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Abstract

It is critically important to understand and predict fluid transport within both

physiological and pathological tissues in order to develop effective treatment strategies.

Recent advances in high-resolution optical imaging allow the acquisition of whole

tumour vascular networks which can be used to parameterise computational models to

predict the fluid dynamics at all length scales across the tissue. This enables hypothesis

testing around the role of the tumour microenvironment in determining transport

characteristics, which would otherwise be unavailable using traditional experiments.

In this study, we present a novel computational framework for the efficient

simulation of vascular blood flow and interstitial fluid transport based on complete

three-dimensional, whole tumour vasculature obtained using high-resolution optical

imaging. This framework comprises a Poiseuille flow model which simulates vascular

blood flow within the vessel network, coupled via point sources of flux to a porous

medium model describing interstitial fluid transport. We develop a computational

algorithm for prescription of network boundary conditions and validation of tissue-scale

fluid transport against measured in vivo perfusion data acquired using biomedical

imaging tools. We present simulations of the model on orthoptic murine glioma and
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human colorectal carcinoma xenograft data (GL261 and LS147T, respectively), and

perform sensitivity analysis on key unknown parameters relating to the tissue

microenvironment, to understand their impact in predicting vascular and interstitial

flow. Finally, we simulate radially varying vascular normalisation in a LS147T tumour

and hypothesise that uniform normalisation is required to lower tumour interstitial fluid

pressure.

Our computational framework permits predictions of whole tumour fluid dynamics

which incorporate the inherent architectural heterogeneities appearing at the

micron-scale, and outputs three-dimensional spatial maps detailing these flow properties

from micro to macro length scales. This provides vital information on the tumour

microenvironment which could enable the design and delivery of future anti-cancer

therapies.

Author summary

The structure of tumours varies widely, with dense and chaotically-formed networks of

blood vessels that differ between each individual tumour and even between different

regions of the same tumour. This atypical environment can inhibit the delivery of

anti-cancer therapies. Computational tools are urgently required which incorporate

micron-scale tumour biomechanics to predict tissue-scale fluid dynamics, and

consequently the efficacy of cancer therapies.

We have developed a computational framework which integrates the complex tumour

vascular architecture to predict fluid transport across all lengths scales in whole tumours.

This enables computationally efficient hypothesis testing of cancer therapies which

manipulate the tumour microenvironment in order to improve drug delivery to tumours.

Introduction 1

Architectural heterogeneities in cancerous tissue limit the delivery of anti-cancer drugs 2

by inhibiting their ability to circumnavigate the entire tumour to all cancerous cells [1]. 3

In solid tumours, drug penetration to the tumour core is hindered by physiological 4

barriers which can limit the delivery of targeted agents, with penetration exacerbated 5

December 24, 2018 2/36

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 4, 2019. ; https://doi.org/10.1101/512236doi: bioRxiv preprint 

https://doi.org/10.1101/512236
http://creativecommons.org/licenses/by/4.0/


by the size of the agent [1–5]. Consequently, preclinical tools which provide a better 6

understanding of therapy interactions within the tumour microenvironment are urgently 7

required in order to increase treatment efficacy. In silico modelling is one such tool 8

which can meet this need by testing novel therapeutic strategies at a much faster rate 9

and much cheaper cost than preclinical experimentation [6]. 10

For a systemically-administered agent to effectively target diseased tissue, it must 11

travel from the site of injection to the site of disease, whilst minimally interacting with 12

normal tissues and not degrading [7]. This is difficult to achieve in tumours since 13

atypical endothelial proliferation of tumour vasculature leads to spatial variations in 14

vascular density and branching patterns, distorted and enlarged vessels, and a highly 15

convoluted network topology [8–10]. Further, vascular permeability is heightened and 16

heterogeneous and so these immature blood vessels are generally leakier than those in 17

normal tissue [3, 11]. 18

The irregular microenivronment is typically characterised by hypoxia, acidosis and 19

elevated interstitial fluid pressure (IFP) [12–14], which drive both tumour vascular 20

proliferation and resistance to therapy [15]. Here, drug delivery may be hindered by the 21

atypical nature of the tumour interstitium. The extracellular matrix (ECM) consists of 22

a cross-linked dense network of collagen and elastin fibres, far denser than usually seen 23

in normal tissue [16]. A denser matrix can result in reduced delivery of oxygen and 24

nutrients, as well as providing significant resistance to the advection and diffusion of 25

therapeutic particles [1], since key determinants of intratumoural fluid and mass 26

delivery include tissue hydraulic conductivity and vascular compliance [17]. Several 27

therapeutic interventions have sought to limit the effects of these physical barriers by 28

manipulating the microenvironment to enhance the delivery of macromolecular 29

agents [16,18]. For example, normalising the tumour vasculature to reduce vessel 30

permeability thereby increasing drug penetration [12]; and manipulating the connective 31

tissue, and therefore interstitial hydraulic conductivity, using a platelet-derived growth 32

factor (PDGF) antagonist to reduce tumour IFP [19]. 33

Heterogeneities in the underlying morphology of tumours, such as vessel diameters 34

and lengths, and inter-branch distance, exist across individual tumours and tumour 35

cell-lines [20]. These variations in tumour architecture lead to spatial variability in drug 36

efficacy, which complicate efforts to design effective treatment strategies [7]. 37
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Experimental efforts have been made to understand the effects of tumour heterogeneity 38

on fluid interactions across tumours, for example, wick-in-needle has been used to 39

measure IFP across tumours [21–23]. However, this method disturbs the local 40

microenvironment and only provides IFP measurement at individual locations. 41

Non-invasive methods have also been developed to estimate tumour IFP [24,25]. For 42

example, convection-MRI, which, with further validation, presents an opportunity to 43

measure low-velocity flow in tumours, and to assess therapeutic response [26]. However, 44

these methods fail to capture full spatial maps of flow at the micron-scale which are 45

crucial to understanding how the combined intra- and extravascular spatial flow 46

heterogeneities occurring at the scale of blood vessels affects the macro-scale flow 47

dynamics and consequent delivery of drugs within a solid tumour. Biomedical imaging 48

complemented by in silico methods provides scope to provide such detail. 49

Mathematical models have been used to investigate the tumour microenvironment 50

and have provided detailed insights which may otherwise be unavailable experimentally. 51

Seminal models have indicated that a leaky tumour vasculature induces elevated IFP, 52

reduced fluid penetration into the interstitium [14,27], and a non-uniform distribution 53

of drug delivered to solid tumours [2,3,11]. Further, they have defined conventional IFP 54

profiles in tumours - a uniform pressure at the core, with a large decreasing gradient 55

towards the periphery. However, these models generally average over the tumour 56

vasculature and so fail to capture the micron-scale flow dynamics; and they assign a 57

fixed pressure boundary condition on the periphery of the tumour which may artificial 58

induce these conventional IFP profiles. Subsequent studies have incorporated the 59

spatially heterogeneous effects of tumour vasculature using computer-generated 60

synthetic networks which retain key features of tumour vascular architecture [28–34], or 61

by integrating spatial variations in vascular permeability parametrised against in vivo 62

experimentation [35,36]. However, to date, in silico models have lacked realistic, 63

high-resolution data on whole tumour vascular architecture to both parametrise and 64

validate computational models [6]. 65

Recent advances in ex vivo optical imaging of cleared tissue specimens have enabled 66

large samples (up to 2 cm3 with > 105 blood vessels) to be imaged in three-dimensions, 67

at resolutions down to a few microns [37]. We have developed a platform called 68

