

Are sleep spindles poised on supercritical Hopf bifurcations?

M. Ospeck^{1*}

¹Mathematics Department, Suny Poly, Utica, NY, US

*corresponding author

E-mail: mospeck@yahoo.com
ospeckm@sunyit.edu

1 ABSTRACT

2 Sleep spindles are recognized as an important intermediate state of long term memory formation.
3 During non REM sleep, large numbers of thalamic relay neurons synchronize their spike bursts
4 for one half to two seconds, entraining many millions of neurons, and constituting a sleep
5 spindle. Here we study spindle amplification, entrainment, synchronization and decay. Relay
6 neurons have both a high resting state near -60 millivolts (mV) and low resting state near -75
7 mV. Due to the neuron's sodium conductance, low-threshold calcium conductance, and calcium-
8 dependent H conductance, it exhibits a number of bifurcations, like its supercritical Hopf at -61
9 mV. Here low-threshold calcium conductance destabilizes membrane potential to birth a small
10 limit-cycle in the 7-16 Hz range. Supercritical Hopf bifurcations are the underlying mechanism
11 for amplification and frequency selectivity in hearing: hair cells are forced by sinusoidal input
12 currents driving their mainly capacitive loads, with the forcing currents locking at 90 degree
13 phase leads with respect to their oscillating membrane potentials. Here we model a small part of
14 a spindle, with 6 cross-coupled relay neurons all poised on Hopf bifurcations. One neuron is
15 forced by a weak noisy train of periodic current impulses that typically lock at a 90 degree phase
16 lead with respect to its voltage oscillation. It then drives its neighbors, causing them to drive each
17 other at much smaller phase angles, usually less than ± 10 degrees. The system of Hopf
18 oscillators exhibit small signal amplification and frequency selectivity, high degrees of
19 synchronization and noise rejection, and switch-ability. These argue in favor of spindling relay
20 neurons poising on, or very near to, supercritical Hopf bifurcations. Also, during the phase-
21 locking of their spike bursts, calcium conductance oscillations increase internal calcium, which
22 turns on slow H current. This depolarizes the relay cells, pushing them below their Hopf
23 bifurcations and terminating the spindle.

24

25 INTRODUCTION

26 Mainly all conscious perception passes through the thalamus on its way to the cortex [1].
27 Thalamic relay neurons, acting in their relay mode, forward rate-coded spike trains from
28 subcortical sensory areas through specific thalamic relay nuclei to their related areas of cortex.
29 Examples are cochlea \rightarrow medial geniculate body (MGB) \rightarrow auditory cortex, and retina \rightarrow lateral
30 geniculate nucleus (LGN) \rightarrow visual cortex, where the arrows stand for tonic firing sensory
31 neurons and tonic firing relay neurons, respectively.

32 Relay neurons have both strong driver and weaker modulator inputs [1]. Small numbers of
33 drivers from, for example, retinal ganglion cells, or layer V cortex pyramid neurons, make large
34 glomerulus-type synapses onto the proximal dendrites and somas of thalamic relays [1]. On the
35 other hand, large numbers of modulator inputs from layer VI cortex pyramid neurons, thalamic
36 interneurons, or parabrachial neurons, make weaker synaptic contacts onto relay neuron distal
37 dendrites [1]. It should be noted that thalamic reticular nucleus neurons differ in that they are
38 able to make both strong and weak inputs onto relay neurons [1]. In the case of vision, only 7%
39 of the LGN relay inputs are retinal drivers, but these define the receptive field properties of the
40 visual cortex target [1]. This is an example of a general principle called "labeled line," in which a
41 sparse number of strong sensory driver inputs are able to control the receptive field properties of
42 the cortical target area [1].

43 In addition to the driver vs. modulator input distinction, relay neurons can be partitioned into
44 first order vs. higher order [1]. Retina → LGN → visual cortex involves first order (FO) relay
45 neurons that advance awake state visual information. Contrast this against the higher order (HO)
46 relays, located mainly in the thalamic pulvinar nucleus. Instead of forwarding sensory
47 information, HO relays pass spike trains from a cortex source to another cortex target [1]. The
48 pulvinar is the largest region of the thalamus and most of the thalamus is devoted to HO relays
49 [1]. For example, a layer V pyramid in cortex region 1 drives an HO pulvinar relay that in turn
50 drives cortex region 2, whose layer V pyramid then drives another HO pulvinar relay making
51 inputs to cortex region 3, etc. [1]. Such cortex → pulvinar → cortex → pulvinar → ... HO relay
52 pathways are important in the awake state and also during non-rapid eye movement (NREM)
53 sleep for the propagation of sleep spindles, delta waves and slow waves [1].

54 Besides their tonic-firing relay mode, thalamic relay cells have a burst firing mode that is used
55 for both attention and memory. For example take walking late at night along a dark country
56 road. One might be startled to see a flaming meteor whiz past, only to realize that it was just a
57 firefly flying close by your right ear. Burst firings by hyperpolarized thalamic relays are part of
58 this attention-grabbing effect. However, relay neurons have a number of distinct burst modes,
59 several of which are used during NREM sleep for memory reprocessing [2]. NREM slow wave
60 sleep includes sleep spindles (7-16 Hz), delta waves (δ ; 1-4 Hz), and slow waves (SW; 0.3-1 Hz)
61 [2]. Interestingly, it also contains brief episodes of high-frequency beta (β ; 13-30 Hz) and gamma
62 (γ ; 30-60 Hz) that are normally associated with the awake state [2].

63 Repeated episodes of synchronized slow wave activity are thought to lock in declarative
64 memories [2]. During the awake state, neocortex plays a version of the day's events to the
65 hippocampus. Then during slow wave sleep, the hippocampus recapitulates these short term
66 memories back to the cortex. This playback involves short intervals of high frequency β and γ ,
67 and it is required to construct a permanent memory in cortex, which subsequently becomes
68 independent of the hippocampus [2]. Destexhe and Sejnowski's "recall-store" memory
69 consolidation hypothesis is based on brief episodes of 7-16 Hz spindles and β and γ from the
70 hippocampus simultaneously driving cortex targets, with these events followed by slow waves
71 [2]. During this part of slow wave sleep the δ and SW force the same cortical targets, but in a
72 lower < 4 Hz frequency range [1, 2, 3, 4]. They conclude that slow wave sleep appears to be a
73 cyclic, iterative process that leads to "off line" memory reprocessing by driving cortex pyramid
74 neurons in complementary ways [2]. Additionally, more than just reactivating memory traces,
75 slow wave sleep increases signal-to-noise-ratio on Py dendrites by strengthening some synapses
76 and downregulating the weights of others, effectively turning some of them from the active to the
77 latent state [2, 5]. Everyone has had the experience of sleeping on a problem, which then
78 becomes clear in the morning.

79 Cortex pyramid neurons (Py) have a hyperpolarized down-state able to cause a local cortex
80 down-state (low β , γ , but high δ , SW) [4]. Coincident down-states from different cortex regions
81 are then able to initiate a focal thalamic down-state that births a spindle [3, 4]. The nomenclature

82 for up-states and down-states can be confusing: another way of saying the same thing is that the
83 on-set of a cortex up-state sends a burst of spikes to reticular nucleus neurons, which then
84 hyperpolarize relays, causing them to initiate a spindle [5]. Subsequently these regions receive
85 the feedback tetanus from the spindle together with a high-frequency playback of a part of the
86 day's short-term memories from the hippocampus, all this typically occurring during their down-
87 state to up-state transitions [4]. Surprisingly, during these episodes some cortex Py neuron
88 targets are still able to maintain relatively low firing rates because the spindle simultaneously
89 forces EPSPs (excitatory post synaptic potentials) in their dendrites, and larger IPSPs (inhibitory
90 post synaptic potentials) in their somas [2]. Py dendrites are known to be dominated by
91 excitatory synapses, while their somas have mainly inhibitory ones [2]. In this way 7-16 Hz
92 spindles are able to activate NMDARs (N-methyl-D-aspartate receptors) that bring calcium into
93 Py excitatory synapses, while at the same time acting as a governor on the Py spike rate [2]. It's
94 also thought that the spindle frequency range is optimal for the activation of calcium-modulated
95 kinase 2 (CaMKII), which is known to effect long term potentiation (LTP) at excitatory synapses
96 [2]. Also activated is protein kinase A (PKA) which is known to inhibit nuclear phosphatases
97 that block gene expression [2]. "Recall-store" considers synaptic calcium infused by a spindle as
98 being able to "tag" a particular Py synapse for subsequent long-term changes [2]. Then after the
99 spindle, calcium induced calcium release (CICR) from endoplasmic reticulum into the nucleus
100 during δ and SW would drive a calcium-dependent gene expression, sensitive to slow waves, that
101 is able to transcribe channel proteins destined for a tagged synapse [2]. It is also known that
102 subthreshold inputs to Py neurons during their up-state induces synaptic weakening, but that
103 weakening can be prevented by correlated postsynaptic spiking, with synaptic protection
104 dependent on NMDA channels and glycogen synthase kinase (GSK3 β) [6]. It appears that slow
105 wave sleep defaults towards synaptic depression and that active defense is required to maintain
106 or increase synaptic weights.

107 Spindle-like oscillations have previously been modelled based on poising relays on subcritical
108 Hopf bifurcations [7]. A second model involves a relay cell strongly coupled to a reticular
109 nucleus neuron as being the effective oscillatory unit [8]. Spindles occur in neocortex, the
110 parahippocampal gyrus and the hippocampus, and originate thalamically, while down-states
111 originate cortically, with thousands of thalamic spindles and cortex down-states occurring during
112 a typical night of sleep [3, 4]. There is a sharp transition around the supplementary motor area
113 between fast centroparietal spindles (13-15 Hz), often occurring with cortex slow wave up-states,
114 and slower frontal spindles (9-12Hz) that occur 200 ms later on average [3]. Normally spindles
115 start at the thalamic down-state peak and end near its following upstate peak [4]. A spindle
116 waxes as more relay neurons become entrained and phase-lock their spikes (amplification
117 phase), then plateaus (with large numbers of neurons being entrained), and subsequently wanes
118 as phase-locking is lost (decay phase). Here we consider a higher frequency (15 Hz) spindle in
119 order to study spindle creation, amplification, entrainment and decay. We use a simple model of
120 small group of coupled relay neurons to investigate the advantages for poising these on, or very
121 near to, supercritical Hopf bifurcations.

122

123 MODEL

124 The sleep spindle model used in this study employs the Wang model of a thalamic relay neuron
125 [9] and includes the calcium-dependence of its H current [7, 10]. Wang's membrane potential
126 charging equation (Eq.1) has 7 currents: 3 high voltage-threshold ones: the inactivating sodium
127 current I_{Na} , the persistent sodium current $I_{Na(P)}$, and the delayed rectifier potassium current I_k .
128 Together with linear leak current I_L these make a Hodgkin-Huxley action potential generator that
129 spikes spontaneously when depolarized above -56 mV. Two low voltage activated currents, the
130 low-threshold calcium current I_T and the hyperpolarization-activated "sag" current I_H , along
131 with I_L , comprise a low frequency (16.5 Hz) subthreshold oscillator that is active below -60 mV.
132 Externally-applied bias current I_{app} stands in for modulator-type synaptic inputs [1] from layer
133 VI cortex neurons, thalamic reticular nucleus neurons, parabrachial neurons, and thalamic
134 interneurons, all of which are able to move the relay neuron's voltage operating point v .

$$135 \quad C_m \frac{dv}{dt} = -I_T - I_H - I_{Na} - I_k - I_{Na(P)} - I_L + I_{app}$$

136 (Eq.1)

137 The model has a number of interesting bifurcations and rest states that are functions of
138 membrane potential [9]. There is a saddle-node bifurcation near -55 mV, a high voltage resting
139 state centered at -60.5 mV, a supercritical Hopf bifurcation that births a small 16.5 Hz limit
140 cycle, near -63 mV, and a fold-circle bursting bifurcation several tenths of a mV below that. The
141 bursts become stronger, but lower in frequency, until a low voltage resting state is achieved near
142 -76 mV.

143 With 3 exceptions, we use Wang's original parameters. In order to be consistent with the
144 frequency range associated with sleep spindles (7-16 Hz) [2], (9-15 Hz) [3] we lengthened the
145 time constant on the h off-gate of the low-threshold calcium conductance. The super critical
146 Hopf bifurcation now occurs at -61 mV, where it births a small 15 Hz limit-cycle. Also, as per
147 [7] we made the two H conductance activation gates H_s and H_f both calcium-sensitive [10].
148 Wang's H gates had a similar voltage-dependent activation and slow (~1 sec) voltage-dependent
149 time constant as [7] faster H_f gate. The very slow H_s gate was included based on [7]
150 observation that in order to explain the H channel on→ off and off→ on transitions one of the
151 gates had to be significantly slower in the higher voltage range. Membrane capacitance C_m is 1.0
152 $\frac{\text{microF}}{\text{cm}^2}$ currents are in $\frac{\text{microA}}{\text{cm}^2}$, conductances in $\frac{\text{mS}}{\text{cm}^2}$, and voltages in mV. Eq.2 shows relay neuron
153 N1's charging currents, conductances, gating variables and voltage drives. It includes synaptic
154 inputs I_s from N1's neighbors and externally:

$$155 \quad C_m \frac{dv_1}{dt} = -I_T - I_H - I_{Na} - I_k - I_{Na(P)} - I_L + I_{app} - I_s$$

156 $= -g_T (s_{\infty 1}[v_1[t]])^3 h_1[t] (v_1[t] - E_{Ca})$
157 $- g_H H_{f1}[t] H_{s1}[t] (v_1[t] - E_H)$
158 $- g_{Na} (m_{\infty 1}[v_1[t]])^3 (0.85 - n_1[t]) (v_1[t] - E_{Na})$
159 $- g_K (n_1[t])^4 (v_1[t] - E_K)$
160 $- g_{Na(P)} (m_{P\infty 1}[v_1[t]])^3 (v_1[t] - E_{Na})$
161 $- g_L (v_1[t] - E_L) + I_{app1}$
162 $- (g_{61}[t] + g_{21}[t] + g_1[t])(v_1[t] - E_s)$ (Eq. 2)

163 N1 has 6 dynamical variables: $v_1[t]$, its membrane potential, $h_1[t]$, the relatively slow voltage-
164 dependent off gate on its low threshold calcium conductance, $H_{f1}[t]$ and $H_{s1}[t]$, the faster and
165 slower voltage-, and calcium-, dependent activation gates of its very slow hyperpolarization-
166 activated "sag" current, $n_1[t]$ the voltage-dependent activation gate of the delayed rectifier
167 potassium conductance, and $Ca_1[t]$, the calcium concentration near the inner membrane where
168 the calcium-sensitive H conductance is located. Very fast gates such as s , the activation gate of
169 the calcium conductance, m , the activation gate of the inactivating sodium conductance, and m_P ,
170 the activation gate of the persistent sodium conductance, are treated as instantaneous functions of
171 membrane potential [9]. The off gate on the inactivating sodium conductance was replaced by
172 $(0.85 - n_1[t])$ according to Fitzhugh's observation of it having a similar time course and linear
173 relationship with the potassium conductance activation gate [9]. $g_{61}[t]$ represents synaptic input
174 conductance from neuron N6 to N1, $g_{21}[t]$ from N2 to N1. $g_1[t]$ is from a weak, noisy
175 periodic template that is used to mimic external synaptic input from a layer V pyramid neuron.

