bioRxiv preprint doi: https://doi.org/10.1101/512236; this version posted January 4, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY 4.0 International license.

Modelling the transport of fluid through heterogeneous,
whole tumours in silico

Paul W. Sweeney', Angela d’Esposito?, Simon Walker-Samuel?!, Rebecca J. Shipley",

1 Mechanical Engineering, University College London, London, United Kingdom
2 Centre for Advanced Biomedical Engineering, University College London, London,

United Kingdom

IThese authors are joint senior authors.

* rebecca.shipley@ucl.ac.uk

Abstract

It is critically important to understand and predict fluid transport within both
physiological and pathological tissues in order to develop effective treatment strategies.
Recent advances in high-resolution optical imaging allow the acquisition of whole
tumour vascular networks which can be used to parameterise computational models to
predict the fluid dynamics at all length scales across the tissue. This enables hypothesis
testing around the role of the tumour microenvironment in determining transport
characteristics, which would otherwise be unavailable using traditional experiments.

In this study, we present a novel computational framework for the efficient
simulation of vascular blood flow and interstitial fluid transport based on complete
three-dimensional, whole tumour vasculature obtained using high-resolution optical
imaging. This framework comprises a Poiseuille flow model which simulates vascular
blood flow within the vessel network, coupled via point sources of flux to a porous
medium model describing interstitial fluid transport. We develop a computational
algorithm for prescription of network boundary conditions and validation of tissue-scale
fluid transport against measured in vivo perfusion data acquired using biomedical

imaging tools. We present simulations of the model on orthoptic murine glioma and
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human colorectal carcinoma xenograft data (GL261 and LS147T, respectively), and
perform sensitivity analysis on key unknown parameters relating to the tissue
microenvironment, to understand their impact in predicting vascular and interstitial
flow. Finally, we simulate radially varying vascular normalisation in a LS147T tumour
and hypothesise that uniform normalisation is required to lower tumour interstitial fluid
pressure.

Our computational framework permits predictions of whole tumour fluid dynamics
which incorporate the inherent architectural heterogeneities appearing at the
micron-scale, and outputs three-dimensional spatial maps detailing these flow properties
from micro to macro length scales. This provides vital information on the tumour
microenvironment which could enable the design and delivery of future anti-cancer

therapies.

Author summary

The structure of tumours varies widely, with dense and chaotically-formed networks of
blood vessels that differ between each individual tumour and even between different
regions of the same tumour. This atypical environment can inhibit the delivery of
anti-cancer therapies. Computational tools are urgently required which incorporate
micron-scale tumour biomechanics to predict tissue-scale fluid dynamics, and
consequently the efficacy of cancer therapies.

We have developed a computational framework which integrates the complex tumour
vascular architecture to predict fluid transport across all lengths scales in whole tumours.
This enables computationally efficient hypothesis testing of cancer therapies which

manipulate the tumour microenvironment in order to improve drug delivery to tumours.

Introduction

Architectural heterogeneities in cancerous tissue limit the delivery of anti-cancer drugs
by inhibiting their ability to circumnavigate the entire tumour to all cancerous cells [1].
In solid tumours, drug penetration to the tumour core is hindered by physiological

barriers which can limit the delivery of targeted agents, with penetration exacerbated
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by the size of the agent [1-5]. Consequently, preclinical tools which provide a better
understanding of therapy interactions within the tumour microenvironment are urgently
required in order to increase treatment efficacy. In silico modelling is one such tool
which can meet this need by testing novel therapeutic strategies at a much faster rate
and much cheaper cost than preclinical experimentation [6].

For a systemically-administered agent to effectively target diseased tissue, it must
travel from the site of injection to the site of disease, whilst minimally interacting with
normal tissues and not degrading [7]. This is difficult to achieve in tumours since
atypical endothelial proliferation of tumour vasculature leads to spatial variations in
vascular density and branching patterns, distorted and enlarged vessels, and a highly
convoluted network topology [8-10]. Further, vascular permeability is heightened and
heterogeneous and so these immature blood vessels are generally leakier than those in
normal tissue [3,11].

The irregular microenivronment is typically characterised by hypoxia, acidosis and
elevated interstitial fluid pressure (IFP) [12-14], which drive both tumour vascular
proliferation and resistance to therapy [15]. Here, drug delivery may be hindered by the
atypical nature of the tumour interstitium. The extracellular matrix (ECM) consists of
a cross-linked dense network of collagen and elastin fibres, far denser than usually seen
in normal tissue [16]. A denser matrix can result in reduced delivery of oxygen and
nutrients, as well as providing significant resistance to the advection and diffusion of
therapeutic particles [1], since key determinants of intratumoural fluid and mass
delivery include tissue hydraulic conductivity and vascular compliance [17]. Several
therapeutic interventions have sought to limit the effects of these physical barriers by
manipulating the microenvironment to enhance the delivery of macromolecular
agents [16,18]. For example, normalising the tumour vasculature to reduce vessel
permeability thereby increasing drug penetration [12]; and manipulating the connective
tissue, and therefore interstitial hydraulic conductivity, using a platelet-derived growth
factor (PDGF) antagonist to reduce tumour IFP [19].

Heterogeneities in the underlying morphology of tumours, such as vessel diameters
and lengths, and inter-branch distance, exist across individual tumours and tumour
cell-lines [20]. These variations in tumour architecture lead to spatial variability in drug

efficacy, which complicate efforts to design effective treatment strategies [7].
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Experimental efforts have been made to understand the effects of tumour heterogeneity
on fluid interactions across tumours, for example, wick-in-needle has been used to
measure IFP across tumours [21-23]. However, this method disturbs the local
microenvironment and only provides IFP measurement at individual locations.
Non-invasive methods have also been developed to estimate tumour IFP [24,25]. For
example, convection-MRI, which, with further validation, presents an opportunity to
measure low-velocity flow in tumours, and to assess therapeutic response [26]. However,
these methods fail to capture full spatial maps of flow at the micron-scale which are
crucial to understanding how the combined intra- and extravascular spatial flow
heterogeneities occurring at the scale of blood vessels affects the macro-scale flow
dynamics and consequent delivery of drugs within a solid tumour. Biomedical imaging
complemented by in silico methods provides scope to provide such detail.

Mathematical models have been used to investigate the tumour microenvironment

and have provided detailed insights which may otherwise be unavailable experimentally.

Seminal models have indicated that a leaky tumour vasculature induces elevated IFP,
reduced fluid penetration into the interstitium [14,27], and a non-uniform distribution
of drug delivered to solid tumours [2,3,11]. Further, they have defined conventional IFP
profiles in tumours - a uniform pressure at the core, with a large decreasing gradient
towards the periphery. However, these models generally average over the tumour
vasculature and so fail to capture the micron-scale flow dynamics; and they assign a
fixed pressure boundary condition on the periphery of the tumour which may artificial
induce these conventional IFP profiles. Subsequent studies have incorporated the
spatially heterogeneous effects of tumour vasculature using computer-generated
synthetic networks which retain key features of tumour vascular architecture [28-34], or
by integrating spatial variations in vascular permeability parametrised against in vivo
experimentation [35,36]. However, to date, in silico models have lacked realistic,
high-resolution data on whole tumour vascular architecture to both parametrise and
validate computational models [6].