REANIMATE (REAlistic Numerical Image-based Modelling of biologicAL Tissue 69
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substratEs) which combines optical imaging of cleared tissue with mathematical 70

modelling and in vivo imaging, within a unified framework, to generate quantitative, 71

testable predictions regarding tumour transport [38]. The platform uses high-resolution 72

imaging data from large, intact, optically-cleared tissue samples to make in silico 73

predictions of blood flow, vascular exchange and interstitial transport. REANIMATE 74

enables new hypotheses to be generated and tested in a manner that would be 75

challenging or impossible in a conventional experimental setting. As a proof-of-principle, 76

we have previously used REANIMATE to explore the impact of vascular network 77

topology on fluid and therapy delivery, focusing on delivery of a vascular disrupting 78

agent (Oxi4503) to two colorectal cell-lines (LS147T and SW1222) [38]. 79

A vital component of REANIMATE is the simulation of fluid transport across 80

cancerous tissue. We developed a computational model to efficiently simulate both 81

intra- and extravascular fluid transport across large, discrete microvascular networks. 82

Our model simulates Poiseuille flow through the vasculature using the optimisation 83

scheme of Fry et al. [39], parametrised and validated against in vivo ASL-MRI data [38]. 84

Following a similar Green’s function method for oxygen transport [40], the vascular 85

component is coupled, via a discrete set of point sources of flux, to a Darcy model 86

which simulates the effective fluid transport in the porous interstitium. A linear system 87

is formed whereby only the source strengths need to be resolved, making it more 88

computationally efficient compared to finite difference or element methods which 89

require a spatial, numerically-discretised mesh [40]. 90

In this study, we present this model in detail along with a description of its 91

application to whole tumour vascular networks. We apply our model to an orthotopic 92

murine glioma and a human colorectal carcinoma xenograft from the GL261 and LS147T 93

cell-lines, respectively, and reproduce physiological conditions observed in literature. We 94

then perform sensitivity analysis to the model parameters associated with transvascular 95

fluid delivery, such as vascular hydraulic conductance and interstitial hydraulic 96

conductivity, to explore the impact on the tumour IFP and IFV profiles. Subsequently, 97

we present preliminary predictions of vascular normalisation to an LS147T network. 98

These results present an example of how our mathematical model can be used to 99

simulate the heterogeneous pharmacokinetics of drug therapies designed to alter the 100

properties of the tumour microenvironment, and provide three-dimensional spatial maps 101
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detailing changes in flow characteristics which indicate the efficacy of such treatments. 102

Materials and methods 103

Acquisition and Processing of Real-world Tumour Datasets 104

Orthotopic murine gliomas and human colorectal carcinoma xenograft from the GL261 105

and LS147T cell-lines (n = 6 for each), respectively, were grown subcutaneously in 106

8− 10 week old, female mice. Following 10 to 14 days of growth, in vivo ASL-MRI was 107

performed on a subset of GL261 and LS147T tumours, from which a mean tumour 108

perfusion of 130± 50 and 19± 8 ml/min/100g was measured [38], respectively. 109

Following perfuse-fixation, tumours were harvested, optically cleared and imaged using 110

OPT (Bioptonics, MRC Technologies, Edinburgh). All experiments were performed in 111

accordance with the UK Home Office Animals Scientific Procedures Act 1986 and UK 112

National Cancer Research Institute (NCRI) guidelines [41]. Full details of the 113

experimental protocol is provided in d’Esposito et al. [38]. 114

Whole-tumour blood vessels networks were segmented from the OPT data for both 115

tumour types. A combination of three-dimensional Gaussian and Frangi filters were 116

applied to the data to enhance vessel-like structures allowing for the segmentation of the 117

blood vessels from the background (see Fig 1 a). Skeletonisation of these thresholded 118

data was performed in Amira (Thermo Fisher Scientific, Hillsboro, OR), which also 119

converted the data into graph format (interconnected network of nodes and segments 120

with associated radii - see Fig 1 b). To ensure that vessel structures were accurately 121

represented, three-dimensional networks were visually inspected against two-dimensional 122

imaging slices for an accurate representation of vessel location and thickness. Full details 123

of the validation can be found in the Supplementary Material of d’Esposito et al. [38]. 124

In this study a GL261 and a LS147T tumour network were chosen from the 125

d’Esposito et al. [38] datasets for in silico development and testing. Vessel diameters 126

ranged from 17.9± 9.3 and 8.9± 2.8 µm, with branching lengths of 68.7± 48.3 and 127

88.8± 49.4 µm, respectively (see Table 1 and Fig 3). Vessel branching angles, 128

inter-vessel distance, radii and tortuosity measures were consistent with data from 129

previous studies that extracted vascular architectures using different methods [20,38]. 130
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Table 1. Tumour vascular network statistics.

GL261 LS147T Units

No. of Segments 121,212 76,378 -
No. of Nodes 110,062 60,177 -
No. of Boundary Nodes 8,660 15,783 -
Mean Vessel Diameter 17.9± 9.3 8.9± 2.8 µm
Mean Branching Vessel Length 68.7± 48.3 88.8± 49.4 µm

Tissue Dimensions 4.3× 4.1× 4.6 6.9× 5.2× 8.2 mm3

Vascular Density 5.07 0.37 %

Segmented network data on the segmented murine orthotopic glioma, GL261, and the
human colorectal xenograft, LS147T, vasculature. See Fig 3 for visualisations of both
networks.

Computational Model 131

Our computational framework is compartmentalised into two models. The first predicts 132

blood flow through the tumour vasculature and the second predicts interstitial fluid flow 133

throughout the cancerous tissue through use of Green’s functions. Our method enables 134

application to whole, large vascular networks (> 2 cm3 with > 105 blood vessels), 135

thereby permitting predictions of whole tumour fluid dynamics which incorporate the 136

inherent architectural heterogeneities occurring at the micron-scale. 137

The intravascular component incorporates the model of Pries et al. [42] to simulate 138

vascular blood flow, where the structural properties of the segmented tumour networks 139

and haemodynamic parameters are used as inputs. Flow or pressure boundary 140

conditions at all terminal nodes in the vascular network are required to predict blood 141

flow throughout the network. These boundary data are very challenging to measure in 142

vivo, so we deploy the flow estimation algorithm of Fry et al. [39], to estimate boundary 143

data based on the assumption that the microcirculation is regulated in response to 144

haemodynamics stimuli relating to flow and shear stresses [43]. The scheme estimates 145

unknown boundary conditions by minimising the squared deviation from specified 146

target network wall shear stresses and pressures values derived from independent 147

information about typical network haemodynamic properties. In essence, the algorithm 148

removes the need to define conditions at all boundary nodes, to one where simulation 149

sensitivity is weighted towards the definition of these two target parameters. This 150

enables physiologically realistic blood pressure and flow distributions to be estimated 151

across an entire vascular network and has been applied to breast tumour [44], colorectal 152
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tumours [38], cortex [45], glioma [38] and skeletal muscle [46]. 153