176 I_{app} is used as a control parameter to change the voltage operating point [9]. Lacking synaptic
177 input, I_{app} depolarizations that displace membrane potential above -55 mV result in an increasing
178 rate of spontaneous spiking. This is typical behavior for a saddle-node on invariant circle (SNIC)
179 bifurcation [11, 12]. Hyperpolarizing currents that pull membrane potential down from the -60
180 mV resting state to -61 mV generate a small 15 Hz sinusoidal oscillation (supercritical Hopf
181 bifurcation). Additional hyperpolarization increases the size of this oscillation, until spontaneous
182 spiking starts at around -61.3 mV (fold-circle bursting bifurcation) [12]. Continuing to
183 hyperpolarize below the bursting bifurcation increases the number of sodium spikes in the bursts
184 that ride the peaks of the calcium-driven limit cycle [9]. Hyperpolarization also slows down the
185 frequency of the bursts from 15 Hz to 1 Hz, prior to them disappearing entirely at -75 mV, the
186 low voltage resting state. The voltage range of interest for this study is near to the supercritical
187 Hopf bifurcation, -60 to -61.2 mV. In this region the input conductance $g \sim 0.16 \frac{mS}{cm^2}$ so that a

188 change in I_{app} by $0.16 \frac{\text{microA}}{\text{cm}^2}$ displaces the voltage operating point by ~ 1 mV ($I = g v$), and the
189 effective membrane time constant $\frac{C_m}{g}$ is ~ 6 ms.

190 The Mathematica model in the supplementary file lists parameter values and has 6 cross-coupled
191 relay neurons with external forcing of N1. It's based on the following assumptions:

192 1. It assumes a higher order (HO) thalamic pulvinar relay from one cortex region drives a
193 second cortex patch whose layer V pyramid then drives another HO pulvinar relay cell, etc. [1].
194 It presupposes sequences like cortex1 layer V pyramid \rightarrow pulvinar relay 2 \rightarrow cortex2 layer V
195 pyramid \rightarrow pulvinar relay 3 etc.

196 2. It assumes a low latency pathway from relay 1 to relay 2 due to fast myelinated nerve fiber
197 conduction velocities ($\frac{100 \text{ m}}{\text{sec}} = \frac{10 \text{ cm}}{\text{ms}}$) [13]. This pathway employs large, fast, glomerulus-type,
198 driver synaptic connections between layer V pyramid neurons and relay neurons [1]. Hearing is
199 an example of fast nerve fiber conduction and fast synapses: spike trains in primary auditory
200 neurons in guinea pigs are able to maintain phase locking to a mechanical sound wave up to
201 about 3 kHz (in cats, up to 6 kHz) [14]. We assume 0.5 - 1.0 ms latency between a spike in one
202 HO relay neuron and its EPSC in a second relay. As they relate to synch index [15], latencies
203 from 0.5 to 4.0 ms are investigated in Fig. 4.

204 3. Assumes cortex down-states (low β , γ , but high δ , SW in power spectrum) are via bias currents
205 able to entrain particular relay cells [4]. Coincident cortical down-states are able to drive
206 specific thalamic reticular nucleus neurons which then hyperpolarize the membrane potential of
207 particular relay neurons via fast GABA A and slower, stronger GABA B synaptic inputs [1, 4]

208 4. For the purposes of illustrating spindle propagation and entrainment a simple ring geometry
209 with 6 cross-coupled relay neurons was chosen. Only one of them (N1) is driven by a noisy
210 periodic template intended to mimic external synaptic input from a layer V pyramid neuron.

211 5. The size of the synaptic AMPA conductance due to a single presynaptic vesicle release
212 (mini) was chosen to be 0.1 mS , since this resulted in large EPSPs in the 1-2 mV range. Synaptic
213 transmission is unreliable, caused mainly by probability release mechanisms at low capacity
214 synapses [16]. In the weak forcing regime each N1 external presynaptic spike releases a Poisson
215 average of 0.5 vesicles, where a single vesicle (mini) makes a ~ 1.5 mV post synaptic potential.

216 6. Assumes fast calcium clearance away from the relay neuron's inner membrane's calcium-
217 sensitive H conductance via diffusion, chelators and pumps. Investigated here are clearance rates
218 of $6-12 \frac{\text{microM}}{\text{ms}}$. We use the hair cell as an example, since it has a very high density of calcium
219 pumps in its hair bundle and several mM concentrations of various calcium buffers in its soma,
220 both of these able to rapidly lower its internal calcium concentration (outer hair cells have

221 similar high calcium chelator concentrations as do muscle fibers) [17]. Previously [7] used a
222 very low calcium-pump-only clearance rate of $0.1 \frac{\text{microM}}{\text{ms}}$.

223 7. Investigates the likely range from 0.5 to 10.0 *microM* for the calcium sensitivity threshold of
224 the H conductance [7].

225 RESULTS

226 We use 6 coupled relay neurons to investigate the consequences of them being poised on
227 supercritical Hopf bifurcations, all with the same center frequency (CF), for the purposes of
228 making and propagating highly synchronized sleep spindles. We force one of them, N1, with a
229 weak noisy periodic sequence of short current impulses designed to mimic EPSCs (excitatory
230 post synaptic currents).

231 Membrane potential is a natural control parameter for adjusting proximity to a supercritical Hopf
232 bifurcation in an electrically excitable cell [11, 12]. We use bias current I_{app} as a control
233 parameter to move the neuron's voltage operating point with respect to the bifurcation [9]. In
234 addition, the cell has a calcium-sensitive H current, where its internal calcium, acting as a
235 feedback, is able to readjust its membrane potential with respect to the bifurcation. Fig. 1 shows
236 two sample runs, the first at high gain, and the second at low gain, both with respect to calcium
237 influence on H current. At the start of a simulation I_{app} is used to poise the model neurons on
238 supercritical Hopf bifurcations with a CF of 15 Hz. It stands in for modulator-type bias currents,
239 the most important of which is from thalamic reticular nucleus neurons that make synapses onto
240 relay neurons able to activate GABA A and GABA B receptors [1]. GABA (gamma-
241 Aminobutyric acid) binding to the A receptor rapidly turns on a chloride channel that
242 hyperpolarizes the neuron [1]. B receptor activation is more powerful and long-lasting,
243 activating a second messenger pathway that slowly turns on a number of potassium currents that
244 more strongly hyperpolarize the neuron [1].

245 In the high gain example (Fig. 1 A, B, C) internal calcium from calcium conductance oscillations
246 is not much able to turn on H currents and raise the relay neurons' membrane potentials. Higher
247 membrane potentials near -60 mV almost completely turn off calcium conductance. Hence in
248 this case the relay neurons remain close to the Hopf bifurcation at -61 mV and respond with a
249 high spike rate. Contrast this against D, E, F where calcium is able to turn on H current and
250 depolarize the relay neurons away from the bifurcation, causing their spike output to plummet. In
251 plate D, in between forcing currents (600 to 1400 ms) the decay of N1's membrane potential
252 oscillation is clear. This lower excitability is due to increased open probability of H
253 conductance, causing a depolarization that inactivates calcium conductance (plate E; 600 ms).

254 **Fig.1** Forcing relay neurons by a weak noisy series of periodic current impulses. A. Neuron N1
255 is forced at its center frequency (CF=15 Hz). All 6 cross-coupled relays are poised on
256 supercritical Hopf bifurcations with the same CF. 13 forcing EPSCs result in 18 N1 spikes. High

257 gain is due to a high calcium clearance rate of $10.0 \frac{\text{microM}}{\text{ms}}$ and high threshold H current calcium
258 sensitivity of 2.0 microM . N1 membrane potential (blue), synaptic current impulses (black),
259 external, N6 → N1 and N2 → N1 in descending order. B. N1 low-threshold calcium current (
260 $\frac{\text{microA}}{\text{cm}^2}$, red), calcium concentration near H channels (microM , green) and open probability of
261 voltage- and calcium-sensitive H current (%), black). Internal calcium turns on H, depolarizing
262 the neurons, turning off calcium conductance, driving them below the bifurcation and lowering
263 gain. C. 106 spikes are shown in descending order from N1 to N6 (blue), along with the synaptic
264 EPSCs exchanged between them (black), for example N2: N1 → N2 above N3 → N2. Spike
265 synchronization is high (average spike synch index 0.5). D. N1 spikes for same forcing, but low
266 gain, i.e. the neurons have a lower calcium clearance rate of $9.0 \frac{\text{microM}}{\text{ms}}$ and a lower H calcium
267 sensitivity threshold of 1.0 microM . E. Increased H channel open probability (contrast with B).
268 F. Low spike rate (contrast with C).

269 In Fig. 2 we give an overview of spike-gain parameter space that involves calcium-clearance and
270 the calcium-sensitivity threshold of the H current. Feedback by H depolarizes the cell below the
271 Hopf bifurcation, lowering its excitability and spike output.

272 **Fig.2** Spike output for neurons N1-N6 as a function of the calcium clearance rate near the
273 membrane and the calcium sensitivity threshold of the H channels. More calcium or a lower
274 sensitivity threshold more quickly depolarizes the relays, driving them below the Hopf
275 bifurcation. Average spike output for $(\text{CaClear}, \text{CaSensH}) = (9.0, 1.0), (10.0, 0.5), (10.0, 1.0),$
276 $(10.0, 1.5), (10.0, 2.0)$ and $(10.0, 5.0)$ are shown as dots.

277 Depth EEG (electroencephalogram), also known as SEEG (stereo EEG), positions electrodes
278 near internal brain structures like thalamus, hippocampus or cortex, so is able to record close-in
279 field potentials from groups of neurons [3, 4]. Fig. 3 A is a cartoon of a depth EEG recording
280 showing the collective mode of a large number of pulvinar relays participating in a sleep spindle.
281 The figure was drawn based on experimental recordings, and shows a local thalamic down-state
282 inducing a spindle [3, 4]. Note that cortex down-states usually precede a thalamic down-state,
283 and then the locally hyperpolarized thalamus (down-state) launches the spindle. We model a
284 spindle focus in plates B, C, D where spiking is initiated by self-excitation, rather than by driver
285 synaptic inputs, and is subsequently terminated by internal calcium. In plate B the model relays
286 start out hyperpolarized, overexcited by modulator input to slightly above the Hopf bifurcation,
287 near the fold-circle bursting bifurcation. But while the neurons start out in an overexcited state,
288 they are relatively sensitive to internal calcium. What results is a case of self-excitation via bias
289 currents, then spindle termination due to calcium activation of H current. Note that small voltage
290 oscillations increase H open probability, while spiking lowers it. This is due to the nature of the
291 H "sag current," in that it is turned on by calcium and off by depolarization.

292 **Fig.3** Self-excitation followed by spindle termination due to high calcium. A. Cartoon of a depth
293 EEG recording of a local thalamic down state initiating a sleep spindle that exhibits waxing and
294 waning of synchronized spikes between large numbers of relay neurons. B. Simulation of 6
295 relays poised at -61.3 mV slightly above the supercritical Hopf bifurcation (-61 mV). N1 shows a
296 growing voltage oscillation and starts spiking at 720 ms, responding to EPSCs from N6 and N2.
297 Calcium-clearance is low at $9.0 \frac{\text{microM}}{\text{ms}}$ and the calcium-sensitivity threshold of the H
298 conductance low at 1.0 microM . C. Calcium (green) is able to raise the open probability of H
299 conductance from 9 to 14% (black curve), depolarizing N1 and pulling it below the Hopf
300 bifurcation. Increasing H conductance terminates the self-excited spindle. Kinks in H open
301 probability identify N1 spikes, showing the competition between high calcium raising, and a
302 voltage spike then lowering, its open probability. Small voltage oscillations only increase H
303 open probability. Larger oscillations due to poising above the bifurcation make the spindle more
304 sensitive to termination by calcium. D. Simulated spindle lasted 1.1 s with the relays exchanging
305 71 spikes. Average spike synchronization index is high (0.45). N3 and N4 spontaneously made
306 action potentials. Presumably such a spiking focus would be able to entrain other relays poised
307 near Hopf bifurcations having similar CFs.

308 Spindling relay neurons synchronize their spike bursts. In Fig. 4 we employ an event
309 synchronization index [15] to quantify the amount of synch between them. We vary the delay
310 between a spike in one relay neuron and its EPSC in a neighboring relay. Spikes in the group of
311 relays are considered to be synchronized if they fall within 3 ms of each other. This is in the
312 context of a subthreshold voltage oscillation with a 15 Hz CF and a 67 ms period in the relay
313 cells. Synch and spike output drop with delays in the neighborhood of 1-2 ms. Plates 1C and 4B
314 contrast examples of the high and low synch cases, respectively. Synch index drops by an order
315 of magnitude in 4B's 2.5 ms delay case (from 0.5 to 0.05).