Recent advances in ex vivo optical imaging of cleared tissue specimens have enabled
large samples (up to 2 cm?® with > 10° blood vessels) to be imaged in three-dimensions,
at resolutions down to a few microns [37]. We have developed a platform called

REANIMATE (REAlistic Numerical Image-based Modelling of biologicAL Tissue
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substratEs) which combines optical imaging of cleared tissue with mathematical
modelling and in vivo imaging, within a unified framework, to generate quantitative,
testable predictions regarding tumour transport [38]. The platform uses high-resolution
imaging data from large, intact, optically-cleared tissue samples to make in silico
predictions of blood flow, vascular exchange and interstitial transport. REANIMATE
enables new hypotheses to be generated and tested in a manner that would be
challenging or impossible in a conventional experimental setting. As a proof-of-principle,
we have previously used REANIMATE to explore the impact of vascular network
topology on fluid and therapy delivery, focusing on delivery of a vascular disrupting
agent (Oxi4503) to two colorectal cell-lines (LS147T and SW1222) [38].

A vital component of REANIMATE is the simulation of fluid transport across
cancerous tissue. We developed a computational model to efficiently simulate both
intra- and extravascular fluid transport across large, discrete microvascular networks.

Our model simulates Poiseuille flow through the vasculature using the optimisation

scheme of Fry et al. [39], parametrised and validated against in vivo ASL-MRI data [38].

Following a similar Green’s function method for oxygen transport [40], the vascular
component is coupled, via a discrete set of point sources of flux, to a Darcy model
which simulates the effective fluid transport in the porous interstitium. A linear system
is formed whereby only the source strengths need to be resolved, making it more
computationally efficient compared to finite difference or element methods which
require a spatial, numerically-discretised mesh [40].

In this study, we present this model in detail along with a description of its
application to whole tumour vascular networks. We apply our model to an orthotopic
murine glioma and a human colorectal carcinoma xenograft from the GL261 and LS147T
cell-lines, respectively, and reproduce physiological conditions observed in literature. We
then perform sensitivity analysis to the model parameters associated with transvascular
fluid delivery, such as vascular hydraulic conductance and interstitial hydraulic
conductivity, to explore the impact on the tumour IFP and IFV profiles. Subsequently,
we present preliminary predictions of vascular normalisation to an LS147T network.
These results present an example of how our mathematical model can be used to
simulate the heterogeneous pharmacokinetics of drug therapies designed to alter the

properties of the tumour microenvironment, and provide three-dimensional spatial maps

December 24, 2018

5/36

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101


https://doi.org/10.1101/512236
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/512236; this version posted January 4, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY 4.0 International license.

detailing changes in flow characteristics which indicate the efficacy of such treatments.

Materials and methods

Acquisition and Processing of Real-world Tumour Datasets

Orthotopic murine gliomas and human colorectal carcinoma xenograft from the GL261
and LS147T cell-lines (n = 6 for each), respectively, were grown subcutaneously in

8 — 10 week old, female mice. Following 10 to 14 days of growth, in vivo ASL-MRI was
performed on a subset of GL261 and LS147T tumours, from which a mean tumour
perfusion of 130 & 50 and 19 & 8 ml/min/100g was measured [38], respectively.
Following perfuse-fixation, tumours were harvested, optically cleared and imaged using
OPT (Bioptonics, MRC Technologies, Edinburgh). All experiments were performed in
accordance with the UK Home Office Animals Scientific Procedures Act 1986 and UK
National Cancer Research Institute (NCRI) guidelines [41]. Full details of the
experimental protocol is provided in d’Esposito et al. [38].

Whole-tumour blood vessels networks were segmented from the OPT data for both
tumour types. A combination of three-dimensional Gaussian and Frangi filters were
applied to the data to enhance vessel-like structures allowing for the segmentation of the
blood vessels from the background (see Fig 1 a). Skeletonisation of these thresholded
data was performed in Amira (Thermo Fisher Scientific, Hillsboro, OR), which also
converted the data into graph format (interconnected network of nodes and segments
with associated radii - see Fig 1 b). To ensure that vessel structures were accurately
represented, three-dimensional networks were visually inspected against two-dimensional
imaging slices for an accurate representation of vessel location and thickness. Full details
of the validation can be found in the Supplementary Material of d’Esposito et al. [38].

In this study a GL261 and a LS147T tumour network were chosen from the
d’Esposito et al. [38] datasets for in silico development and testing. Vessel diameters
ranged from 17.9 + 9.3 and 8.9 + 2.8 um, with branching lengths of 68.7 + 48.3 and
88.8 + 49.4 pm, respectively (see Table 1 and Fig 3). Vessel branching angles,
inter-vessel distance, radii and tortuosity measures were consistent with data from

previous studies that extracted vascular architectures using different methods [20, 38].
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Table 1. Tumour vascular network statistics.

GL261 LS147T Units
No. of Segments 121,212 76,378 -
No. of Nodes 110,062 60,177 -
No. of Boundary Nodes 8,660 15,783 -
Mean Vessel Diameter 17.94+9.3 8.9+2.8 pm
Mean Branching Vessel Length  68.7 4= 48.3 88.8 +49.4 pm
Tissue Dimensions 43x41%x4.6 69x52x82 mm®
Vascular Density 5.07 0.37 %

Segmented network data on the segmented murine orthotopic glioma, GL261, and the
human colorectal xenograft, LS147T, vasculature. See Fig 3 for visualisations of both
networks.

Computational Model

Our computational framework is compartmentalised into two models. The first predicts
blood flow through the tumour vasculature and the second predicts interstitial fluid flow
throughout the cancerous tissue through use of Green’s functions. Our method enables
application to whole, large vascular networks (> 2 em?® with > 10° blood vessels),
thereby permitting predictions of whole tumour fluid dynamics which incorporate the
inherent architectural heterogeneities occurring at the micron-scale.

The intravascular component incorporates the model of Pries et al. [42] to simulate
vascular blood flow, where the structural properties of the segmented tumour networks
and haemodynamic parameters are used as inputs. Flow or pressure boundary
conditions at all terminal nodes in the vascular network are required to predict blood
flow throughout the network. These boundary data are very challenging to measure in
vivo, so we deploy the flow estimation algorithm of Fry et al. [39], to estimate boundary
data based on the assumption that the microcirculation is regulated in response to
haemodynamics stimuli relating to flow and shear stresses [43]. The scheme estimates
unknown boundary conditions by minimising the squared deviation from specified
target network wall shear stresses and pressures values derived from independent
information about typical network haemodynamic properties. In essence, the algorithm
removes the need to define conditions at all boundary nodes, to one where simulation
sensitivity is weighted towards the definition of these two target parameters. This
enables physiologically realistic blood pressure and flow distributions to be estimated

across an entire vascular network and has been applied to breast tumour [44], colorectal
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tumours [38], cortex [45], glioma [38] and skeletal muscle [46].