The second component to our computational model describes fluid transport 154

through the porous interstitium using a Darcy model, coupled to the vascular flow 155

solution via Starling’s law which describes fluid transport across the endothelium. The 156

vasculature is represented by a discrete set of points sources of flux where the source 157

strengths are defined by the vascular blood flow solution. A similar approach has been 158

applied to simulate O2 transport across various tissues [40,45,47]. Our approach 159

enables us to explore the effect of vascular architecture heterogeneity on fluid transport 160

within the interstitium for large-scale vascular networks. 161

The following sections detail the mathematics behind our model along with its 162

computational implementation for large vascular networks. We detail the assignment of 163

model parameters and boundary conditions for application of our model to tumour 164

networks. 165

Vascular Blood Flow 166

The segmented tumour networks consist of a series of vessel segments connected by 167

nodal junctions or, in the case of boundary nodes, one-segment nodes which form a 168

boundary to the microvascular network (see Fig 1 b). We define a positive flow 169

direction from the start node to end node of each vessel segment. Under the assumption 170

of Poiseuille flow and conserving flow at blood vessel junctions, the relationship between 171

nodal pressures, pk and the boundary boundary fluxes Q0i is given by 172

∑
k∈N

Kikpk = −Q0i for i ∈ I ∪B, (1)

where N is the set of all nodes, I is the set of all interior nodes and B is the set of all 173

boundary nodes with known boundary conditions. For all interior nodes, conservation of 174

flux at vessel junctions dictates that Q0i = 0, however, if i is a known boundary node, 175

Q0i is the inflow (or outflow if negative). 176

Following the notation of Fry et al. [39], the matrix Kik represents network 177

conductance 178

Kik =
∑
j∈S

LijMjk, (2)
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where S is the set of all segments, 179

Lij =


−1, if i is the start node of segment j,

+1, if i is the end node of segment j,

0, otherwise,

(3)

and 180

Mjk =


+πd4j/ (128µj lj) , if k is the start node of segment j,

−πd4j/ (128µj lj) , if k is the end node of segment j,

0, otherwise,

(4)

is the matrix of vessel conductances where lj , dj and µj denote the length, diameter 181

and effective blood viscosity of segment j, respectively. 182

We apply empirical in vivo blood viscosity laws, which prescribe the effective blood 183

viscosity as a function of vessel diameter and haematocrit, to compute µj and 184

consequently incorporate non-Newtonian effects in each individual microvessel [48]. 185

Network haematocrit heterogeneity plays an important part in network flow resistance. 186

However, in this study, we set network haematocrit to 0.45 as we do not have sufficient 187

data to parametrise a haematocrit model at this scale. With future availability of 188

appropriate data, the model has the flexibility to incorporate haematocrit 189

heterogeneity [49]. 190

In the absence of measured flow and pressure data at network boundaries, further 191

assumptions are required to obtain a unique solution. The method proposed by Fry et 192

al. [39] sought to solve a constrained optimisation problem, formulated in terms of a 193

Lagrangian objective function defined by 194

L =
1

2
kp
∑
k∈N

wk(pk − p0k)2+
1

2
kτ
∑
j∈S

`j(τj − τ0j)2

+
∑
i∈I∪B

λi

(∑
k∈N

Kikpk +Q0i

)
.

(5)

Here, p0k is the target pressure at node k, τj is the wall shear stress in segment j, τ0j is 195

the corresponding target shear stress, kp and kτ are weighting factors associated with 196

the pressure and shear deviations from the target values, λi is the Lagrange multiplier 197

associated with node i and wk is the vessel length associated with node k. Setting 198
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dL/dpi = 0 and combing with (1) yields a sparse linear system with unknowns pk and 199

λi. Assigning a pressure drop to a proportion of boundary nodes forms a well-posed 200

system which can be solved using standard methods [39]. 201

The blood flow estimation model by Fry et al. [39] has been thoroughly tested using 202

mesenteric networks [50] in which blood flow measurements were taken in individual 203

vessels and used to inform parameter estimation [39,42,48,51].

Fig 1. (a) An example of an SW1222 tumour vascular network enhanced using Frangi filters and extracted from
the tumour image stack generated by OPT. (b) The skeletonised vasculature is then segmented into a series of
interconnected nodes and vessel segments with known diameters, di and lengths, li, for i = 1, 2, 3. (c) A schematic
of sensitivity analysis performed on the source parameters: 1) updating intravascular pressure pi,b for iterations i
where p0,b is the initial network pressure distribution approximated by the flow estimation algorithm; 2) the
spacing λi between sources distribution across a branching vessel; and 3) the size of the source radius, r0. (d) A
flow diagram of the computational framework. In vivo imaging is performed on vascularised tissue to obtain
perfusion data (and literature values of vascular pressures when available) which are used to parameterise and
validate the framework. Ex vivo imaging is performed on equivalent tissue samples to obtain data on the vascular
architecture, including coordinates, vessel diameters and lengths, which are then used to parameterise the vascular
flow model. Boundary conditions are assigned (see Fig 2 a and b) and network intravascular blood pressure is
solved. Fluid sources of flux are distributed across the vasculature and assigned a radius equal to its corresponding
vessel radius. Interstitial flow parameters are assigned and the model is coupled to the vascular flow compartment
via Starling’s Law. Solved source strengths are used to update Starling’s law. This iterative scheme is terminated
once predefined tolerances are reached.

204

Interstitial Fluid Transport 205

Darcy’s law has been effectively used to describe the passage of fluids [3,14,30–33,52] or 206

solutes [40,45] through tissues. In this study, we use Darcy’s law to describe the 207

relationship between the volume-averaged IFP, p, and interstitial fluid velocity (IFV), u, 208

within the porous interstitial domain: 209

u = −κ∇p, (6)

where κ is the hydraulic conductivity of the interstitial tissue. Here we assume that 210

interstitial pressure tends towards a constant value, p∞, in the far-field region, 211

p→ p∞ as |x| → ∞. (7)

Tumours are leaky due to large pores along a vessel’s lumen, and so the vasculature 212

exhibits a strong fluid and oncotic interaction. Following the approach of Baxter and 213
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Jain [3] and subsequent studies [53,54], we used Starling’s law to describe fluid 214

transport across the endothelium: 215

Jv = LpS (∆p− σ∆Π) , (8)

where Jv and Lp is the fluid flux across and the hydraulic conductance of the vessel 216

wall, respectively, S is the surface area of the vasculature, σ is the oncotic reflection 217

coefficient and, ∆p and ∆Π are the fluid and oncotic pressure gradients between the 218

vasculature and tissue. 219

The tumour vascular architecture is used to spatially parametrise the locations of a 220

discrete set of sources of flux into the interstitial domain. Assuming these sources both 221

supply or drain the interstitium, conservation of mass yields 222

∇ · u = −κ∇2p =
∑
j

φj(x)δ(x− xj), (9)

where xj and φj are the spatial coordinates and strength, respectively, of point source j, 223

and δ(x− xj) is the delta function. The term φj(x)δ(x− xj) represents a point source 224

of fluid flux from the vasculature to the surrounding interstitial domain. 225

Applying the substitution p̄ = p− p∞, the Green’s function, G(x,x∗), for the adjoint

problem for p̄ is given by

−κ∇2G = δ(x− x∗), (10a)

G→ 0 as |x| → ∞. (10b)

For source a given source, we distribute the delta function over a sphere of finite 226

radius, r0. This allows the corresponding Green’s function to be described as a radially 227

symmetric function: 228

G(r) =


1

8πκr0

[
3−

(
r

r0

)2
]
, if r ≤ r0,

1

4πκr
, if r > r0.