316 **Fig.4** Spike synch as a function of the delay between a spike in a relay and its EPSC in a
317 neighboring relay A. Simulations in other figures were run with short 0.5 ms delays between
318 relay neurons. 1.0 ms delays had similar results, but with 20% lower synch. For delays > 1 ms
319 synch and spike output drop significantly (average \pm standard error). The period of the 15 Hz
320 subthreshold oscillation is 67 ms and spikes were judged synchronized if they fell within 3 ms of
321 each other (on the plateau of the voltage oscillation). B. Particularly low synch example caused
322 by a 2.5 ms delay (dots in part A; same forcing, parameters as 0.5 ms delay high synch 1C).

323 The central claim of this study is that there are many advantages for poising relay neurons on
324 supercritical Hopf bifurcations for the purposes of making and propagating well synchronized
325 sleep spindles. Fig. 5 shows four of the main advantages: high small-signal gain, high degrees of
326 frequency selectivity and noise rejection, and ease of switch-ability for turning receptivity on or
327 off to a particular spindle. Plate A's very high gain, calcium-insensitive case (purple) agrees well
328 to the theoretical cube root shape for the forced response of a Hopf oscillator driven at its CF
329 [11, 12]. As the sensitivity to calcium-induced depolarization of the neurons is increased (blue,

330 green), spike gain predictably drops. It's interesting that forcing of N1 amounts to driving a
331 nested sequence of Hopf oscillators, rather than a single one, as is done in hair cells in hearing.
332 When a small number of current impulses force N1 at its natural frequency these lock at the
333 optimal 90 degree phase lead with respect to the cell's voltage oscillation. This is typical
334 behavior for an electrical Hopf oscillator (mainly a capacitive load) when it's poised at the
335 bifurcation and responding with a high small signal gain [11, 12]. The other relay neurons then
336 are forced by N1 and each other with much smaller < 10 degree phase leads and lags with respect
337 to their limit cycle voltage oscillations. While this sacrifices gain, it preserves synch. However,
338 when N1 is depolarized by I_{app} bias current from -61 mV to below the Hopf bifurcation at its -60
339 mV high resting potential (5A, red curve), excitability goes well down. Spike output drops by an
340 order of magnitude in the important weak forcing regime (compare to blue curve, same
341 parameters, but with N1 at -61 mV). So, by biasing the operating point of the input oscillator by
342 ~1 mV the group of relay cells can be made either sensitive or insensitive to recruitment by a
343 particular spindle. Also, output for aperiodic forcing (brown) is decreased by a factor of ~4
344 (compare to blue curve; same parameters, forcing). This shows the intrinsic noise rejection
345 conferred by a Hopf oscillator.

346 **Fig.5** Advantages for poising relay neurons on supercritcial Hopf bifurcations. A. Hopf small
347 signal amplification: total spike output as a function of the average number of current impulses
348 driving N1 (average \pm standard error). Poisson average vesicle release of 0.5 by an input spike
349 averages 17 EPSCs forcing N1 during a 2.25 sec simulation (average release 1.0 results in 34,
350 etc.). 17 impulses leads to 109 spikes on the ring of neurons in the high gain case (purple),
351 which matches well to the theoretical cube root shape for the forced response of a Hopf oscillator
352 driven at its CF (black). (*CaClear*, *CaSensH*, color; condition) = (10.0, 5.0, purple; max spike
353 gain), (10.0, 2.0, blue; high gain), (10.0, 1.0, green; low gain), (10.0, 2.0, red; N1 poised at -60
354 mV, below the bifurcation), (10.0, 2.0, brown; aperiodic forcing of N1). B. Hopf frequency
355 selectivity: spike output as a function of the N1 forcing frequency (same color scheme as A but
356 with N1 forced by only 17 impulses). C. Switch-ability by altering a control parameter like N1
357 membrane potential. Spike output from periodic forcing at the CF by an average of 17 impulses
358 driving N1 with it poised at various membrane potentials between the bifurcations (supercritical
359 Hopf at -61 mV and saddle node on invariant circle (SNIC) at -55 mV). Spike output is very low
360 when N1 is poised at its high resting potential (-60 mV). Spiking increases with depolarization
361 from -59.5 to -55 mV. At these higher membrane potentials the low-threshold calcium
362 conductance is completely off, but there is increasing activation of high-threshold sodium
363 conductance, which puts the relay into the rate-coding region of its SNIC bifurcation. Spike
364 output is noisy in this region so it was shown \pm 1 standard deviation (instead of \pm standard error
365 for 20 runs).

366 5B shows Hopf small-signal frequency selectivity. The oscillators have a ~3 Hz full width half
367 max (FWHM) band width when N1 is weakly forced in the 10-20 Hz range (purple, blue, green

368 curves). But when N1 is depolarized by I_{app} to its high resting state at -60 mV, band pass
369 filtering is lost (red curve).

370 In 5C, N1 is weakly forced at its CF while being poised at various membrane potentials in
371 between the bifurcations (supercritical Hopf at -61 mV and saddle node on invariant circle
372 (SNIC) at -55 mV). There is a dead zone near the high resting state (-60 mV) where spike output
373 bottoms. The high resting state sits above the activation range of the low-threshold calcium
374 conductance and below the activation range of the high-threshold sodium conductance. In the
375 voltage range between the bifurcations the input resistance is approximately 6 k Ohms so I_{app}
376 bias current of $0.1 \frac{\text{microA}}{\text{cm}^2}$ displaces membrane potential by about 0.6 mV. Membrane potentials
377 above the -60 mV high resting state move the cell closer to the SNIC, a bifurcation that is
378 typically used by rate-coding sensory neurons [12]. Here the voltage range is used by thalamic
379 relay cells acting in relay mode and being driven by subcortical sensory input (retina, cochlea,
380 whiskers, etc.) to pass on sensory spikes in a mainly 1-1 manner [1]. In this rate-coding voltage
381 range spike output in response to weak noisy periodic input is very noisy. In order to show the
382 noise it was plotted ± 1 standard deviation, rather than the standard error for 20 runs.

383 To illustrate the nature of spike gain for very weak forcing, in Fig. 6 we show 4 short runs made
384 under different conditions. For very weak on-frequency periodic input the current impulses
385 (EPSCs) lock at a 90 degree phase lead with respect to N1's voltage oscillation, increasing the
386 size of its limit cycle until spikes result (A). But when N1 is depolarized close to its high resting
387 potential at -60 mV, its rapidly decaying membrane potential oscillation is clear (B). This
388 lowered excitability makes it hard to generate spikes. The reason for narrow Hopf frequency
389 selectivity is clarified in plate C. Spike output drops sharply for input 2 Hz off CF because the
390 current impulses are not forcing the voltage oscillation at the best phase. For impulsive currents
391 the cell is mainly a capacitive load that is optimally forced at a 90 degree phase lead. For the
392 same reason, weak aperiodic forcing is ineffective in generating spikes (D).

393 **Fig.6** Short examples show spike gain for very weak external forcing of N1. A. Driving N1 at the
394 CF (15 Hz) with it poised on the Hopf bifurcation at -61 mV. EPSCs lock at a 90 degree phase
395 lead with respect to N1's voltage response, increasing the size of its limit cycle oscillation until
396 spikes result. B. Spikes are rare when forcing N1 at the CF, with it poised below the bifurcation
397 in the dead zone at -60 mV. Note the rapidly decaying membrane potential oscillation. C. Spikes
398 are rare when forcing N1 off CF at 13 Hz. D. Spikes rare for aperiodic forcing. $CaClear = 10.0$
399 $\frac{\text{microM}}{\text{ms}}$, $CaSensH = 2.0 \text{ microM}$.

400 It would be useful to have a visual low dimensional phase space representation for a relay
401 neuron. The model neurons here have 6 dimensions: voltage (v), delayed-rectifier potassium
402 channel activation gate (n), low-threshold calcium channel inactivation gate (h), calcium
403 concentration (Ca), and the slower and faster calcium-, and voltage-, dependent H channel
404 activation gates H_s and H_f . Very fast activation variables on the inactivating sodium conductance

405 (m), persistent sodium conductance (mp) and low-threshold calcium conductance (s) are treated
406 as instantaneous functions of voltage. The inactivation gate on the sodium conductance has a
407 time course linearly related to the potassium conductance activation variable (.85- n) [9]. In this
408 way, ten dynamical variables can be cut to six. Fig.7 A shows 11 EPSCs forcing N1 at the CF.
409 Part B is an incomplete representation of the N1 phase space. Its voltage trajectory (vI, hI, nI
410 taken from 520-750 ms in part A) shows 3 subthreshold oscillations, 2 EPSPs and one spike.
411 Superposed in part C are 2 more incomplete representations (black; $vI, CaI, H1$) and (orange;
412 $vI, ICaI, H1$). In the subthreshold region, calcium current and concentration dovetail nicely.
413 That being said, it's hard to see how a relay neuron can be accurately represented by a low
414 dimensional phase space representation.

415 **Fig.7** Reduced models of a thalamic relay neuron. A. N1 membrane potential (blue) and
416 synaptic currents (black), external, N6 → N1 and N2 → N1 in descending order. B. 3D partial
417 trajectory-style representation of N1: membrane potential vI , open probabilities of the potassium
418 conductance activation gate nI and calcium conductance inactivation gate hI . Trace taken from
419 520-750 ms in part A shows 3 subthreshold oscillations, 2 EPSPs and a single spike. C. Two
420 more trajectory-style representations from the same time segment. vI , calcium concentration
421 CaI , and H conductance open probability $H1$ (black) and vI , calcium current $ICaI$, and $H1$
422 (orange). $CaClear = 10.0 \frac{\text{microM}}{\text{ms}}$, $CaSensH = 1.0 \text{ microM}$.

423 DISCUSSION

424 It's interesting to look at the relative sizes and durations of the various currents in the relay
425 neuron in order to see how these correlate with their particular functions. In this simple view
426 each current is rated with an average strength and time interval: Linear leak current I_L is about 1
427 $\frac{\text{microA}}{\text{cm}^2}$ and is mainly outwards, continuous. Inward low threshold calcium current I_T is about 2
428 $\frac{\text{microA}}{\text{cm}^2}$ and persists for about 20 ms, during the upstroke of a subthreshold voltage oscillation.
429 Inward I_H is a continuous but very small bias current, about $0.1 \frac{\text{microA}}{\text{cm}^2}$. Calcium current I_T and
430 linear leak I_L effectively run the subthreshold voltage oscillator (period ~ 67 ms), while I_H is
431 able to bias the size of its limit-cycle oscillation. Inward sodium currents I_{Na} and $I_{Na(P)}$
432 combine for a very large $5000 \frac{\text{microA}}{\text{cm}^2}$, but only last for the upstroke of the action potential (about
433 100 micro sec). Outward delayed-rectifier potassium current I_K goes about $1000 \frac{\text{microA}}{\text{cm}^2}$ for 500
434 micro sec during the down stroke of the action potential. I_S is an inward synaptic current of
435 about $3 \frac{\text{microA}}{\text{cm}^2}$ that lasts for 500 micro sec, forces a mainly capacitive load, and is able to make a
436 1-2 mV EPSP. I_{app} stands in for various slower bias currents, and altering it by $0.16 \frac{\text{microA}}{\text{cm}^2}$
437 forces mainly a resistive load, and displaces the operating point by about 1 mV in the voltage

438 range of interest (-60 to -61.2 mV; -60 mV = center of the range for the high voltage rest state; -
439 61 mV = supercritical Hopf bifurcation; -61.3 mV = fold-circle bursting bifurcation).

440 There are a number of advantages for spindling relay neurons to be poised on, or very near to,
441 supercritical Hopf bifurcations: 1. Noise rejection, where weak aperiodic input results in low
442 spike output. 2. Small signal amplification, combined with frequency selectivity, where forcing 2
443 Hz off CF halves spike output. 3. Tunable gain, where 3 parameters, the calcium clearance rate,
444 the calcium-sensitivity threshold of the H current, and the membrane potential, effectively set
445 spike gain. 4. Sleep spindles can be initiated by bias currents that poise a particular relay
446 neuron's membrane potential above the Hopf bifurcation. It will start to spontaneously spike at
447 its natural frequency (CF) at the fold-circle bursting bifurcation. Spindles can then be propagated
448 from this focus to other relays poised at Hopf bifurcations with a similar CF. 5. Switch-ability:
449 susceptibility to a propagating sleep spindle can be turned off by depolarizing a relay to near its
450 high resting potential of -60 mV. This decreases its small signal gain by an order of magnitude
451 with respect to poising on the Hopf bifurcation at -61 mV. In this way a subnetwork of relay
452 neurons can be switched into or out of participating in a particular sleep spindle. 6. Spindle
453 termination can occur by calcium feedback activating H current that depolarizes the relay below
454 the Hopf bifurcation.

455 Another advantage for poising on supercritical Hopf bifurcations is the idea of self-tuning, i.e. a
456 self-tuned critical oscillation (STCO) [18, 19]. For example, Hopf amplifiers in hearing max
457 their small-signal gain by seeking the bifurcation for their operating point. This has to do with
458 the intrinsic nonlinearity in the sigmoidal Boltzmann channel activation curve. In the hearing
459 case it involves the transduction channel [19]. In the relay neuron case it involves the *h* gate of
460 the calcium conductance. Both turn off with depolarization, and below half open their slope
461 conductance decreases with depolarization. The key point is that a small sinusoidal oscillation in
462 membrane potential maps to an asymmetrical current oscillation which cycle-by-cycle generates
463 a small negative feedback (net + current) that raises the membrane potential back to the point
464 where the oscillation started, i.e. back to the bifurcation. Here, the *h* gate of the low-threshold
465 calcium conductance has a low open probability and is poised in the lower knee region of its
466 Boltzmann activation curve where the slope conductance changes most rapidly. So the net effect
467 of a small voltage oscillation is to turn off the *h* gate on the calcium conductance. The upshot is
468 that bias currents need only place the relay in the vicinity of the bifurcation, since it will then be
469 attracted to it.

