

Modelling the transport of fluid through heterogeneous, whole tumours *in silico*

Paul W. Sweeney¹, Angela d'Esposito², Simon Walker-Samuel^{2†}, Rebecca J. Shipley^{1‡*},

1 Mechanical Engineering, University College London, London, United Kingdom

2 Centre for Advanced Biomedical Engineering, University College London, London, United Kingdom

†These authors are joint senior authors.

* rebecca.shipley@ucl.ac.uk

Abstract

It is critically important to understand and predict fluid transport within both physiological and pathological tissues in order to develop effective treatment strategies. Recent advances in high-resolution optical imaging allow the acquisition of whole tumour vascular networks which can be used to parameterise computational models to predict the fluid dynamics at all length scales across the tissue. This enables hypothesis testing around the role of the tumour microenvironment in determining transport characteristics, which would otherwise be unavailable using traditional experiments.

In this study, we present a novel computational framework for the efficient simulation of vascular blood flow and interstitial fluid transport based on complete three-dimensional, whole tumour vasculature obtained using high-resolution optical imaging. This framework comprises a Poiseuille flow model which simulates vascular blood flow within the vessel network, coupled via point sources of flux to a porous medium model describing interstitial fluid transport. We develop a computational algorithm for prescription of network boundary conditions and validation of tissue-scale fluid transport against measured *in vivo* perfusion data acquired using biomedical imaging tools. We present simulations of the model on orthoptic murine glioma and

human colorectal carcinoma xenograft data (GL261 and LS147T, respectively), and perform sensitivity analysis on key unknown parameters relating to the tissue microenvironment, to understand their impact in predicting vascular and interstitial flow. Finally, we simulate radially varying vascular normalisation in a LS147T tumour and hypothesise that uniform normalisation is required to lower tumour interstitial fluid pressure.

Our computational framework permits predictions of whole tumour fluid dynamics which incorporate the inherent architectural heterogeneities appearing at the micron-scale, and outputs three-dimensional spatial maps detailing these flow properties from micro to macro length scales. This provides vital information on the tumour microenvironment which could enable the design and delivery of future anti-cancer therapies.

Author summary

The structure of tumours varies widely, with dense and chaotically-formed networks of blood vessels that differ between each individual tumour and even between different regions of the same tumour. This atypical environment can inhibit the delivery of anti-cancer therapies. Computational tools are urgently required which incorporate micron-scale tumour biomechanics to predict tissue-scale fluid dynamics, and consequently the efficacy of cancer therapies.

We have developed a computational framework which integrates the complex tumour vascular architecture to predict fluid transport across all lengths scales in whole tumours. This enables computationally efficient hypothesis testing of cancer therapies which manipulate the tumour microenvironment in order to improve drug delivery to tumours.

Introduction

Architectural heterogeneities in cancerous tissue limit the delivery of anti-cancer drugs by inhibiting their ability to circumnavigate the entire tumour to all cancerous cells [1]. In solid tumours, drug penetration to the tumour core is hindered by physiological barriers which can limit the delivery of targeted agents, with penetration exacerbated

6 by the size of the agent [1–5]. Consequently, preclinical tools which provide a better
7 understanding of therapy interactions within the tumour microenvironment are urgently
8 required in order to increase treatment efficacy. *In silico* modelling is one such tool
9 which can meet this need by testing novel therapeutic strategies at a much faster rate
10 and much cheaper cost than preclinical experimentation [6].

11 For a systemically-administered agent to effectively target diseased tissue, it must
12 travel from the site of injection to the site of disease, whilst minimally interacting with
13 normal tissues and not degrading [7]. This is difficult to achieve in tumours since
14 atypical endothelial proliferation of tumour vasculature leads to spatial variations in
15 vascular density and branching patterns, distorted and enlarged vessels, and a highly
16 convoluted network topology [8–10]. Further, vascular permeability is heightened and
17 heterogeneous and so these immature blood vessels are generally leakier than those in
18 normal tissue [3, 11].

19 The irregular microenvironment is typically characterised by hypoxia, acidosis and
20 elevated interstitial fluid pressure (IFP) [12–14], which drive both tumour vascular
21 proliferation and resistance to therapy [15]. Here, drug delivery may be hindered by the
22 atypical nature of the tumour interstitium. The extracellular matrix (ECM) consists of
23 a cross-linked dense network of collagen and elastin fibres, far denser than usually seen
24 in normal tissue [16]. A denser matrix can result in reduced delivery of oxygen and
25 nutrients, as well as providing significant resistance to the advection and diffusion of
26 therapeutic particles [1], since key determinants of intratumoural fluid and mass
27 delivery include tissue hydraulic conductivity and vascular compliance [17]. Several
28 therapeutic interventions have sought to limit the effects of these physical barriers by
29 manipulating the microenvironment to enhance the delivery of macromolecular
30 agents [16, 18]. For example, normalising the tumour vasculature to reduce vessel
31 permeability thereby increasing drug penetration [12]; and manipulating the connective
32 tissue, and therefore interstitial hydraulic conductivity, using a platelet-derived growth
33 factor (PDGF) antagonist to reduce tumour IFP [19].

34 Heterogeneities in the underlying morphology of tumours, such as vessel diameters
35 and lengths, and inter-branch distance, exist across individual tumours and tumour
36 cell-lines [20]. These variations in tumour architecture lead to spatial variability in drug
37 efficacy, which complicate efforts to design effective treatment strategies [7].

38 Experimental efforts have been made to understand the effects of tumour heterogeneity
39 on fluid interactions across tumours, for example, wick-in-needle has been used to
40 measure IFP across tumours [21–23]. However, this method disturbs the local
41 microenvironment and only provides IFP measurement at individual locations.
42 Non-invasive methods have also been developed to estimate tumour IFP [24, 25]. For
43 example, convection-MRI, which, with further validation, presents an opportunity to
44 measure low-velocity flow in tumours, and to assess therapeutic response [26]. However,
45 these methods fail to capture full spatial maps of flow at the micron-scale which are
46 crucial to understanding how the combined intra- and extravascular spatial flow
47 heterogeneities occurring at the scale of blood vessels affects the macro-scale flow
48 dynamics and consequent delivery of drugs within a solid tumour. Biomedical imaging
49 complemented by *in silico* methods provides scope to provide such detail.

50 Mathematical models have been used to investigate the tumour microenvironment
51 and have provided detailed insights which may otherwise be unavailable experimentally.
52 Seminal models have indicated that a leaky tumour vasculature induces elevated IFP,
53 reduced fluid penetration into the interstitium [14, 27], and a non-uniform distribution
54 of drug delivered to solid tumours [2, 3, 11]. Further, they have defined conventional IFP
55 profiles in tumours - a uniform pressure at the core, with a large decreasing gradient
56 towards the periphery. However, these models generally average over the tumour
57 vasculature and so fail to capture the micron-scale flow dynamics; and they assign a
58 fixed pressure boundary condition on the periphery of the tumour which may artificial
59 induce these conventional IFP profiles. Subsequent studies have incorporated the
60 spatially heterogeneous effects of tumour vasculature using computer-generated
61 synthetic networks which retain key features of tumour vascular architecture [28–34], or
62 by integrating spatial variations in vascular permeability parametrised against *in vivo*
63 experimentation [35, 36]. However, to date, *in silico* models have lacked realistic,
64 high-resolution data on whole tumour vascular architecture to both parametrise and
65 validate computational models [6].

66 Recent advances in *ex vivo* optical imaging of cleared tissue specimens have enabled
67 large samples (up to 2 cm³ with $> 10^5$ blood vessels) to be imaged in three-dimensions,
68 at resolutions down to a few microns [37]. We have developed a platform called
69 REANIMATE (REAlistic Numerical Image-based Modelling of biological Tissue

substratEs) which combines optical imaging of cleared tissue with mathematical 70 modelling and *in vivo* imaging, within a unified framework, to generate quantitative, 71 testable predictions regarding tumour transport [38]. The platform uses high-resolution 72 imaging data from large, intact, optically-cleared tissue samples to make *in silico* 73 predictions of blood flow, vascular exchange and interstitial transport. REANIMATE 74 enables new hypotheses to be generated and tested in a manner that would be 75 challenging or impossible in a conventional experimental setting. As a proof-of-principle, 76 we have previously used REANIMATE to explore the impact of vascular network 77 topology on fluid and therapy delivery, focusing on delivery of a vascular disrupting 78 agent (Oxi4503) to two colorectal cell-lines (LS147T and SW1222) [38]. 79

A vital component of REANIMATE is the simulation of fluid transport across 80 cancerous tissue. We developed a computational model to efficiently simulate both 81 intra- and extravascular fluid transport across large, discrete microvascular networks. 82 Our model simulates Poiseuille flow through the vasculature using the optimisation 83 scheme of Fry et al. [39], parametrised and validated against *in vivo* ASL-MRI data [38]. 84 Following a similar Green's function method for oxygen transport [40], the vascular 85 component is coupled, via a discrete set of point sources of flux, to a Darcy model 86 which simulates the effective fluid transport in the porous interstitium. A linear system 87 is formed whereby only the source strengths need to be resolved, making it more 88 computationally efficient compared to finite difference or element methods which 89 require a spatial, numerically-discretised mesh [40]. 90

In this study, we present this model in detail along with a description of its 91 application to whole tumour vascular networks. We apply our model to an orthotopic 92 murine glioma and a human colorectal carcinoma xenograft from the GL261 and LS147T 93 cell-lines, respectively, and reproduce physiological conditions observed in literature. We 94 then perform sensitivity analysis to the model parameters associated with transvascular 95 fluid delivery, such as vascular hydraulic conductance and interstitial hydraulic 96 conductivity, to explore the impact on the tumour IFP and IFV profiles. Subsequently, 97 we present preliminary predictions of vascular normalisation to an LS147T network. 98 These results present an example of how our mathematical model can be used to 99 simulate the heterogeneous pharmacokinetics of drug therapies designed to alter the 100 properties of the tumour microenvironment, and provide three-dimensional spatial maps 101

detailing changes in flow characteristics which indicate the efficacy of such treatments. 102

Materials and methods 103

Acquisition and Processing of Real-world Tumour Datasets 104

Orthotopic murine gliomas and human colorectal carcinoma xenograft from the GL261 105
and LS147T cell-lines ($n = 6$ for each), respectively, were grown subcutaneously in 106
8 – 10 week old, female mice. Following 10 to 14 days of growth, *in vivo* ASL-MRI was 107
performed on a subset of GL261 and LS147T tumours, from which a mean tumour 108
perfusion of 130 ± 50 and 19 ± 8 ml/min/100g was measured [38], respectively. 109
Following perfuse-fixation, tumours were harvested, optically cleared and imaged using 110
OPT (Biotronics, MRC Technologies, Edinburgh). All experiments were performed in 111
accordance with the UK Home Office Animals Scientific Procedures Act 1986 and UK 112
National Cancer Research Institute (NCRI) guidelines [41]. Full details of the 113
experimental protocol is provided in d'Esposito et al. [38]. 114

Whole-tumour blood vessels networks were segmented from the OPT data for both 115
tumour types. A combination of three-dimensional Gaussian and Frangi filters were 116
applied to the data to enhance vessel-like structures allowing for the segmentation of the 117
blood vessels from the background (see Fig 1 a). Skeletonisation of these thresholded 118
data was performed in Amira (Thermo Fisher Scientific, Hillsboro, OR), which also 119
converted the data into graph format (interconnected network of nodes and segments 120
with associated radii - see Fig 1 b). To ensure that vessel structures were accurately 121
represented, three-dimensional networks were visually inspected against two-dimensional 122
imaging slices for an accurate representation of vessel location and thickness. Full details 123
of the validation can be found in the Supplementary Material of d'Esposito et al. [38]. 124

In this study a GL261 and a LS147T tumour network were chosen from the 125
d'Esposito et al. [38] datasets for *in silico* development and testing. Vessel diameters 126
ranged from 17.9 ± 9.3 and 8.9 ± 2.8 μm , with branching lengths of 68.7 ± 48.3 and 127
 88.8 ± 49.4 μm , respectively (see Table 1 and Fig 3). Vessel branching angles, 128
inter-vessel distance, radii and tortuosity measures were consistent with data from 129
previous studies that extracted vascular architectures using different methods [20, 38]. 130

Table 1. Tumour vascular network statistics.

	GL261	LS147T	Units
No. of Segments	121,212	76,378	-
No. of Nodes	110,062	60,177	-
No. of Boundary Nodes	8,660	15,783	-
Mean Vessel Diameter	17.9 ± 9.3	8.9 ± 2.8	μm
Mean Branching Vessel Length	68.7 ± 48.3	88.8 ± 49.4	μm
Tissue Dimensions	$4.3 \times 4.1 \times 4.6$	$6.9 \times 5.2 \times 8.2$	mm^3
Vascular Density	5.07	0.37	%

Segmented network data on the segmented murine orthotopic glioma, GL261, and the human colorectal xenograft, LS147T, vasculature. See Fig 3 for visualisations of both networks.

Computational Model

Our computational framework is compartmentalised into two models. The first predicts blood flow through the tumour vasculature and the second predicts interstitial fluid flow throughout the cancerous tissue through use of Green's functions. Our method enables application to whole, large vascular networks ($> 2 \text{ cm}^3$ with $> 10^5$ blood vessels), thereby permitting predictions of whole tumour fluid dynamics which incorporate the inherent architectural heterogeneities occurring at the micron-scale.

The intravascular component incorporates the model of Pries et al. [42] to simulate vascular blood flow, where the structural properties of the segmented tumour networks and haemodynamic parameters are used as inputs. Flow or pressure boundary conditions at all terminal nodes in the vascular network are required to predict blood flow throughout the network. These boundary data are very challenging to measure *in vivo*, so we deploy the flow estimation algorithm of Fry et al. [39], to estimate boundary data based on the assumption that the microcirculation is regulated in response to haemodynamics stimuli relating to flow and shear stresses [43]. The scheme estimates unknown boundary conditions by minimising the squared deviation from specified target network wall shear stresses and pressures values derived from independent information about typical network haemodynamic properties. In essence, the algorithm removes the need to define conditions at all boundary nodes, to one where simulation sensitivity is weighted towards the definition of these two target parameters. This enables physiologically realistic blood pressure and flow distributions to be estimated across an entire vascular network and has been applied to breast tumour [44], colorectal

tumours [38], cortex [45], glioma [38] and skeletal muscle [46].

The second component to our computational model describes fluid transport through the porous interstitium using a Darcy model, coupled to the vascular flow solution via Starling's law which describes fluid transport across the endothelium. The vasculature is represented by a discrete set of points sources of flux where the source strengths are defined by the vascular blood flow solution. A similar approach has been applied to simulate O_2 transport across various tissues [40, 45, 47]. Our approach enables us to explore the effect of vascular architecture heterogeneity on fluid transport within the interstitium for large-scale vascular networks.

The following sections detail the mathematics behind our model along with its computational implementation for large vascular networks. We detail the assignment of model parameters and boundary conditions for application of our model to tumour networks.

Vascular Blood Flow

The segmented tumour networks consist of a series of vessel segments connected by nodal junctions or, in the case of boundary nodes, one-segment nodes which form a boundary to the microvascular network (see Fig 1 b). We define a positive flow direction from the start node to end node of each vessel segment. Under the assumption of Poiseuille flow and conserving flow at blood vessel junctions, the relationship between nodal pressures, p_k and the boundary boundary fluxes Q_{0i} is given by

$$\sum_{k \in N} K_{ik} p_k = -Q_{0i} \quad \text{for } i \in I \cup B, \quad (1)$$

where N is the set of all nodes, I is the set of all interior nodes and B is the set of all boundary nodes with known boundary conditions. For all interior nodes, conservation of flux at vessel junctions dictates that $Q_{0i} = 0$, however, if i is a known boundary node, Q_{0i} is the inflow (or outflow if negative).

