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Abstract

Understanding the mechanisms of neural computation and learning will re-
quire knowledge of the underlying circuitry. Because it is slow, expensive, or
often infeasible to directly measure the wiring diagrams of neural microcircuits,
there has long been an interest in estimating them from neural recordings. We
show that even sophisticated inference algorithms, applied to large volumes of
data from every node in the circuit, are biased toward inferring connections
between unconnected but strongly correlated neurons, a situation that is com-
mon in strongly recurrent circuits. This effect, representing a failure to fully
“explain away” non-existent connections when correlations are strong, occurs
when there is a mismatch between the true network dynamics and the gen-
erative model assumed for inference, an inevitable situation when we model
the real world. Thus, effective connectivity estimates should be treated with
especial caution in strongly connected networks when attempting to infer the
mechanistic basis of circuit activity. Finally, we show that activity states of net-
works injected with strong noise or grossly perturbed away from equilibrium
may be a promising way to alleviate the problems of bias error.

Introduction

Fully understanding the mechanisms of computation and plasticity in neural circuits
requires knowledge of how neurons with specific functional properties are connected.
Despite groundbreaking recent developments in direct circuit tracing1–6, obtaining
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connectivity data is difficult, expensive and slow. Hence the interest in developing and
applying statistical methods to estimate connectivity directly7–10 from simultaneous
activity recordings of many neurons within a circuit11–13.

A crude estimate of coupling strength between neurons can be made from cor-
relations but, as is widely appreciated, correlations can arise from direct synaptic
connections or a common input. Statistically sophisticated inference techniques –
such as maximum entropy-based inverse Ising inference8;14–17, l1-regularized logistic
regression18, and generalized linear models7;19–22 can ‘explain away’ correlations that
arise from a common observed input, at least when all recurrently connected neu-
rons are observed and the inference model exactly matches the model from which
the data are drawn. This explaining away allows for deletion of a direct coupling
that might have been drawn between a pair of neurons based on correlation alone
(Fig. 1a), yielding connectivity estimates that are substantially sparser than the raw
correlation graph.

These methods have been applied to data from low-level sensory circuits in the
brain with excellent success in producing improved predictions of neural responses
to stimuli, since they account not only for the influence of the stimulus but also
for the collective influence of other cells in the network to neural activity7;8;17;23;24.
Unfortunately, with the success of these models in activity prediction, it has been a
common temptation, to which many have succumbed, to also interpret the inferred
connectivity as biological connections7;25–29.

Consistently, the match between actual and inferred connections remains untested,
even as the inferred connectivity continues to be referred to (by optimistic researchers)
as a reasonable proxy for actual connectivity. There are two key requirements for the
success of these methods in inferring connectivity, neither of which tend to hold in
reality: all nodes must be observed, and the statistical model used to estimate connec-
tivity must match very closely the model from which the data are generated. There
is widespread recognition of the problem of unobserved nodes (frequently though it
might be forgotten when interpreting inferred connections); therefore, we focus here
on the second problem which arises from model mismatch. We show that the prob-
lem of model mismatch (and also partial observability of nodes) is large for recurrent
circuits with strong weights.

We consider a natural question: When do statistically inferred weights in even
fully observed circuits reflect true connections between neurons, and under what con-
ditions can we expect the algorithms to (not) perform well in deducing biological
connectivity? We hypothesize that in strongly recurrent systems, emergent phenom-
ena – related to pattern formation and the presence of strong long-range correlations
– present a fundamental challenge to the problem of explaining away in real data.

To study the question, we construct a simple structured neural network model
with local recurrent connectivity whose strength can be dialed between weak (“sen-
sory”) and strong (“memory”) regimes, and which in the latter regime produces
emergent activity patterns with strong correlations between unconnected cells. The
structured form of the connectivity is for convenience of easy visualization of pat-
terns of error in the inference procedures. Structured connectivity makes it easy to
visually distinguish between between activity correlations, inferred connectivity, and
explaining-away errors relative to the generative ground-truth circuit. As we show
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later, results in the structured model generalize to unstructured (random) networks.