The second component to our computational model describes fluid transport
through the porous interstitium using a Darcy model, coupled to the vascular flow
solution via Starling’s law which describes fluid transport across the endothelium. The
vasculature is represented by a discrete set of points sources of flux where the source
strengths are defined by the vascular blood flow solution. A similar approach has been
applied to simulate Oy transport across various tissues [40,45,47]. Our approach
enables us to explore the effect of vascular architecture heterogeneity on fluid transport
within the interstitium for large-scale vascular networks.

The following sections detail the mathematics behind our model along with its
computational implementation for large vascular networks. We detail the assignment of
model parameters and boundary conditions for application of our model to tumour

networks.

Vascular Blood Flow

The segmented tumour networks consist of a series of vessel segments connected by
nodal junctions or, in the case of boundary nodes, one-segment nodes which form a
boundary to the microvascular network (see Fig 1 b). We define a positive flow
direction from the start node to end node of each vessel segment. Under the assumption
of Poiseuille flow and conserving flow at blood vessel junctions, the relationship between

nodal pressures, pr and the boundary boundary fluxes Qg; is given by

Z Kigpr = —Qo; for i€ lUB, (1)
kEN

where N is the set of all nodes, I is the set of all interior nodes and B is the set of all
boundary nodes with known boundary conditions. For all interior nodes, conservation of
flux at vessel junctions dictates that QQg; = 0, however, if ¢ is a known boundary node,
Qo; is the inflow (or outflow if negative).

Following the notation of Fry et al. [39], the matrix K;; represents network

conductance

Ky =Y LijMy, (2)
jes
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where S is the set of all segments,

—1, if 4 is the start node of segment j,

41, if ¢ is the end node of segment 7, (3)

0, otherwise,

and
+nrdj/ (128p51;), if k is the start node of segment j,

Mjy = —md}/ (128l;), if k is the end node of segment j, (4)

0, otherwise,

is the matrix of vessel conductances where [, d; and p; denote the length, diameter
and effective blood viscosity of segment j, respectively.

We apply empirical in vivo blood viscosity laws, which prescribe the effective blood
viscosity as a function of vessel diameter and haematocrit, to compute ; and

consequently incorporate non-Newtonian effects in each individual microvessel [48].

Network haematocrit heterogeneity plays an important part in network flow resistance.

However, in this study, we set network haematocrit to 0.45 as we do not have sufficient
data to parametrise a haematocrit model at this scale. With future availability of
appropriate data, the model has the flexibility to incorporate haematocrit
heterogeneity [49].

In the absence of measured flow and pressure data at network boundaries, further
assumptions are required to obtain a unique solution. The method proposed by Fry et
al. [39] sought to solve a constrained optimisation problem, formulated in terms of a

Lagrangian objective function defined by

1 1
L= 3k > wilpr —pok)2+§kr > bi(my — 7o)

kEN jes
()
+ )N (Z Kikpr +Q0i> ~
i€lUB  \keN

Here, poy, is the target pressure at node k, 7; is the wall shear stress in segment j, 79; is
the corresponding target shear stress, k, and k, are weighting factors associated with
the pressure and shear deviations from the target values, A; is the Lagrange multiplier

associated with node ¢ and wy, is the vessel length associated with node k. Setting
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dL/dp; = 0 and combing with (1) yields a sparse linear system with unknowns py and 10
;. Assigning a pressure drop to a proportion of boundary nodes forms a well-posed 200
system which can be solved using standard methods [39]. 201

The blood flow estimation model by Fry et al. [39] has been thoroughly tested using 20
mesenteric networks [50] in which blood flow measurements were taken in individual 203

vessels and used to inform parameter estimation [39,42,48,51].

Fig 1. (a) An example of an SW1222 tumour vascular network enhanced using Frangi filters and extracted from
the tumour image stack generated by OPT. (b) The skeletonised vasculature is then segmented into a series of
interconnected nodes and vessel segments with known diameters, d; and lengths, I;, for i = 1,2,3. (¢) A schematic
of sensitivity analysis performed on the source parameters: 1) updating intravascular pressure p;; for iterations i
where pg ; is the initial network pressure distribution approximated by the flow estimation algorithm; 2) the
spacing \; between sources distribution across a branching vessel; and 3) the size of the source radius, ro. (d) A
flow diagram of the computational framework. In vivo imaging is performed on vascularised tissue to obtain
perfusion data (and literature values of vascular pressures when available) which are used to parameterise and
validate the framework. Ez vivo imaging is performed on equivalent tissue samples to obtain data on the vascular
architecture, including coordinates, vessel diameters and lengths, which are then used to parameterise the vascular
flow model. Boundary conditions are assigned (see Fig 2 a and b) and network intravascular blood pressure is
solved. Fluid sources of flux are distributed across the vasculature and assigned a radius equal to its corresponding
vessel radius. Interstitial flow parameters are assigned and the model is coupled to the vascular flow compartment
via Starling’s Law. Solved source strengths are used to update Starling’s law. This iterative scheme is terminated
once predefined tolerances are reached.

204

Interstitial Fluid Transport 205

Darcy’s law has been effectively used to describe the passage of fluids [3,14,30-33,52] or s
solutes [40,45] through tissues. In this study, we use Darcy’s law to describe the 207

relationship between the volume-averaged IFP, p, and interstitial fluid velocity (IFV), u, s

within the porous interstitial domain: 200
u=—xVp, (6)

where £ is the hydraulic conductivity of the interstitial tissue. Here we assume that 210

interstitial pressure tends towards a constant value, p.., in the far-field region, m
D= P as |x| — oo. (7)

Tumours are leaky due to large pores along a vessel’s lumen, and so the vasculature 2

exhibits a strong fluid and oncotic interaction. Following the approach of Baxter and 213
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Jain [3] and subsequent studies [53,54], we used Starling’s law to describe fluid

transport across the endothelium:
Jy = LpS (Ap — oAIl) (8)

where J, and L, is the fluid flux across and the hydraulic conductance of the vessel
wall, respectively, S is the surface area of the vasculature, o is the oncotic reflection
coefficient and, Ap and AII are the fluid and oncotic pressure gradients between the
vasculature and tissue.

The tumour vascular architecture is used to spatially parametrise the locations of a
discrete set of sources of flux into the interstitial domain. Assuming these sources both

supply or drain the interstitium, conservation of mass yields
V-u= —K;VQp:Zqu(X)é(x—xj), (9)
J

where x; and ¢; are the spatial coordinates and strength, respectively, of point source j,
and 0(x — x;) is the delta function. The term ¢;(x)d(x — x;) represents a point source
of fluid flux from the vasculature to the surrounding interstitial domain.

Applying the substitution p = p — pso, the Green’s function, G(x,x*), for the adjoint

problem for p is given by

—kV2G = §(x — x¥), (10a)

G—0 as |x|— oo (10b)

For source a given source, we distribute the delta function over a sphere of finite
radius, 7. This allows the corresponding Green’s function to be described as a radially

symmetric function:

1 r 2
3 [3—()1, if r<nrg,
G(r) _ TRTQ To (11)
1

Amkr’

if r>rg.