(11)

We distribute a total of Ns sources across the vasculature with spacing λi, and 229

December 24, 2018 11/36

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 4, 2019. ; https://doi.org/10.1101/512236doi: bioRxiv preprint 

https://doi.org/10.1101/512236
http://creativecommons.org/licenses/by/4.0/


assign a source radii, r0i, equal to the corresponding blood vessel radius (see Fig 1 c). 230

Using Green’s superposition principle for linear operators, the convolution of G provides 231

the corresponding pressure solution for source i ∈ Ns and so 232

pi = p∞ +

NS∑
j=1

Gijq
s
j for i ∈ Ns, (12)

where qsj is the vector of source strengths. Here, Gij is the Green’s function associated 233

with (10) and defined by 234

Gij =


1

8πκir0i

[
3−

(
rij
r0i

)2
]
, if rij ≤ r0i,

1

4πκirij
, if rij > r0i,

(13)

where rij is the distance between sources, defined as rij = |xi − xj |, and κi is the 235

interstitial hydraulic conductivity at the location of source i. 236

From (6), the Green’s function, Gij , can be used to calculate the volume-averaged 237

IFV, given by 238

u = −κ
∑
j

∇Gijqsj , (14)

where 239

∇Gij =
dGij
dr

=


− r

4πκir30i
, if r ≤ r0i,

− 1

4πκir2ij
, if r > r0i.

(15)

Starling’s law, (8), can be rearranged into the form 240

pv,i = pb,i −KiJv,i − σ(Πb,i −Πv,i) for i ∈ Ns, (16)

where pv,i (calculated by (12)) and Πv,i are the blood and oncotic plasma pressure at 241

the vessel wall, pb,i (calculated by (5)) and Πb,i are the vascular blood pressure at 242

source i, in the absence of diffusive interstitial fluid transfer, and oncotic fluid pressure, 243

and Jv,i is the rate of fluid flow per unit volume from blood vessel i to the interstitium. 244

The intravascular resistance to fluid transport across blood vessel i, is defined by 245

Ki =
1

Lp,iSi
, (17)
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where Si and Lp,i is the surface area and vascular conductance of vessel i, respectively. 246

Integrating over the volume of vessel i and assuming flux at the interface is 247

continuous, flux at the interface is defined by 248

Jv,i = −2πκirv,ili

Ns∑
j=1

∇Gijqsj , (18)

where rv,i is the vessel radius and li is the length of vessel i. 249

Equations (12), (16) and (18) are then combined to give a set of Ns equations to be 250

solved for the source fluxes qsj , 251

Ns∑
j=1

(
Gij −

κi
Lp,i
∇Gij

)
qsj = pb,i − p∞ − σ(Πb,i −Πv,i). (19)

Prescribing parameter values (see Table 2), the resulting solutions for qsj can be solved 252

and used to update vascular pressures, pi,b, using Starling’s law, (8), in the absence of 253

an oncotic pressure gradient (i.e. ∆Π = 0), and (18). Here, for iteration k + 1, pi,b is set 254

equal to the IFP at wall of blood vessel i, pi,v, calculated on iteration k. This iterative 255

system is repeated by updating qsj values until tolerances are reached (O(10−3) µl/min), 256

subsequently, tissue IFP and IFV fields can be computed using (12) and (14), 257

respectively (see Fig 1 d). 258

In effect, our computational framework enables a detailed, quantitative assessment of 259

blood and interstitial flow for tissues, both healthy and pathological, where their entire 260

vascular networks are characterised, by encapsulating the flow of fluid between the 261

vascular and interstitial domains. Similar to a Green’s function model for O2 262

transport [40], our model does not require the imposition of explicit boundary 263

conditions on the outer surface of the tissue domain, with the only unknowns to the 264

system being the strength of the set of fluid sources and sinks. As such, when compared 265

to finite difference or element methods, our approach minimises boundary condition 266

artefacts and saves on computational expense as the solutions to the entire mesh are not 267

required. An outline of the interaction between the biomedical imaging, and vascular 268

and interstitial flow compartments is given in Fig 1 d. 269

The computational framework was coded using C++ [55] and run on a Apple Mac 270

Pro, with 2× 3.06 GHz 6-Core Intel Xeon processor and 64 GB of RAM. The system 271
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(19) was used solved using a biconjugate gradient method [56] and implemented using 272

the Armadillo sparse linear algebra library [57]. 273

Implementation of Computational Model on Whole Tumour 274

Microvascular Networks 275

It remains practically infeasible to measure vascular flows and pressures in individual 276

microvessels in vivo, which necessitates a pragmatic approach to boundary condition 277

assignment. Under the assumption that vessels along the tumour surface are connected 278

to peritumoural vessels [44,58], we developed an optimisation procedure which assigns 279

vascular pressures to tumour surface vessels, based on a target pressure drop, with 280

iterative adjustments to match in vivo measurements of mean perfusion from ASL-MRI 281

(see Fig 2 a, b). These in vivo data are acquired for the same tumours that were 282

subsequently subjected to OPT analysis. Using this approach, we are able to ensure 283

good agreement between in silico predictions and measured perfusion data [38]. 284

In this study a vascular pressure of 30 or 20 mmHg for the GL261 and 45 or 15 285

mmHg for the LS147T tumour was randomly assigned to 5% of surface boundary nodes, 286

in order to meet the required tissue perfusion. To ensure randomness, the peritumoural 287

nodes were represented by a list. The elements in the list were rearranged randomly 288

using a uniform random number generator where the system clock was used to seed the 289

random number engine. The nodes located in the top 5% of the list were then randomly 290

assigned a low or high pressure use an equivalent randomised approach.

Fig 2. (a, b) The optimisation scheme used to assign boundary conditions to the tumour networks. (a) The
process to simulate physiological tissue perfusion. (b) The flowchart for the subroutine “Assign Pressure
Conditions” given in (a). (c) Perfusion through a tumour is calculated by generating a convex hull across the
surface of the tumour to accurately extract tumour volume. (d) Discretising the hull into a finer mesh and
calculating IFP at coupled points across, and normal, to the tumour hull. (e) A sphere packing algorithm is then
applied to the points on the tumour surface with inflow averaged across the great circles of each sphere, enabling
an approximation of perfusion.

291

During preliminary simulations it was found that if high/low pressures were 292

prescribed in close local proximity to each other, unphysiological flows were predicted 293

due to the steep local vascular pressure gradient. In order to prevent this, a subroutine 294

was designed so that values at opposing ends of the pressure spectrum could not be 295

located within a defined vicinity of each other. This “exclusion region”, centred on a 296
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given boundary node, was defined as an ellipsoid volume with diameters, along its three 297

principal axes, equal to 5% of the tissue dimensions. 298

A proportion of boundary nodes are contained within the tumour volume as a 299

consequence of either angiogenesis which form blind-end vessels, or artefacts of OPT. 300

Previous studies approximated the fraction of blind-end vessels in sample MCa–IV 301

carcinomas to be 33% [59]. However, blind-end information is not available for either 302

GL261 or LS147T tumours. Therefore, consistent with previous computational 303

studies [44], blind-ends were randomly applied to 33% of remaining boundary nodes 304

(using the previous randomised approach), with the remaining 62% of boundary nodes 305

left as unknown in the flow optimisation scheme of Fry et al. [39].

Table 2. Fluid Transport Parameters

Parameter Description Value Units Reference

p∞ Far-field interstitial fluid pressure 0 mmHg -

κ Interstitial hydraulic conductivity 1.7 · 10−7 cm2 mmHg–1 s–1 [17]

Lp Vascular hydraulic conductance 2.8 · 10−7 cm mmHg–1 s–1 [11]
σ Oncotic reflection coefficient 0.82 - [60]
Πb Oncotic pressure of blood 20 mmHg [61]
Πv Oncotic pressure at the vessel wall 15 mmHg [11,62]
S/V Ratio of vascular surface area to tumour volume

GL261 17.3 cm–1 Calculated.