Results
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Figure 1: Structure and dynamics of the generative network. a: Left: A schematic
three-neuron circuit with two excitatory connections. Center: All three neurons will
be strongly correlated if the weights are large. Sophisticated circuit inference algo-
rithms seek to ‘explain away’ the connection between the upper neurons by attributing
their correlation to their common input instead of a direct connection. b: Neurons
arranged in a ring-shaped network (black dots). Gray curve: Mexican hat- shaped
weights from an example node (gray dot) to the rest. Each node in the network
connects to the rest similarly. c: The resulting weight matrix W is circulant. d:
Snapshots of synaptic activations of network cells with weak and strong weights.
e: Absolute noise correlations between all pairs of neural spike trains binned at 10
ms (gray: histogram, black: means) increases with weight strength. For reference,
horizontal color bands indicate experimentally measured values/ranges of noise cor-
relation in several brain circuits. f: Top: Noise correlation matrix of the network
cells at different weight strengths. Bottom: superposed vectors of noise correlation
between each node and the rest of the ring. Numbers indicate the range of the vertical
noise correlation axis on either side of 0 (horizontal line). g: Measures of the coher-
ence and stability of neural activity pattern, against weight strength. Primary axis:
strength of the periodicity of neural activity correlation. Secondary axis: diffusivity
of the pattern phase at all weight strengths capable of sustaining a sufficiently strong
pattern. Horizontal line marks 0.25λ2/s, corresponding to a state ‘memory’ of 0.5 s.
We define the associated weight strength as the boundary between the ‘sensory’ and
‘memory’ regimes of the circuit.
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Generative network architecture and dynamics

Our generative model is a one-dimensional neural network of threshold-crossing spik-
ing units interacting through rotation-invariant inhibitory recurrent connections W
in a Mexican-hat profile on a ring (see Fig. 1b-c). Coupling is local: each cell inhibits
nearby cells, but cells that are further away are unconnected. In addition to the
recurrent input, all cells receive a uniform excitatory drive with a multiplicative noise
component (see Methods). Cells generate spikes, which are used to drive the dynam-
ics in the next time-step. The relative contribution of the recurrent inputs (relative
to a background noise) can be dialed using a scalar weight strength r that multiplies
the connectivity matrix W. When r is weak, network activity is noise-driven and un-
correlated, but increasing r transitions the network into a strongly interacting regime
where it exhibits self-sustained periodic activity patterns. The pattern consists of
multiple bumps, and unconnected nodes in different bumps exhibit strong long-range
correlations (Fig. 1d).

In all that follows, inferred weights are compared with the true weight matrix after
they are rescaled to obtain the best match (see Methods), thus changes in the size of
inference error cannot be attributed to a simple mis-scaling of the inferred weights.
Similarly, inference across weight strengths is performed on the same number of total
spikes in networks with weak and strong weights, and inference differences cannot be
attributed to different amounts of data.

To first quantitatively and qualitatively relate the weight strengths (r) to operat-
ing regimes of networks in the brain, we consider the effect of r on noise correlations,
activity pattern coherence, and the stability of internal states over time.

Increasing the strength r of recurrent connections leads to stronger noise correla-
tions (see Methods, Fig. 1e). These correlation values can be compared directly with
measured values of the mean absolute pairwise noise correlation in various sensory
and non-sensory brain areas including V130–32, V433;34, MT35–38, and hippocampus39

(Fig. 1e, colored bands). As seen, medium to medium-large values in our range of r
produce noise correlations consistent with primary and non-primary sensory process-
ing stages in cortex; large values correspond to noise correlations from CA1 and CA3,
areas associated with strong recurrent processing and memory. Medium-low and low
values of r might correspond to weights that are weaker than found in even primary
sensory areas because the correlations are smaller than seen in primary visual cortex.
(But note that this comparison does not take into account the possibility of corre-
lated noise inputs into primary sensory cortex40–42; thus we also use more qualitative
measures, below, to relate values of r to different operating regimes in the brain.)