Following the notation of Fry et al. [39], the matrix K_{ik} represents network conductance

$$K_{ik} = \sum_{j \in S} L_{ij} M_{jk}, \quad (2)$$

where S is the set of all segments,

179

$$L_{ij} = \begin{cases} -1, & \text{if } i \text{ is the start node of segment } j, \\ +1, & \text{if } i \text{ is the end node of segment } j, \\ 0, & \text{otherwise,} \end{cases} \quad (3)$$

and

180

$$M_{jk} = \begin{cases} +\pi d_j^4 / (128\mu_j l_j), & \text{if } k \text{ is the start node of segment } j, \\ -\pi d_j^4 / (128\mu_j l_j), & \text{if } k \text{ is the end node of segment } j, \\ 0, & \text{otherwise,} \end{cases} \quad (4)$$

is the matrix of vessel conductances where l_j , d_j and μ_j denote the length, diameter and effective blood viscosity of segment j , respectively.

181

182

We apply empirical *in vivo* blood viscosity laws, which prescribe the effective blood viscosity as a function of vessel diameter and haematocrit, to compute μ_j and consequently incorporate non-Newtonian effects in each individual microvessel [48]. Network haematocrit heterogeneity plays an important part in network flow resistance. However, in this study, we set network haematocrit to 0.45 as we do not have sufficient data to parametrise a haematocrit model at this scale. With future availability of appropriate data, the model has the flexibility to incorporate haematocrit heterogeneity [49].

183

184

185

186

187

188

189

190

191

192

193

194

In the absence of measured flow and pressure data at network boundaries, further assumptions are required to obtain a unique solution. The method proposed by Fry et al. [39] sought to solve a constrained optimisation problem, formulated in terms of a Lagrangian objective function defined by

$$L = \frac{1}{2} k_p \sum_{k \in N} w_k (p_k - p_{0k})^2 + \frac{1}{2} k_\tau \sum_{j \in S} \ell_j (\tau_j - \tau_{0j})^2 + \sum_{i \in I \cup B} \lambda_i \left(\sum_{k \in N} K_{ik} p_k + Q_{0i} \right). \quad (5)$$

Here, p_{0k} is the target pressure at node k , τ_j is the wall shear stress in segment j , τ_{0j} is the corresponding target shear stress, k_p and k_τ are weighting factors associated with the pressure and shear deviations from the target values, λ_i is the Lagrange multiplier associated with node i and w_k is the vessel length associated with node k . Setting

195

196

197

198

$dL/dp_i = 0$ and combining with (1) yields a sparse linear system with unknowns p_k and 199
 λ_i . Assigning a pressure drop to a proportion of boundary nodes forms a well-posed 200
system which can be solved using standard methods [39]. 201

The blood flow estimation model by Fry et al. [39] has been thoroughly tested using 202
mesenteric networks [50] in which blood flow measurements were taken in individual 203
vessels and used to inform parameter estimation [39, 42, 48, 51].

Fig 1. (a) An example of an SW1222 tumour vascular network enhanced using Frangi filters and extracted from the tumour image stack generated by OPT. (b) The skeletonised vasculature is then segmented into a series of interconnected nodes and vessel segments with known diameters, d_i and lengths, l_i , for $i = 1, 2, 3$. (c) A schematic of sensitivity analysis performed on the source parameters: 1) updating intravascular pressure $p_{i,b}$ for iterations i where $p_{0,b}$ is the initial network pressure distribution approximated by the flow estimation algorithm; 2) the spacing λ_i between sources distribution across a branching vessel; and 3) the size of the source radius, r_0 . (d) A flow diagram of the computational framework. *In vivo* imaging is performed on vascularised tissue to obtain perfusion data (and literature values of vascular pressures when available) which are used to parameterise and validate the framework. *Ex vivo* imaging is performed on equivalent tissue samples to obtain data on the vascular architecture, including coordinates, vessel diameters and lengths, which are then used to parameterise the vascular flow model. Boundary conditions are assigned (see Fig 2 a and b) and network intravascular blood pressure is solved. Fluid sources of flux are distributed across the vasculature and assigned a radius equal to its corresponding vessel radius. Interstitial flow parameters are assigned and the model is coupled to the vascular flow compartment via Starling's Law. Solved source strengths are used to update Starling's law. This iterative scheme is terminated once predefined tolerances are reached.

Interstitial Fluid Transport

Darcy's law has been effectively used to describe the passage of fluids [3, 14, 30–33, 52] or 206
solutes [40, 45] through tissues. In this study, we use Darcy's law to describe the 207
relationship between the volume-averaged IFP, p , and interstitial fluid velocity (IFV), \mathbf{u} , 208
within the porous interstitial domain: 209

$$\mathbf{u} = -\kappa \nabla p, \quad (6)$$

where κ is the hydraulic conductivity of the interstitial tissue. Here we assume that 210
interstitial pressure tends towards a constant value, p_∞ , in the far-field region, 211

$$p \rightarrow p_\infty \quad \text{as} \quad |\mathbf{x}| \rightarrow \infty. \quad (7)$$

Tumours are leaky due to large pores along a vessel's lumen, and so the vasculature 212
exhibits a strong fluid and oncotic interaction. Following the approach of Baxter and 213

Jain [3] and subsequent studies [53, 54], we used Starling's law to describe fluid
214
transport across the endothelium:
215

$$J_v = L_p S (\Delta p - \sigma \Delta \Pi), \quad (8)$$

where J_v and L_p is the fluid flux across and the hydraulic conductance of the vessel
216
wall, respectively, S is the surface area of the vasculature, σ is the oncotic reflection
217
coefficient and, Δp and $\Delta \Pi$ are the fluid and oncotic pressure gradients between the
218
vasculature and tissue.
219

The tumour vascular architecture is used to spatially parametrise the locations of a
220
discrete set of sources of flux into the interstitial domain. Assuming these sources both
221
supply or drain the interstitium, conservation of mass yields
222

$$\nabla \cdot \mathbf{u} = -\kappa \nabla^2 p = \sum_j \phi_j(\mathbf{x}) \delta(\mathbf{x} - \mathbf{x}_j), \quad (9)$$

where \mathbf{x}_j and ϕ_j are the spatial coordinates and strength, respectively, of point source j ,
223
 $\delta(\mathbf{x} - \mathbf{x}_j)$ is the delta function. The term $\phi_j(\mathbf{x}) \delta(\mathbf{x} - \mathbf{x}_j)$ represents a point source
224
of fluid flux from the vasculature to the surrounding interstitial domain.
225

Applying the substitution $\bar{p} = p - p_\infty$, the Green's function, $G(\mathbf{x}, \mathbf{x}^*)$, for the adjoint
problem for \bar{p} is given by

$$-\kappa \nabla^2 G = \delta(\mathbf{x} - \mathbf{x}^*), \quad (10a)$$

$$G \rightarrow 0 \quad \text{as} \quad |\mathbf{x}| \rightarrow \infty. \quad (10b)$$

For source a given source, we distribute the delta function over a sphere of finite
226
radius, r_0 . This allows the corresponding Green's function to be described as a radially
227
symmetric function:
228

$$G(r) = \begin{cases} \frac{1}{8\pi\kappa r_0} \left[3 - \left(\frac{r}{r_0} \right)^2 \right], & \text{if } r \leq r_0, \\ \frac{1}{4\pi\kappa r}, & \text{if } r > r_0. \end{cases} \quad (11)$$

We distribute a total of N_s sources across the vasculature with spacing λ_i , and
229

assign a source radii, r_{0i} , equal to the corresponding blood vessel radius (see Fig 1 c). 230

Using Green's superposition principle for linear operators, the convolution of G provides 231
the corresponding pressure solution for source $i \in N_s$ and so 232

$$p_i = p_\infty + \sum_{j=1}^{N_S} G_{ij} q_j^s \quad \text{for } i \in N_s, \quad (12)$$

where q_j^s is the vector of source strengths. Here, G_{ij} is the Green's function associated 233
with (10) and defined by 234

$$G_{ij} = \begin{cases} \frac{1}{8\pi\kappa_i r_{0i}} \left[3 - \left(\frac{r_{ij}}{r_{0i}} \right)^2 \right], & \text{if } r_{ij} \leq r_{0i}, \\ \frac{1}{4\pi\kappa_i r_{ij}}, & \text{if } r_{ij} > r_{0i}, \end{cases} \quad (13)$$

where r_{ij} is the distance between sources, defined as $r_{ij} = |\mathbf{x}_i - \mathbf{x}_j|$, and κ_i is the 235
interstitial hydraulic conductivity at the location of source i . 236

From (6), the Green's function, G_{ij} , can be used to calculate the volume-averaged 237
IFV, given by 238

$$\mathbf{u} = -\kappa \sum_j \nabla G_{ij} q_j^s, \quad (14)$$

where 239

$$\nabla G_{ij} = \frac{dG_{ij}}{dr} = \begin{cases} -\frac{r}{4\pi\kappa_i r_{0i}^3}, & \text{if } r \leq r_{0i}, \\ -\frac{1}{4\pi\kappa_i r_{ij}^2}, & \text{if } r > r_{0i}. \end{cases} \quad (15)$$

Starling's law, (8), can be rearranged into the form 240

$$p_{v,i} = p_{b,i} - K_i J_{v,i} - \sigma(\Pi_{b,i} - \Pi_{v,i}) \quad \text{for } i \in N_s, \quad (16)$$

where $p_{v,i}$ (calculated by (12)) and $\Pi_{v,i}$ are the blood and oncotic plasma pressure at 241
the vessel wall, $p_{b,i}$ (calculated by (5)) and $\Pi_{b,i}$ are the vascular blood pressure at 242
source i , in the absence of diffusive interstitial fluid transfer, and oncotic fluid pressure, 243
and $J_{v,i}$ is the rate of fluid flow per unit volume from blood vessel i to the interstitium. 244
The intravascular resistance to fluid transport across blood vessel i , is defined by 245

$$K_i = \frac{1}{L_{p,i} S_i}, \quad (17)$$

where S_i and $L_{p,i}$ is the surface area and vascular conductance of vessel i , respectively. 246

Integrating over the volume of vessel i and assuming flux at the interface is 247
continuous, flux at the interface is defined by 248

$$J_{v,i} = -2\pi\kappa_i r_{v,i} l_i \sum_{j=1}^{N_s} \nabla G_{ij} q_j^s, \quad (18)$$

where $r_{v,i}$ is the vessel radius and l_i is the length of vessel i . 249

Equations (12), (16) and (18) are then combined to give a set of N_s equations to be 250
solved for the source fluxes q_j^s , 251

$$\sum_{j=1}^{N_s} \left(G_{ij} - \frac{\kappa_i}{L_{p,i}} \nabla G_{ij} \right) q_j^s = p_{b,i} - p_\infty - \sigma(\Pi_{b,i} - \Pi_{v,i}). \quad (19)$$

Prescribing parameter values (see Table 2), the resulting solutions for q_j^s can be solved 252
and used to update vascular pressures, $p_{i,b}$, using Starling's law, (8), in the absence of 253
an oncotic pressure gradient (i.e. $\Delta\Pi = 0$), and (18). Here, for iteration $k+1$, $p_{i,b}$ is set 254
equal to the IFP at wall of blood vessel i , $p_{i,v}$, calculated on iteration k . This iterative 255
system is repeated by updating q_j^s values until tolerances are reached ($\mathcal{O}(10^{-3}) \mu\text{l}/\text{min}$), 256
subsequently, tissue IFP and IFV fields can be computed using (12) and (14), 257
respectively (see Fig 1 d). 258

In effect, our computational framework enables a detailed, quantitative assessment of 259
blood and interstitial flow for tissues, both healthy and pathological, where their entire 260
vascular networks are characterised, by encapsulating the flow of fluid between the 261
vascular and interstitial domains. Similar to a Green's function model for O_2 262
transport [40], our model does not require the imposition of explicit boundary 263
conditions on the outer surface of the tissue domain, with the only unknowns to the 264
system being the strength of the set of fluid sources and sinks. As such, when compared 265
to finite difference or element methods, our approach minimises boundary condition 266
artefacts and saves on computational expense as the solutions to the entire mesh are not 267
required. An outline of the interaction between the biomedical imaging, and vascular 268
and interstitial flow compartments is given in Fig 1 d. 269

The computational framework was coded using C++ [55] and run on a Apple Mac 270
Pro, with $2 \times 3.06 \text{ GHz}$ 6-Core Intel Xeon processor and 64 GB of RAM. The system 271

(19) was solved using a biconjugate gradient method [56] and implemented using
272 the Armadillo sparse linear algebra library [57].
273

Implementation of Computational Model on Whole Tumour 274 Microvascular Networks

275

It remains practically infeasible to measure vascular flows and pressures in individual
276 microvessels *in vivo*, which necessitates a pragmatic approach to boundary condition
277 assignment. Under the assumption that vessels along the tumour surface are connected
278 to peritumoural vessels [44, 58], we developed an optimisation procedure which assigns
279 vascular pressures to tumour surface vessels, based on a target pressure drop, with
280 iterative adjustments to match *in vivo* measurements of mean perfusion from ASL-MRI
281 (see Fig 2 a, b). These *in vivo* data are acquired for the same tumours that were
282 subsequently subjected to OPT analysis. Using this approach, we are able to ensure
283 good agreement between *in silico* predictions and measured perfusion data [38].
284

In this study a vascular pressure of 30 or 20 mmHg for the GL261 and 45 or 15
285 mmHg for the LS147T tumour was randomly assigned to 5% of surface boundary nodes,
286 in order to meet the required tissue perfusion. To ensure randomness, the peritumoural
287 nodes were represented by a list. The elements in the list were rearranged randomly
288 using a uniform random number generator where the system clock was used to seed the
289 random number engine. The nodes located in the top 5% of the list were then randomly
290 assigned a low or high pressure use an equivalent randomised approach.

Fig 2. (a, b) The optimisation scheme used to assign boundary conditions to the tumour networks. (a) The
288 process to simulate physiological tissue perfusion. (b) The flowchart for the subroutine “Assign Pressure
289 Conditions” given in (a). (c) Perfusion through a tumour is calculated by generating a convex hull across the
290 surface of the tumour to accurately extract tumour volume. (d) Discretising the hull into a finer mesh and
calculating IFP at coupled points across, and normal, to the tumour hull. (e) A sphere packing algorithm is then
applied to the points on the tumour surface with inflow averaged across the great circles of each sphere, enabling
an approximation of perfusion.

291
During preliminary simulations it was found that if high/low pressures were
292 prescribed in close local proximity to each other, unphysiological flows were predicted
293 due to the steep local vascular pressure gradient. In order to prevent this, a subroutine
294 was designed so that values at opposing ends of the pressure spectrum could not be
295 located within a defined vicinity of each other. This “exclusion region”, centred on a
296

given boundary node, was defined as an ellipsoid volume with diameters, along its three
297
principal axes, equal to 5% of the tissue dimensions.
298

A proportion of boundary nodes are contained within the tumour volume as a
299
consequence of either angiogenesis which form blind-end vessels, or artefacts of OPT.
300
Previous studies approximated the fraction of blind-end vessels in sample MCa-IV
301
carcinomas to be 33% [59]. However, blind-end information is not available for either
302
GL261 or LS147T tumours. Therefore, consistent with previous computational
303
studies [44], blind-ends were randomly applied to 33% of remaining boundary nodes
304
(using the previous randomised approach), with the remaining 62% of boundary nodes
305
left as unknown in the flow optimisation scheme of Fry et al. [39].