LS147T 15.3 cm–1 Calculated.
Assigned baseline parameters for the interstitial component of the fluid transport model. Note, S was calculated using the
architectural data of the vasculature and V based on computing the convex hull of the tumour.

306

Application of our boundary assignment method requires us to accurately compute 307

mean perfusion across the tumours for a comparison against equivalent experimental 308

data gathered in vivo using ASL-MRI. This requires an accurate definition of the 309

tumour surface and volume to give an accurate approximation of a tumour’s mass and 310

fluid flow into the tumour volume. For example, an overestimation of the tumour mass, 311

assuming a cuboid tissue volume surrounding the tumour, can drastically underestimate 312

tumour perfusion since, in this case, the tumour shapes are approximately ellipsoidal 313

and perfusion is inversely proportional to the tumour mass. Similarly, an overestimation 314

of flow into the tissue would overestimate tissue perfusion. Next we describe: 1) 315

defining the surface of the tumour; 2) computing the IFV vectors across the tumour 316

surface; and 3) approximating the total tissue perfusion. 317

1) The hull of a tumour is calculated using the Matlab (MathWorks Inc., Natick, 318
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MA) ‘boundary ’ function applied to all nodes defined during vascular segmentation (see 319

Fig 2 c). The Matlab ‘fast loop mesh subdivision’ triangulation algorithm is then 320

applied to further discretise the define tumour surface. 2) To approximate tumour 321

perfusion requires us to define a set of normal vectors to the tumour surface to compute 322

pressure gradients. We identify the centre of the tumour and duplicate the hull, which is 323

then expanded to form a 10 µm gap between the two surfaces (see Fig 2 d). IFP is then 324

calculated across all nodal points on each surface, each paired by a vector normal to the 325

opposing surface. A pressure gradient is then computed along each normal vector and 326

the corresponding velocities are calculated. 3) A sphere packing algorithm is applied to 327

the nodes on the original tumour hull, whereby no sphere overlaps neighbouring spheres 328

(see Fig 2 e). Any inflowing node (defined by the corresponding pressure gradient) is 329

averaged across the great circle of its corresponding sphere and its contribution is 330

summed together to calculate the interstitial component of tissue perfusion. Total tissue 331

perfusion is calculated by summing over the peritumoural vascular inlets and interstitial 332

perfusion values. 333

Finally, we prescribe baseline parameter values (see Table 2). We assume that the 334

tumours were isolated in subcutaneous tissue in the absence of lymphatics, therefore the 335

far-field pressure, p∞, was set to 0 mmHg. Due to a lack of experimental data, the 336

vascular conductance and interstitial conductivity, Lp and κ, respectively, were given 337

uniform values based on literature (2.8× 10−7 cm mmHg–1 s–1 and 1.7× 10−7 338

cm2 mmHg–1s–1, respectively [31,63]). As the transport of blood plasma proteins is not 339

modelled explicitly in our model, we assume a constant oncotic pressure gradient of 5 340

mmHg between the vasculature and interstitium. 341

Results 342

In the following section we apply our computational framework to a GL261 orthotopic 343

murine glioma and a LS147T human colorectal carcinoma xenograft to form baseline 344

flow solutions. We then explore sensitivity to source parameters, which include source 345

distribution, source radii and bilateral communication between the vascular and 346

interstitial compartments. We then perform sensitivity analysis to the interstitial 347

parameters (for example, vascular hydraulic conductance and interstitial hydraulic 348
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conductivity) on IFP and IFP profiles in the LS147T tumour. We also provide an 349

example of changes occurred by parameter variation in fluid dynamic spatial maps.

Table 3. Simulated Fluid Transport Statistics

Parameter GL261 LS147T Literature Units

Blood Pressure 25.0± 0.9 30.6± 2.0 10− 80 [64] mmHg

Blood Flow 5.1± 43.4 1.1± 4.7 0− 180 [64] nl min–1

Blood Velocity 0.2± 1.0 0.2± 0.6 1.62± 0.14 [44] mm s–1

Vessel Wall Shear Stress 5.7± 23.2 11.8± 32.6 23.9± 0.7 [44] dyn cm–1

Tissue Perfusion 83.7± 22.3 5.4± 0.3 110± 70†, 19± 8‡ [38] ml min–1 100 g–1

Interstitial Fluid Pressure (IFP) 20.4± 2.1 25.3± 1.6 13.5± 11.3 [62]‡ mmHg

Interstitial Fluid Velocity (IFV) 4.8± 0.5 0.19± 0.09 2.3 [25] µm s–1

Intra- and extravascular baseline fluid transport statistics for the GL261 and LS147T tumours (mean ± standard deviation)
across all simulations and compared against literature values. †: Data gathered from GL261 tumours. ‡: Data gathered from
LS147T tumours.

350

Simulating Interstitial Fluid Pressure in Real-World Cancerous 351

Tissue 352

Our vascular flow simulations are in good agreement with those in 353

computational [44,64] and experimental literature (see Table 3 and Fig 3). To test the 354

variability induced by our stochastic boundary condition implementation, the 355

optimisation procedure (detailed in Fig 2 a, b) was repeated for a total of n = 12 for 356

each tumour. Interstitial fluid flow was then simulated for each separate vascular flow 357

solution, providing us with a baseline set of interstitial flow solutions. Blood flow across 358

all simulations exhibited similar spatial distributions, with perfused vessels mainly 359

restricted to the outer rim of the tumours [65]. The mean standard deviation of vascular 360

blood pressures across all simulations was low with values of 0.82 and 1.53 mmHg (with 361

maxima of 4.78 and 13.2 mmHg) for GL261 and LS147T, respectively (see Fig 5 a, e). 362

The elevated standard deviations in vascular pressure were located at the periphery of 363

the tumours, which is to be expected as the high and low vascular pressures were 364

stochastically assigned here. Furthermore, our mean blood velocity and vessel wall shear 365

stresses agree with similar numerical modelling of vascular blood flow in the 366

MDA-MB-231 breast cancer cell line [44].

Fig 3. Simulated vascular blood flow in (a) GL261 and (b) LS147T tumours. Distributions are shown for vessel
radii, blood pressure, flow and vessel wall shear stress, respectively.

367
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Fig 4. Simulated fluid transport through the interstitium in GL261 and LS147T tumours. (a, b) (Left) Predicted
interstitial fluid pressure (IFP) fields for {X, Y}-planes through the tumours, emulating the traditionally high
pressure in the tumour core but with predicted spatial heterogeneities. (Middle) Simulated interstitial perfusion
maps discretised into ∼ 140 µm2 pixels. Results replicate the traditionally elevated perfusion existing at the
periphery of the tumours. (Right) Interstitial fluid velocity (IFV, overlaid onto greyscale image of interstitial
perfusion) predictions depicting spatial interstitial flow heterogeneities across the entire tumours. Note, perfusion
and interstitial fluid velocity maps are shown for the central slice in the interstitial fluid pressure graphics. (c, d)
Fitted curves with error bars indicating standard deviation for (left) IFP and (right) IFV in (c) GL261 and (d)
LS147T, plotted against normalised radius, corresponding to the simulations shown in (a, b).