We distribute a total of Ny sources across the vasculature with spacing \;, and
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assign a source radii, ro;, equal to the corresponding blood vessel radius (see Fig 1 c).
Using Green’s superposition principle for linear operators, the convolution of G provides

the corresponding pressure solution for source i € Ny and so

Ns
Pi = P + Zqu; for i€ Ns7 (12)

j=1

where ¢ is the vector of source strengths. Here, Gij; is the Green’s function associated

with (10) and defined by

S P i if <
- - , 1 Tij = T0i,
8TKiT0; T0; ! 0

1

47TI€Z'TZ'J‘ ’

Gij =

if Tij > Toi,

where r;; is the distance between sources, defined as 7;; = |x; — x;|, and &; is the
interstitial hydraulic conductivity at the location of source i.
From (6), the Green’s function, G;;, can be used to calculate the volume-averaged

IFV, given by

u= —,%Z VGijq‘;, (14)
j
where
T <y
ve dGi; Arrird,’ ! = o )
= g = 1 (15)

—472, if r> T0i-
Wﬁirij

Starling’s law, (8), can be rearranged into the form

Do = Dbi — KiJy; —o(Ily; — 1L, ;) for i€ N, (16)

where p,; (calculated by (12)) and II, ; are the blood and oncotic plasma pressure at
the vessel wall, py; (calculated by (5)) and Il ; are the vascular blood pressure at

source 1, in the absence of diffusive interstitial fluid transfer, and oncotic fluid pressure,

and J, ; is the rate of fluid flow per unit volume from blood vessel ¢ to the interstitium.

The intravascular resistance to fluid transport across blood vessel i, is defined by

(17)
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where S; and L, ; is the surface area and vascular conductance of vessel ¢, respectively.
Integrating over the volume of vessel i and assuming flux at the interface is

continuous, flux at the interface is defined by

N
Joi = =2mkiryili Y VGijg), (18)

j=1
where 7, ; is the vessel radius and [; is the length of vessel s.
Equations (12), (16) and (18) are then combined to give a set of N, equations to be

solved for the source fluxes ¢;,

NS

}:(GM—£7VGU>@:pM—pm—aahJ—nmy (19)
i=1 b

Prescribing parameter values (see Table 2), the resulting solutions for q; can be solved
and used to update vascular pressures, p; 5, using Starling’s law, (8), in the absence of
an oncotic pressure gradient (i.e. AIl =0), and (18). Here, for iteration k + 1, p;  is set
equal to the IFP at wall of blood vessel ¢, p; ., calculated on iteration k. This iterative
system is repeated by updating ¢§ values until tolerances are reached (O(107%) ul/min),
subsequently, tissue IFP and IFV fields can be computed using (12) and (14),
respectively (see Fig 1 d).

In effect, our computational framework enables a detailed, quantitative assessment of
blood and interstitial flow for tissues, both healthy and pathological, where their entire
vascular networks are characterised, by encapsulating the flow of fluid between the
vascular and interstitial domains. Similar to a Green’s function model for Oy
transport [40], our model does not require the imposition of explicit boundary
conditions on the outer surface of the tissue domain, with the only unknowns to the
system being the strength of the set of fluid sources and sinks. As such, when compared
to finite difference or element methods, our approach minimises boundary condition
artefacts and saves on computational expense as the solutions to the entire mesh are not
required. An outline of the interaction between the biomedical imaging, and vascular
and interstitial flow compartments is given in Fig 1 d.

The computational framework was coded using C++ [55] and run on a Apple Mac

Pro, with 2 x 3.06 GHz 6-Core Intel Xeon processor and 64 GB of RAM. The system
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(19) was used solved using a biconjugate gradient method [56] and implemented using

the Armadillo sparse linear algebra library [57].

Implementation of Computational Model on Whole Tumour

Microvascular Networks

It remains practically infeasible to measure vascular flows and pressures in individual
microvessels in vivo, which necessitates a pragmatic approach to boundary condition
assignment. Under the assumption that vessels along the tumour surface are connected
to peritumoural vessels [44,58], we developed an optimisation procedure which assigns
vascular pressures to tumour surface vessels, based on a target pressure drop, with
iterative adjustments to match in vivo measurements of mean perfusion from ASL-MRI
(see Fig 2 a, b). These in vivo data are acquired for the same tumours that were
subsequently subjected to OPT analysis. Using this approach, we are able to ensure
good agreement between in silico predictions and measured perfusion data [38].

In this study a vascular pressure of 30 or 20 mmHg for the GL261 and 45 or 15
mmHg for the LS147T tumour was randomly assigned to 5% of surface boundary nodes,
in order to meet the required tissue perfusion. To ensure randomness, the peritumoural
nodes were represented by a list. The elements in the list were rearranged randomly
using a uniform random number generator where the system clock was used to seed the
random number engine. The nodes located in the top 5% of the list were then randomly

assigned a low or high pressure use an equivalent randomised approach.

Fig 2. (a, b) The optimisation scheme used to assign boundary conditions to the tumour networks. (a) The
process to simulate physiological tissue perfusion. (b) The flowchart for the subroutine “Assign Pressure
Conditions” given in (a). (¢) Perfusion through a tumour is calculated by generating a convex hull across the
surface of the tumour to accurately extract tumour volume. (d) Discretising the hull into a finer mesh and
calculating IFP at coupled points across, and normal, to the tumour hull. (e) A sphere packing algorithm is then
applied to the points on the tumour surface with inflow averaged across the great circles of each sphere, enabling
an approximation of perfusion.

During preliminary simulations it was found that if high/low pressures were
prescribed in close local proximity to each other, unphysiological flows were predicted
due to the steep local vascular pressure gradient. In order to prevent this, a subroutine
was designed so that values at opposing ends of the pressure spectrum could not be

located within a defined vicinity of each other. This “exclusion region”, centred on a
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given boundary node, was defined as an ellipsoid volume with diameters, along its three
principal axes, equal to 5% of the tissue dimensions.

A proportion of boundary nodes are contained within the tumour volume as a
consequence of either angiogenesis which form blind-end vessels, or artefacts of OPT.
Previous studies approximated the fraction of blind-end vessels in sample MCa—IV
carcinomas to be 33% [59]. However, blind-end information is not available for either
GL261 or LS147T tumours. Therefore, consistent with previous computational
studies [44], blind-ends were randomly applied to 33% of remaining boundary nodes
(using the previous randomised approach), with the remaining 62% of boundary nodes

left as unknown in the flow optimisation scheme of Fry et al. [39].

