell. To calculate Ithr, we used IDRest and IDThresh and selected the minimal amplitude 520 

that evoked a single spike. The extracted features quantified passive (input resistance, resting 521 

membrane potential), burst and tonic firing properties (number of spikes, inverse of inter-spike 522 

intervals, latency to first spike), action potentials shape (amplitude, half-width, depth of the fast 523 

after-hyperpolarization). We aimed at finding the minimal set of features that capture the most 524 

important properties. This set was a trade-off between comprehensively describing the 525 

experimental data (i.e. extracting all possible features), which can lead to over-fitting and loss 526 

of generalizability, and a too small set that would miss some important characteristics. For the 527 

tonic firing responses, we used three stimulation amplitudes (150 %, 200 %, 250 % of firing 528 

threshold) which have been shown to reproduce the complete input-output function of the 529 

neurons (17,41). Responses to two hyperpolarizing steps of different amplitudes (−40 % and 530 
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−140 % threshold) constrained the input resistance and the conductance of currents activated 531 

in hyperpolarization (sag_amplitude feature). We included baseline voltage values in the 532 

optimization objectives to ensure that the model was in the right firing regime and spike count 533 

to penalize models that were firing in response to the holding currents. Along with the voltage 534 

features, we extracted mean holding and threshold current values for all the experimental 535 

stimuli. Description of the features and the details on their calculation are available on-line [49]. 536 

Current stimuli applied during the optimization and generalization were directly obtained from 537 

the experimental values or automatically calculated by following the experimental procedures 538 

(e.g. noise stimulus). 539 

Morphology analysis 540 

Reconstructed morphologies were analyzed to objectively identify different 541 

morphological types. The Sholl profiles of each pair of cells was statistically tested by using k-542 

samples Anderson-Darling statistics. This test was preferred to the most common Kolmogorov- 543 

Smirnov test, because it does not assume that the samples are drawn from a continuous 544 

distribution. The different Sholl profiles are indeed an analysis of the intersections with discrete 545 

spheres.  546 

To compare the topological description of each morphology we transformed the 547 

persistence barcodes into persistence images and calculated their distances as in (20). Briefly, 548 

we converted the persistence barcode, which encodes the start and end radial distances of a 549 

branch in the neuronal tree, into a persistence diagram. In the persistence diagram, each bar of 550 

the barcode is converted into a point in a 2D space, where the X and Y coordinates are the start 551 

and end radial distances of each bar. The persistence diagram was then converted in a 552 
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persistence image by applying a Gaussian kernel. We used the library NeuroM (45) to perform 553 

Sholl and morphometrics analyses. The reconstructed morphologies will be made publicly 554 

available on neuromorpho.org.  555 

Ionic currents models 556 

We used Hodgkin-Huxley types of ionic current models, starting from kinetics equations 557 

already available in the neuroscientific literature. Along with kinetics of the ionic currents, we 558 

stored information on the experimental conditions, such as temperature and LJP, by using the 559 

software NeuroCurator (46). Whenever the data was available, we compared simulated 560 

voltage-clamp experiments to experimental data from juvenile rats. Ionic currents Ii were 561 

defined as functions of the membrane potential v, its maximal conductance density gi and the 562 

constant value of the reversal potential Ei: 563 

�� � �� ��
� �

�

�
�� 	 
�� 

mion and hion represent activation and inactivation probability (varying between 0 and 1), with 564 

integer exponents x and y. Each probability varied according to: 565 

����� � ������ 	 ��/����� 

where n∞(v) is a function of voltage that represents the steady-state activation/inactivation 566 

function (normally fitted with a Boltzmann curve) and τn(v) is a voltage-dependent time 567 

constant. Exceptions to this formalism are ionic currents that do not inactivate (y = 0) and ionic 568 

currents with (in)activation processes mediated by two or more time constants. Calcium 569 

currents (ICaT and ICaL) were modeled according to the Goldman-Hodgkin-Katz constant field 570 

equation and had permeability values instead of conductance  (47). 571 
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Fast transient sodium current INaT and delayed potassium current IKd. INaT and IKd were 572 

taken from a previous models of rat TC neurons from the VB nucleus (12), available on 573 