Table 2. Fluid Transport Parameters

Parameter	Description	Value	Units	Reference
p_∞	Far-field interstitial fluid pressure	0	mmHg	-
κ	Interstitial hydraulic conductivity	$1.7 \cdot 10^{-7}$	$\text{cm}^2 \text{mmHg}^{-1} \text{s}^{-1}$	[17]
L_p	Vascular hydraulic conductance	$2.8 \cdot 10^{-7}$	$\text{cm mmHg}^{-1} \text{s}^{-1}$	[11]
σ	Oncotic reflection coefficient	0.82	-	[60]
Π_b	Oncotic pressure of blood	20	mmHg	[61]
Π_v	Oncotic pressure at the vessel wall	15	mmHg	[11, 62]
S/V	Ratio of vascular surface area to tumour volume			
GL261		17.3	cm^{-1}	Calculated.
LS147T		15.3	cm^{-1}	Calculated.

Assigned baseline parameters for the interstitial component of the fluid transport model. Note, S was calculated using the architectural data of the vasculature and V based on computing the convex hull of the tumour.

306
Application of our boundary assignment method requires us to accurately compute
307
mean perfusion across the tumours for a comparison against equivalent experimental
308
data gathered *in vivo* using ASL-MRI. This requires an accurate definition of the
309
tumour surface and volume to give an accurate approximation of a tumour's mass and
310
fluid flow into the tumour volume. For example, an overestimation of the tumour mass,
311
assuming a cuboid tissue volume surrounding the tumour, can drastically underestimate
312
tumour perfusion since, in this case, the tumour shapes are approximately ellipsoidal
313
and perfusion is inversely proportional to the tumour mass. Similarly, an overestimation
314
of flow into the tissue would overestimate tissue perfusion. Next we describe: 1)
315
defining the surface of the tumour; 2) computing the IFV vectors across the tumour
316
surface; and 3) approximating the total tissue perfusion.
317

318
1) The hull of a tumour is calculated using the Matlab (MathWorks Inc., Natick,

MA) ‘*boundary*’ function applied to all nodes defined during vascular segmentation (see 319
Fig 2 c). The Matlab ‘*fast loop mesh subdivision*’ triangulation algorithm is then 320
applied to further discretise the define tumour surface. 2) To approximate tumour 321
perfusion requires us to define a set of normal vectors to the tumour surface to compute 322
pressure gradients. We identify the centre of the tumour and duplicate the hull, which is 323
then expanded to form a $10 \mu\text{m}$ gap between the two surfaces (see Fig 2 d). IFP is then 324
calculated across all nodal points on each surface, each paired by a vector normal to the 325
opposing surface. A pressure gradient is then computed along each normal vector and 326
the corresponding velocities are calculated. 3) A sphere packing algorithm is applied to 327
the nodes on the original tumour hull, whereby no sphere overlaps neighbouring spheres 328
(see Fig 2 e). Any inflowing node (defined by the corresponding pressure gradient) is 329
averaged across the great circle of its corresponding sphere and its contribution is 330
summed together to calculate the interstitial component of tissue perfusion. Total tissue 331
perfusion is calculated by summing over the peritumoural vascular inlets and interstitial 332
perfusion values. 333

Finally, we prescribe baseline parameter values (see Table 2). We assume that the 334
tumours were isolated in subcutaneous tissue in the absence of lymphatics, therefore the 335
far-field pressure, p_∞ , was set to 0 mmHg. Due to a lack of experimental data, the 336
vascular conductance and interstitial conductivity, L_p and κ , respectively, were given 337
uniform values based on literature ($2.8 \times 10^{-7} \text{ cm mmHg}^{-1} \text{ s}^{-1}$ and $1.7 \times 10^{-7} \text{ 338}$
 $\text{cm}^2 \text{ mmHg}^{-1} \text{ s}^{-1}$, respectively [31,63]). As the transport of blood plasma proteins is not 339
modelled explicitly in our model, we assume a constant oncotic pressure gradient of 5 340
mmHg between the vasculature and interstitium. 341

Results 342

In the following section we apply our computational framework to a GL261 orthotopic 343
murine glioma and a LS147T human colorectal carcinoma xenograft to form baseline 344
flow solutions. We then explore sensitivity to source parameters, which include source 345
distribution, source radii and bilateral communication between the vascular and 346
interstitial compartments. We then perform sensitivity analysis to the interstitial 347
parameters (for example, vascular hydraulic conductance and interstitial hydraulic 348

conductivity) on IFP and IFP profiles in the LS147T tumour. We also provide an example of changes occurred by parameter variation in fluid dynamic spatial maps. 349

Table 3. Simulated Fluid Transport Statistics

Parameter	GL261	LS147T	Literature	Units
Blood Pressure	25.0 ± 0.9	30.6 ± 2.0	$10 - 80$ [64]	mmHg
Blood Flow	5.1 ± 43.4	1.1 ± 4.7	$0 - 180$ [64]	nl min^{-1}
Blood Velocity	0.2 ± 1.0	0.2 ± 0.6	1.62 ± 0.14 [44]	mm s^{-1}
Vessel Wall Shear Stress	5.7 ± 23.2	11.8 ± 32.6	23.9 ± 0.7 [44]	dyn cm^{-1}
Tissue Perfusion	83.7 ± 22.3	5.4 ± 0.3	$110 \pm 70^\dagger, 19 \pm 8^\ddagger$ [38]	$\text{ml min}^{-1} 100 \text{ g}^{-1}$
Interstitial Fluid Pressure (IFP)	20.4 ± 2.1	25.3 ± 1.6	13.5 ± 11.3 [62]‡	mmHg
Interstitial Fluid Velocity (IFV)	4.8 ± 0.5	0.19 ± 0.09	2.3 [25]	$\mu\text{m s}^{-1}$

Intra- and extravascular baseline fluid transport statistics for the GL261 and LS147T tumours (mean \pm standard deviation) across all simulations and compared against literature values. \dagger : Data gathered from GL261 tumours. \ddagger : Data gathered from LS147T tumours. 350

Simulating Interstitial Fluid Pressure in Real-World Cancerous Tissue 351

Our vascular flow simulations are in good agreement with those in computational [44, 64] and experimental literature (see Table 3 and Fig 3). To test the variability induced by our stochastic boundary condition implementation, the optimisation procedure (detailed in Fig 2 a, b) was repeated for a total of $n = 12$ for each tumour. Interstitial fluid flow was then simulated for each separate vascular flow solution, providing us with a baseline set of interstitial flow solutions. Blood flow across all simulations exhibited similar spatial distributions, with perfused vessels mainly restricted to the outer rim of the tumours [65]. The mean standard deviation of vascular blood pressures across all simulations was low with values of 0.82 and 1.53 mmHg (with maxima of 4.78 and 13.2 mmHg) for GL261 and LS147T, respectively (see Fig 5 a, e). The elevated standard deviations in vascular pressure were located at the periphery of the tumours, which is to be expected as the high and low vascular pressures were stochastically assigned here. Furthermore, our mean blood velocity and vessel wall shear stresses agree with similar numerical modelling of vascular blood flow in the MDA-MB-231 breast cancer cell line [44]. 352

Fig 3. Simulated vascular blood flow in (a) GL261 and (b) LS147T tumours. Distributions are shown for vessel radii, blood pressure, flow and vessel wall shear stress, respectively. 353

Fig 4. Simulated fluid transport through the interstitium in GL261 and LS147T tumours. (a, b) (Left) Predicted interstitial fluid pressure (IFP) fields for {X, Y}-planes through the tumours, emulating the traditionally high pressure in the tumour core but with predicted spatial heterogeneities. (Middle) Simulated interstitial perfusion maps discretised into $\sim 140 \mu\text{m}^2$ pixels. Results replicate the traditionally elevated perfusion existing at the periphery of the tumours. (Right) Interstitial fluid velocity (IFV, overlaid onto greyscale image of interstitial perfusion) predictions depicting spatial interstitial flow heterogeneities across the entire tumours. Note, perfusion and interstitial fluid velocity maps are shown for the central slice in the interstitial fluid pressure graphics. (c, d) Fitted curves with error bars indicating standard deviation for (left) IFP and (right) IFV in (c) GL261 and (d) LS147T, plotted against normalised radius, corresponding to the simulations shown in (a, b).

Tissue perfusion (calculated as 83.7 ± 22.3 and $5.4 \pm 0.3 \text{ ml/min/100g}$ for the GL261 and LS147T tumours, respectively) was further validated by *in vivo* ASL-MRI measurements of at 110 ± 70 and $19 \pm 8 \text{ ml/min/100g}$ for GL261 and LS147T, respectively. This implies that imposing physiologically realistic pressure boundary conditions generates physiologically realistic perfusion, and consequently accurate drug delivery solutions [38].

No literature IFP values were available for GL261 cell lines, however, our IFP was slightly elevated compared to that previously measured in LS147T *in vivo* ($13.5 \pm 11.3 \text{ mmHg}$ [62]). Considering the range of IFP both here and *in vivo* [62] and the good accordance with *in vivo* perfusion, our results provided us with the confidence that our simulations can produce physiological IFP predictions (see Fig 4).

Examining the tumour radial IFP profiles, the LS147T network exhibited similar configurations as observed both experimentally in LS147T [17], in other cell lines [3, 24, 25], and in computational studies [31, 32, 36, 63], with elevated IFP at the tumour core (see Fig 4 b, d). In addition, the LS147T network displayed a typical IFV profile radially, with an increasing IFV range towards the tumour surface due to the steeper pressure gradients at the periphery of the tumour. This indicated that bulk fluid filtration occurs at the high flowing vasculature located at the tumour extremity in this network ($\rho = 0.41$, $p < 0.001$, where ρ and p are the Pearson's correlation coefficient and its corresponding p -value between tumour radius and vascular flow, respectively).

In comparison, the GL261 network also exhibited a traditional, yet steeper, IFP profile with a wider variance throughout the tumour (see Fig 4 c). The IFV profile exhibited a typical profile increasing from the centre of the tumour to the periphery. However, its IFV peak was reached at $\sim 80\%$ of the tumour radius, with a substantial decline in the latter 20% (see Fig 4 c).

It was observed that GL261 and LS147T have distinct differences in their vascular
393 architecture (see Fig 3 and Table 1). This may indicate that the inherent vascular
394 heterogeneity across tumour cell lines [20] directly impacts the IFP and IFV
395 distributions, creating an unorthodox interstitial flow profile. High IFP has been
396 associated with low vascular density in A-07-GFP tumours [66], however, further work
397 is required to confirm our hypothesis for GL261 and LS147T tumours.
398

Sensitivity of Tumour Interstitial Fluid Transport to Model 400 Parameters

Sensitivity analysis allows us to understand the impact of parameter variance on
401 tumour perfusion predictions. In this study, we performed sensitivity analysis to our
402 model's underlying parameters. For convenience we have split these parameters into two
403 groups. The first we define as source parameters, which include the vascular blood
404 pressure, $p_{b,i}$, the spacing between each source along a given vessel, λ_i , and the source
405 radius, $r_{0,i}$ for segment i (see Fig 1 c). The second group we call the interstitial
406 parameters, which include the far-field IFP, p_∞ , the oncotic reflection coefficient, σ , the
407 hydraulic conductance of a vessel wall, L_p , and the interstitial hydraulic conductivity, κ .
408 In the following, if sensitivity analysis to an interstitial parameter was not being
409 performed, it was set to the corresponding value in Table 2.
410

Source Parameters

Vascular pressure depends not only on the vascular pressure at the boundary nodes and
412 vascular network geometry but also on the permeability of the tumour vessels and
413 hydraulic conductivity of the interstitial tissue, as a consequence of flow communication
414 between the vascular and interstitial domains. To incorporate this relationship, we
415 couple the vascular and interstitial models using an iterative scheme in which vascular
416 blood pressure distributions, $p_{b,i}$ for $i \in N_s$, were updated on each iteration by
417 incorporating the loss of fluid within a vessel due to fluid flux across the vessel wall into
418 the interstitium (see Fig 1 d). We found that due to the small volume of fluid leaving
419 the vessels, vascular pressure was not significantly corrected on each iteration (see Fig 5
420 b, f). In the case of the GL261 network, the algorithm had converged after two
421

iterations (see Fig 5 b). In comparison, the LS147T network had not converged after six 422 iterations but the mean error was $\mathcal{O}(10^{-8})$ mmHg (see Fig 5 f). This may indicate that 423 a tumours inherent vascular heterogeneity and corresponding interstitial parameters 424 alter the scale of these flow errors. 425

Next we varied the maximum distance, λ_{max} , between sources distributed along the 426 vasculature. Values of 10 and 25 μm , and 50 and 100 μm were chosen for the GL261 427 and LS147T networks, respectively, due to differences in mean branching vessels lengths 428 observed in each tumour (see Table 1). The GL261 network exhibited minimal 429 sensitivity in IFP between the two maximal source lengths (see Fig 5 c). Comparatively, 430 the LS147T experienced greater variability (of less than 1 mmHg) in mean IFP, between 431 the two values of λ , at the core and periphery of the tumour (see Fig 5 g). We 432 hypothesise that sensitivity to λ is related to the vascular density of each tumour type. 433 The GL261 network is an order of magnitude greater in vascular density compared to 434 the LS147T tumour (see Table 1). An elevated vascular density results in an increased 435 density of fluid sources, and so any reduction in sources may have a minimal effect to 436 IFP due to levels being maintained by the local proximity of neighbouring sources. 437

Fig 5. Sensitivity of the computational framework. (a, e) Cross-sectional slice from the core of the (top) GL261 438 and (bottom) LS147T tumours, showing standard deviation of intravascular pressures (mmHg) across all 12 439 simulations. (b, f) the mean segment pressure error between consecutive iterations for the (top) GL261 (top) and 440 (bottom) LS147T networks. (c, g) IFP distribution from the centre of the tumour to its periphery for a maximum 441 spacing of (blue) 10 and 25 μm and (orange) 50 and 100 μm for GL261 and LS147T, respectively. (d, h) IFP 442 distributions for the source radii set to the minimum vessel radius multiplied by a factor of (blue) 10^{-1} , (red) 10^0 443 and (yellow) 10^1 . Note, error bars correspond to standard deviation. 444

We finally sought to understand how the source radii, $r_{0,i}$ for $i \in N_s$, affects flow in 445 the interstitial domain. We initially set the source radii to a constant value equal to the 446 minimum vessel radius in a given tumour network. Three cases were then explored 447 where $r_{0,i}$ was multiplied by a factor of 10^{-1} , 10^0 or 10^1 . Our results show that 448 decreasing the value of the source radii decreases mean IFP, with greater sensitivity 449 exhibited again by the LS147T network (see Fig 5 d, h). This indicates that greater 450 care is needed compared to the assignment of other source parameters, to ensure the 451 physiological accuracy of the results. Here, we set the value of $r_{0,i}$ equal to the radius of 452 its corresponding vessel in order to provide a heterogeneous distribution of radii in 453 which vessels with a larger radius are able to influence the IFP to a greater capacity 454

than compared to relatively smaller vessels.

448

Interstitial Parameters

449

Sensitivity to the interstitial parameters p_∞ , σ , L_p , and κ were explored using the LS147T network. This network was chosen due to the scale of simulations to be performed and due to the greater sensitivity exhibited by modifying the source parameters. First of all, we investigated the deviation in the far-field interstitial pressure, p_∞ . Ideally, the far-field pressure is set to the mean IFP of the adjoining healthy tissue, however these data are frequently unavailable. We varied the far-field IFP from 3 to 18 mmHg in increments of 3 mmHg. Alteration of p_∞ did not significantly modify tumour IFP, with the majority of variation occurring at the periphery of the tumour (see Fig 6 a). As a consequence, mean IFV across the tumour decreased with increasing p_∞ (see Fig 6 e).