The structure of the noise correlation matrix, not just the size of the noise cor-
relations, itself evolves with r: At weak r, where neurons are largely noise-driven,
noise correlations are small and the noise matrix exhibits high variance with weak
signatures of the true connectivity matrix (Fig. 1f, first panel). At intermediate r,
the influence of noise decreases and activity correlations better reflect connectivity
(1f, second panel). As r continues to increase, however, pattern formation sets in and
noise correlations no longer reflect the true weights, capturing instead the correlations
induced by the emergent periodic activity pattern (1f, last two panels).

Qualitatively, different values of r move the network along the sensory-memory
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continuum, defined by the coherence and diffusivity (see Methods) of activity states.
Coherence is a measure of the fidelity of the shape of the activity profile over time
(regardless of where the activity is centered); as r is increased, the network moves
from a regime with zero pattern coherence to one with maximal coherence (Fig. 1g).
The activity pattern itself drifts over time due to noise; this drift takes the form of
a non-restorative random walk (OrnsteinUhlenbeck process), which we quantify by
its diffusivity (see Methods). As weights increase in strength, the patterns become
increasingly stationary and resistant to noise-induced drift, thus the diffusivity drops
sharply (Fig. 1g). When diffusivity is low, the initial pattern phase is not rapidly lost
and the phase can be used as a memory43. In Fig. 1g, the horizontal line marks the
diffusivity value at which the RMS spread of the pattern phase equals half the pattern
wavelength after 0.5 seconds; the starting phase is on average completely forgotten
on this time-scale. The weight strength at this point is r = 0.0125; because both
coherence and diffusivity change sharply around this value, we take it as our working
boundary between the ‘sensory’ and the ‘memory’ regimes of the circuit. The sensory
regime close to the memory boundary is highly-amplifying with slow responses.

Inference at different weight strengths

We can now quantify the quality of circuit inference along the sensory-memory con-
tinuum defined above, beginning with the best-case experimental scenario, in which
every neuron in the circuit is observable. We consider fully-observable data to high-
light inference problems that arise in addition to the already well-known problems of
inference in partially observed neural circuits.

Consider a dataset of spikes generated from the dynamical neural network model,
with 108 total spikes from the network at each value of r (see Methods). Because of
its good performance in circuit activity prediction, at least at the sensory periphery7,
we apply a generalized linear model (GLM) to the data to extract an estimated
weighted connectivity matrix, then measure inference error as the normalized l2-
distance between the ground-truth and the properly-rescaled inferred weight vectors
(see Methods).

When weights are weak, the recurrent connections have a small effect on neural
activity relative to the ongoing noise, thus the signal-to-noise ratio (SNR) is low and
the inferred connectivity exhibits uncorrelated errors (Fig. 2a, first panel), similar
to the effects seen in the noise correlation matrix. The SNR improves, and inference
error decreases with increasing weights (Fig. 2a, second panel), but only upto a point.
Beyond this point, the inferred connectivity matrix begins to exhibit a new kind of
error, visible as side-bands in the inferred matrix, last two panels of Fig. 2a (the
distribution of inference errors, Supp. Info. §S.9 and Supp. Fig. S3 also shows a
change in the pattern of errors). These errors are systematic (biased) overestimates
of the existence of connections and magnitudes of weights between unconnected neu-
rons. They result from a partial failure to explain away strong correlations, which
are induced not by direct connections but by the emergence of stable activity pat-
terns at the population level. Quantitatively, the GLM estimate is closer to the true
connectivity matrix than is the raw noise correlation matrix, but the GLM estimate
nevertheless exhibits a similar qualitative pattern of errors (compare Figs. 1f and 2a).
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At any weight strength, the total inference error ∆ can be decomposed into two
orthogonal vector components: a variance ∆v and a bias ∆b (see Methods). As the
weights increase in strength, the inference error vector rotates from being variance-
dominated to bias-dominated (Fig. 2b). The total error is smallest for intermediate
weights, when variance and bias contributions are both relatively low (Fig. 2c). The
point of smallest error is far to the left of the sensory-memory boundary, in the very
low weight regime (cf. regimes defined in Fig. 1e,g). When the inference model is
not exactly matched to the data-generating model, as is typical, the minimal total
error point is not an invariant quantity that reflects a critical point of the network
dynamics or the inference process. Rather, the optimal inference point depends on
the volume of data used for inference, as we show next.