470 A spindle visible on an EEG lasts $\frac{1}{2}$ to 2 sec. The early part of the spindle growth phase,
471 involving few neurons, will be undetectable by EEG. Also, likely there are many smaller
472 spindles which will never be detected by EEG. Here we model a 15 Hz spindle that lasts 10 to
473 30 cycles. In its decay phase calcium depolarizes the relays. Also, doublet, triplet bursting leads
474 to phase-breaking. Both of these effects act to turn off the spindle. Sleep spindles are by
475 necessity a kind of tickling of the dragon's tail in that loss of their regulation would obviously be

476 one way to get epilepsy. Therefore they must be focally initiated, strictly regulated, and
477 terminated by strong negative feedbacks.

478 The "recall-store" memory consolidation hypothesis [2] envisions a 3 step process, with short
479 term awake state memories alternately being spot-welded by spindles, then subsequently arc-
480 welded in by delta and slow wave during NREM sleep. We argue that it is advantageous for the
481 spindling relay neurons to be poised on supercritical Hopf bifurcations.

482 REFERENCES

483 [1] Sherman MS (2005) thalamic relays and cortical functioning. *Progress in Brain Research*
484 149:107-124.

485 [2] Dextexhe A, Sejnowski TJ (2003) interactions between membrane conductances underlying
486 thalamocortical slow wave oscillations. *Physiol Rev* 83:1401-1453.

487

488 [3] Andrillon T, Nir Y, Staba RJ, Ferrarelli F, Cirelli C, Tononi G, Fried I (2011) sleep spindles
489 in humans: insights from intracranial EEG and unit recordings. *J Neurosci* 31(49): 17821–17834.
490 DOI:10.1523/JNEUROSCI.2604-11.2011.

491 [4] Mak-McCully RA, Rolland M, Sargsyan A, Gonzalez C, Magnin M, Chauvel P, Rey M,
492 Bastuji H, Halgren E (2017) coordination of cortical and thalamic activity during non-REM sleep
493 in humans. *Nat. Commun.* 8:15499. doi: 10.1038/ncomms15499

494 [5] Tononi G, Massimini M, Riedner BA (2006) sleepy dialogues between cortex and
495 hippocampus: who talks to whom. DOI:10.1016/j.neuron.2006.11.014

496 [6] Bartram J, Kahn MC, Tuohy S, Paulsen O, Wilson T, Mann EO (2017) cortical up states
497 induce the selective3 weakening of subthreshold synaptic inputs. *Nat Com* 8:665.
498 DOI:10.1038/s41467-017-00748-5

499 [7] Dextexhe A, Babloyantz A, Sejnowski TJ (1993) ionic mechanisms for intrinsic slow