Table 2. Fluid Transport Parameters

Parameter Description Value Units Reference
Poo Far-field interstitial fluid pressure 0 mmHg -
K Interstitial hydraulic conductivity 1.7-1077 cm’mmHg 's ' [17]
L, Vascular hydraulic conductance 2.8-1077 cmmmHg 's ! [11]
o Oncotic reflection coefficient 0.82 - [60]
11, Oncotic pressure of blood 20 mmHg [61]
IL, Oncotic pressure at the vessel wall 15 mmHg [11,62]
S|V Ratio of vascular surface area to tumour volume
GL261 17.3 cm T Calculated.
LS147T 15.3 cm Calculated.

Assigned baseline parameters for the interstitial component of the fluid transport model. Note, S was calculated using the
architectural data of the vasculature and V' based on computing the convex hull of the tumour.

Application of our boundary assignment method requires us to accurately compute
mean perfusion across the tumours for a comparison against equivalent experimental
data gathered in vivo using ASL-MRI. This requires an accurate definition of the
tumour surface and volume to give an accurate approximation of a tumour’s mass and
fluid flow into the tumour volume. For example, an overestimation of the tumour mass,
assuming a cuboid tissue volume surrounding the tumour, can drastically underestimate
tumour perfusion since, in this case, the tumour shapes are approximately ellipsoidal
and perfusion is inversely proportional to the tumour mass. Similarly, an overestimation
of flow into the tissue would overestimate tissue perfusion. Next we describe: 1)
defining the surface of the tumour; 2) computing the IFV vectors across the tumour
surface; and 3) approximating the total tissue perfusion.

1) The hull of a tumour is calculated using the Matlab (MathWorks Inc., Natick,
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MA) ‘boundary’ function applied to all nodes defined during vascular segmentation (see
Fig 2 c¢). The Matlab ‘fast loop mesh subdivision’ triangulation algorithm is then
applied to further discretise the define tumour surface. 2) To approximate tumour
perfusion requires us to define a set of normal vectors to the tumour surface to compute
pressure gradients. We identify the centre of the tumour and duplicate the hull, which is
then expanded to form a 10 pum gap between the two surfaces (see Fig 2 d). IFP is then
calculated across all nodal points on each surface, each paired by a vector normal to the
opposing surface. A pressure gradient is then computed along each normal vector and
the corresponding velocities are calculated. 3) A sphere packing algorithm is applied to
the nodes on the original tumour hull, whereby no sphere overlaps neighbouring spheres
(see Fig 2 e). Any inflowing node (defined by the corresponding pressure gradient) is
averaged across the great circle of its corresponding sphere and its contribution is
summed together to calculate the interstitial component of tissue perfusion. Total tissue
perfusion is calculated by summing over the peritumoural vascular inlets and interstitial
perfusion values.

Finally, we prescribe baseline parameter values (see Table 2). We assume that the
tumours were isolated in subcutaneous tissue in the absence of lymphatics, therefore the
far-field pressure, pso, was set to 0 mmHg. Due to a lack of experimental data, the
vascular conductance and interstitial conductivity, L, and r, respectively, were given
uniform values based on literature (2.8 x 10~7 cmmmHg *s ' and 1.7 x 1077
em? mmHg s, respectively [31,63]). As the transport of blood plasma proteins is not
modelled explicitly in our model, we assume a constant oncotic pressure gradient of 5

mmHg between the vasculature and interstitium.

Results

In the following section we apply our computational framework to a GL261 orthotopic
murine glioma and a LS147T human colorectal carcinoma xenograft to form baseline
flow solutions. We then explore sensitivity to source parameters, which include source
distribution, source radii and bilateral communication between the vascular and
interstitial compartments. We then perform sensitivity analysis to the interstitial

parameters (for example, vascular hydraulic conductance and interstitial hydraulic
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conductivity) on IFP and IFP profiles in the LS147T tumour. We also provide an

example of changes occurred by parameter variation in fluid dynamic spatial maps.

Table 3. Simulated Fluid Transport Statistics

Parameter GL261 LS147T Literature Units

Blood Pressure 25.0+£09 30.6+20 10— 80 [64] mmHg

Blood Flow 5.1+434 1.1+47 0 — 180 [64] nlmin '

Blood Velocity 02+£10 02406  1.62+0.14 [44] mms |

Vessel Wall Shear Stress 5.7+£232 11.8+32.6 23.940.7 [44] dynem T

Tissue Perfusion 83.7+223 54403 110 £ 707, 19+ 8% [38] mlmin ' 100g '
Interstitial Fluid Pressure (IFP) 204 +£2.1 253 +1.6 13.5+ 11.3 [62]F mmilg
Interstitial Fluid Velocity (IFV) 4.8 +0.5 0.19+0.09 2.3 [25] pms *

Intra- and extravascular baseline fluid transport statistics for the GL261 and LS147T tumours (mean + standard deviation)
across all simulations and compared against literature values. {: Data gathered from GL261 tumours. {: Data gathered from
LS147T tumours.

Simulating Interstitial Fluid Pressure in Real-World Cancerous

Tissue

Our vascular flow simulations are in good agreement with those in

computational [44,64] and experimental literature (see Table 3 and Fig 3). To test the
variability induced by our stochastic boundary condition implementation, the
optimisation procedure (detailed in Fig 2 a, b) was repeated for a total of n = 12 for
each tumour. Interstitial fluid flow was then simulated for each separate vascular flow
solution, providing us with a baseline set of interstitial flow solutions. Blood flow across
all simulations exhibited similar spatial distributions, with perfused vessels mainly
restricted to the outer rim of the tumours [65]. The mean standard deviation of vascular
blood pressures across all simulations was low with values of 0.82 and 1.53 mmHg (with
maxima of 4.78 and 13.2 mmHg) for GL261 and LS147T, respectively (see Fig 5 a, e).
The elevated standard deviations in vascular pressure were located at the periphery of
the tumours, which is to be expected as the high and low vascular pressures were
stochastically assigned here. Furthermore, our mean blood velocity and vessel wall shear
stresses agree with similar numerical modelling of vascular blood flow in the

MDA-MB-231 breast cancer cell line [44].

Fig 3. Simulated vascular blood flow in (a) GL261 and (b) LS147T tumours. Distributions are shown for vessel
radii, blood pressure, flow and vessel wall shear stress, respectively.
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Fig 4. Simulated fluid transport through the interstitium in GL261 and LS147T tumours. (a, b) (Left) Predicted
interstitial fluid pressure (IFP) fields for {X, Y}-planes through the tumours, emulating the traditionally high
pressure in the tumour core but with predicted spatial heterogeneities. (Middle) Simulated interstitial perfusion
maps discretised into ~ 140 pm? pixels. Results replicate the traditionally elevated perfusion existing at the
periphery of the tumours. (Right) Interstitial fluid velocity (IFV, overlaid onto greyscale image of interstitial
perfusion) predictions depicting spatial interstitial flow heterogeneities across the entire tumours. Note, perfusion
and interstitial fluid velocity maps are shown for the central slice in the interstitial fluid pressure graphics. (c, d)
Fitted curves with error bars indicating standard deviation for (left) IFP and (right) IFV in (c¢) GL261 and (d)
LS147T, plotted against normalised radius, corresponding to the simulations shown in (a, b).