Variance but not bias errors decline with added data.

The variance and bias errors behave differently as the volume of data available for
inference is increased: examples at opposite ends of weight strength, where variance
versus bias errors predominate, respectively, are shown in Fig. 3a, left versus right
(total squared inference error is the sum of the squares of the variance and bias terms,
∆2 = ∆2

v + ∆2
b). Data volume is defined as the total number of spikes used for circuit

inference; because the average firing rate is held fixed, data volume is proportional
to the time needed to collect the data. At the weakest weights, where error is nearly
purely due to noise and thus variance-dominated, the error decreases inversely with
data volume, as expected: ∆2

v ∼ 1/D, Fig. 3a inset at bottom-left with error well-fit
by a line of slope -1 on a log-log plot (see Supp. Fig. S4a with fits and confidence
intervals). Substantial bias errors arise for stronger weights, and these do not shrink
with data volume, Fig. 3a, right (green area). Bias errors persist with data volume
because they arise from highly-correlated neural activity states that are themselves
highly structured and persistent.

It is clear from the full surface plots of total error (Fig. 3b), the relative fraction
of bias errors (quantified by the normalized angle θb between the total error vector
and the bias axis, Fig. 3c), and the bias and variance errors (Fig. 3d-e) that at all
weight strengths the variance error decreases readily with added data while the bias
term remains impervious. The bias error is therefore the asymptotic inference error
in the limit of infinite data. Given that added data erodes the variance component of
errors while bias errors are maintained, the point of minimum inference error should
steadily move leftward with increasing data volume, as observed in 3f (dashed black
line with arrow).

When using matched models for the data generation process and inference (e.g.
using the Ising model for both), a scenario that is empirically implausible since we
can never know the real model from which the data are generated, inference errors are
simply variance errors at all weight strengths, and decay with data volume according
to the same power-law (see Supp. Info. §S.1). In this case, the weight strength for
best inference is an intrinsic critical point of the network (corresponding to maximal
magnetic susceptibility in the Ising network, which in turn is directly related to the
maximization of Fisher Information44).
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Data required to perform accurate inference in memory net-
works is infeasible.

From a practical or experimental perspective, the relevant question is how much
activity data must be collected from a circuit to obtain an estimate of its connectivity
at a specified precision, and how this value differs for sensory versus memory circuits.
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Figure 2: Circuit inference quality as a function of weight strength in a fully-observed
circuit with 108 total spikes (∼ 6 hours of simulated spiking data at ∼ 60 Hz avg.
spiking rate per cell). a: Inferred weight matrices Ŵ (top row), superposed inferred
weights from each node to the rest (middle row, line marks zero), and raw noise
correlations (bottom row) for reference, at different weight strengths. b: Inference
error (arrows) as a vector sum of orthogonal contributions from variance (∆v) and
bias (∆b), for different weights. The magnitude of the vector is the total inference
error ∆, and the normalized direction θb is the fraction of bias in the error. c: Total
inference error ∆ and fraction of bias θb against weight strength.
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Thus, we fix the desired inference error (to 0.1194, corresponding to the inference error
at r = .0025, horizontal line in Fig. 3f), and determine the data volume required, on
average across multiple subsamplings of the data, to fall within 1% of this value. This
process is equivalent to plotting a slice through the surface of Fig. 3b at a specified
error level.
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The data required to achieve a given inference error grows toward both extremes
of weak and strong weights (Fig. 3g, black dots). As weights decrease, the influence
of the recurrent connections shrinks and the data required to recover any information
about the connections grows, diverging in the limit of vanishing weights. At the
opposite end, the data demand escalates more steeply, and appears to diverge at a
finite weight strength. We empirically fit this data demand curve with a sum of two
power laws (3g, black, red, and blue curves). The first has a form awr

−nw , diverging
at r = 0, while the other diverges at some finite weight rmax determined by the fit,
and has the form as(r − rmax)−ns . The best-fit yields the exponent nw ≈ 2 for the
first component, and for the second, ns ≈ 1.4, diverging at rmax = 0.0157 (Fig. 3g,
brown line). A network with stronger weights than rmax = 0.0157 cannot be inferred
to the desired accuracy with any volume of data.