450

451

452

453

454

455

456

457

458

459

Next we investigated the oncotic reflection coefficient, σ . Physiologically, the coefficient σ varies between 0 and 1, indicating the likelihood that a molecule approaching a pore in the vessel lumen will be reflected back and thereby retained in the vascular compartment. As such, we ranged σ from 0 to 1 with increments of 0.25. Modification of σ resulted in a network-wide shift in tumour IFP magnitude, thereby preserving the IFP gradient (see Fig 6 b). This is an intuitive result since we held the oncotic pressure gradient constant across the entire vasculature, therefore any increase in σ resulted in systematic reduction in both IFP and IFV (see Fig 6 b, f).

460

461

462

463

464

465

466

Fig 6. Data-fitted curves of IFP (top) and IFV (bottom) for modulation of interstitial model parameters: (a, e) p_∞ (mmHg), (b, f) σ , (c, g) L_p (cm / mmHg s) and (d, h) κ (cm² / mmHg s). Arrows indicate increasing parameter values, with exception of (d) in which a range of κ (cm² / mmHg s) is indicated. IFP profile gradients across LS₂ sensitivity analysis of (a) far-field pressure, p_∞ , (b) oncotic reflection coefficient, σ , (c) vascular hydraulic conductivity, L_p , and (d) interstitial hydraulic conductivity, κ (cm² / mmHg s). Arrows indicate increasing values of the given parameter and colours in each column indicate the equivalent simulation.

467

Vascular hydraulic conductance, L_p , defines the leakiness of the lumen to the transport of blood plasma. Our sensitivity analysis varied L_p from 1.33×10^{-8} to 3.41×10^{-6} cm/mmHg s, encompassing values provided in literature for normal and tumour tissue [11]. Similarly to σ , a reduction in L_p resulted in decreasing IFP across the tumour but with contrasting regional gradients (see Fig 6 c). Our analysis showed that with decreasing L_p , IFP tended towards the assigned far-field pressure due to

468

469

470

471

472

473

decreasing fluid filtration from the vasculature, and so in its limit, the IFP would
474 uniformly be equal to p_∞ . This is due to decreasing fluid filtration, indicating that the
475 model produces a physiologically viable response. In comparison, a reduction in L_p
476 induced minimal changes to IFV in the core of the tumour but resulted in decreases
477 towards the periphery (see Fig 6 g).
478

Variations in the interstitial conductivity, κ , ranged from 1.33×10^{-11} to 1.04×10^{-6}
479 $\text{cm}^2/\text{mmHg s}$. In this case, we established that sensitivity to this parameter are
480 non-trivial to elucidate. An inflection point was observed for values
481 $1.67 \times 10^{-9} \leq \kappa \leq 8.33 \times 10^{-9} \text{ cm}^2/\text{mmHg s}$ in which the spatial IFP distribution
482 switched from one configuration to another (see Fig 6 d). For $\kappa \leq 1.67 \times 10^{-9}$
483 $\text{cm}^2/\text{mmHg s}$, IFP solutions displayed near identical configurations (mean IFP of
484 $25.8 \pm 2.4 \text{ mmHg}$ for all four cases) in which IFP displayed an increased gradient
485 compared to greater values of κ along with decreasing IFV (see Fig 6 h). In comparison,
486 $\kappa \geq 8.33 \times 10^{-9} \text{ cm}^2/\text{mmHg s}$ displayed similar IFP profiles with mean IFP decreasing
487 with increasing κ (26.2 ± 1.5 to $22.5 \pm 1.6 \text{ mmHg}$).
488

Mapping the Effects of Vascular Normalisation

489

As an example of how our computational framework can be used to predict the
490 effectiveness of cancer therapies, we performed a feasibility study of normalising the
491 LS147T vasculature, by modifying the network vascular hydraulic conductances and
492 oncotic reflection coefficients. We crudely simulated vascular normalisation using a
493 linear function where vascular pores sizes (represented through a combination of
494 changes in L_p and σ) in the tumour core are typical of tumour vasculature, and
495 gradually returned to physiological values at the tumour periphery (from 2.18×10^{-7} to
496 $0.44 \times 10^{-7} \text{ cm mmHg}^{-1} \text{ s}^{-1}$ for L_p and from 0.82 to 0.91 for σ).
497

Simulations predicted a steeper IFP gradient across the tumour. This is contrary to
498 previous studies [67, 68], where IFP was found to reduce when tumour vasculature was
499 normalised. However, these studies normalised the vasculature uniformly across the
500 tumour, and our equivalent sensitivity analysis for uniform changes in L_p observed a
501 similar IFP response (see Fig 6 c).
502

In response to changes in IFP, our model predicted elevated tumour interstitial fluid
503 speed (IFS - see Fig 7 a), a similar result to [68] who observed that advection is
504

dominant at small pore sizes in two-dimensions. Steeper IFP gradients also increased
505 perfusion and outward facing IFV streamlines (see Figs 4 b and 7 b).

Considering our predicted IFP responses for uniform and radially varying vascular
507 normalisation, we hypothesise that for vascular normalisation therapy to effectively
508 reduce to IFP, blood vessels across the tumour need to be normalised. Further, that if
509 vascular normalisation increases macromolecular drug penetration via the vasculature to
510 the core, outward interstitial advective currents may inhibit the effectiveness of such
511 therapies once delivered to the interstitium. However, these effects need to be explored
512 using a comprehensive model to detail the delivery of normalisation therapies, and
513 consequently macromolecular drug delivery. In addition, the effect of normalisation is
514 likely to be dependent on tumour architectural properties, such as vascular density and
515 interstitial hydraulic conductivity, and so requires study across a range of tumours with
516 spatially varying conductivities.

Fig 7. Normalisation of vascular hydraulic conductance and oncotic reflection coefficient to physiological values in LS147T. (a) Planar contour plots of IFP and interstitial fluid speed (IFS) for the baseline (top) and normalised (bottom) predictions. (b) Predictions of normalised interstitial fluid spatial maps (left) and IFV (right - with greyscale perfusion underlaid) where pixels are $\sim 140 \mu\text{m}^2$. For comparison, equivalent {X, Y}-planes for baseline simulations can be viewed in Fig 4 c.

517

Discussion

518

Elevated interstitial fluid pressure is frequently associated with solid tumours, where a
519 conventional profile exhibits a uniformly high IFP in the core of a tumour which
520 decreases rapidly towards the levels of physiological tissue at its periphery [3, 14, 52].
521 This atypical characteristic forms a barrier to transvascular fluid and drug delivery,
522 thereby diminishing therapeutic efficacy of anti-cancer treatments.
523

The passage of fluid through the interstitium is influenced by both hydrostatic and
524 oncotic pressures in blood vessels and therefore by the heterogeneic architecture of
525 tumour microvessels. However, the procurement of detailed fluid flow data *in vivo*
526 across whole tumour networks is currently unfeasible using conventional imaging and
527 experimental techniques. However, recent advances in *ex vivo* high-resolution optical
528 imaging techniques [37] allow whole three-dimensional tissue architectures to be
529 extracted and reconstructed to act as inputs for detailed *in silico* modelling of fluid
530

transport.

No study has explicitly modelled vascular and interstitial fluid flow using discrete, three-dimensional structural data from images of whole-tumour, real-world vasculature [6]. However, in a recent study, we presented our novel REANIMATE platform which extracts three-dimensional, whole tumour vasculature *ex vivo* from optically cleared tissue, which is then used to parameterise an *in silico* model of fluid transport guided by *in vivo* imaging data [38]. This has enabled us to perform quantitative, realistic predictions of fluid and drug delivery to tumours which has led to novel insights into a tumour's inherent physical resistance to anti-cancer therapies [38].

In this study, we presented the computational framework used to simulate fluid transport in REANIMATE. We detail its derivation and application to whole tumour architectural datasets and show how our model allows highly-detailed predictions of fluid flow within the tumour microenvironment by incorporating explicit tumour vasculature. Our model allows flow heterogeneities to be quantified in a computationally efficient manner, when compared to finite-difference and element methods [40], which enables cancer therapies, such as normalisation, to be effectively studied through modification of its parameters.

We initially apply our framework to an orthotopic murine glioma and a human colorectal carcinoma xenografts from the GL261 and LS147T cell-lines, respectively, to present realistic, baseline simulations of the tumour microenvironment. We then performed sensitivity analysis to the underlying model parameters. The first are the source parameters, which are specific to our model, and include source of flux distribution and size. Secondly, the interstitial parameters, such as vascular conductance and interstitial conductivity, which are frequently represented in literature due to the prominent use of Starling's law. In the second case, we perform analysis of how variation of these parameters modifies the IFP and IFV in an LS147T dataset. We finally present a proof-of-concept detailing how our model can be used to provide three-dimensional, spatial maps of tumour properties, such as IFP, IFS, IFV and perfusion, when investigating the effects of vascular normalisation.

Our computational framework is based upon a Poiseuille model for vascular blood flow [39] which is coupled to a steady-state Green's function solution to interstitial fluid flow. Here, tumour vasculature segmented *ex vivo* is represented by a discrete set of

sources of fluid flux for bi-directional transport between the interstitium. Previous 563
models either assume a homogeneous vascular network [3, 11, 14, 52], incorporate a 564
computer-generated synthetic tumour network [28–34], or incorporate boundary 565
conditions and spatial variations in tissue permeability to artificially represent vascular 566
heterogeneity [35, 36]. However, vascular averaging methods do not fully encapsulating 567
the intrinsic, local interactions between neighbouring blood vessels which contribute to 568
global interstitial flow and synthetic networks are difficult to validate against real 569
tumour architecture. Here we use vascular architecture from real, whole tumour 570
networks, and through use of Green's function methods, our model significantly reduces 571
the computational size of the computational problem, allowing vessel-vessel interactions 572
to be modelled at the micron-scale. Thus, we provide the means to perform *in silico* 573
studies to hypothesis test the impact of vascular heterogeneity on the tumour 574
microenvironment with relative ease. 575

Our simulations were performed on *ex vivo* structural imaging data from a GL261 576
and a LS147T tumour. As no *in vivo* flow or pressure data were available for the 577
numerous boundary vessels, we developed a procedure whereby simulated data was 578
optimised based on *in vivo* tissue perfusion data gathered using ASL-MRI [38]. This 579
approach has produced solutions which are highly consistent with experimental 580
measurements in the same tumours [38]. In this study, baseline vascular flow solutions 581
across all tumour simulations are in good agreement with the perfusion data, alongside 582
mean flows [64], velocities and vessel wall shear stresses [44], and fluid pressure in the 583
interstitium [3, 17, 24, 25]. This provided validation that our model produces 584
physiologically realistic results, providing a platform to investigate the tumour 585
microenvironment. 586

We performed sensitivity analysis to the source parameters, such as updating the 587
vascular flow solution, source distribution and source radii, to understand their 588
influence on the flow communication between the vascular and interstitial domains. Our 589
results exhibited a minimal sensitivity to IFP distributions by varying these parameters, 590
with the exception of the assignment of source radii. Here, we hypothesise that greater 591
care is required for spatially sparse tumours with a low vascular density, in order to 592
ensure physiologically accurate simulations. Finally we investigate the interstitial 593
parameters using the LS147T dataset. Raising the far-field interstitial pressure did not 594

significantly alter the IFP distribution across the tumour, with increased IFP occurring 595
at the tumour periphery, compared to baseline. Variation in the oncotic pressure 596
contribution, by modifying the oncotic reflection coefficient, only affected the 597
magnitude of the interstitial pressure, with minor changes to the IFP and IFV profiles, 598
similar to those reported in previous studies [3]. Increasing L_p and κ , raised the 599
gradient of the interstitial pressure profile, thereby increasing fluid transport through 600
the interstitium. However, our IFP distributions did not reach 0 mmHg at the periphery 601
of the tumours as in previous studies [3,14,67]. We hypothesise that this is due to not 602
applying a fixed pressure at the tumour boundary in our model, which results in a 603
smoother transition of IFP to the surrounding tissue, similar to previous computational 604
modelling of tumour vascular heterogeneity [35,36]. 605

We finally performed a feasibility study detailing how our framework can be used to 606
investigate cancer therapies, such as vascular normalisation. We modified vascular 607
hydraulic conductances and oncotic reflection coefficients in a linear radially varying 608
fashion in the LS147T network. Values ranged from those associated with tumours at 609
its core, to physiological tissue levels at its periphery. Our model predicted that IFP at 610
the core was slightly elevated, and that a pressure gradient is formed radially across the 611
tumour core which causes raised, outwardly directed interstitial flow. Consequently, we 612
predict that vascular normalisation therapies need to uniformly normalise a tumour to 613
lower tumour IFP, and that ineffective normalisation could reduce the efficacy of drug 614
therapies. These results are preliminary, and require further analysis and application to 615
further LS147T (and other cell-line) datasets. However, they indicate that modifying, or 616
normalising, the parameters in our computational framework is a simple and effective 617
way of investigating the fluid dynamic properties, such as interstitial pressures and 618
velocities, associated with an individual tumour. Moreover, our framework predicts 619
spatial maps of flow across three-dimensional cancerous tissue, enabling flow 620
heterogeneities induced by realistic vascular networks to be quantified for subsequent *in* 621
silico investigations into anti-cancer therapies. 622

Our results and proposed computational framework offer significant scope for future 623
expansion. Current limitations include, for example, our stochastic approach to 624
simulating vascular blood flow which was implemented due to the in-availability of 625
experimental data. Recent *in vivo* methods provide a step forward in approximating 626

conditions by discerning global tumour pressure gradients through observations of tissue
627 fluid velocity [26], which could lead to greater accuracy when assigning boundary
628 conditions specific to a tumour. Similarly, parameter values such as the vascular
629 conductance and interstitial hydraulic conductivity were assigned using previous
630 literature values since these tissue-specific measurements can be challenging to procure
631 through experimentation. For example, interstitial conductivity values across normal
632 tissue have been reported to span four orders of magnitude [17]. Future work could seek
633 to predict spatially heterogeneous maps of interstitial hydraulic conductivity using
634 REANIMATE and new experimental data [26].
635

There are also opportunities to expand the computational model to incorporate more
636 complex biological phenomena. For example, our model does not currently incorporate
637 tumour compression of vessels due to increasing shear stresses within the tumour, a
638 critical property of understanding angiogenic vasculature [29, 69]. In addition, our model
639 does not explicitly incorporate necrotic regions within cancerous tissues. Yet necrotic
640 regions can influence interstitial fluid delivery [3, 14] and tumour macromolecular
641 transport [52], and so are vital to incorporate if our computational framework.
642

We expect to find a wide utility for REANIMATE in a range of disease areas,
643 particularly given the current interest in optical clearing methods and their widespread
644 use in biomedical research. REANIMATE is novel and timely and will find extensive
645 use for hypothesis testing, to enable tumour biology and drug delivery to be better
646 understood, which in turn may enable the next generation of cancer therapies.
647

Acknowledgements

The authors also acknowledge support received from EPSRC (EP/L504889/1), Rosetrees
649 Trust/Stoneygate Trust (M135-F1 and M601) and the Wellcome Trust (WT100247MA).
650

Author Contributions

P.W.S. and R.J.S. developed the mathematical model for fluid transport across tissue
652 and developed the main concepts. P.W.S. developed the software to perform
653 mathematical and computational analysis, analysed and interpreted the results, and
654

wrote and edited the paper. A. d'E designed and performed optical imaging 655 experiments. S.W-S. supervised the design of optical imaging experiments and 656 developed software for segmenting optical imaging data. R.J.S. supervised the design of 657 computational simulations. R.J.S. and S.W-S. co-led the project, secured funding, and 658 contributed to the writing and editing of the manuscript. 659

References

1. Andrew I. Minchinton and Ian F. Tannock. Drug penetration in solid tumours. *Nature Reviews Cancer*, 6(8):583–592, aug 2006. ISSN 1474-175X. doi: 10.1038/nrc1893.
2. Rakesh K. Jain. Determinants of Tumor Blood Flow: A Review. *Cancer Research*, 48(10):2641–2658, 1988. ISSN 15387445. doi: 10.1146/annurev.bioeng.1.1.241.
3. Laurence T Baxter and Rakesh K Jain. Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection. *Microvascular Research*, 37(1):77–104, jan 1989. ISSN 10959319. doi: 10.1016/0026-2862(89)90074-5.
4. R K Jain. Barriers to drug delivery in solid tumors. *Scientific American*, 271(1): 58–65, jul 1994. ISSN 0036-8733.
5. Seong Hoon Jang, M Guillaume Wientjes, Dan Lu, and Jessie L S Au. Drug delivery and transport to solid tumors. *Pharmaceutical research*, 20(9):1337–50, sep 2003. ISSN 0724-8741.
6. Heiko Rieger and Michael Welter. Integrative models of vascular remodeling during tumor growth, 2015. ISSN 1939005X.
7. Mark W. Dewhirst and Timothy W. Secomb. Transport of drugs from blood vessels to tumour tissue, nov 2017. ISSN 14741768.
8. Petros Koumoutsakos, Igor Pivkin, and Florian Milde. The Fluid Mechanics of Cancer and Its Therapy. *Annual Review of Fluid Mechanics*, 45(1):325–355, jan 2013. ISSN 0066-4189. doi: 10.1146/annurev-fluid-120710-101102.