500 oscillations in thalamic relay neurons. *Biophysical J* 65: 1538-1552.

501

502 [8] Dextexhe A, McCormick DA, Sejnowski TJ (1993) model for 8-10 Hz spindling in
503 interconnected thalamic relay and reticularis neurons. *Biophysical J* 65:2473-2477.

504 [9] Wang X-J (1994) multiple dynamical modes of thalamic relay neurons: rhythmic bursting
505 and intermittent phase-locking. *Neuroscience* 59 (1): 21-31.

506

507 [10] Luthi A, McCormick DA (1998) H-current: properties of a neuronal and network
508 pacemaker. *Neuron* 21: 9–12.

509

510 [11] Strogatz SH (1994) nonlinear dynamics and chaos: with applications to physics, biology,
511 chemistry, and engineering. Perseus Books Publishing, LLC, Westview.

512 [12] Izhikevich EM (2000) neural excitability, spiking and bursting. International Journal of
513 Bifurcation and Chaos 10(6): 1171–1266.

514 [13] Hobbie RK, Roth BJ (2007) intermediate physics for medicine and biology 4th ed. Springer
515 Science.

516 [14] Ashmore J (2010) the afferent synapse. In: The Oxford Handbook of Auditory Science: The
517 Ear. Oxford University press. pp. 259-282.

518 [15] Quiroga R, Kreuz T, Grassberger P (2002) event synchronization: a simple and fast
519 method to measure synchronicity and time delay patterns. Phys Rev E 66(4) 1904-1913.
520 DOI:191310.1103/PhysRevE.66.041904

521 [16] Allen C, Stevens CF (1994) an evaluation of causes for unreliability of synaptic
522 transmission. PNAS 91:10380-10383

523 [17] Hackney CM, Furness DN (2010) hair bundle structure and mechanotransduction. In: The
524 Oxford Handbook of Auditory Science: The Ear. Eds. Fuchs PA, Moore DR. Oxford University
525 press. pp. 231-257.

526 [18] Julicher F (2003) active amplification by spontaneous hair bundle oscillations. In: Unsolved
527 Problems of Noise and Fluctuations. Ed. Bezrukov SM. AIP Conference Proceedings 665: 109-
528 115.

529 [19] Ospeck M, Iwasa KH (2003) noise in the outer hair cell and gain control in the ear. In:
530 Unsolved Problems of Noise and Fluctuations. Ed. Bezrukov SM. AIP Conference Proceedings
531 665: 116-124.

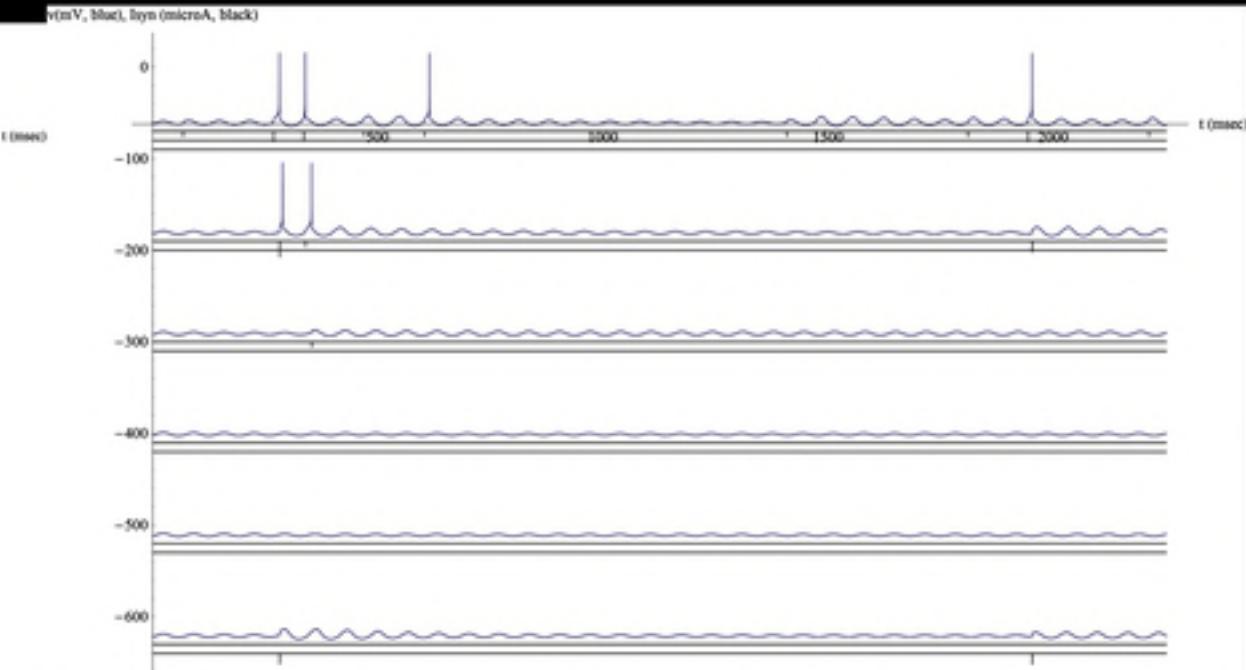
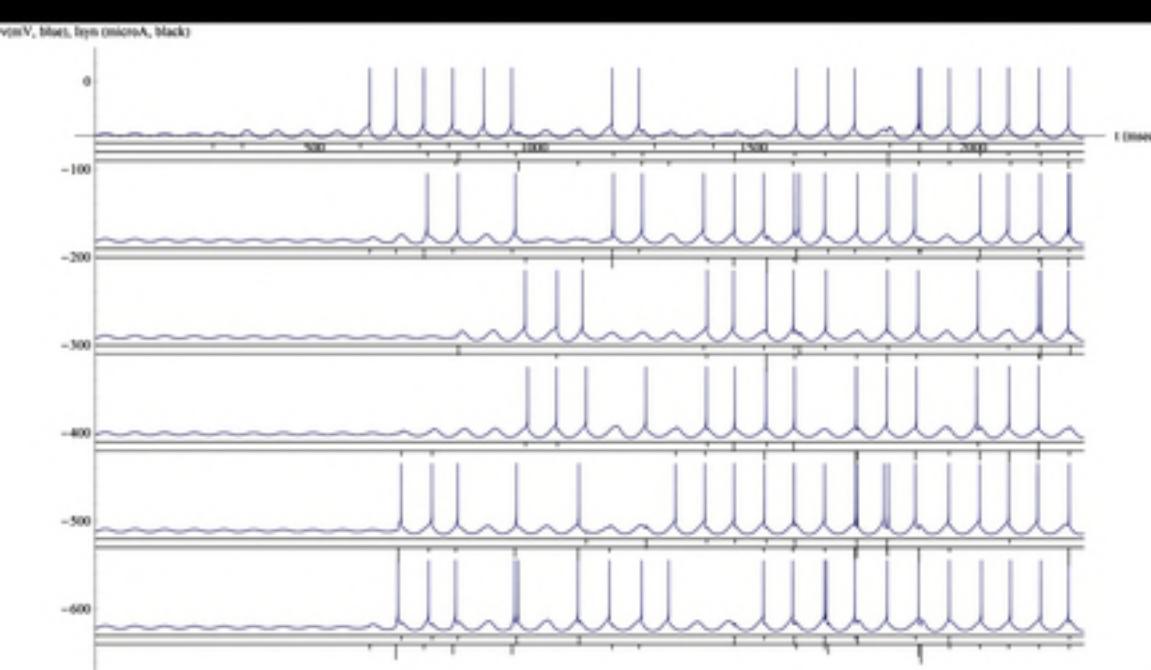
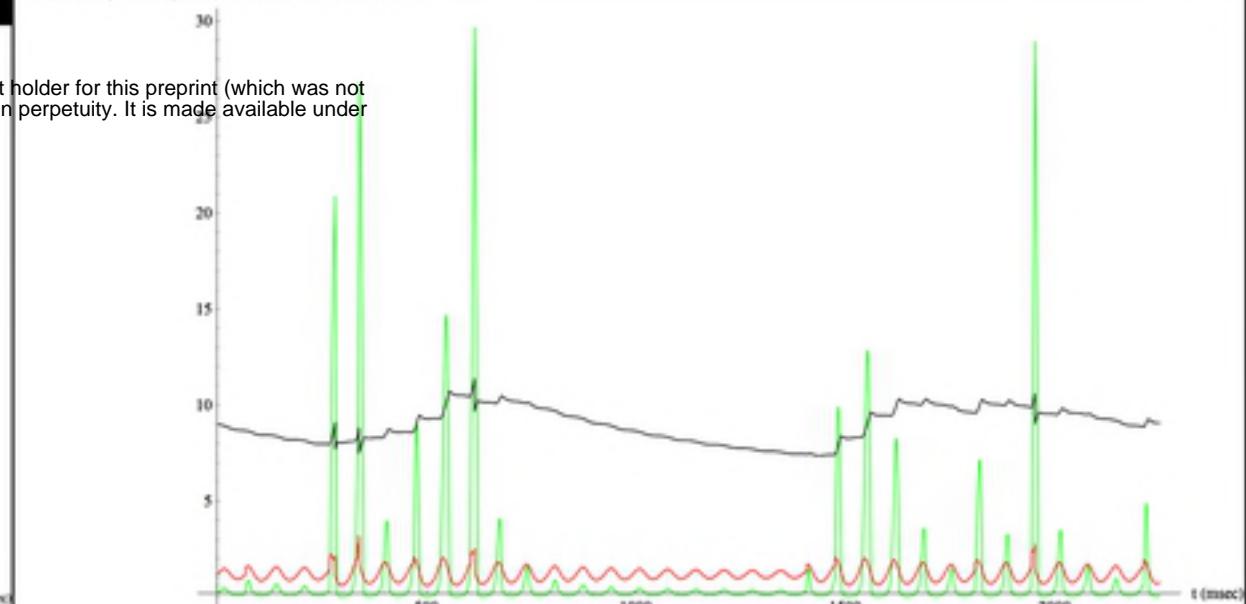
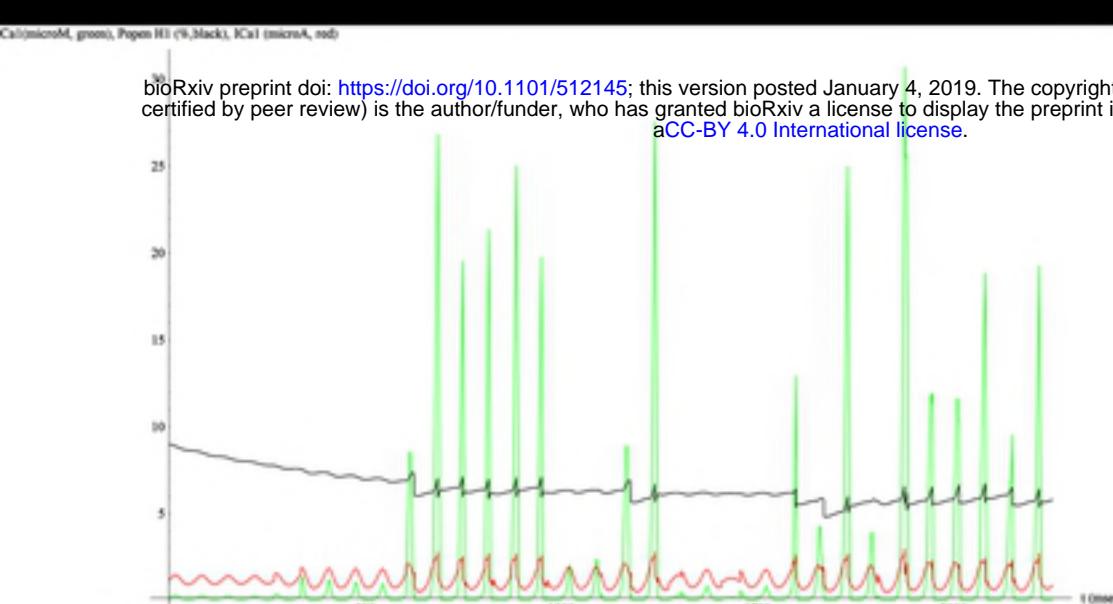
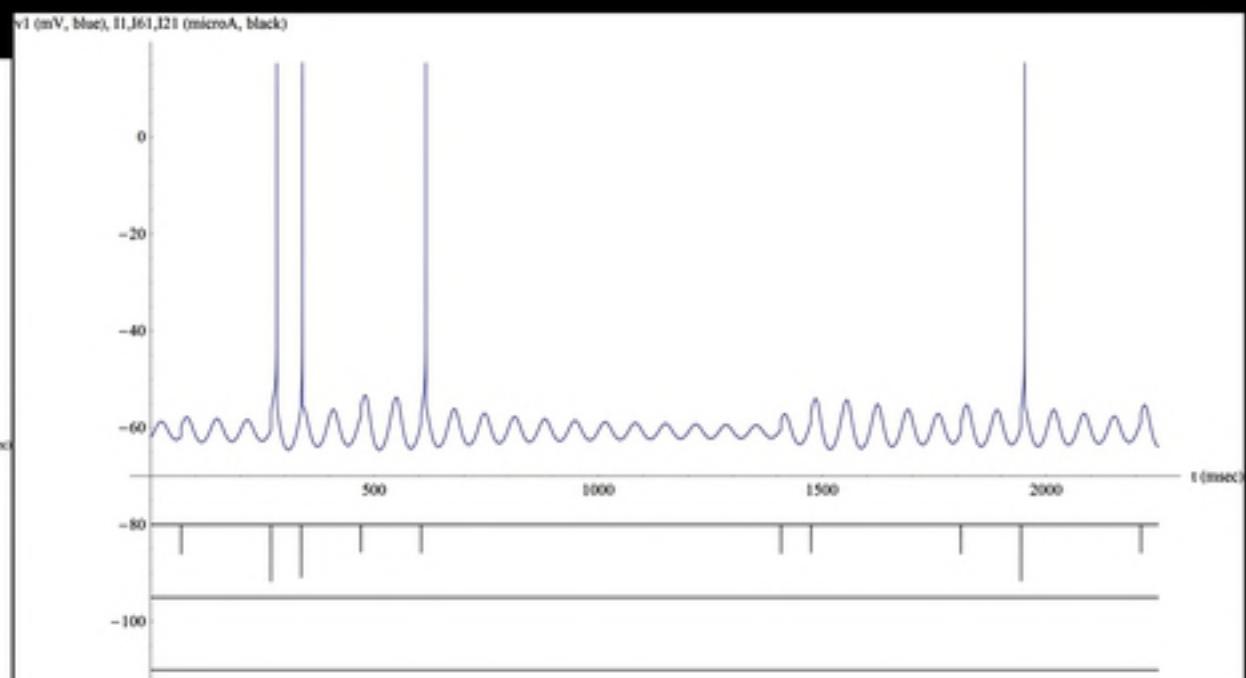
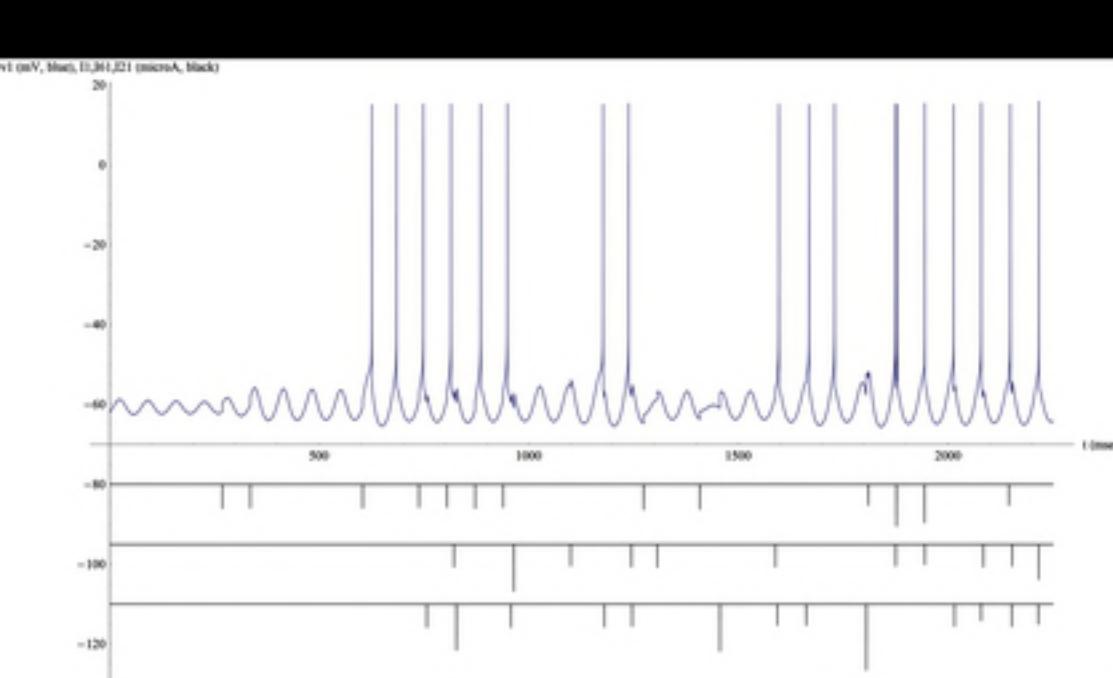