Tissue perfusion (calculated as 83.7 + 22.3 and 5.4 & 0.3 ml/min/100g for the GL261
and LS147T tumours, respectively) was further validated by in vivo ASL-MRI
measurements of at 110 + 70 and 19 £ 8 ml/min/100g for GL261 and LS147T,
respectively. This implies that imposing physiologically realistic pressure boundary
conditions generates physiologically realistic perfusion, and consequently accurate drug
delivery solutions [38].

No literature IFP values were available for GL261 cell lines, however, our IFP was
slightly elevated compared to that previously measured in LS147T in vivo (13.5 £11.3
mmHg [62]). Considering the range of IFP both here and in vivo [62] and the good
accordance with in vivo perfusion, our results provided us with the confidence that our
simulations can produce physiological IFP predictions (see Fig 4).

Examining the tumour radial IFP profiles, the LS147T network exhibited similar
configurations as observed both experimentally in LS147T [17], in other cell
lines [3,24,25], and in computational studies [31,32,36,63], with elevated IFP at the
tumour core (see Fig 4 b, d). In addition, the LS147T network displayed a typical IFV
profile radially, with an increasing IF'V range towards the tumour surface due to the
steeper pressure gradients at the periphery of the tumour. This indicated that bulk fluid
filtration occurs at the high flowing vasculature located at the tumour extremity in this
network (p = 0.41, p < 0.001, where p and p are the Pearson’s correlation coefficient
and its corresponding p—value between tumour radius and vascular flow, respectively).

In comparison, the GL261 network also exhibited a traditional, yet steeper, IFP
profile with a wider variance throughout the tumour (see Fig 4 ¢). The IFV profile
exhibited a typical profile increasing from the centre of the tumour to the periphery.
However, its IFV peak was reached at ~ 80% of the tumour radius, with a substantial

decline in the latter 20% (see Fig 4 c).
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It was observed that GL261 and LS147T have distinct differences in their vascular
architecture (see Fig 3 and Table 1). This may indicate that the inherent vascular
heterogeneity across tumour cell lines [20] directly impacts the IFP and IFV
distributions, creating an unorthodox interstitial flow profile. High IFP has been
associated with low vascular density in A-07-GFP tumours [66], however, further work

is required to confirm our hypothesis for GL261 and LS147T tumours.

Sensitivity of Tumour Interstitial Fluid Transport to Model

Parameters

Sensitivity analysis allows us to understand the impact of parameter variance on
tumour perfusion predictions. In this study, we performed sensitivity analysis to our
model’s underlying parameters. For convenience we have split these parameters into two
groups. The first we define as source parameters, which include the vascular blood
pressure, py;, the spacing between each source along a given vessel, A;, and the source
radius, 7o,; for segment i (see Fig 1 ¢). The second group we call the interstitial

parameters, which include the far-field IFP, p.., the oncotic reflection coefficient, o, the

hydraulic conductance of a vessel wall, L,, and the interstitial hydraulic conductivity, .

In the following, if sensitivity analysis to an interstitial parameter was not being

performed, it was set to the corresponding value in Table 2.

Source Parameters

Vascular pressure depends not only on the vascular pressure at the boundary nodes and
vascular network geometry but also on the permeability of the tumour vessels and
hydraulic conductivity of the interstitial tissue, as a consequence of flow communication
between the vascular and interstitial domains. To incorporate this relationship, we
couple the vascular and interstitial models using an iterative scheme in which vascular
blood pressure distributions, p,; for i € Ny, were updated on each iteration by
incorporating the loss of fluid within a vessel due to fluid flux across the vessel wall into
the interstitium (see Fig 1 d). We found that due to the small volume of fluid leaving
the vessels, vascular pressure was not significantly corrected on each iteration (see Fig 5

b, f). In the case of the GL261 network, the algorithm had converged after two
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iterations (see Fig 5 b). In comparison, the LS147T network had not converged after six
iterations but the mean error was O(10~%) mmHg (see Fig 5 f). This may indicate that
a tumours inherent vascular heterogeneity and corresponding interstitial parameters
alter the scale of these flow errors.

Next we varied the maximum distance, Apq., between sources distributed along the
vasculature. Values of 10 and 25 pm, and 50 and 100 pm were chosen for the GL261
and LS147T networks, respectively, due to differences in mean branching vessels lengths
observed in each tumour (see Table 1). The GL261 network exhibited minimal
sensitivity in IFP between the two maximal source lengths (see Fig 5 ¢). Comparatively,
the LS147T experienced greater variability (of less than 1 mmHg) in mean IFP, between
the two values of A, at the core and periphery of the tumour (see Fig 5 g). We
hypothesise that sensitivity to A is related to the vascular density of each tumour type.
The GL261 network is an order of magnitude greater in vascular density compared to
the LS147T tumour (see Table 1). An elevated vascular density results in an increased
density of fluid sources, and so any reduction in sources may have a minimal effect to

IFP due to levels being maintained by the local proximity of neighbouring sources.

Fig 5. Sensitivity of the computational framework. (a, e) Cross-sectional slice from the core of the (top) GL261
and (bottom) LS147T tumours, showing standard deviation of intravascular pressures (mmHg) across all 12
simulations. (b, f) the mean segment pressure error between consecutive iterations for the (top) GL261 (top) and
(bottom) LS147T networks. (c, g) IFP distribution from the centre of the tumour to its periphery for a maximum
spacing of (blue) 10 and 25 pm and (orange) 50 and 100 pm for GL261 and LS147T, respectively. (d, h) IFP
distributions for the source radii set to the minimum vessel radius multiplied by a factor of (blue) 107!, (red) 10°
and (yellow) 10. Note, error bars correspond to standard deviation.

We finally sought to understand how the source radii, ro; for i € N, affects flow in
the interstitial domain. We initially set the source radii to a constant value equal to the
minimum vessel radius in a given tumour network. Three cases were then explored
where rg; was multiplied by a factor of 1071, 10° or 10*. Our results show that
decreasing the value of the source radii decreases mean IFP, with greater sensitivity
exhibited again by the LS147T network (see Fig 5 d, h). This indicates that greater
care is needed compared to the assignment of other source parameters, to ensure the
physiological accuracy of the results. Here, we set the value of 7o ; equal to the radius of
its corresponding vessel in order to provide a heterogeneous distribution of radii in

which vessels with a larger radius are able to influence the IFP to a greater capacity
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than compared to relatively smaller vessels.

Interstitial Parameters

Sensitivity to the interstitial parameters ps, o, Ly, and x were explored using the
LS147T network. This network was chosen due to the scale of simulations to be
performed and due to the greater sensitivity exhibited by modifying the source
parameters. First of all, we investigated the deviation in the far-field interstitial
pressure, po. Ideally, the far-field pressure is set to the mean IFP of the adjoining
healthy tissue, however these data are frequently unavailable. We varied the far-field
IFP from 3 to 18 mmHg in increments of 3 mmHg. Alteration of p., did not
significantly modify tumour IFP, with the majority of variation occurring at the
periphery of the tumour (see Fig 6 a). As a consequence, mean IFV across the tumour
decreased with increasing p.. (see Fig 6 e).