9. S. Goel, D. G. Duda, L. Xu, L. L. Munn, Y. Boucher, D. Fukumura, and R. K. Jain. Normalization of the Vasculature for Treatment of Cancer and Other Diseases. *Physiological Reviews*, 91(3):1071–1121, jul 2011. ISSN 0031-9333. doi: 10.1152/physrev.00038.2010.
10. Ajit S. Narang and Sailesh Varia. Role of tumor vascular architecture in drug delivery. *Advanced Drug Delivery Reviews*, 63(8):640–658, jul 2011. ISSN 0169409X. doi: 10.1016/j.addr.2011.04.002.
11. Rakesh K Jain. Transport of molecules across tumor vasculature. *Cancer and Metastasis Reviews*, 6(4), 1987. ISSN 0167-7659.
12. Rakesh K. Jain. Normalizing Tumor Microenvironment to Treat Cancer: Bench to Bedside to Biomarkers. *Journal of Clinical Oncology*, 31(17), jun 2013. doi: 10.1200/JCO.2012.46.3653.
13. Michael J Mitchell, Rakesh K Jain, and Robert Langer. Engineering and physical sciences in oncology: Challenges and opportunities, 2017. ISSN 14741768.
14. Rakesh K. Jain and Laurence T. Baxter. Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure. *Cancer Research*, 48:7022–32, dec 1988. ISSN 0008-5472.
15. Rakesh K Jain. Antiangiogenesis Strategies Revisited: From Starving Tumors to Alleviating Hypoxia. *Cancer Cell*, 26(5):605–622, 2014. ISSN 18783686. doi: 10.1016/j.ccr.2014.10.006.
16. Carl Henrik Heldin, Kristofer Rubin, Kristian Pietras, and Arne Östman. High interstitial fluid pressure - An obstacle in cancer therapy, oct 2004. ISSN 1474175X.
17. Y. Boucher, C. Brekken, P. A. Netti, L. T. Baxter, and R. K. Jain. Intratumoral infusion of fluid: estimation of hydraulic conductivity and implications for the delivery of therapeutic agents. *British Journal of Cancer*, 78(11):1442, 1998.
18. Dai Fukumura, Jonas Kloepper, Zohreh Amoozgar, Dan G. Duda, and Rakesh K. Jain. Enhancing cancer immunotherapy using antiangiogenics: opportunities and

challenges. *Nature Reviews Clinical Oncology*, mar 2018. ISSN 1759-4774. doi: 10.1038/nrclinonc.2018.29.

19. Kristian Pietras, Kristofer Rubin, Tobias Sjöblom, Elisabeth Buchdunger, Mats Sjöquist, Carl Henrik Heldin, and Arne Östman. Inhibition of PDGF receptor signaling in tumor stroma enhances antitumor effect of chemotherapy. *Cancer Research*, 62(19):5476–5484, 2002. ISSN 00085472. doi: 10.1016/j.cell.2009.02.025.
20. A A Folarin, M A Konerding, J Timonen, S Nagl, and R B Pedley. Three-dimensional analysis of tumour vascular corrosion casts using stereoscopy and micro-computed tomography. *Microvascular research*, 80(1): 89–98, 2010. ISSN 1095-9319. doi: 10.1016/j.mvr.2010.03.007.
21. Yves Boucher, Laurence T. Baxter, and Rakesh K. Jain. Interstitial Pressure Gradients in Tissue-isolated and Subcutaneous Tumors: Implications for Therapy. *Cancer Research*, 50(15):4478–4484, 1990. ISSN 15387445. doi: 10.16373/j.cnki.ahr.150049.
22. R Gutmann, M Leunig, J Feyh, A E Goetz, K Messmer, E Kastenbauer, and R K Jain. Interstitial hypertension in head and neck tumors in patients: correlation with tumor size. *Cancer research*, 52(7):1993–5, apr 1992. ISSN 0008-5472.
23. S. David Nathanson and Lisa Nelson. Interstitial fluid pressure in breast cancer, benign breast conditions, and breast parenchyma. *Annals of Surgical Oncology*, 1 (4):333–338, jul 1994. ISSN 1068-9265. doi: 10.1007/BF03187139.
24. L.J. Liu and M. Schlesinger. MRI contrast agent concentration and tumor interstitial fluid pressure. *Journal of Theoretical Biology*, 406:52–60, oct 2016. ISSN 00225193. doi: 10.1016/j.jtbi.2016.06.027.
25. Long Jian Liu, Stephen L. Brown, James R. Ewing, Brigitte D. Ala, Kenneth M. Schneider, Mordechay Schlesinger, Long Jian Liu, Stephen L. Brown, James R. Ewing, Brigitte D. Ala, Kenneth M. Schneider, and Mordechay Schlesinger. Estimation of Tumor Interstitial Fluid Pressure (TIFP) Noninvasively. *PLoS ONE*, 11(7):e0140892, jul 2016. ISSN 1932-6203. doi: 10.1371/journal.pone.0140892.

26. Simon Walker-Samuel, Thomas A Roberts, Rajiv Ramasawmy, Jake S Burrell, Sean Peter Johnson, Bernard M Siow, Simon Richardson, Miguel R Gonçalves, Douglas Pendse, Simon P Robinson, R. Barbara Pedley, and Mark F Lythgoe. Investigating low-velocity fluid flow in tumors with convection-MRI. *Cancer Research*, 78(7):1859–1872, apr 2018. ISSN 15387445. doi: 10.1158/0008-5472.CAN-17-1546.
27. Paolo A. Netti, Laurence T. Baxter, Yves Boucher, Richard Skalak, and Rakesh K. Jain. Time-dependent Behavior of Interstitial Fluid Pressure in Solid Tumors: Implications for Drug Delivery. *Cancer Res.*, 55(22):5451–5458, 1995. ISSN 0008-5472.
28. M Welter and H Rieger. Physical determinants of vascular network remodeling during tumor growth. *Eur. Phys. J. E*, 33:149–163, 2010. doi: 10.1140/epje/i2010-10611-6.
29. Vasileios Vavourakis, Peter A. Wijeratne, Rebecca Shipley, Marilena Loizidou, Triantafyllos Stylianopoulos, and David J. Hawkes. A Validated Multiscale In-Silico Model for Mechano-sensitive Tumour Angiogenesis and Growth. *PLoS Computational Biology*, 13(1):e1005259, jan 2017. ISSN 15537358. doi: 10.1371/journal.pcbi.1005259.
30. Triantafyllos Stylianopoulos, Konstantinos Soteriou, Dai Fukumura, and Rakesh K. Jain. Cationic Nanoparticles Have Superior Transvascular Flux into Solid Tumors: Insights from a Mathematical Model. *Annals of Biomedical Engineering*, 41(1):68–77, jan 2013. ISSN 0090-6964. doi: 10.1007/s10439-012-0630-4.
31. M Soltani and P Chen. Numerical Modeling of Interstitial Fluid Flow Coupled with Blood Flow through a Remodeled Solid Tumor Microvascular Network. *PLoS ONE*, 8(6):e67025, 2013. ISSN 19326203. doi: 10.1371/journal.pone.0067025.
32. M Sefidgar, M Soltani, K Raahemifar, M Sadeghi, H Bazmara, M Bazargan, and M Mousavi Naeenian. Numerical modeling of drug delivery in a dynamic solid

tumor microvasculature. *Microvascular Research*, 99:43–56, 2015. ISSN 10959319. doi: 10.1016/j.mvr.2015.02.007.

33. M. Mohammadi and P. Chen. Effect of microvascular distribution and its density on interstitial fluid pressure in solid tumors: A computational model. *Microvascular Research*, 101:26–32, sep 2015. ISSN 0026-2862. doi: 10.1016/J.MVR.2015.06.001.
34. Michael Welter and Heiko Rieger. Interstitial Fluid Flow and Drug Delivery in Vascularized Tumors: A Computational Model. *PLoS ONE*, 8(8), 2013. ISSN 19326203. doi: 10.1371/journal.pone.0070395.
35. Jianbing Zhao, Howard Salmon, and Malisa Sarntinoranont. Effect of heterogeneous vasculature on interstitial transport within a solid tumor. *Microvascular Research*, 73(3):224–236, 2007. ISSN 00262862. doi: 10.1016/j.mvr.2006.12.003.
36. Gregory L. Pishko, Garrett W. Astary, Thomas H. Mareci, and Malisa Sarntinoranont. Sensitivity Analysis of an Image-Based Solid Tumor Computational Model with Heterogeneous Vasculature and Porosity. *Annals of Biomedical Engineering*, 39(9):2360–2373, sep 2011. ISSN 0090-6964. doi: 10.1007/s10439-011-0349-7.
37. Johnathon R Walls, John G Sled, James Sharpe, and R Mark Henkelman. Resolution improvement in emission optical projection tomography. *Physics in Medicine and Biology*, 52(10):2775–2790, may 2007. ISSN 0031-9155. doi: 10.1088/0031-9155/52/10/010.
38. Angela D’Esposito, Paul W. Sweeney, Morium Ali, Magdy Saleh, Rajiv Ramasawmy, Thomas A. Roberts, Giulia Agliardi, Adrien Desjardins, Mark F. Lythgoe, R. Barbara Pedley, Rebecca Shipley, and Simon Walker-Samuel. Computational fluid dynamics with imaging of cleared tissue and of in vivo perfusion predicts drug uptake and treatment responses in tumours. *Nature Biomedical Engineering*, 2(10):773–787, oct 2018. ISSN 2157-846X. doi: 10.1038/s41551-018-0306-y.

39. Brendan C. Fry, Jack Lee, Nicolas P. Smith, and Timothy W. Secomb. Estimation of Blood Flow Rates in Large Microvascular Networks. *Microcirculation*, 19: 530–538, 2012. ISSN 10739688. doi: 10.1111/j.1549-8719.2012.00184.x.
40. Timothy W. Secomb, Richard Hsu, Eric Y. H. Park, and Mark W. Dewhirst. Green's Function Methods for Analysis of Oxygen Delivery to Tissue by Microvascular Networks. *Annals of biomedical engineering*, 32(11):1519–1529, 2004. ISSN 00906964. doi: 10.1114/B:ABME.0000049036.08817.44.
41. P Workman, E O Aboagye, F Balkwill, A Balmain, G Bruder, D J Chaplin, J A Double, J Everitt, D A H Farningham, M J Glennie, L R Kelland, V Robinson, I J Stratford, G M Tozer, S Watson, S R Wedge, S A Eccles, V Navaratnam, and S Ryder. Guidelines for the welfare and use of animals in cancer research. *British Journal of Cancer*, 102(11):1555–1577, may 2010. ISSN 0007-0920. doi: 10.1038/sj.bjc.6605642.
42. A. R. Pries, T. W. Secomb, P. Gaehtgens, and J. F. Gross. Blood flow in microvascular networks. Experiments and simulation. *Circulation Research*, 67(4): 826–834, oct 1990. ISSN 0009-7330. doi: 10.1161/01.RES.67.4.826.
43. A R Pries, T W Secomb, and P Gaehtgens. Structure and hemodynamics of microvascular networks: heterogeneity and correlations. *The American journal of physiology*, 269(5 Pt 2):H1713–22, nov 1995. ISSN 0002-9513.
44. Spyros k. Stamatelos, Eugene Kim, Arvind P. Pathak, Popel, and Aleksander S. A bioimage informatics based reconstruction of breast tumor microvasculature with computational blood flow predictions. *Microvasc Res.*, 29(6):997–1003, 2012. ISSN 15378276. doi: 10.1016/j.biotechadv.2011.08.021.Secreted.
45. Paul W. Sweeney, Simon Walker-Samuel, and Rebecca J. Shipley. Insights into cerebral haemodynamics and oxygenation utilising in vivo mural cell imaging and mathematical modelling. *Scientific Reports*, 8(1):1373, dec 2018a. ISSN 20452322. doi: 10.1038/s41598-017-19086-z.
46. Zahra Farid, Amani H. Saleem, Baraa K. Al-Khazraji, Dwayne N. Jackson, and Daniel Goldman. Estimating blood flow in skeletal muscle arteriolar trees

reconstructed from in vivo data using the Fry approach. *Microcirculation*, 24(5), 2017. ISSN 15498719. doi: 10.1111/micc.12378.