Tissue perfusion (calculated as 83.7± 22.3 and 5.4± 0.3 ml/min/100g for the GL261 368

and LS147T tumours, respectively) was further validated by in vivo ASL-MRI 369

measurements of at 110± 70 and 19± 8 ml/min/100g for GL261 and LS147T, 370

respectively. This implies that imposing physiologically realistic pressure boundary 371

conditions generates physiologically realistic perfusion, and consequently accurate drug 372

delivery solutions [38]. 373

No literature IFP values were available for GL261 cell lines, however, our IFP was 374

slightly elevated compared to that previously measured in LS147T in vivo (13.5± 11.3 375

mmHg [62]). Considering the range of IFP both here and in vivo [62] and the good 376

accordance with in vivo perfusion, our results provided us with the confidence that our 377

simulations can produce physiological IFP predictions (see Fig 4). 378

Examining the tumour radial IFP profiles, the LS147T network exhibited similar 379

configurations as observed both experimentally in LS147T [17], in other cell 380

lines [3, 24,25], and in computational studies [31,32,36,63], with elevated IFP at the 381

tumour core (see Fig 4 b, d). In addition, the LS147T network displayed a typical IFV 382

profile radially, with an increasing IFV range towards the tumour surface due to the 383

steeper pressure gradients at the periphery of the tumour. This indicated that bulk fluid 384

filtration occurs at the high flowing vasculature located at the tumour extremity in this 385

network (ρ = 0.41, p < 0.001, where ρ and p are the Pearson’s correlation coefficient 386

and its corresponding p−value between tumour radius and vascular flow, respectively). 387

In comparison, the GL261 network also exhibited a traditional, yet steeper, IFP 388

profile with a wider variance throughout the tumour (see Fig 4 c). The IFV profile 389

exhibited a typical profile increasing from the centre of the tumour to the periphery. 390

However, its IFV peak was reached at ∼ 80% of the tumour radius, with a substantial 391

decline in the latter 20% (see Fig 4 c). 392
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It was observed that GL261 and LS147T have distinct differences in their vascular 393

architecture (see Fig 3 and Table 1). This may indicate that the inherent vascular 394

heterogeneity across tumour cell lines [20] directly impacts the IFP and IFV 395

distributions, creating an unorthodox interstitial flow profile. High IFP has been 396

associated with low vascular density in A-07-GFP tumours [66], however, further work 397

is required to confirm our hypothesis for GL261 and LS147T tumours. 398

Sensitivity of Tumour Interstitial Fluid Transport to Model 399

Parameters 400

Sensitivity analysis allows us to understand the impact of parameter variance on 401

tumour perfusion predictions. In this study, we performed sensitivity analysis to our 402

model’s underlying parameters. For convenience we have split these parameters into two 403

groups. The first we define as source parameters, which include the vascular blood 404

pressure, pb,i, the spacing between each source along a given vessel, λi, and the source 405

radius, r0,i for segment i (see Fig 1 c). The second group we call the interstitial 406

parameters, which include the far-field IFP, p∞, the oncotic reflection coefficient, σ, the 407

hydraulic conductance of a vessel wall, Lp, and the interstitial hydraulic conductivity, κ. 408

In the following, if sensitivity analysis to an interstitial parameter was not being 409

performed, it was set to the corresponding value in Table 2. 410

Source Parameters 411

Vascular pressure depends not only on the vascular pressure at the boundary nodes and 412

vascular network geometry but also on the permeability of the tumour vessels and 413

hydraulic conductivity of the interstitial tissue, as a consequence of flow communication 414

between the vascular and interstitial domains. To incorporate this relationship, we 415

couple the vascular and interstitial models using an iterative scheme in which vascular 416

blood pressure distributions, pb,i for i ∈ Ns, were updated on each iteration by 417

incorporating the loss of fluid within a vessel due to fluid flux across the vessel wall into 418

the interstitium (see Fig 1 d). We found that due to the small volume of fluid leaving 419

the vessels, vascular pressure was not significantly corrected on each iteration (see Fig 5 420

b, f). In the case of the GL261 network, the algorithm had converged after two 421
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iterations (see Fig 5 b). In comparison, the LS147T network had not converged after six 422

iterations but the mean error was O(10−8) mmHg (see Fig 5 f). This may indicate that 423

a tumours inherent vascular heterogeneity and corresponding interstitial parameters 424

alter the scale of these flow errors. 425

Next we varied the maximum distance, λmax, between sources distributed along the 426

vasculature. Values of 10 and 25 µm, and 50 and 100 µm were chosen for the GL261 427

and LS147T networks, respectively, due to differences in mean branching vessels lengths 428

observed in each tumour (see Table 1). The GL261 network exhibited minimal 429

sensitivity in IFP between the two maximal source lengths (see Fig 5 c). Comparatively, 430

the LS147T experienced greater variability (of less than 1 mmHg) in mean IFP, between 431

the two values of λ, at the core and periphery of the tumour (see Fig 5 g). We 432

hypothesise that sensitivity to λ is related to the vascular density of each tumour type. 433

The GL261 network is an order of magnitude greater in vascular density compared to 434

the LS147T tumour (see Table 1). An elevated vascular density results in an increased 435

density of fluid sources, and so any reduction in sources may have a minimal effect to 436

IFP due to levels being maintained by the local proximity of neighbouring sources.

Fig 5. Sensitivity of the computational framework. (a, e) Cross-sectional slice from the core of the (top) GL261
and (bottom) LS147T tumours, showing standard deviation of intravascular pressures (mmHg) across all 12
simulations. (b, f) the mean segment pressure error between consecutive iterations for the (top) GL261 (top) and
(bottom) LS147T networks. (c, g) IFP distribution from the centre of the tumour to its periphery for a maximum
spacing of (blue) 10 and 25 µm and (orange) 50 and 100 µm for GL261 and LS147T, respectively. (d, h) IFP
distributions for the source radii set to the minimum vessel radius multiplied by a factor of (blue) 10−1, (red) 100

and (yellow) 101. Note, error bars correspond to standard deviation.

437

We finally sought to understand how the source radii, r0,i for i ∈ Ns, affects flow in 438

the interstitial domain. We initially set the source radii to a constant value equal to the 439

minimum vessel radius in a given tumour network. Three cases were then explored 440

where r0,i was multiplied by a factor of 10−1, 100 or 101. Our results show that 441

decreasing the value of the source radii decreases mean IFP, with greater sensitivity 442

exhibited again by the LS147T network (see Fig 5 d, h). This indicates that greater 443

care is needed compared to the assignment of other source parameters, to ensure the 444

physiological accuracy of the results. Here, we set the value of r0,i equal to the radius of 445

its corresponding vessel in order to provide a heterogeneous distribution of radii in 446

which vessels with a larger radius are able to influence the IFP to a greater capacity 447
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than compared to relatively smaller vessels. 448

Interstitial Parameters 449

Sensitivity to the interstitial parameters p∞, σ, Lp, and κ were explored using the 450

LS147T network. This network was chosen due to the scale of simulations to be 451

performed and due to the greater sensitivity exhibited by modifying the source 452

parameters. First of all, we investigated the deviation in the far-field interstitial 453

pressure, p∞. Ideally, the far-field pressure is set to the mean IFP of the adjoining 454

healthy tissue, however these data are frequently unavailable. We varied the far-field 455

IFP from 3 to 18 mmHg in increments of 3 mmHg. Alteration of p∞ did not 456

significantly modify tumour IFP, with the majority of variation occurring at the 457

periphery of the tumour (see Fig 6 a). As a consequence, mean IFV across the tumour 458

decreased with increasing p∞ (see Fig 6 e). 459

Next we investigated the oncotic reflection coefficient, σ. Physiologically, the 460

coefficient σ varies between 0 and 1, indicating the likelihood that a molecule 461

approaching a pore in the vessel lumen will be reflected back and thereby retained in 462

the vascular compartment. As such, we ranged σ from 0 to 1 with increments of 0.25. 463

Modification of σ resulted in a network-wide shift in tumour IFP magnitude, thereby 464

preserving the IFP gradient (see Fig 6 b). This is an intuitive result since we held the 465

oncotic pressure gradient constant across the entire vasculature, therefore any increase 466

in σ resulted in systematic reduction in both IFP and IFV (see Fig 6 b, f).