SenseLab ModelDB (accession no. 279). INaT was compared with recordings of transient sodium 574 

currents in P7-11 rat neurons from the dorsolateral geniculate (dLGN) nucleus (48). 575 

Low-threshold activated (T-type) calcium current ICaT. ICaT model was taken from (12) and 576 

available on-line (ModelDB, accession no. 279). This model was based on data recorded from 577 

VB neurons of Sprague-Dawley rats (P7-12) at room temperature and corrected for −9 mV LJP 578 

(11). 579 

Hyperpolarization-activated cationic current IH. The steady-state activation for IH was 580 

derived from VB thalamic neurons in P10-20 Long-Evans rats and was already corrected for −10 581 

mV LJP in the original publication (49). The equation used was: 582 

�� � 1/�1 � exp��� � 86.4�/11.2�� 

The time constant of activation was modeled as in (50), which derived a mathematical 583 

description of IH based on data from the dLGN in adult guinea pigs, recorded at 35.5 °C (51). The 584 

equation describing the time dependence of activation was not corrected for simulations at 585 

different temperatures and was: 586 

�� � 1/�exp�	14.59 	 0.086�� � �� �	1.87 � 0.0701��� 

The equilibrium potential of the channel EH was −43 mV. In silico voltage-clamp 587 

experiments were compared with data in (49). 588 

Persistent sodium current INaP. We modeled INaP as in (17) which based their model on 589 

recordings from entorhinal neurons of Long-Evans rats (P25-P35) (52). The steady-state 590 

activation was modified according to (48) and the steady-state inactivation according to (14). 591 
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The original steady-state activation data were recorded at room temperature (22-24°) and 592 

corrected for −6/−7 mV LJP. Limited data on INaP are available from dissociated neurons from 593 

the dLGN nucleus in Wistar rats (48). 594 

Fast transient (A-type) potassium current IKA. The mathematical formulation of IKA was 595 

based on data recorded from VB neurons in Sprague-Dawley rats (P7-15), recorded at room 596 

temperature (22-24 °C) (53). A Q10 = 2.8 was experimentally determined and used for 597 

simulations at different temperatures. In the original experiments a small LJP (<−4 mV) was 598 

measured and not corrected. The current had a rapid and a slow component, represented by 599 

two activation and two inactivation variables. The model of this current was provided by the 600 

authors of (14). 601 

High-threshold (L-type) calcium current ICaL. ICaL model is the same as TC neurons model 602 

previously published (14,50). The model was based on data from isolated guinea-pig 603 

hippocampal neurons, recorded at room temperature (20-22 °C) with modifications to the 604 

Boltzmann curve parameters of activation contained in the correction to the original models 605 

[59]. A small LJP (<3 mV) was not corrected (50). A Q10 = 3 was used for simulations at different 606 

temperatures. 607 

Calcium-activated potassium currents. TC neuron express genes for BK-type (54) and SK-608 

type calcium-activated potassium channels (55). Models of BK-type currents, similar to the IC 609 

current, have already been used to model TC neurons (14,50,54). However, data characterizing 610 

this current in mammalian neurons are not available. We thus included only a model of ISK 611 

(available in ModelDB, accession no. 139653) based on rat mRNA expression data in Xenopus 612 

oocytes (56). 613 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 5, 2019. ; https://doi.org/10.1101/512269doi: bioRxiv preprint 

https://doi.org/10.1101/512269
http://creativecommons.org/licenses/by/4.0/


 34

Intracellular calcium dynamics. A simple exponential decay mechanism was used to 614 

model the intracellular calcium dynamics (ModelDB, accession no. 139653). Both ICaT and ICaL 615 

contributed to the intracellular calcium concentration. 616 

In addition, we included a voltage-insensitive membrane current Ileak. The equilibrium 617 

potential was −79 mV and corresponded to the average resting potential from our experimental 618 

recordings. 619 

Simulation and parameters optimization 620 

NEURON 7.5 software was used for simulation (57). We used NEURON variable time step 621 

method for all simulations. For the sake of spatial discretization, each section was divided into 622 

segments of 40 μm length. The following global parameters were set: initial simulation voltage 623 