figure 1

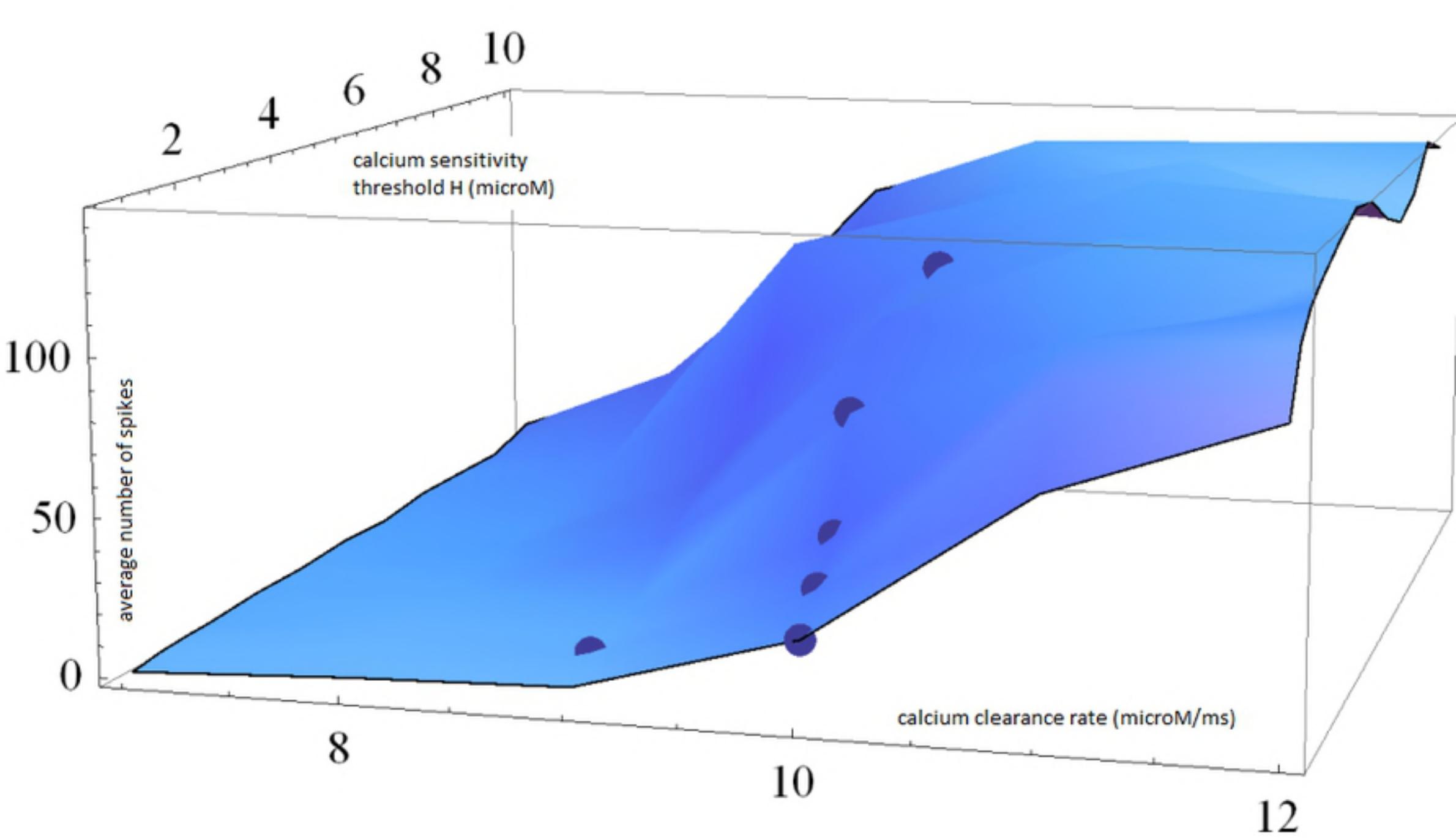


Figure 2

synch (blue) and avg. no. spikes (green) vs. time delay between spike and EPSC

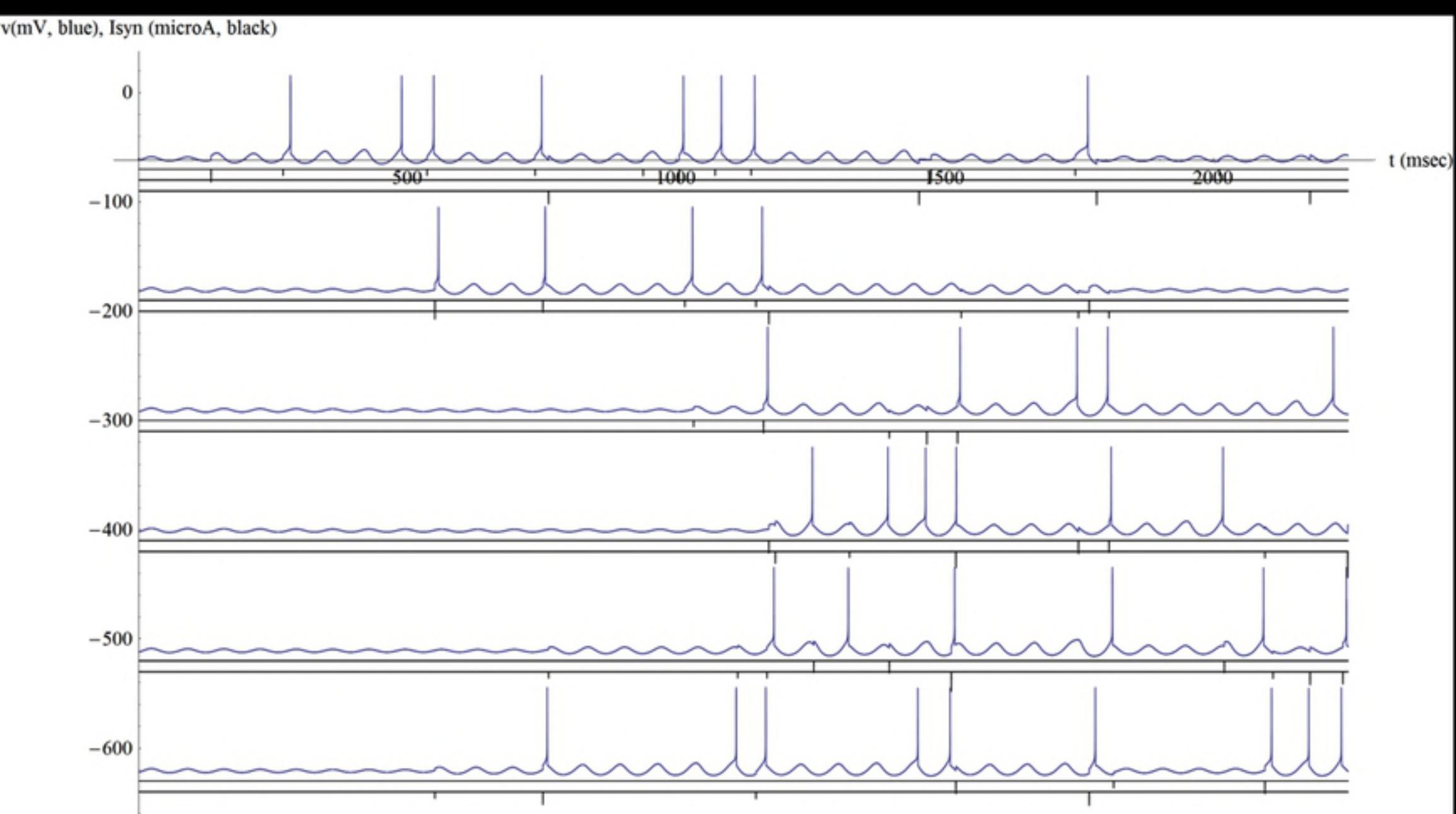
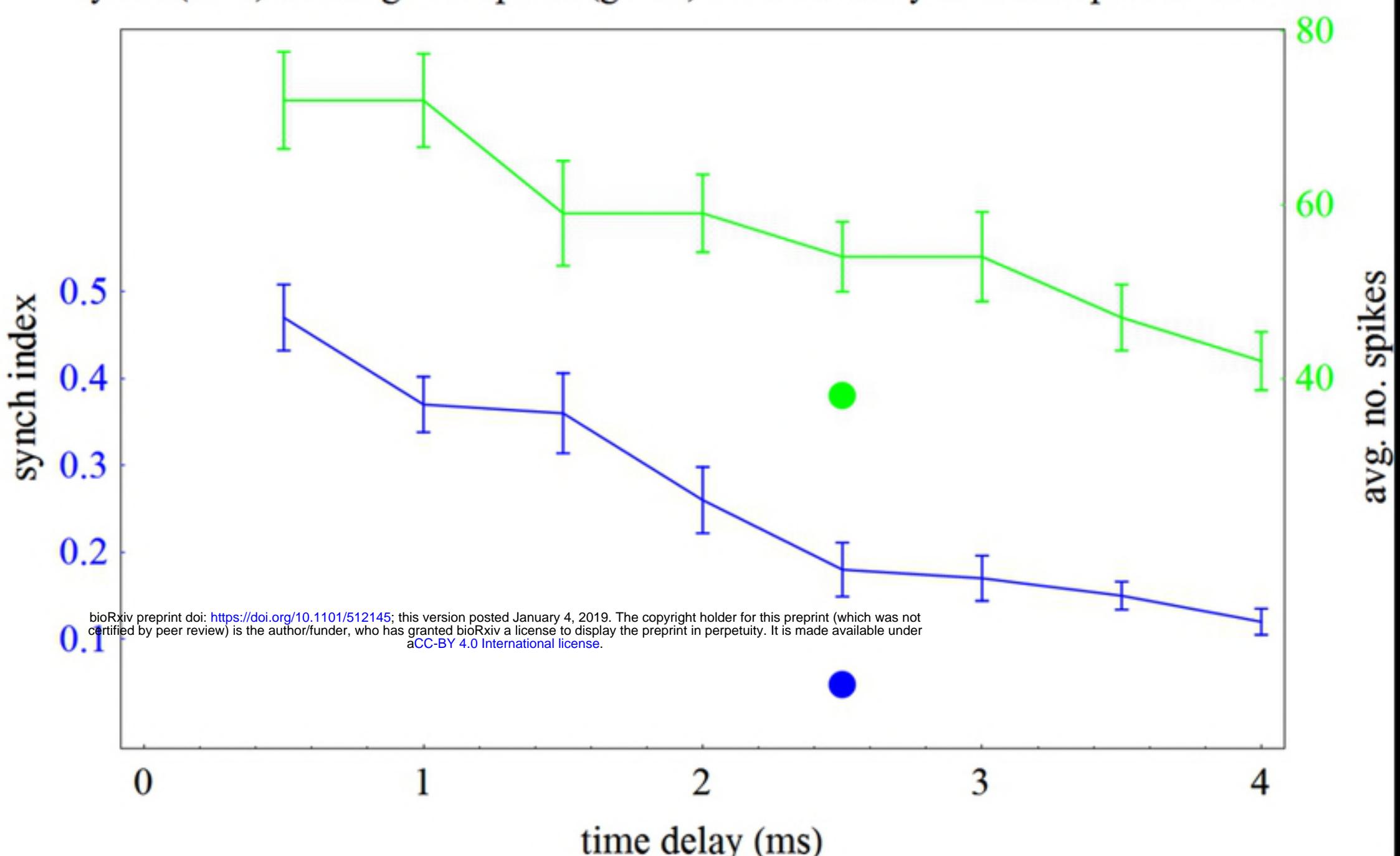
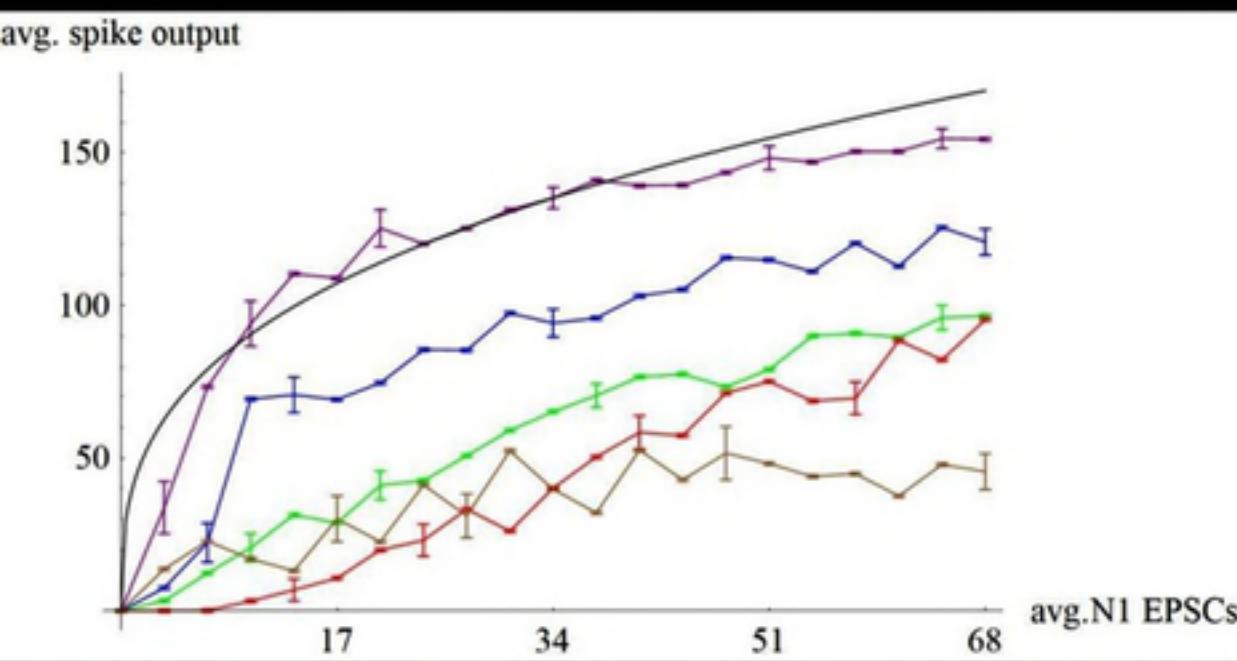




Figure 4

<https://doi.org/10.1101/512145>

CC-BY 4.0 International license

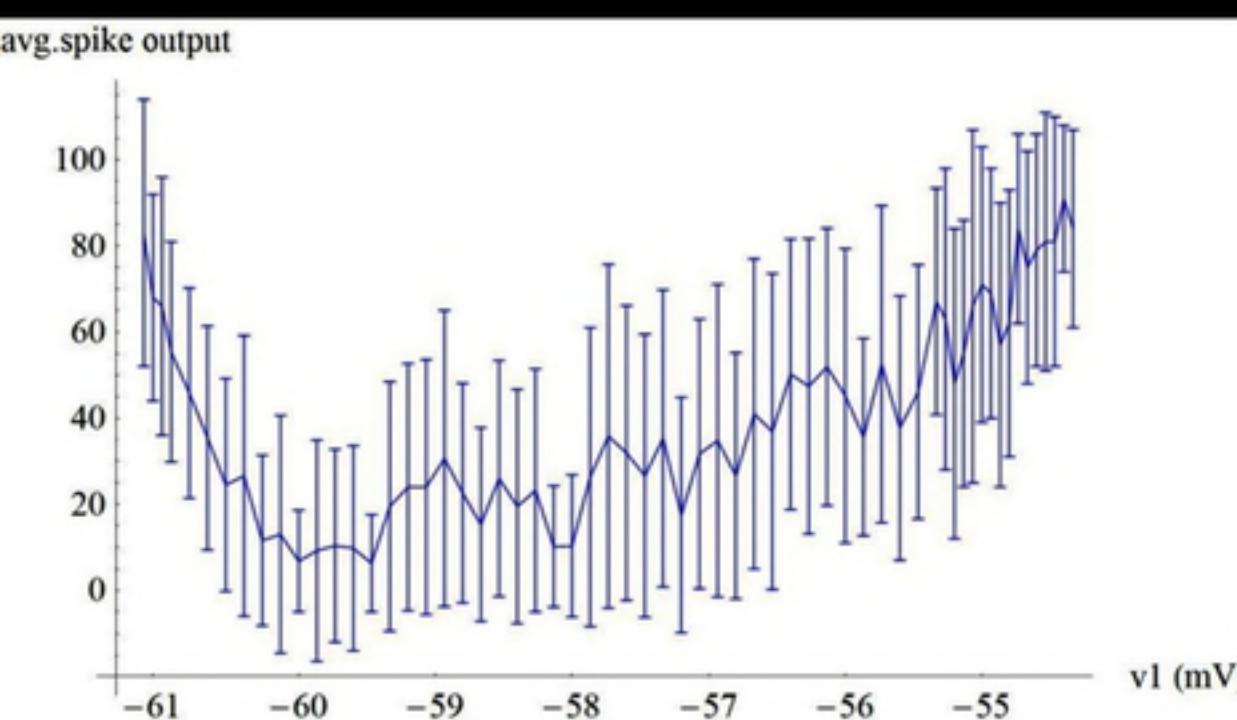
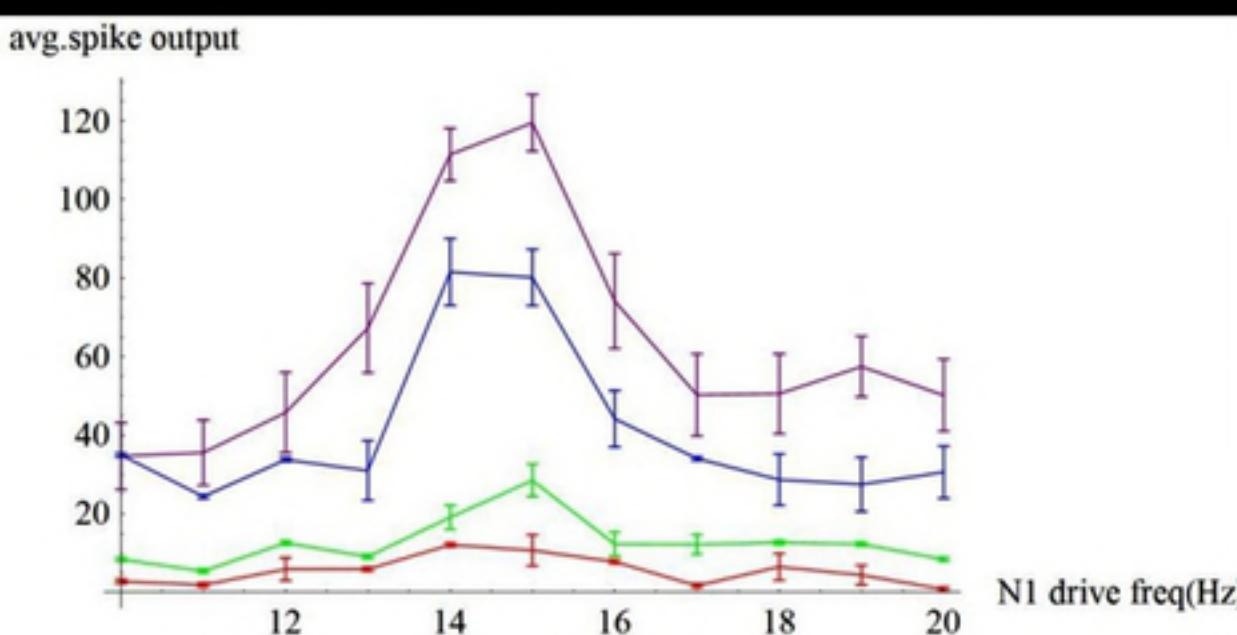