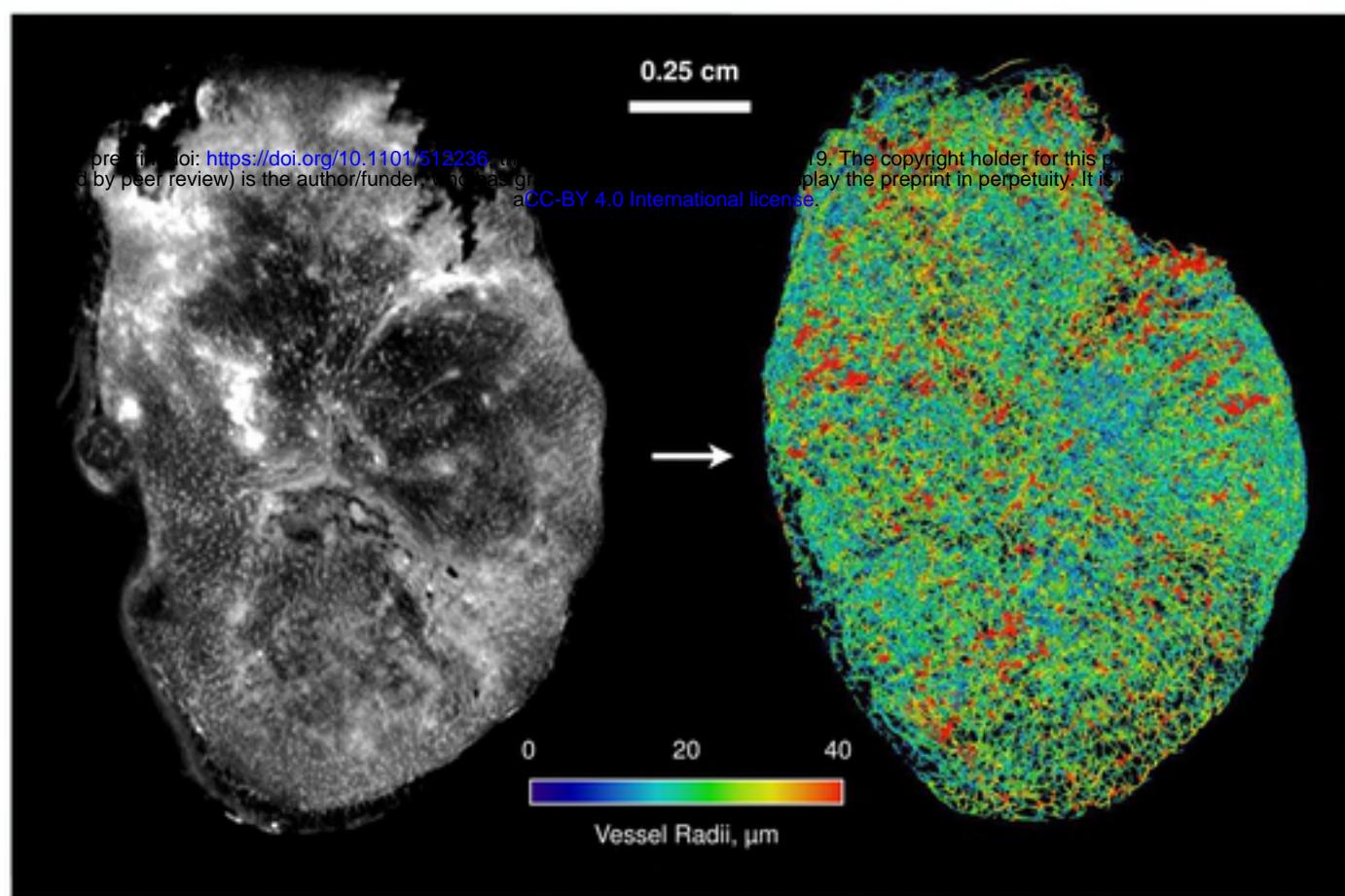
47. Timothy W Secomb. A Green's function method for simulation of time-dependent solute transport and reaction in realistic microvascular geometries. *Mathematical Medicine and Biology*, 33(4):475–494, oct 2016. ISSN 14778602. doi: 10.1093/imammb/dqv031.
48. A R Pries and T W Secomb. Microvascular blood viscosity in vivo and the endothelial surface layer. *American journal of physiology. Heart and circulatory physiology*, 289(6):H2657–H2664, 2005. ISSN 0363-6135. doi: 10.1152/ajpheart.00297.2005.
49. A R Pries, K Ley, M Claassen, and P Gaehtgens. Red cell distribution at microvascular bifurcations. *Microvascular research*, 38(1):81–101, jul 1989. ISSN 0026-2862.
50. A R Pries, K Ley, and P Gaehtgens. Generalization of the Fahraeus principle for microvessel networks. *The American journal of physiology*, 251(6 Pt 2):H1324–32, dec 1986. ISSN 0002-9513.
51. Axel R. Pries and Timothy W. Secomb. Blood Flow in Microvascular Networks. In *Comprehensive Physiology*, pages 3–36. John Wiley & Sons, Inc., Hoboken, NJ, USA, jan 2011. ISBN 9780470650714. doi: 10.1002/cphy.cp020401.
52. Laurence T Baxter and Rakesh K Jain. Transport of fluid and macromolecules in tumors. II. Role of heterogeneous perfusion and lymphatics. *Microvascular Research*, 40(2):246–263, sep 1990. ISSN 10959319. doi: 10.1016/0026-2862(90)90023-K.
53. Rakesh K. Jain. Normalization of Tumor Vasculature: An Emerging Concept in Antiangiogenic Therapy. *Science*, 307(5706), 2005.
54. Triantafyllos Stylianopoulos and Rakesh K Jain. Combining two strategies to improve perfusion and drug delivery in solid tumors. *Proceedings of the National Academy of Sciences*, 110(46):18632–18637, nov 2013. ISSN 0027-8424. doi: 10.1073/pnas.1318415110.

55. Paul William Sweeney, Simon Walker-Samuel, and Rebecca J Shipley. Vascular and interstitial flow solver for discrete microvascular networks, 2018b.
56. Timothy W. Secomb. Green's function method for simulation of oxygen transport to tissue. <http://physiology.arizona.edu/people/secomb/greens>, 2011.
57. Conrad Sanderson and Ryan Curtin. Armadillo: a template-based C++ library for linear algebra. *Journal of Open Source Software*, Vol. 1:p.26, 2016.
58. Jon-Vidar Gaustad, Trude G Simonsen, Kjetil G Brurberg, Else Marie Huuse, and Einar K Rofstad. Blood supply in melanoma xenografts is governed by the morphology of the supplying arteries. *Neoplasia (New York, N.Y.)*, 11(3):277–85, mar 2009. ISSN 1476-5586.
59. Shunichi Morikawa, Peter Baluk, Toshiyuki Kaidoh, Amy Haskell, Rakesh K Jain, and Donald M McDonald. Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. *The American journal of pathology*, 160(3):985–1000, mar 2002. ISSN 0002-9440. doi: 10.1016/S0002-9440(10)64920-6.
60. FE Curry. *Mechanics and thermodynamics of transcapillary exchange, Handbook of Physiology, Section 2: The Cardiovascular System*. jan 1984.
61. R. A. Brace and A. C. Guyton. Transmission of Applied Pressure Through Tissues: Interstitial Fluid Pressure, Solid Tissue Pressure, and Total Tissue Pressure. *Experimental Biology and Medicine*, 154(2):164–167, feb 1977. ISSN 1535-3702. doi: 10.3181/00379727-154-39628.
62. Chang-Geol Lee, Marcus Heijn, Emmanuelle di Tomaso, Genevieve Griffon-Etienne, M. Ancukiewicz, Chieko Koike, K. R. Park, Napoleone Ferrara, Rakesh K. Jain, Herman D. Suit, and Yves Boucher. Anti-Vascular Endothelial Growth Factor Treatment Augments Tumor Radiation Response under Normoxic or Hypoxic Conditions. *Cancer Research*, 60(19), 2000.
63. M. Soltani and P. Chen. Numerical modeling of fluid flow in solid tumors. *PLoS ONE*, 6(6):e20344, jun 2011. ISSN 19326203. doi: 10.1371/journal.pone.0020344.
64. Eugene Kim, Spyros Stamatelos, Jana Cebulla, Zaver M. Bhujwalla, Aleksander S. Popel, and Arvind P. Pathak. Multiscale imaging and computational modeling of

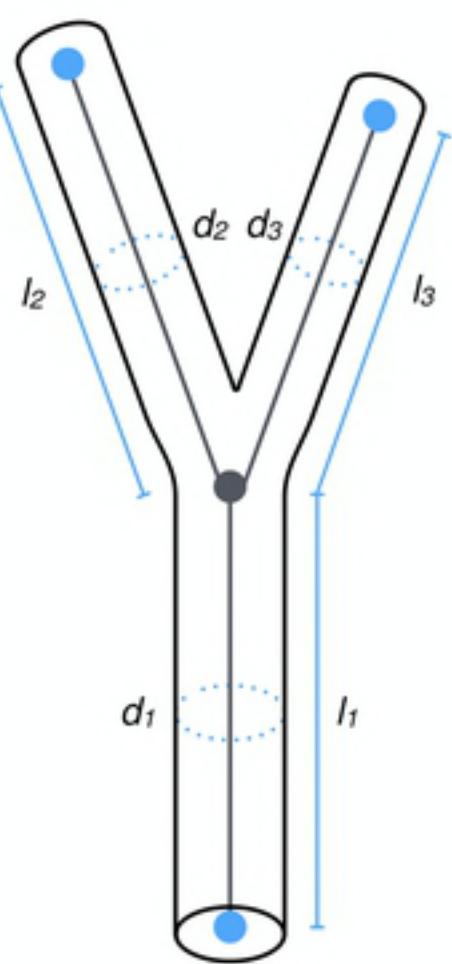
blood flow in the tumor vasculature. *Annals of Biomedical Engineering*, 40(11):2425–2441, 2012. ISSN 00906964. doi: 10.1007/s10439-012-0585-5.

65. Ethaar El-Emir, Geoffrey M. Boxer, Ingrid A. Petrie, Robert W. Boden, Jason L.J. Dearling, Richard H.J. Begent, and R. Barbara Pedley. Tumour parameters affected by combretastatin A-4 phosphate therapy in a human colorectal xenograft model in nude mice. *European Journal of Cancer*, 41(5):799–806, mar 2005. ISSN 09598049. doi: 10.1016/j.ejca.2005.01.001.
66. Trude G. Simonsen, Jon-Vidar Gaustad, Marit N. Leinaas, and Einar K. Rofstad. High Interstitial Fluid Pressure Is Associated with Tumor-Line Specific Vascular Abnormalities in Human Melanoma Xenografts. *PLoS ONE*, 7(6):e40006, jun 2012. ISSN 1932-6203. doi: 10.1371/journal.pone.0040006.
67. Rakesh K. Jain, Ricky T. Tong, and Lance L. Munn. Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: Insights from a mathematical model. *Cancer Research*, 67(6):2729–2735, mar 2007. ISSN 00085472. doi: 10.1158/0008-5472.CAN-06-4102.
68. Vikash P. Chauhan, Triantafyllos Stylianopoulos, John D. Martin, Zoran PopoviÄ, Ou Chen, Walid S. Kamoun, Moungi G. Bawendi, Dai Fukumura, and Rakesh K. Jain. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. *Nature Nanotechnology*, 7(6):383–388, jun 2012. ISSN 17483395. doi: 10.1038/nnano.2012.45.
69. Hadi T. Nia, Hao Liu, Giorgio Seano, Meenal Datta, Dennis Jones, Nuh Rahbari, Joao Incio, Vikash P. Chauhan, Keehoon Jung, John D. Martin, Vasileios Askoxylakis, Timothy P. Padera, Dai Fukumura, Yves Boucher, Francis J. Hor nicek, Alan J. Grodzinsky, James W. Baish, Lance L. Munn, and Rakesh K. Jain. Solid stress and elastic energy as measures of tumour mechanopathology. *Nature Biomedical Engineering*, 1(1), 2017. ISSN 2157846X. doi: 10.1038/s41551-016-0004.

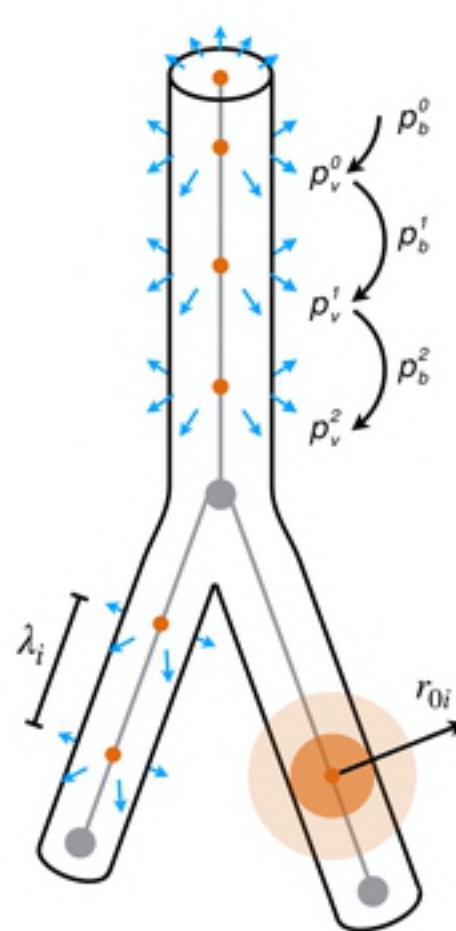
(a)



(b)



(c)



(d)