Next we investigated the oncotic reflection coefficient, o. Physiologically, the
coefficient o varies between 0 and 1, indicating the likelihood that a molecule
approaching a pore in the vessel lumen will be reflected back and thereby retained in
the vascular compartment. As such, we ranged o from 0 to 1 with increments of 0.25.
Modeification of ¢ resulted in a network-wide shift in tumour IFP magnitude, thereby
preserving the IFP gradient (see Fig 6 b). This is an intuitive result since we held the
oncotic pressure gradient constant across the entire vasculature, therefore any increase

in o resulted in systematic reduction in both IFP and IFV (see Fig 6 b, f).

Fig 6. Data-fitted curves of IFP (top) and IFV (bottom) for modulation of interstitial model parameters: (a, e)
Poo (mmHg), (b, f) 0, (¢, g) Ly(cm /mmHgs) and (d, h) & (cm® / mmHgs). Arrows indicate increasing parameter
values, with exception of (d) in which a range of x (cm? / mmHgs) is indicated. IFP profile gradients across LSy
sensitivity analysis of (a) far-field pressure, ps, (b) oncotic reflection coefficient, o, (¢) vascular hydraulic
conductivity, L,, and (d) interstitial hydraulic conductivity, # (cm® / mmHgs). Arrows indicate increasing values
of the given parameter and colours in each column indicate the equivalent simulation.

Vascular hydraulic conductance, L, defines the leakiness of the lumen to the
transport of blood plasma. Our sensitivity analysis varied L, from 1.33 x 1078 to
3.41 x 107% cm/mmHg s, encompassing values provided in literature for normal and
tumour tissue [11]. Similarly to o, a reduction in L, resulted in decreasing IFP across
the tumour but with contrasting regional gradients (see Fig 6 c¢). Our analysis showed

that with decreasing L, IFP tended towards the assigned far-field pressure due to
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decreasing fluid filtration from the vasculature, and so in its limit, the IFP would
uniformly be equal to ps. This is due to decreasing fluid filtration, indicating that the
model produces a physiologically viable response. In comparison, a reduction in L,
induced minimal changes to IF'V in the core of the tumour but resulted in decreases
towards the periphery (see Fig 6 g).

Variations in the interstitial conductivity, «, ranged from 1.33 x 107! to 1.04 x 1076
cm? /mmHgs. In this case, we established that sensitivity to this parameter are
non-trivial to elucidate. An inflexion point was observed for values
1.67 x 1079 < £ < 8.33 x 1072 cm? /mmHgs in which the spatial IFP distribution
switched from one configuration to another (see Fig 6 d). For x < 1.67 x 107
cm? /mmHgs, IFP solutions displayed near identical configurations (mean IFP of
25.8 + 2.4 mmHg for all four cases) in which IFP displayed an increased gradient
compared to greater values of k along with decreasing IFV (see Fig 6 h). In comparison,
k> 833 x 1072 cm?® /mmHgs displayed similar IFP profiles with mean IFP decreasing
with increasing & (26.2 + 1.5 to 22.5 + 1.6 mmHg).

Mapping the Effects of Vascular Normalisation

As an example of how our computational framework can be used to predict the
effectiveness of cancer therapies, we performed a feasibility study of normalising the
LS147T vasculature, by modifying the network vascular hydraulic conductances and
oncotic reflection coefficients. We crudely simulated vascular normalisation using a
linear function where vascular pores sizes (represented through a combination of
changes in L, and o) in the tumour core are typical of tumour vasculature, and
gradually returned to physiological values at the tumour periphery (from 2.18 x 10~7 to
0.44 x 10-7 cmmmHg 's ! for L, and from 0.82 to 0.91 for o).

Simulations predicted a steeper IFP gradient across the tumour. This is contrary to
previous studies [67,68], where IFP was found to reduce when tumour vasculature was
normalised. However, these studies normalised the vasculature uniformly across the
tumour, and our equivalent sensitivity analysis for uniform changes in L, observed a
similar TFP response (see Fig 6 c).

In response to changes in IFP, our model predicted elevated tumour interstitial fluid

speed (IFS - see Fig 7 a), a similar result to [68] who observed that advection is
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dominant at small pore sizes in two-dimensions. Steeper IFP gradients also increased
perfusion and outward facing IFV streamlines (see Figs 4 b and 7 b).

Considering our predicted IFP responses for uniform and radially varying vascular
normalisation, we hypothesise that for vascular normalisation therapy to effectively
reduce to IFP, blood vessels across the tumour need to be normalised. Further, that if
vascular normalisation increases macromolecular drug penetration via the vasculature to
the core, outward interstitial advective currents may inhibit the effectiveness of such
therapies once delivered to the interstitium. However, these effects need to be explored
using a comprehensive model to detail the delivery of normalisation therapies, and
consequently macromolecular drug delivery. In addition, the effect of normalisation is
likely to be dependent on tumour architectural properties, such as vascular density and
interstitial hydraulic conductivity, and so requires study across a range of tumours with

spatially varying conductivities.

Fig 7. Normalisation of vascular hydraulic conductance and oncotic reflection coefficient to physiological values in
LS147T. (a) Planar contour plots of IFP and interstitial fluid speed (IFS) for the baseline (top) and normalised
(bottom) predictions. (b) Predictions of normalised interstitial fluid spatial maps (left) and IFV (right - with
greyscale perfusion underlaid) where pixels are ~ 140 ym?. For comparison, equivalent {X, Y}-planes for baseline
simulations can be viewed in Fig 4 c.

Discussion

Elevated interstitial fluid pressure is frequently associated with solid tumours, where a
conventional profile exhibits a uniformly high IFP in the core of a tumour which
decreases rapidly towards the levels of physiological tissue at its periphery [3,14,52].
This atypical characteristic forms a barrier to transvascular fluid and drug delivery,
thereby diminishing therapeutic efficacy of anti-cancer treatments.

The passage of fluid through the interstitium is influenced by both hydrostatic and
oncotic pressures in blood vessels and therefore by the heterogeneic architecture of
tumour microvessels. However, the procurement of detailed fluid flow data in vivo
across whole tumour networks is currently unfeasible using conventional imaging and
experimental techniques. However, recent advances in ex vivo high-resolution optical
imaging techniques [37] allow whole three-dimensional tissue architectures to be

extracted and reconstructed to act as inputs for detailed in silico modelling of fluid
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transport.

No study has explicitly modelled vascular and interstitial fluid flow using discrete,
three-dimensional structural data from images of whole-tumour, real-world
vasculature [6]. However, in a recent study, we presented our novel REANIMATE
platform which extracts three-dimensional, whole tumour vasculature ez vivo from
optically cleared tissue, which is then used to parameterise an in silico model of fluid
transport guided by in vivo imaging data [38]. This has enabled us to perform

quantitative, realistic predictions of fluid and drug delivery to tumours which has led to

novel insights into a tumour’s inherent physical resistance to anti-cancer therapies [38].