Figure 5

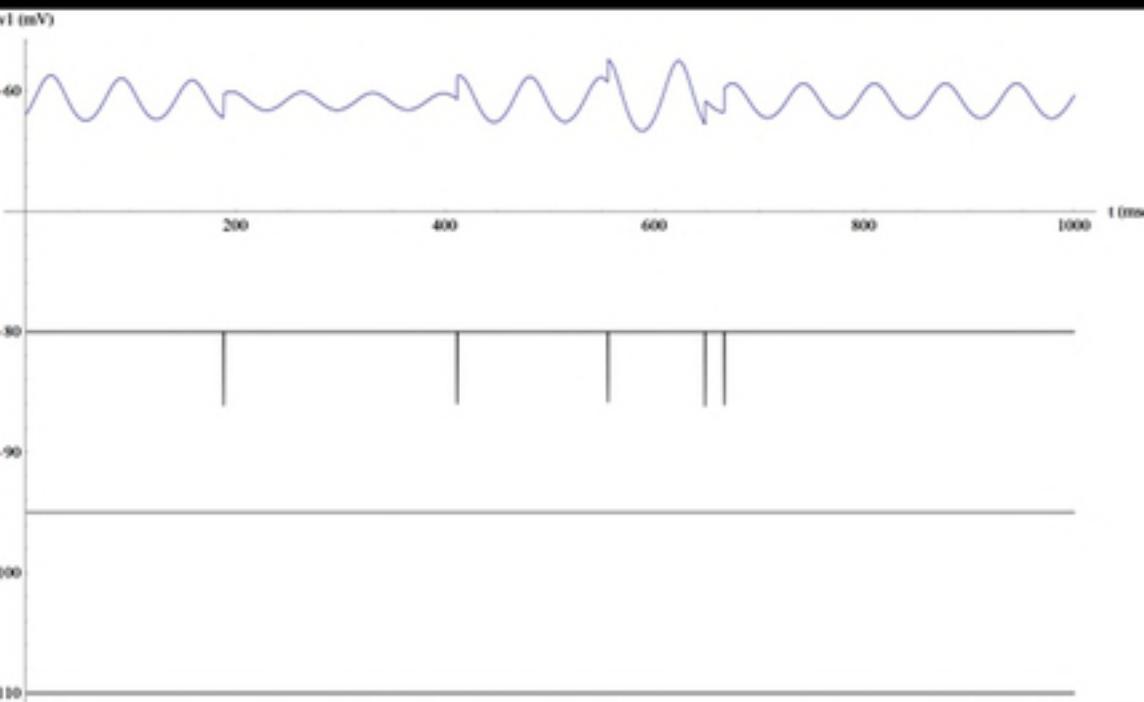
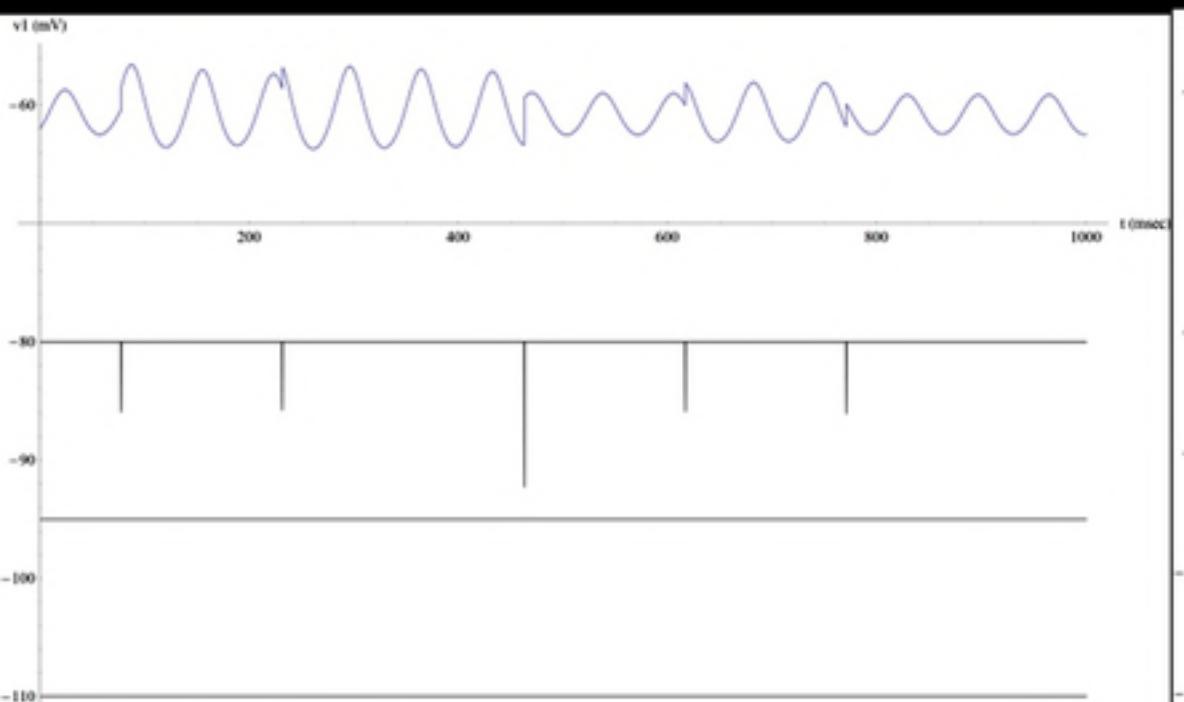
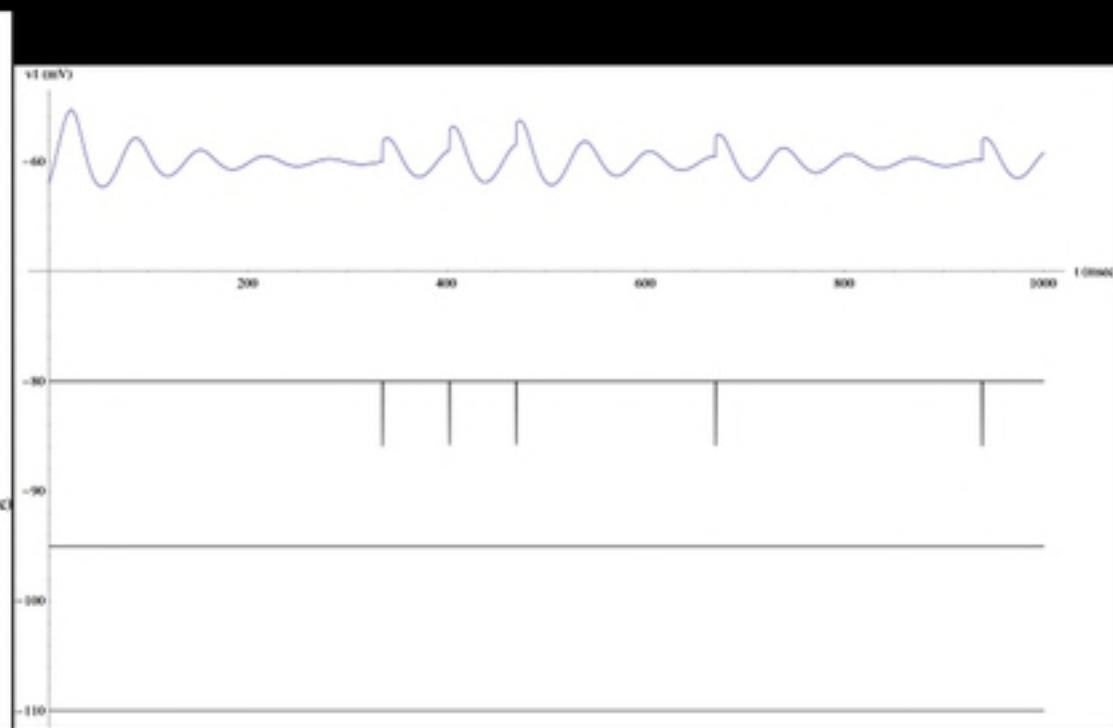
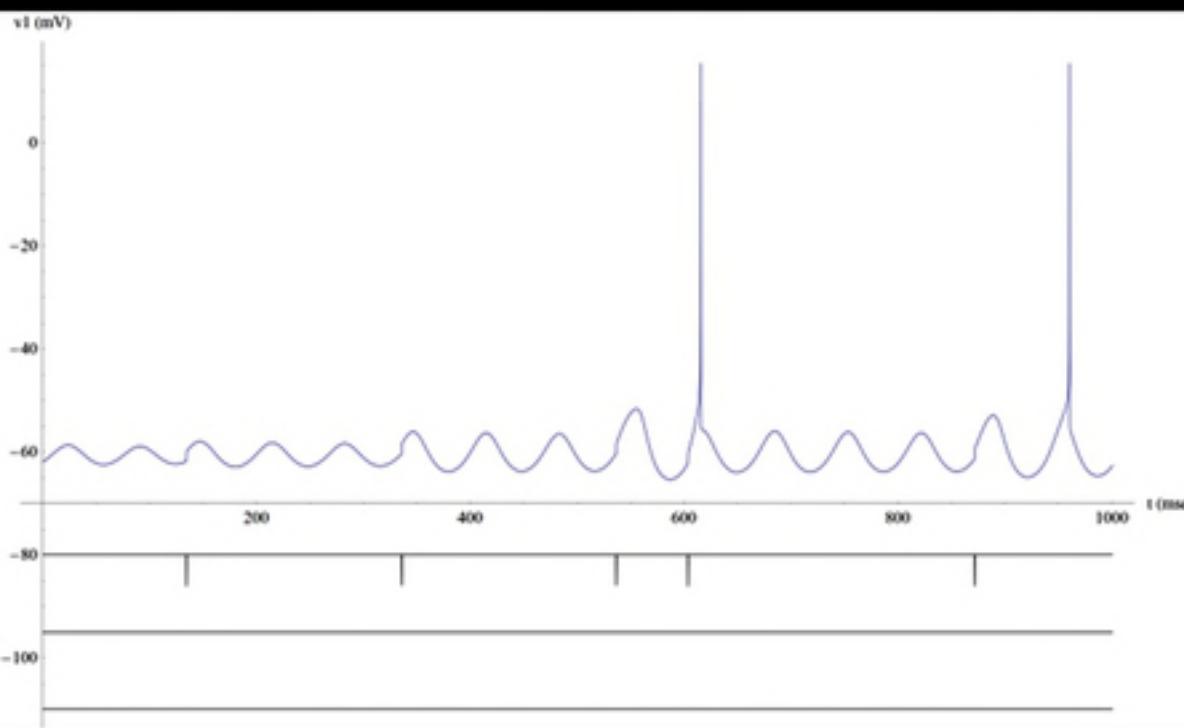
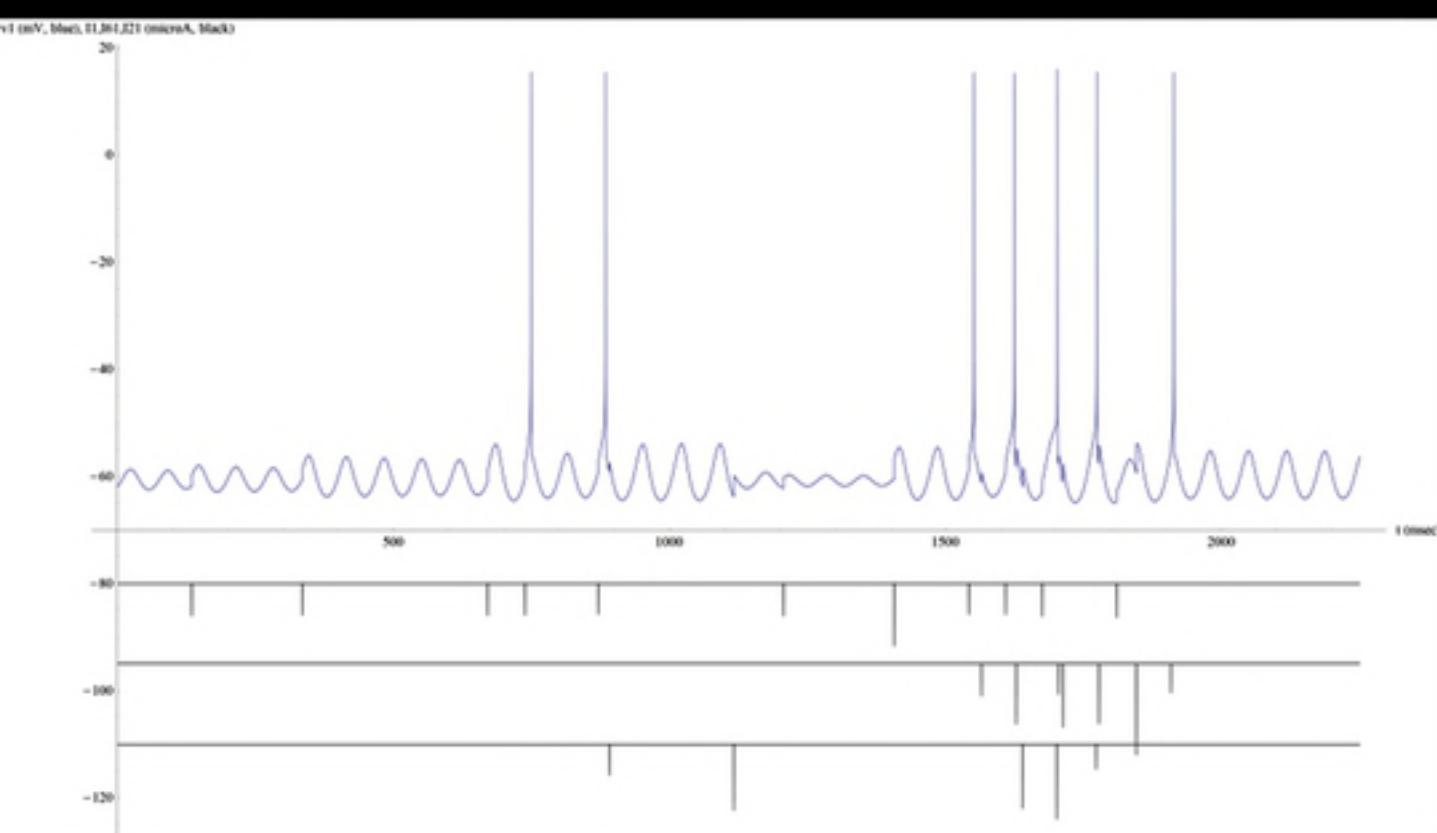






Figure 6

bioRxiv preprint doi: <https://doi.org/10.1101/512145>; this version posted January 4, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