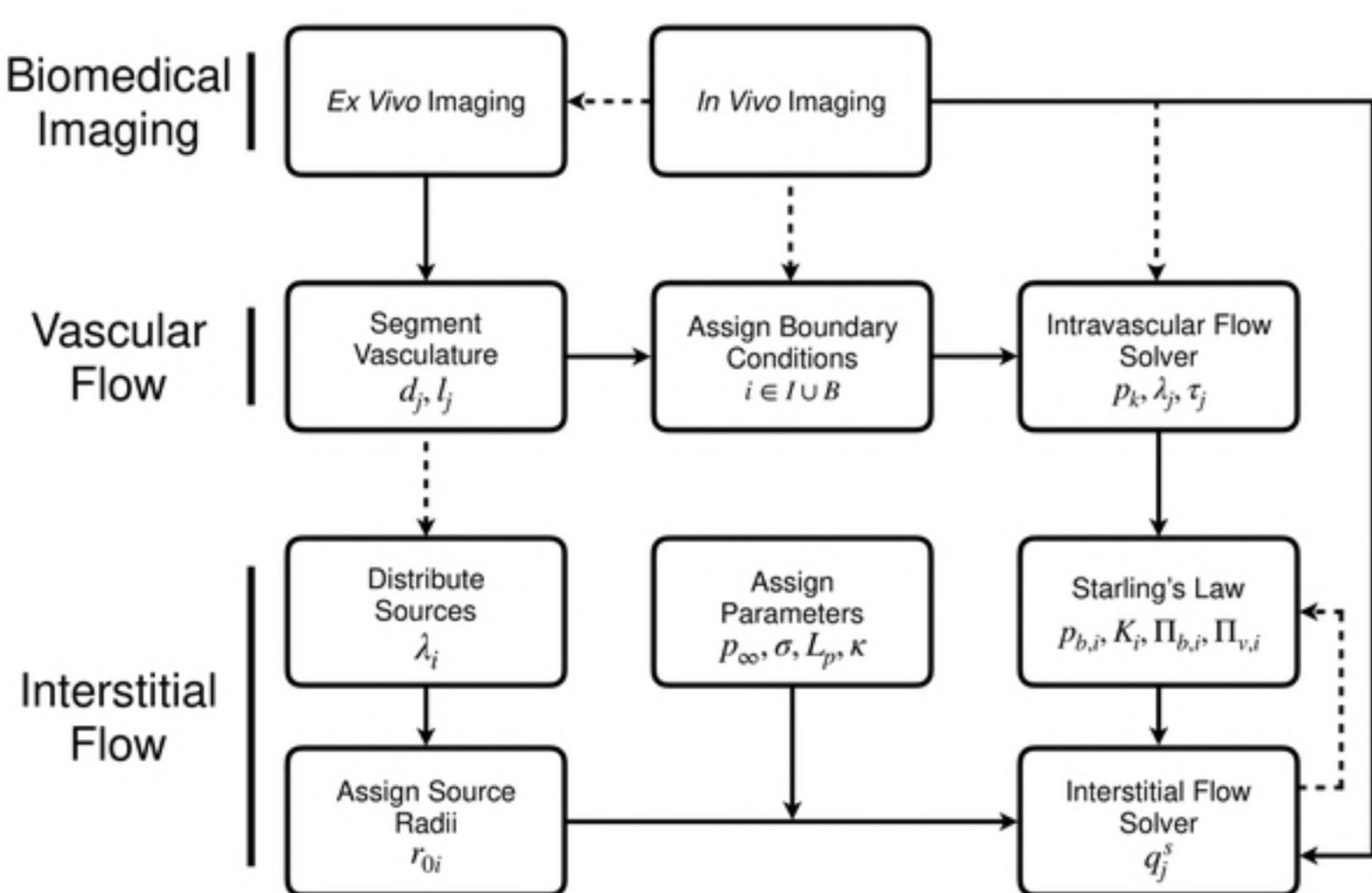


Fig1

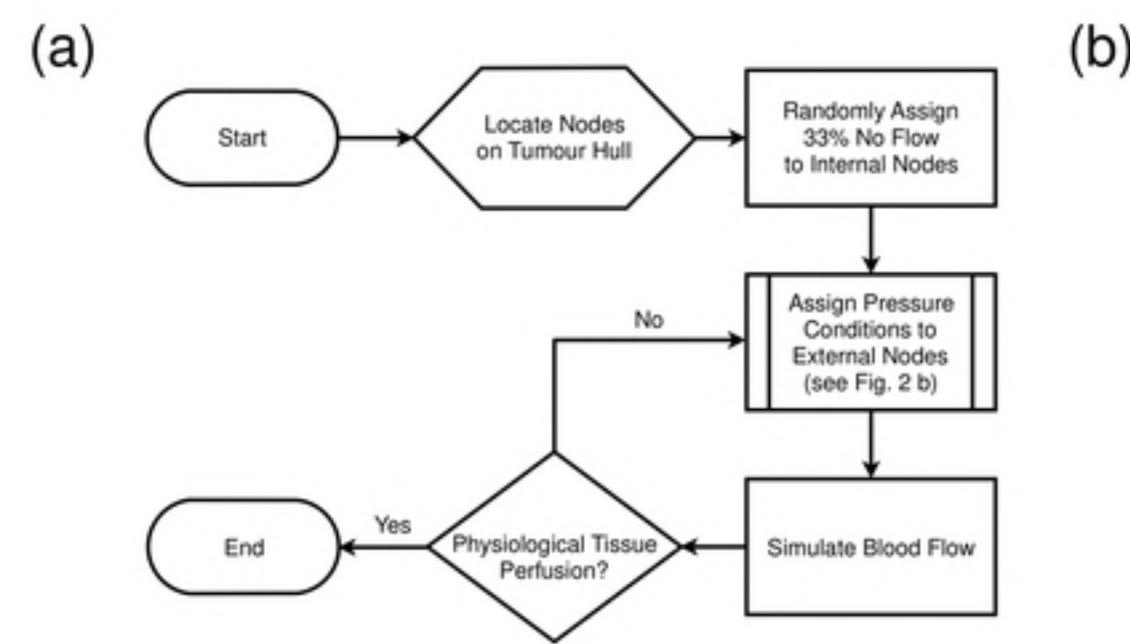
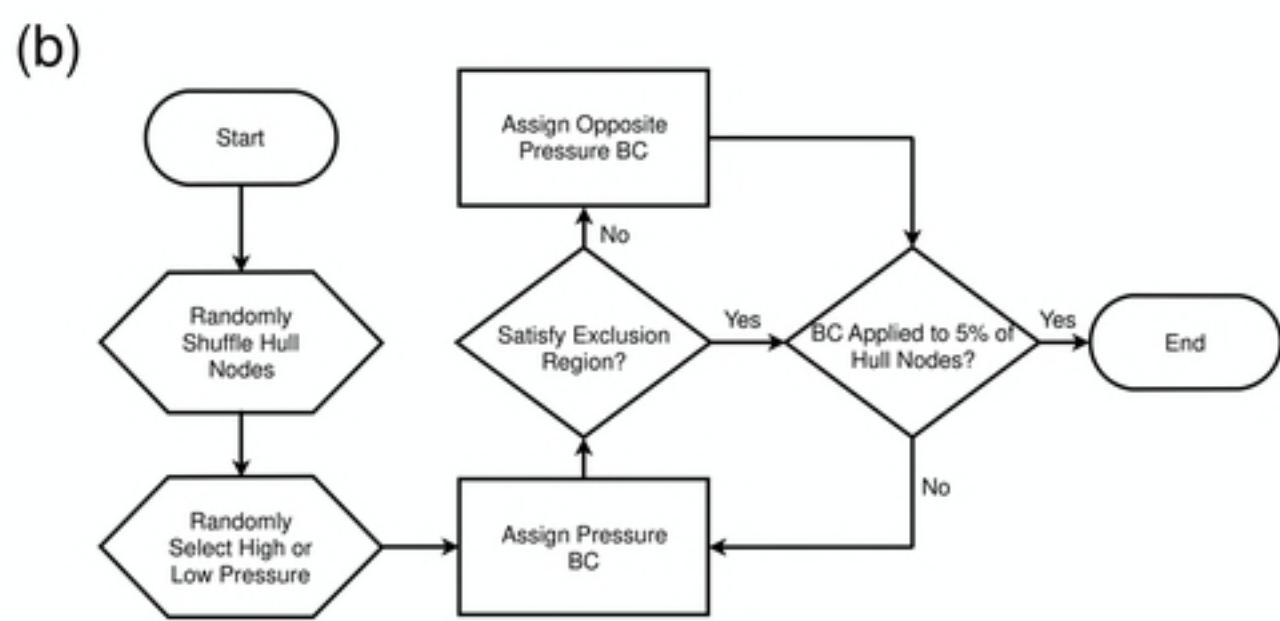
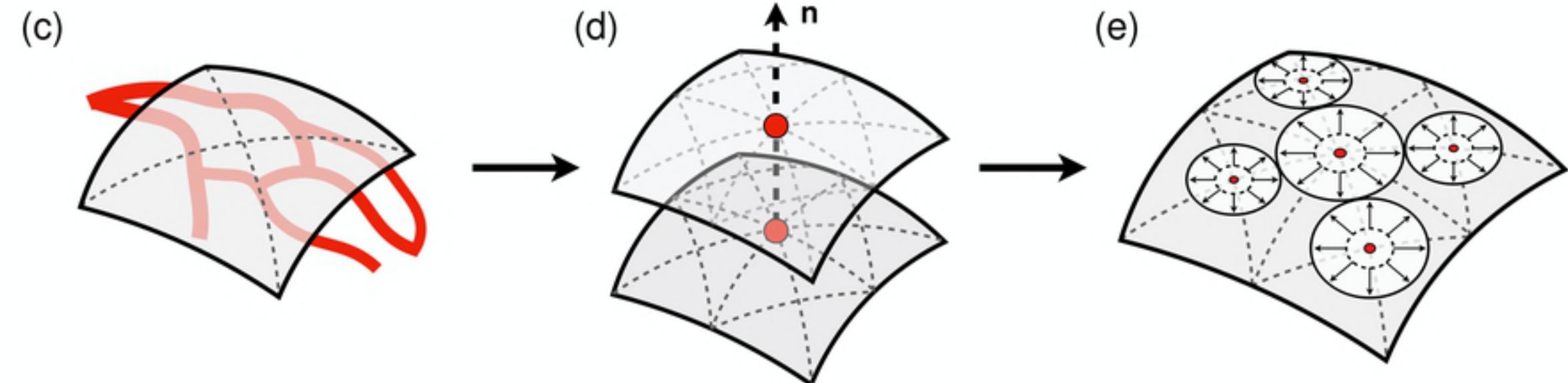


Fig2

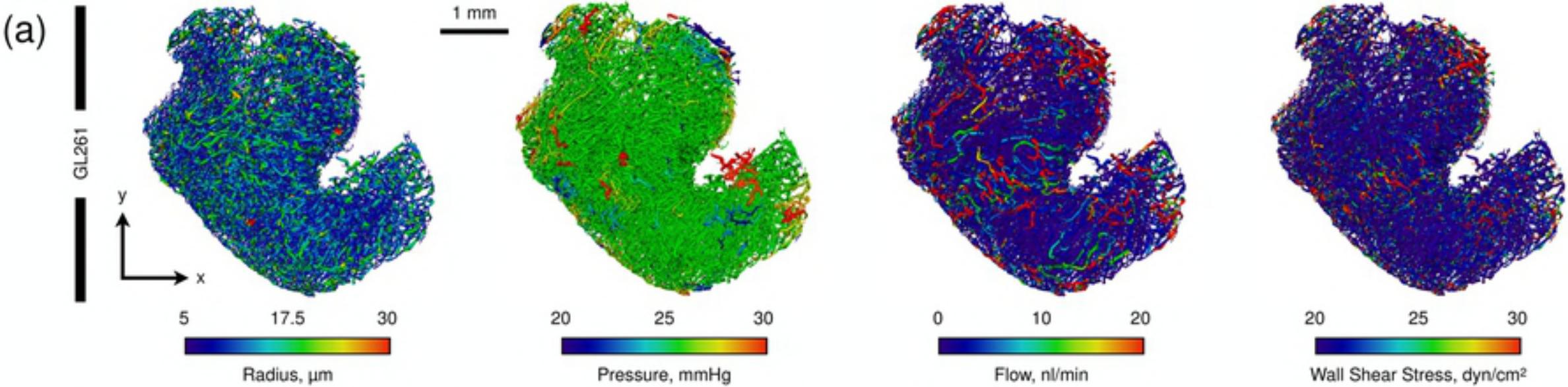
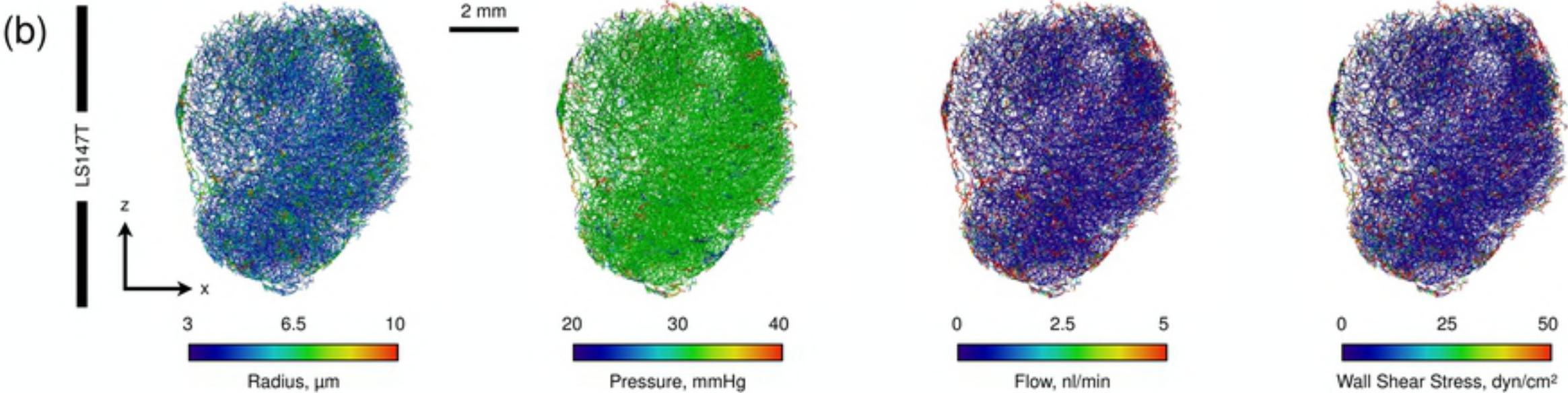
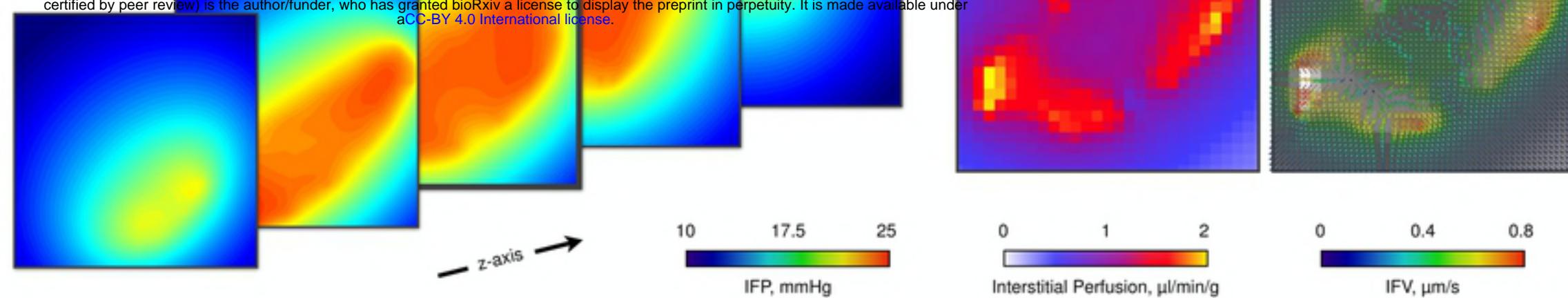


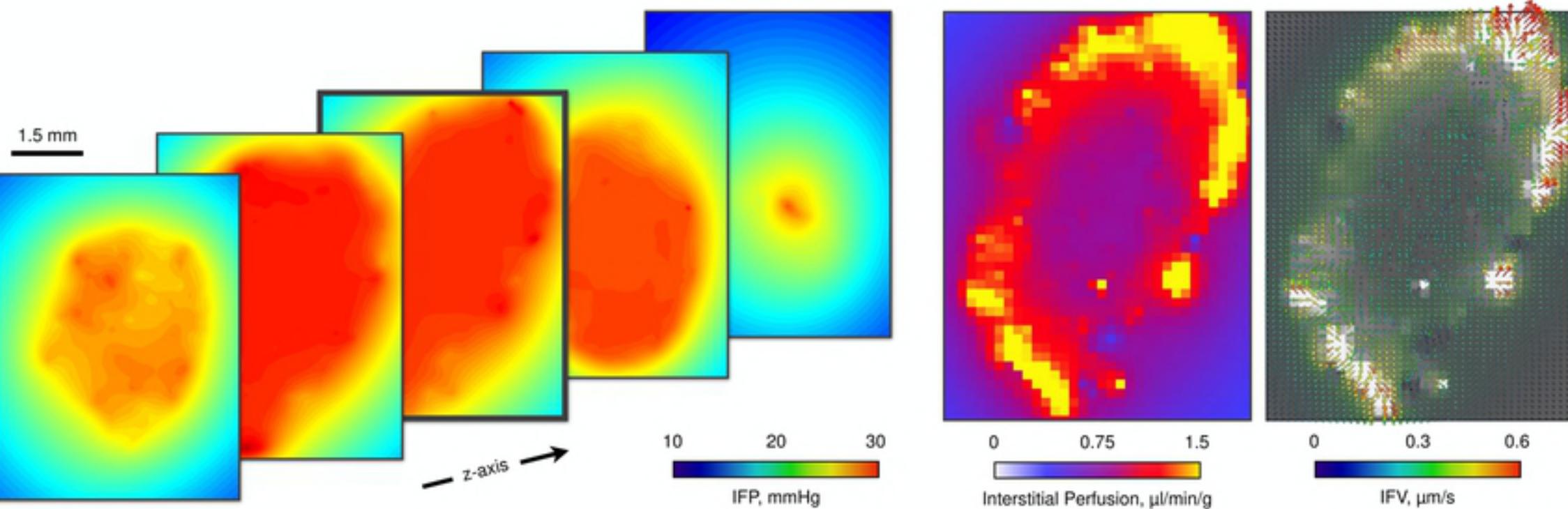
Fig3

(a)

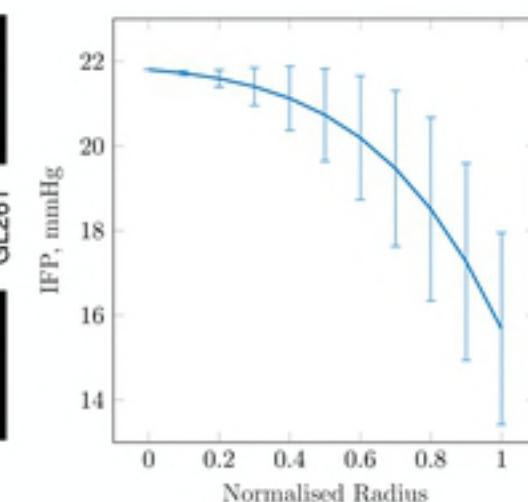
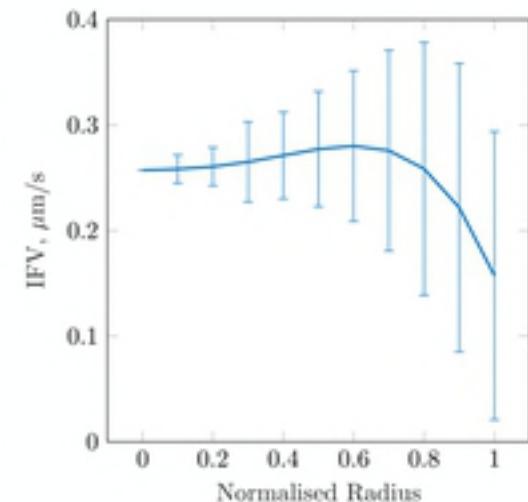
1 mm
bioRxiv preprint doi: <https://doi.org/10.1101/512236>; this version posted January 4, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.