We can better understand the divergence of the data demand curve at a finite
strong weight by plotting the obtained rmax on Fig. 3f: it corresponds to the point
where the extrapolated infinite-data inference error (green curve) crosses past the
criterion error (horizontal line), due to data-intractable bias errors at stronger weights.

Results generalize across generative and inference models.

In addition to using GLMs, we perform inverse inference on an Ising model (which
corresponds to the maximum entropy model that fits the data means and covariances
under the assumption of binary responses, see45) using various techniques to obtain an
estimate of connectivity from activity. Exact inverse Ising inference on a generalized
Ising model (all-to-all connectivity with unequal weights) is NP-hard46, requiring large
amounts of data and intensive computation. Different algorithms fall at different
points on a speed-accuracy tradeoff curve: Boltzmann machines perform optimal
inference in the limit of large amounts of data if the data comes from the inference
model class, but are slow. The simplest mean-field approaches are fast but suboptimal
in accuracy.

We used an algorithm called minimum probability flow (MPF)47, which provides
approximately optimal solutions at intermediate computational complexity and guar-
antees convergence to the correct (maximum likelihood) parameters in the asymptotic
data limit.

Binarizing the data, as required for the method, results in information loss and
poorer inference than GLMs and logistic regression (see Supp. Info. §S.3, Supp. Fig.
S2). We performed inference at various bin sizes, and display results for the minimal-
error result relative to the ground truth (Supp. Info. S.3, Supp. Fig. S2). Selection
of the best result (and thus the best bin-size) cannot be done when the ground-truth
is unknown, as is usually the case when doing circuit inference, but here it provides an
upper-bound on the performance of such methods. (The best bin size, across weight
strengths, is approximately the time-scale of single-neuron integration, suggesting
that this is a good choice in general.)

At the other end of the speed-accuracy tradeoff for inverse Ising inference are
mean-field methods, which are fast approximations. Among these we implemented the
näıve mean field, the Thouless-Anderson-Palmer (TAP)48, and Sessak and Monasson
(SM)49;50 approximations (see Supp. Info. §S.4).
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The näıve mean field method simply uses the negative inverse of the activity
covariance matrix, so we consider it as the ‘raw correlations’-based connectivity esti-
mate. This serves as a lower benchmark for circuit inference, and is plotted on Fig.
4a using spike count data as a comparison against the GLM and logistic regression
(described next), and using binarized spike data as a comparison against the rest of
the inverse Ising methods.

Next, we consider logistic regression and l1-regularized logistic regression18;51;52,
in which the response of each neuron is regressed onto the activity of all the rest.
The response variable must be binary, but the predictor values can have non-binary
counts, thus we only binarize the spike data of the response neuron. Logistic regression
achieves slightly better performance than the GLM, Fig. 4a.
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Figure 4: Results generalize across different inference methods. a: Results of inference
on 108 spikes from the network with different methods. Dashed lines are binary spike
data-based inverse Ising methods. b: Inference error against data volume (similar
to Fig. 3a) when using inverse Ising inference with minimum probability flow. c:
Absolute inferred vs true weights and their correlation coefficients for a randomly
connected network at weak and strong weights. Yellow line marks y = x. d: Spiking
activity (white) in the random network with strong weights, initialized with weak
activity, gradually evolves into a near-equilibrium state with a steady pattern (around
180s). e: Blue curve: For the evolving network in (d), we accumulate spike data over
time, and perform inference as the data volume grows and the network gradually
forms a pattern. Dashed line: onset of the steady activity pattern (near 180s) in (d).
See Methods for more details. Red curve: the same process is repeated for a network
with weak weights.
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Since imposing an l1 penalty on the inferred weights prioritizes sparseness in the
inferred weights53, and thus might push the network toward pruning or shrinking
weights that make up the bias errors (the off-diagonal side-bands of Fig. 2a), we apply
l1-regularized logistic regression18 (and tune the size of the regularization parameter
at each weight to optimize inference accuracy, see Supp. Info. §S.8). However, l1-
regularization does not eliminate side-bands and barely improves inference quality
relative to unregularized regression (Supp. Fig. S5). Rather, l1-regularization forces
all small weights to zero and retains larger weights, truncating or steepening the
flanks of all peaks in the inferred weight matrix while retaining all peaks (including
the side-bands).