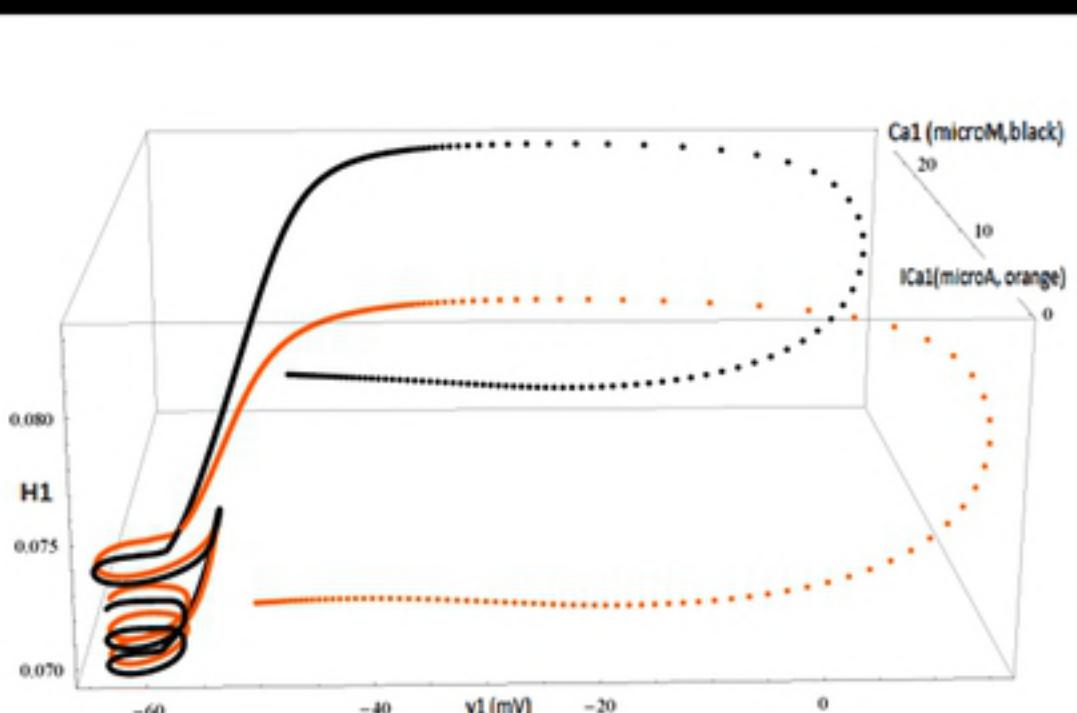
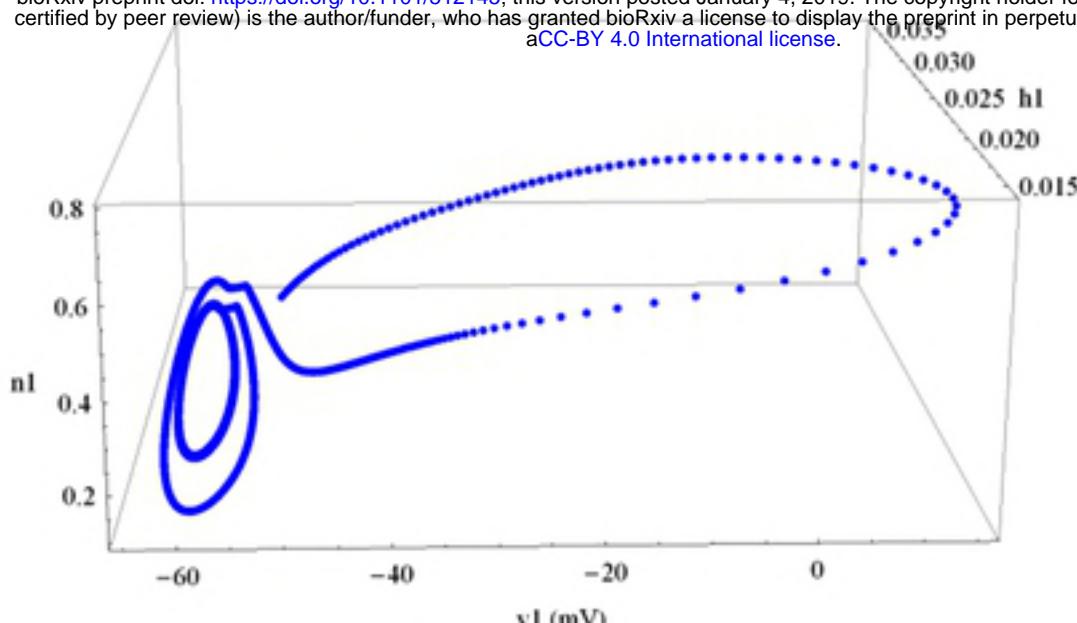



Figure 7

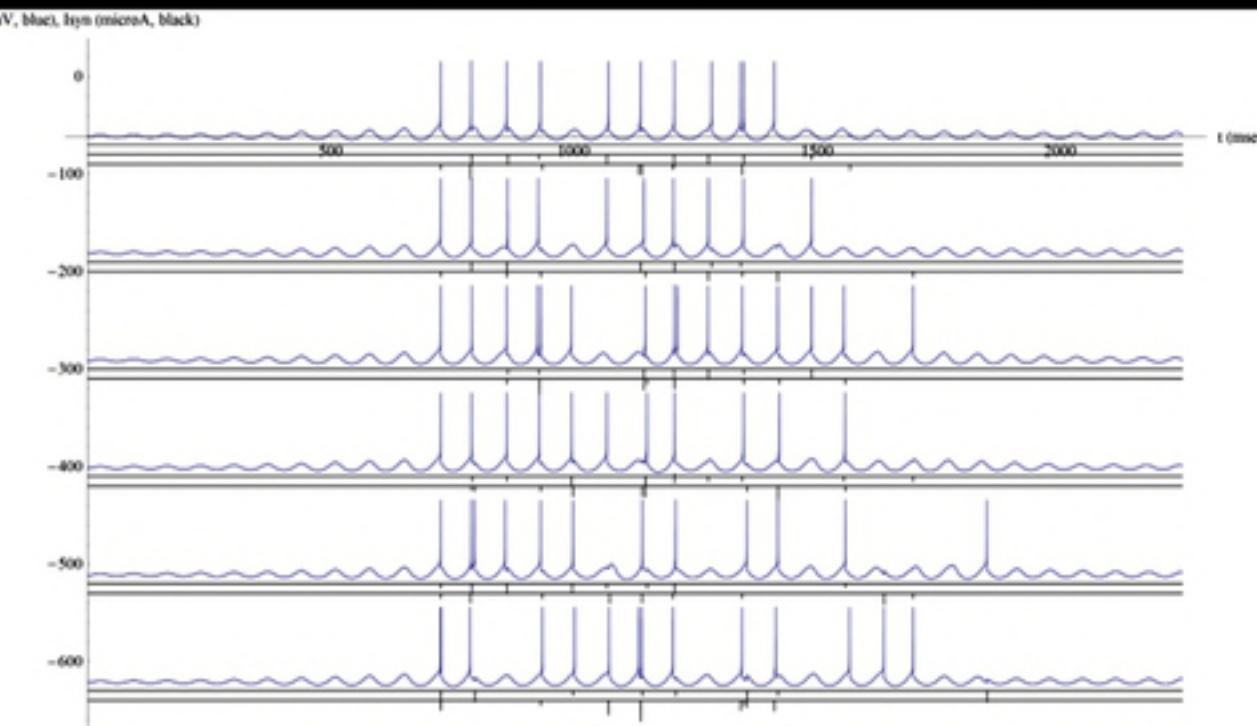
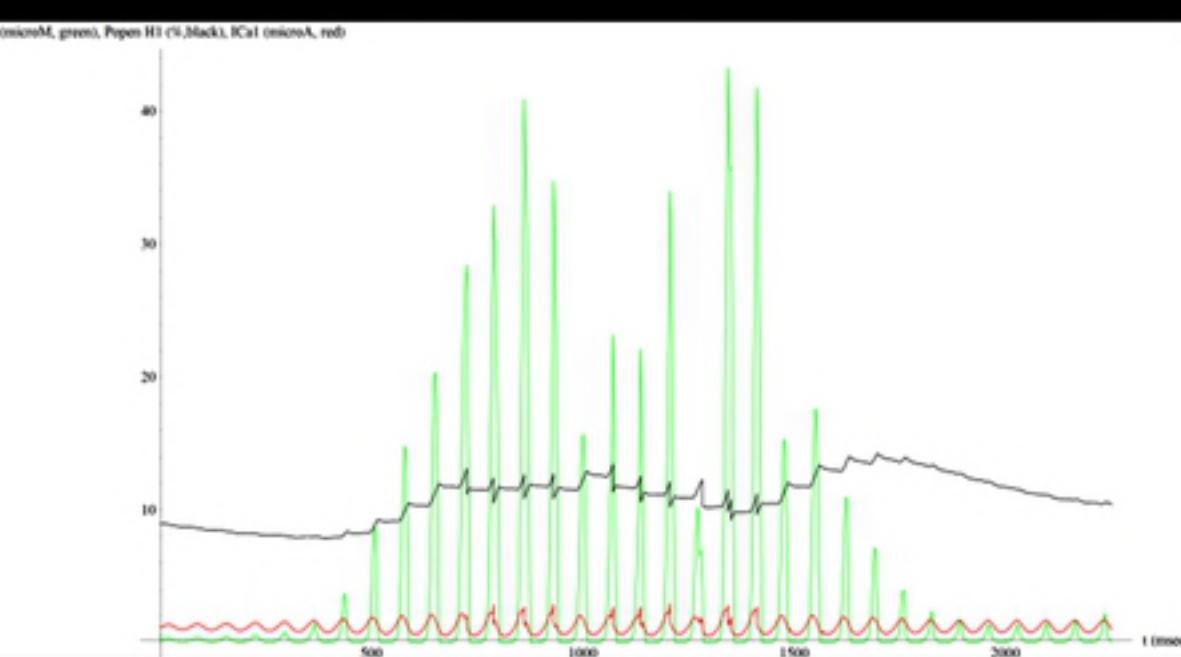
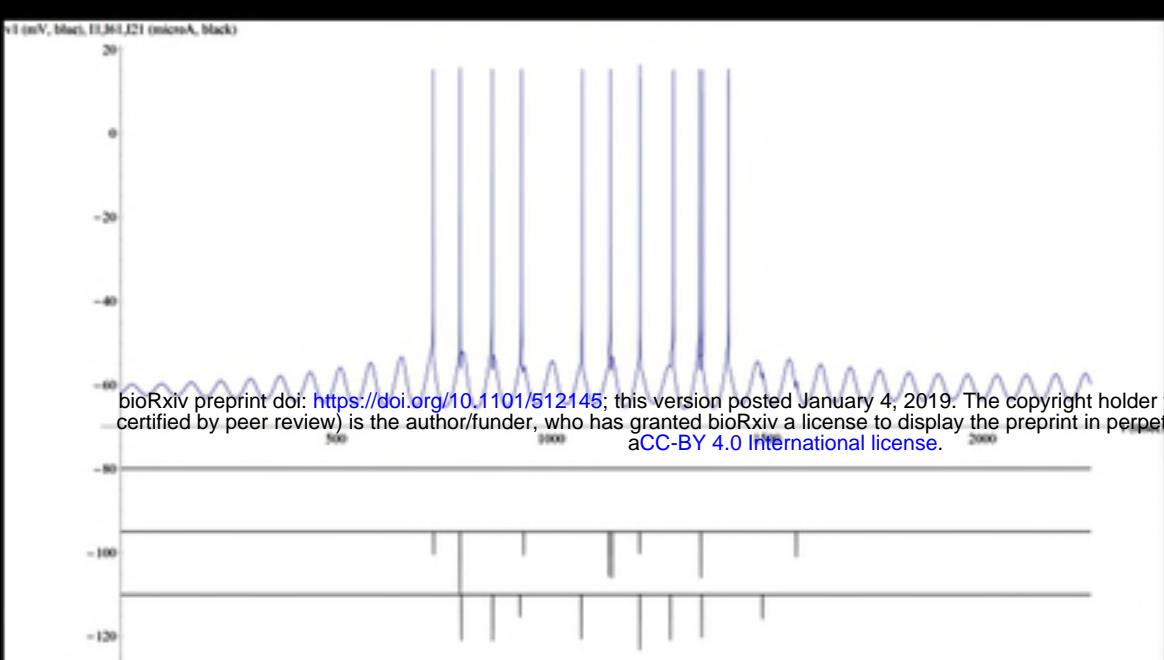
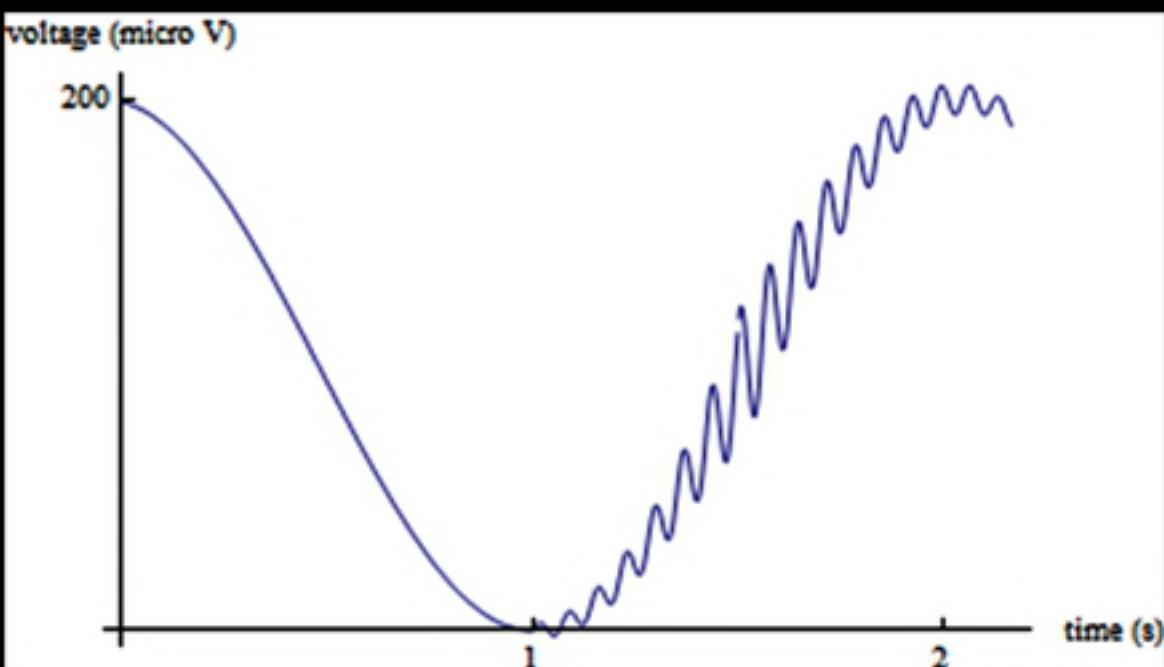





Figure 3