Fig 6. Data-fitted curves of IFP (top) and IFV (bottom) for modulation of interstitial model parameters: (a, e)
p∞ (mmHg), (b, f) σ, (c, g) Lp(cm /mmHg s) and (d, h) κ (cm2 / mmHg s). Arrows indicate increasing parameter
values, with exception of (d) in which a range of κ (cm2 / mmHg s) is indicated. IFP profile gradients across LS2

sensitivity analysis of (a) far-field pressure, p∞, (b) oncotic reflection coefficient, σ, (c) vascular hydraulic
conductivity, Lp, and (d) interstitial hydraulic conductivity, κ (cm2 / mmHg s). Arrows indicate increasing values
of the given parameter and colours in each column indicate the equivalent simulation.

467

Vascular hydraulic conductance, Lp, defines the leakiness of the lumen to the 468

transport of blood plasma. Our sensitivity analysis varied Lp from 1.33× 10−8 to 469

3.41× 10−6 cm/mmHg s, encompassing values provided in literature for normal and 470

tumour tissue [11]. Similarly to σ, a reduction in Lp resulted in decreasing IFP across 471

the tumour but with contrasting regional gradients (see Fig 6 c). Our analysis showed 472

that with decreasing Lp, IFP tended towards the assigned far-field pressure due to 473

December 24, 2018 21/36

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 4, 2019. ; https://doi.org/10.1101/512236doi: bioRxiv preprint 

https://doi.org/10.1101/512236
http://creativecommons.org/licenses/by/4.0/


decreasing fluid filtration from the vasculature, and so in its limit, the IFP would 474

uniformly be equal to p∞. This is due to decreasing fluid filtration, indicating that the 475

model produces a physiologically viable response. In comparison, a reduction in Lp 476

induced minimal changes to IFV in the core of the tumour but resulted in decreases 477

towards the periphery (see Fig 6 g). 478

Variations in the interstitial conductivity, κ, ranged from 1.33× 10−11 to 1.04× 10−6 479

cm2/mmHg s. In this case, we established that sensitivity to this parameter are 480

non-trivial to elucidate. An inflexion point was observed for values 481

1.67× 10−9 ≤ κ ≤ 8.33× 10−9 cm2 / mmHg s in which the spatial IFP distribution 482

switched from one configuration to another (see Fig 6 d). For κ ≤ 1.67× 10−9 483

cm2 / mmHg s, IFP solutions displayed near identical configurations (mean IFP of 484

25.8± 2.4 mmHg for all four cases) in which IFP displayed an increased gradient 485

compared to greater values of κ along with decreasing IFV (see Fig 6 h). In comparison, 486

κ ≥ 8.33× 10−9 cm2 / mmHg s displayed similar IFP profiles with mean IFP decreasing 487

with increasing κ (26.2± 1.5 to 22.5± 1.6 mmHg). 488

Mapping the Effects of Vascular Normalisation 489

As an example of how our computational framework can be used to predict the 490

effectiveness of cancer therapies, we performed a feasibility study of normalising the 491

LS147T vasculature, by modifying the network vascular hydraulic conductances and 492

oncotic reflection coefficients. We crudely simulated vascular normalisation using a 493

linear function where vascular pores sizes (represented through a combination of 494

changes in Lp and σ) in the tumour core are typical of tumour vasculature, and 495

gradually returned to physiological values at the tumour periphery (from 2.18× 10−7 to 496

0.44× 10−7 cm mmHg–1 s–1 for Lp and from 0.82 to 0.91 for σ). 497

Simulations predicted a steeper IFP gradient across the tumour. This is contrary to 498

previous studies [67,68], where IFP was found to reduce when tumour vasculature was 499

normalised. However, these studies normalised the vasculature uniformly across the 500

tumour, and our equivalent sensitivity analysis for uniform changes in Lp observed a 501

similar IFP response (see Fig 6 c). 502

In response to changes in IFP, our model predicted elevated tumour interstitial fluid 503

speed (IFS - see Fig 7 a), a similar result to [68] who observed that advection is 504
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dominant at small pore sizes in two-dimensions. Steeper IFP gradients also increased 505

perfusion and outward facing IFV streamlines (see Figs 4 b and 7 b). 506

Considering our predicted IFP responses for uniform and radially varying vascular 507

normalisation, we hypothesise that for vascular normalisation therapy to effectively 508

reduce to IFP, blood vessels across the tumour need to be normalised. Further, that if 509

vascular normalisation increases macromolecular drug penetration via the vasculature to 510

the core, outward interstitial advective currents may inhibit the effectiveness of such 511

therapies once delivered to the interstitium. However, these effects need to be explored 512

using a comprehensive model to detail the delivery of normalisation therapies, and 513

consequently macromolecular drug delivery. In addition, the effect of normalisation is 514

likely to be dependent on tumour architectural properties, such as vascular density and 515

interstitial hydraulic conductivity, and so requires study across a range of tumours with 516

spatially varying conductivities.

Fig 7. Normalisation of vascular hydraulic conductance and oncotic reflection coefficient to physiological values in
LS147T. (a) Planar contour plots of IFP and interstitial fluid speed (IFS) for the baseline (top) and normalised
(bottom) predictions. (b) Predictions of normalised interstitial fluid spatial maps (left) and IFV (right - with
greyscale perfusion underlaid) where pixels are ∼ 140 µm2. For comparison, equivalent {X, Y}-planes for baseline
simulations can be viewed in Fig 4 c.

517

Discussion 518

Elevated interstitial fluid pressure is frequently associated with solid tumours, where a 519

conventional profile exhibits a uniformly high IFP in the core of a tumour which 520

decreases rapidly towards the levels of physiological tissue at its periphery [3, 14,52]. 521

This atypical characteristic forms a barrier to transvascular fluid and drug delivery, 522

thereby diminishing therapeutic efficacy of anti-cancer treatments. 523

The passage of fluid through the interstitium is influenced by both hydrostatic and 524

oncotic pressures in blood vessels and therefore by the heterogeneic architecture of 525

tumour microvessels. However, the procurement of detailed fluid flow data in vivo 526

across whole tumour networks is currently unfeasible using conventional imaging and 527

experimental techniques. However, recent advances in ex vivo high-resolution optical 528

imaging techniques [37] allow whole three-dimensional tissue architectures to be 529

extracted and reconstructed to act as inputs for detailed in silico modelling of fluid 530
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transport. 531

No study has explicitly modelled vascular and interstitial fluid flow using discrete, 532

three-dimensional structural data from images of whole-tumour, real-world 533

vasculature [6]. However, in a recent study, we presented our novel REANIMATE 534

platform which extracts three-dimensional, whole tumour vasculature ex vivo from 535

optically cleared tissue, which is then used to parameterise an in silico model of fluid 536

transport guided by in vivo imaging data [38]. This has enabled us to perform 537

quantitative, realistic predictions of fluid and drug delivery to tumours which has led to 538

novel insights into a tumour’s inherent physical resistance to anti-cancer therapies [38]. 539