When the recurrent weights are small, all inference methods, regardless of their
statistical sophistication, perform equally well, and no better than the raw activity
correlation matrix, at estimating connectivity. The main difference in the quality of
the inference methods at low weights is the expected better performance of models
that take spike counts rather than binarized spike trains into account, Figure 4a-b
(solid versus dashed lines).

All methods replicate the qualitative trend of large inference errors at weak and
strong weights, with best inference in the middle. At strong weights, all methods
(with some mismatch) yield large bias errors that are impervious to additional data,
Fig. 4b.

We switch generative models (while retaining the network architecture) then again
perform inference, using a GLM with an exponential nonlinearity to fit data from both
a linear-nonlinear-Poisson model and a GLM with rectifying nonlinearities. These
produce the same qualitative patterns of error (see Supp. Fig. S6), showing that the
results are not specific to a particular model for generating data.

Finally, the described effects are not specific to structured, low-dimensional ring-
like circuit architectures, which we used to readily illustrate the pattern of bias errors.
We consider next a network with all-to-all random symmetric connectivity. Connec-
tion strengths are drawn uniformly and randomly from the same range as the Mexican
hat weight profile of the ring network. Circuit inference (here, using a GLM) displays
the same patterns of errors as before, 4c (plots show the absolute values of actual and
inferred weights, with inferred weights normalized according to two choices: minimiz-
ing the l2 or the l1 distances between the inferred and true weights).

Inference in the weak-weight regime is good, with inferred weights falling close
to the unity line, but the strong-weight inferences deviate strongly from the true
weights. Bias errors in connectivity estimation reside in the widespread scatter of
inferred weights above the high-density blue region. These errors are reflected in
the correlation coefficients of inferred vs true weights, which is a scale-independent
measure of fidelity (ρ = 0.99 vs ρ = 0.32 for weak and strong weights, respectively,
Fig. 4c).

In sum, the problem of overestimation of connectivity through bias errors at weight
strengths that correspond to strongly amplifying sensory networks and to memory
networks generalizes across models for data generation and inference, and across
network connectivity architectures, whenever there is some mismatch in the inference
model relative to the model generating the data (see Supp. Info. S.1 for inference in
which the data generation model and the inference model are perfectly matched).
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Sampling data during non-equilibrium dynamics improves in-
ference in strongly recurrent circuits

We consider what happens if activity data are sampled when the network is out-
of-equilibrium. We initialize a network with strong weights (r = 0.025) far out of
equilibrium, with low activity across neurons, Fig. 4d. The network states gradually
evolve until they transition into an equilibrium activity pattern with strong correla-
tions. As the states evolve, we collect activity data. Using the increasing amounts of
data collected as the states evolve, but before pattern onset, improves inference, 4d.
Interestingly, the slope with which inference improves with data volume is steeper in
this non-equilibrium strong-weight network than for the in-equilibrium weak-weight
network (due to higher SNR). Once the pattern emerges, however, the activity cor-
relations contribute to bias error, and continuing to collect data in this regime now
hurts inference, resulting in a worse match with the true weight matrix than if we used
data collected only before pattern onset. This result shows that non-equilibrium ac-
tivity data might result in much better inference results in strongly coupled recurrent
neural networks54.

The circuit identification problem is inherent to activity states
in strongly coupled circuits.

The problem of circuit mis-identification when network weights are strong can be
attributed to the very nature of the activity data in this strongly-coupled regime.
Specifically, in the strong-weight regimes of strong sensory amplification or memory
dynamics, the inherent distinguishability of spiking data generated from the true
model and other candidate models is much smaller than when connections are weak.
In other words, if different circuits generate convergently similar activity patterns,
there is no inference method that would distinguish between them. Specifically, if the
same neural network model generates data according to the true circuit and the mis-
identified inferred circuit, how inherently similar or distinguishable are the resulting
spike patterns?