In this study, we presented the computational framework used to simulate fluid
transport in REANIMATE. We detail its derivation and application to whole tumour
architectural datasets and show how our model allows highly-detailed predictions of
fluid flow within the tumour microenvironment by incorporating explicit tumour
vasculature. Our model allows flow heterogeneities to be quantified in a
computationally efficient manner, when compared to finite-difference and element
methods [40], which enables cancer therapies, such as normalisation, to be effectively
studied through modification of its parameters.

We initially apply our framework to an orthotopic murine glioma and a human
colorectal carcinoma xenografts from the GL261 and LS147T cell-lines, respectively, to
present realistic, baseline simulations of the tumour microenvironment. We then
performed sensitivity analysis to the underlying model parameters. The first are the
source parameters, which are specific to our model, and include source of flux
distribution and size. Secondly, the interstitial parameters, such as vascular
conductance and interstitial conductivity, which are frequently represented in literature
due to the prominent use of Starling’s law. In the second case, we perform analysis of
how variation of these parameters modifies the IFP and IFV in an LS147T dataset. We
finally present a proof-of-concept detailing how our model can be used to provide
three-dimensional, spatial maps of tumour properties, such as IFP, IFS, IFV and
perfusion, when investigating the effects of vascular normalisation.

Our computational framework is based upon a Poiseuille model for vascular blood
flow [39] which is coupled to a steady-state Green’s function solution to interstitial fluid

flow. Here, tumour vasculature segmented ex vivo is represented by a discrete set of
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sources of fluid flux for bi-directional transport between the interstitium. Previous
models either assume a homogeneous vascular network [3,11,14,52], incorporate a
computer-generated synthetic tumour network [28-34], or incorporate boundary
conditions and spatial variations in tissue permeability to artificially represent vascular
heterogeneity [35,36]. However, vascular averaging methods do not fully encapsulating
the intrinsic, local interactions between neighbouring blood vessels which contribute to
global interstitial flow and synthetic networks are difficult to validate against real
tumour architecture. Here we use vascular architecture from real, whole tumour
networks, and through use of Green’s function methods, our model significantly reduces
the computational size of the computational problem, allowing vessel-vessel interactions
to be modelled at the micron-scale. Thus, we provide the means to perform in silico
studies to hypothesis test the impact of vascular heterogeneity on the tumour
microenvironment with relative ease.

Our simulations were performed on ez vivo structural imaging data from a GL261
and a LS147T tumour. As no in vivo flow or pressure data were available for the
numerous boundary vessels, we developed a procedure whereby simulated data was
optimised based on in vivo tissue perfusion data gathered using ASL-MRI [38]. This
approach has produced solutions which are highly consistent with experimental
measurements in the same tumours [38]. In this study, baseline vascular flow solutions
across all tumour simulations are in good agreement with the perfusion data, alongside
mean flows [64], velocities and vessel wall shear stresses [44], and fluid pressure in the
interstitium [3,17,24,25]. This provided validation that our model produces
physiologically realistic results, providing a platform to investigate the tumour
microenvironment.

We performed sensitivity analysis to the source parameters, such as updating the
vascular flow solution, source distribution and source radii, to understand their
influence on the flow communication between the vascular and interstitial domains. Our
results exhibited a minimal sensitivity to IFP distributions by varying these parameters,
with the exception of the assignment of source radii. Here, we hypothesise that greater
care is required for spatially sparse tumours with a low vascular density, in order to
ensure physiologically accurate simulations. Finally we investigate the interstitial

parameters using the LS147T dataset. Raising the far-field interstitial pressure did not
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significantly alter the IFP distribution across the tumour, with increased IFP occurring
at the tumour periphery, compared to baseline. Variation in the oncotic pressure
contribution, by modifying the oncotic reflection coefficient, only affected the
magnitude of the interstitial pressure, with minor changes to the IFP and IFV profiles,
similar to those reported in previous studies [3]. Increasing L, and , raised the
gradient of the interstitial pressure profile, thereby increasing fluid transport through
the interstitium. However, our IFP distributions did not reach 0 mmHg at the periphery
of the tumours as in previous studies [3,14,67]. We hypothesise that this is due to not
applying a fixed pressure at the tumour boundary in our model, which results in a
smoother transition of IFP to the surrounding tissue, similar to previous computational
modelling of tumour vascular heterogeneity [35, 36].

We finally performed a feasibility study detailing how our framework can be used to
investigate cancer therapies, such as vascular normalisation. We modified vascular
hydraulic conductances and oncotic reflection coefficients in a linear radially varying
fashion in the LS147T network. Values ranged from those associated with tumours at
its core, to physiological tissue levels at its periphery. Our model predicted that IFP at
the core was slightly elevated, and that a pressure gradient is formed radially across the
tumour core which causes raised, outwardly directed interstitial flow. Consequently, we
predict that vascular normalisation therapies need to uniformly normalise a tumour to
lower tumour IFP, and that ineffective normalisation could reduce the efficacy of drug
therapies. These results are preliminary, and require further analysis and application to
further LS147T (and other cell-line) datasets. However, they indicate that modifying, or
normalising, the parameters in our computational framework is a simple and effective
way of investigating the fluid dynamic properties, such as interstitial pressures and
velocities, associated with an individual tumour. Moreover, our framework predicts
spatial maps of flow across three-dimensional cancerous tissue, enabling flow
heterogeneities induced by realistic vascular networks to be quantified for subsequent in
silico investigations into anti-cancer therapies.

Our results and proposed computational framework offer significant scope for future
expansion. Current limitations include, for example, our stochastic approach to
simulating vascular blood flow which was implemented due to the in-availability of

experimental data. Recent in vivo methods provide a step forward in approximating
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conditions by discerning global tumour pressure gradients through observations of tissue
fluid velocity [26], which could lead to greater accuracy when assigning boundary
conditions specific to a tumour. Similarly, parameter values such as the vascular
conductance and interstitial hydraulic conductivity were assigned using previous
literature values since these tissue-specific measurements can be challenging to procure
through experimentation. For example, interstitial conductivity values across normal
tissue have been reported to span four orders of magnitude [17]. Future work could seek
to predict spatially heterogeneous maps of interstitial hydraulic conductivity using
REANIMATE and new experimental data [26].

There are also opportunities to expand the computational model to incorporate more
complex biological phenomena. For example, our model does not currently incorporate
tumour compression of vessels due to increasing shear stresses within the tumour, a
critical property of understanding angiogenic vasculature [29,69]. In addition, our model
does not explicitly incorporate necrotic regions within cancerous tissues. Yet necrotic
regions can influence interstitial fluid delivery [3,14] and tumour macromolecular
transport [52], and so are vital to incorporate if our computational framework.

We expect to find a wide utility for REANIMATE in a range of disease areas,
particularly given the current interest in optical clearing methods and their widespread
use in biomedical research. REANIMATE is novel and timely and will find extensive
use for hypothesis testing, to enable tumour biology and drug delivery to be better

understood, which in turn may enable the next generation of cancer therapies.
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