In this study, we presented the computational framework used to simulate fluid 540

transport in REANIMATE. We detail its derivation and application to whole tumour 541

architectural datasets and show how our model allows highly-detailed predictions of 542

fluid flow within the tumour microenvironment by incorporating explicit tumour 543

vasculature. Our model allows flow heterogeneities to be quantified in a 544

computationally efficient manner, when compared to finite-difference and element 545

methods [40], which enables cancer therapies, such as normalisation, to be effectively 546

studied through modification of its parameters. 547

We initially apply our framework to an orthotopic murine glioma and a human 548

colorectal carcinoma xenografts from the GL261 and LS147T cell-lines, respectively, to 549

present realistic, baseline simulations of the tumour microenvironment. We then 550

performed sensitivity analysis to the underlying model parameters. The first are the 551

source parameters, which are specific to our model, and include source of flux 552

distribution and size. Secondly, the interstitial parameters, such as vascular 553

conductance and interstitial conductivity, which are frequently represented in literature 554

due to the prominent use of Starling’s law. In the second case, we perform analysis of 555

how variation of these parameters modifies the IFP and IFV in an LS147T dataset. We 556

finally present a proof-of-concept detailing how our model can be used to provide 557

three-dimensional, spatial maps of tumour properties, such as IFP, IFS, IFV and 558

perfusion, when investigating the effects of vascular normalisation. 559

Our computational framework is based upon a Poiseuille model for vascular blood 560

flow [39] which is coupled to a steady-state Green’s function solution to interstitial fluid 561

flow. Here, tumour vasculature segmented ex vivo is represented by a discrete set of 562
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sources of fluid flux for bi-directional transport between the interstitium. Previous 563

models either assume a homogeneous vascular network [3, 11,14,52], incorporate a 564

computer-generated synthetic tumour network [28–34], or incorporate boundary 565

conditions and spatial variations in tissue permeability to artificially represent vascular 566

heterogeneity [35,36]. However, vascular averaging methods do not fully encapsulating 567

the intrinsic, local interactions between neighbouring blood vessels which contribute to 568

global interstitial flow and synthetic networks are difficult to validate against real 569

tumour architecture. Here we use vascular architecture from real, whole tumour 570

networks, and through use of Green’s function methods, our model significantly reduces 571

the computational size of the computational problem, allowing vessel-vessel interactions 572

to be modelled at the micron-scale. Thus, we provide the means to perform in silico 573

studies to hypothesis test the impact of vascular heterogeneity on the tumour 574

microenvironment with relative ease. 575

Our simulations were performed on ex vivo structural imaging data from a GL261 576

and a LS147T tumour. As no in vivo flow or pressure data were available for the 577

numerous boundary vessels, we developed a procedure whereby simulated data was 578

optimised based on in vivo tissue perfusion data gathered using ASL-MRI [38]. This 579

approach has produced solutions which are highly consistent with experimental 580

measurements in the same tumours [38]. In this study, baseline vascular flow solutions 581

across all tumour simulations are in good agreement with the perfusion data, alongside 582

mean flows [64], velocities and vessel wall shear stresses [44], and fluid pressure in the 583

interstitium [3,17,24,25]. This provided validation that our model produces 584

physiologically realistic results, providing a platform to investigate the tumour 585

microenvironment. 586

We performed sensitivity analysis to the source parameters, such as updating the 587

vascular flow solution, source distribution and source radii, to understand their 588

influence on the flow communication between the vascular and interstitial domains. Our 589

results exhibited a minimal sensitivity to IFP distributions by varying these parameters, 590

with the exception of the assignment of source radii. Here, we hypothesise that greater 591

care is required for spatially sparse tumours with a low vascular density, in order to 592

ensure physiologically accurate simulations. Finally we investigate the interstitial 593

parameters using the LS147T dataset. Raising the far-field interstitial pressure did not 594
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significantly alter the IFP distribution across the tumour, with increased IFP occurring 595

at the tumour periphery, compared to baseline. Variation in the oncotic pressure 596

contribution, by modifying the oncotic reflection coefficient, only affected the 597

magnitude of the interstitial pressure, with minor changes to the IFP and IFV profiles, 598

similar to those reported in previous studies [3]. Increasing Lp and κ, raised the 599

gradient of the interstitial pressure profile, thereby increasing fluid transport through 600

the interstitium. However, our IFP distributions did not reach 0 mmHg at the periphery 601

of the tumours as in previous studies [3, 14,67]. We hypothesise that this is due to not 602

applying a fixed pressure at the tumour boundary in our model, which results in a 603

smoother transition of IFP to the surrounding tissue, similar to previous computational 604

modelling of tumour vascular heterogeneity [35,36]. 605

We finally performed a feasibility study detailing how our framework can be used to 606

investigate cancer therapies, such as vascular normalisation. We modified vascular 607

hydraulic conductances and oncotic reflection coefficients in a linear radially varying 608

fashion in the LS147T network. Values ranged from those associated with tumours at 609

its core, to physiological tissue levels at its periphery. Our model predicted that IFP at 610

the core was slightly elevated, and that a pressure gradient is formed radially across the 611

tumour core which causes raised, outwardly directed interstitial flow. Consequently, we 612

predict that vascular normalisation therapies need to uniformly normalise a tumour to 613

lower tumour IFP, and that ineffective normalisation could reduce the efficacy of drug 614

therapies. These results are preliminary, and require further analysis and application to 615

further LS147T (and other cell-line) datasets. However, they indicate that modifying, or 616

normalising, the parameters in our computational framework is a simple and effective 617

way of investigating the fluid dynamic properties, such as interstitial pressures and 618

velocities, associated with an individual tumour. Moreover, our framework predicts 619

spatial maps of flow across three-dimensional cancerous tissue, enabling flow 620

heterogeneities induced by realistic vascular networks to be quantified for subsequent in 621

silico investigations into anti-cancer therapies. 622

Our results and proposed computational framework offer significant scope for future 623

expansion. Current limitations include, for example, our stochastic approach to 624

simulating vascular blood flow which was implemented due to the in-availability of 625

experimental data. Recent in vivo methods provide a step forward in approximating 626
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conditions by discerning global tumour pressure gradients through observations of tissue 627

fluid velocity [26], which could lead to greater accuracy when assigning boundary 628

conditions specific to a tumour. Similarly, parameter values such as the vascular 629

conductance and interstitial hydraulic conductivity were assigned using previous 630

literature values since these tissue-specific measurements can be challenging to procure 631

through experimentation. For example, interstitial conductivity values across normal 632

tissue have been reported to span four orders of magnitude [17]. Future work could seek 633

to predict spatially heterogeneous maps of interstitial hydraulic conductivity using 634

REANIMATE and new experimental data [26]. 635

There are also opportunities to expand the computational model to incorporate more 636

complex biological phenomena. For example, our model does not currently incorporate 637

tumour compression of vessels due to increasing shear stresses within the tumour, a 638

critical property of understanding angiogenic vasculature [29,69]. In addition, our model 639

does not explicitly incorporate necrotic regions within cancerous tissues. Yet necrotic 640

regions can influence interstitial fluid delivery [3, 14] and tumour macromolecular 641

transport [52], and so are vital to incorporate if our computational framework. 642

We expect to find a wide utility for REANIMATE in a range of disease areas, 643

particularly given the current interest in optical clearing methods and their widespread 644

use in biomedical research. REANIMATE is novel and timely and will find extensive 645

use for hypothesis testing, to enable tumour biology and drug delivery to be better 646

understood, which in turn may enable the next generation of cancer therapies. 647
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