(−79 mV), simulation temperature (34 °C), specific membrane capacitance (1 μF/cm2), specific 624 

intracellular resistivity 100 Ωcm for all the sections, equilibrium potentials for sodium and 625 

potassium were 50 mV and −90 mV, respectively.  626 

BluePyOpt (18) with Indicator Based Evolutionary Algorithm (IBEA) were used to fit the 627 

models to the experimental data. Each optimization run was repeated with three different 628 

random seeds and evaluated 100 individuals for 100 generations. The evaluation of these 300 629 

individuals for 100 generations was parallelized using the iPython ipyparallel package and took 630 

between 21 and 52 h on 48 CPU cores (Intel Xeon 2.60 GHz) on a computing cluster. Each 631 

optimization run typically resulted in tens or hundreds of unique acceptable solutions, defined 632 

as models having all feature errors below 3 STD from the experimental mean. 633 

The models will be made publicly available at ModelDB (58). The configuration files for 634 

the optimization and analysis will be made publicly available on Github, Bluepyopt page (59). 635 
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Sensitivity analysis 636 

We performed a sensitivity analysis of an optimization solution by varying one parameter 637 

value (pm) at a time and calculating the electrical features from the voltage traces (y+ and y−). 638 

We defined the sensitivity as the ratio between the normalized feature change and the 639 

parameter change, which for smooth functions approximates a partial derivative (60,61). The 640 

features changes were normalized by the optimized feature value. For small changes of 641 

parameter values, we assumed that the features depend linearly on its parameters. We could 642 

thus linearize the relationship between the features and the parameters around an optimized 643 

parameter set and calculate the derivatives. The derivatives were calculated with a central 644 

difference scheme (60). 645 

"#�

" �

$
#�

	 	 #�



2Δ �

 

We collected the derivatives (sensitivities) in the N X M Jacobian matrix, with N 646 

representing the number of features and M the number of parameters. 647 

To rank parameters and features we computed their relative importance by calculating 648 

their norms (the square root of the summed squared values) from the Jacobian columns and 649 

rows, respectively. To cluster parameters based on similar influences on the features and to 650 

cluster features that were similarly dependent on the parameters, we used angles between 651 

columns (or rows) to compute distances D between parameters (or features): 652 

& � 1 	 |cos +| 

Features where thus considered similar if they depended in a similar manner on the 653 

parameters, independent of sign or magnitude. 654 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 5, 2019. ; https://doi.org/10.1101/512269doi: bioRxiv preprint 

https://doi.org/10.1101/512269
http://creativecommons.org/licenses/by/4.0/


 36

Acknowledgements 655 

We thank the Blue Brain Project Visualization Team for generating the meshes and 656 

visualizing the 3D morphologies. 657 

Author Contributions 658 

Conceptualization: E.I., S.L.H. Data Acquisition and Curation: J.Y., Y.S. Formal Analysis: E.I., J.Y., 659 

B.Z., C.O. Funding Acquisition: S.L.H., H.M. Investigation: E.I., J.Y., Y.S. Methodology: E.I., B.Z., 660 

C.R., W.V. Project Administration: C.O., S.L.H., H.M. Resources and Software: J.Y., Y.S., B.Z., 661 

W.V., C.R. Supervision: S.L.H., H.M. Validation and Visualization: E.I. Writing – Original Draft 662 

Preparation: E.I. Writing – Review & Editing: E.I., J.Y., C.O., W.V., H.M., S.L.H.  663 

 664 

Supporting Information captions 665 

S1 Features Dataset – Electrical features 666 

Spreadsheet containing experimental electrical figures, separated in three different sheets. The 667 

features, their means and standard deviations are used in Fig 1C, Fig 2, Fig 3, Fig 4C, Fig 5C, Fig 668 
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