(b)



(c)



(d)

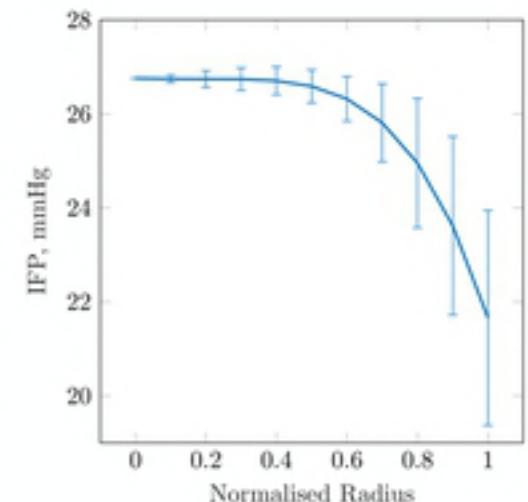
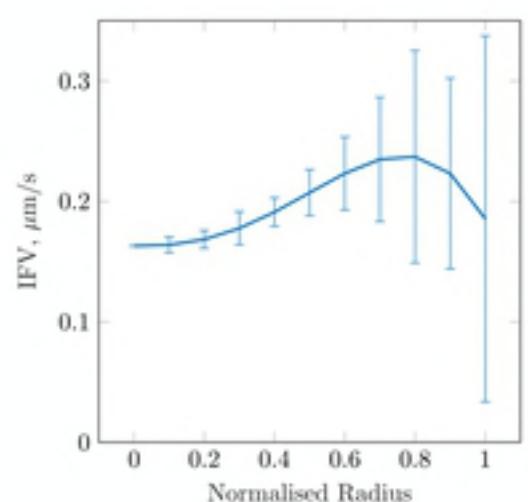


Fig4

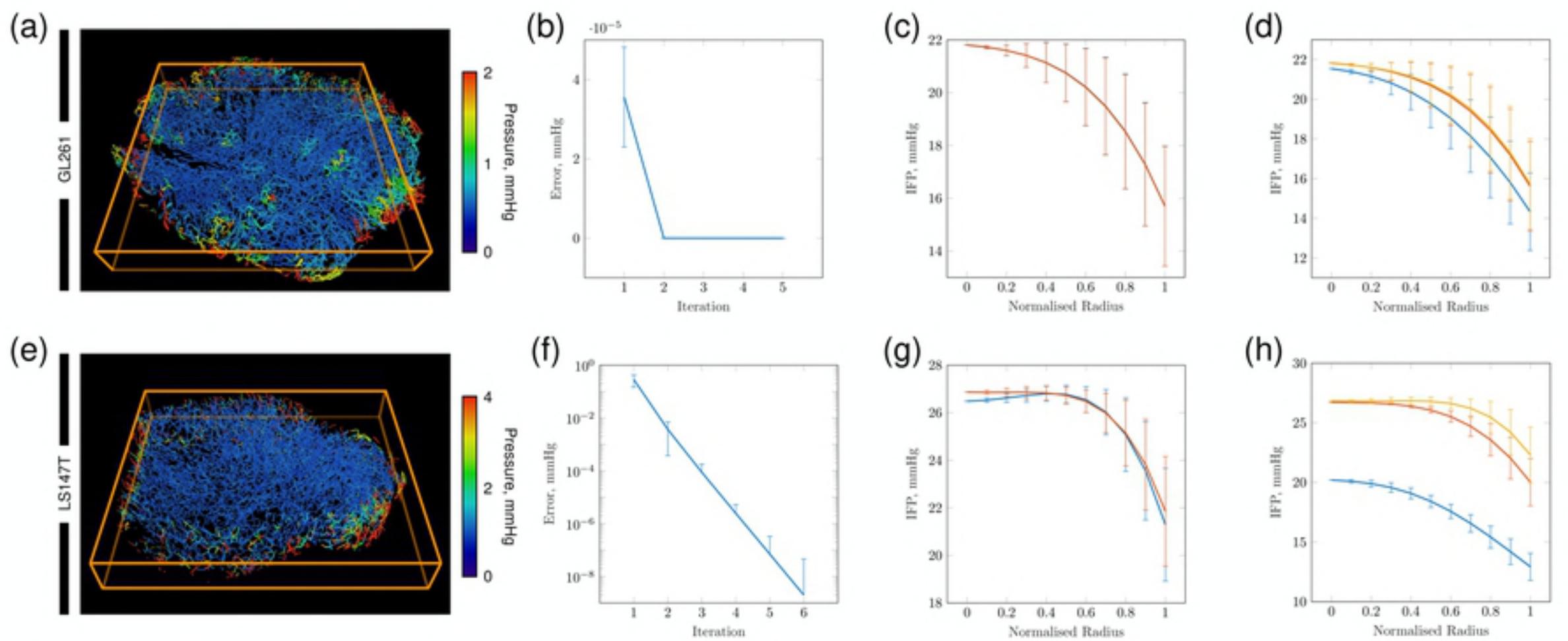


Fig5

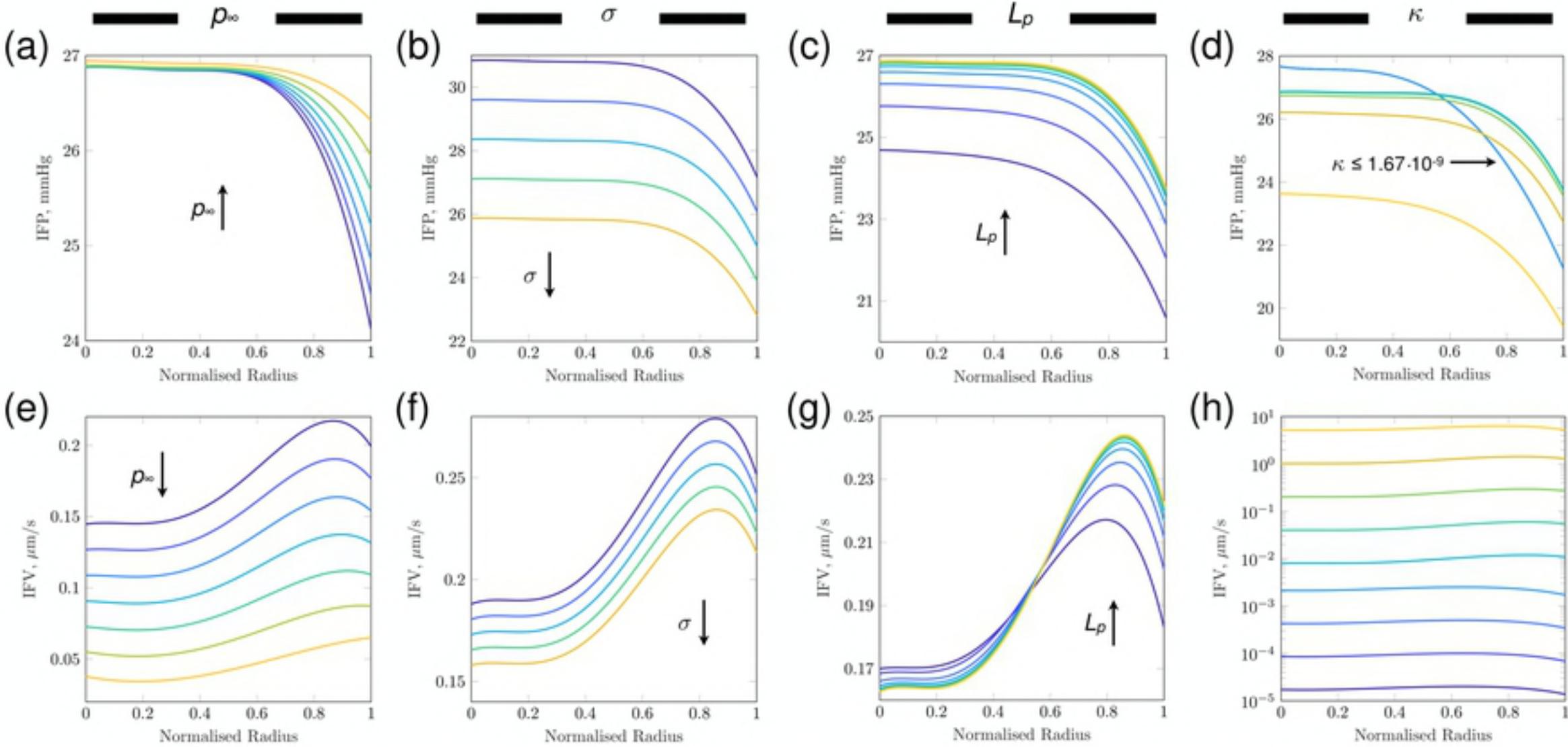
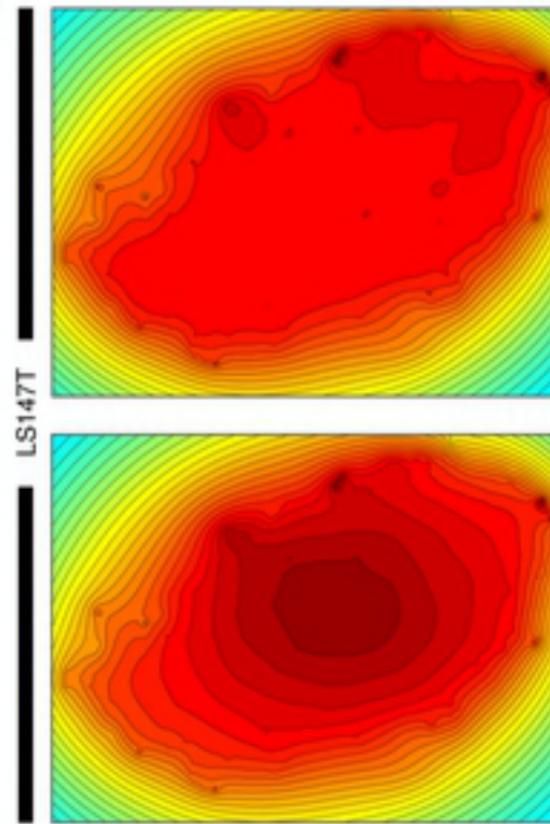
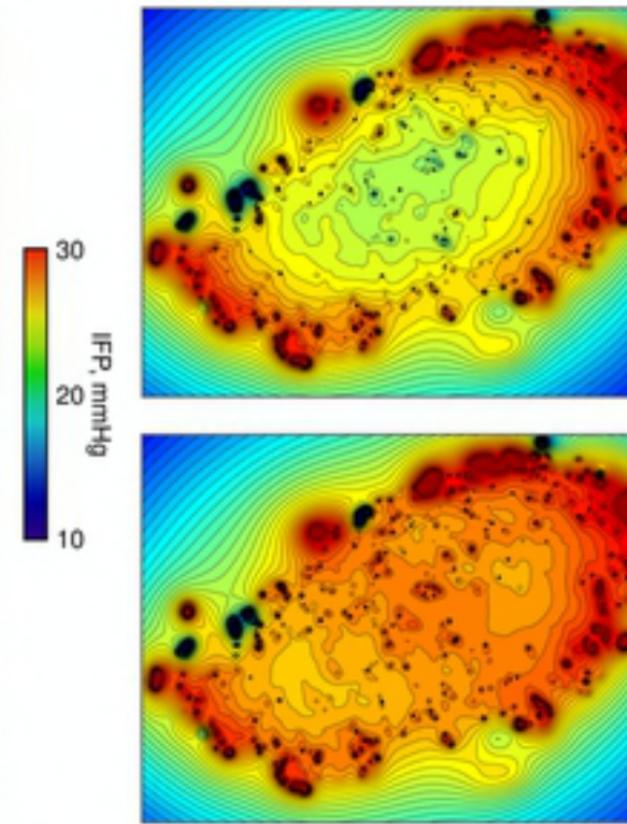


Fig6

(a)



(b)

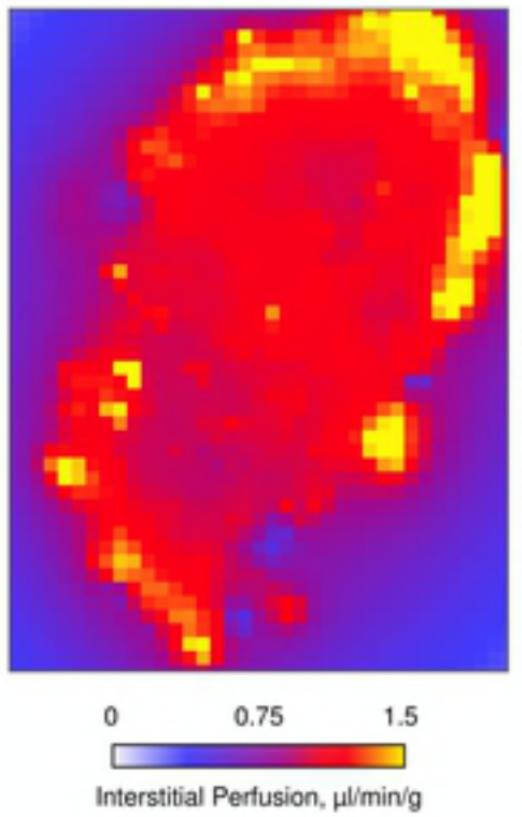
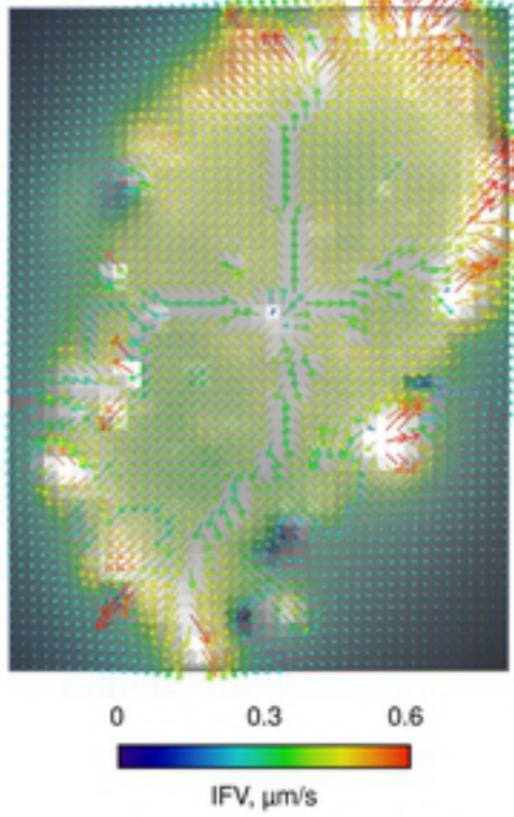


Fig7