Consider two weight matrices, W, our true circuit with only local synapses, and
W′ with non-local synapses (Fig. 5). (W′ was obtained by inverse Ising inference on
spike data generated by a dynamical neural network using the weight matrix W in
the strongly recurrent regime, see Methods.) Our question is then: how inherently
distinguishable are W and W′ in terms of the activity they produce at different
recurrent weight strengths, independent of any inference procedure?

At each time-bin we record a vector σ of spike counts from all the nodes of a
network, a spike word, which we may call the observed network state at that time.
The distribution p(σ) of the states collected over time is the joint distribution of the
activities of all the network nodes. The relative entropy (KL divergence) between
the distributions produced by two circuits serves to measure the dissimilarity of the
states they generate. This relative entropy measured between two parametrically in-
terpolatable models is the Fisher Information contained in the data about the models
(see Methods).

Such measures are accurate only when the individual distributions are well-sampled,
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and the state space of N -neuron networks is vast when N is even moderately large
(here, N = 100). We employ two strategies to make the problem tractable: we
consider only binarized spike data (Supp. Info. §S.3), and instead of considering
length-100 spike words, we consider spike words of smaller, 10-neuron segments of
the network, whose lower-dimensional distribution we can sample sufficiently well
(see Methods).
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The distributions (relative frequencies) pW(σ) and pW′(σ) of the 210 different
spike states σ of 10-neuron segments from the two circuits at different weight strengths
are shown in Fig. 5c. The states are sorted along the horizontal axis according to
their frequency in pW(σ); the heights in green and yellow at a given point along the
abcissa denote the relative frequencies of the same states σ in the activities of the
two circuits.

When weights are weak, activity in both circuits is driven almost exclusively by
the noisy feedforward input, thus state probabilities are very similar and flat in both
models pW and pW′ ; the entropy of the states is the maximum of 10 bits (Fig. 5d). As
recurrent strength is increased, both distributions contract in state space and their
entropies drop. This occurs earlier in the W′ circuit because the added non-local
recurrent couplings drive an earlier onset of strong correlations or patterning; thus
pW′ is more narrowly peaked (note logarithmic vertical scale) than pW for weaker
weights, and the two circuits are distinguishable. As the weights continue to increase,
pattern formation catches up in W, while the state space of both models continues
to shrink. However, the set of activity patterns and thus the state distributions
converge again at strong weights, meaning that the two models become inherently
less distinguishable, at least under the dynamics of the data-generating model. The
same result holds when considering larger segments of the network (up to 22 nodes;
see Methods and Supp. Fig. S7).

These distributional effects can be quantified with three closely related metrics,
the relative entropy, the likelihood ratio of W vs W′ given the activity data pW,
and the Fisher information. (This measures the sensitivity with which one can de-
termine the value of a continuous parameter in a generative model from the data.
The parameter here is the linear interpolation variable θ in a generative circuit model
where the recurrent connections are given by θW + (1− θ)W′, see Methods). Larger
values of these metrics indicate that data produced by the two circuits are inherently
more distinguishable. It is clear from these measures that the alternative models are
maximally distinguishable close to the sensory-memory transition, at the onset of
patterning, and become more indistinguishable (for a fixed volume of data) at both
stronger and weaker recurrent weights. This result is consistent with findings that
the volume of statistically distinguishable models is maximal near the critical points
of a system and that models far from the critical point are difficult to tell apart using
their data44.

To summarize these results, when weights are very weak, the occupied state spaces
of competing models are essentially as large as the full state space of uncoupled
neurons, and thus are fully overlapping and indistinguishable, (Fig. 5f, left). At
intermediate weights, the occupied state space shrinks for each model, as does their
overlap (Fig. 5f, center). At high weights, the state spaces of the competing models
continue to shrink, but instead of growing more distinguishable they shrink toward a
common point and their overlap grows again (Fig. 5f, right).

Qualitatively, the distributional convergence of activity states for the competing
models shows that it becomes intrinsically difficult, for any algorithm, to distinguish
between them at high recurrent weights, consistent with the findings above for various
specific inference algorithms. Quantitatively, however, each of the specific inference
algorithms suffers from an additional effect when there is model mismatch: because
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the bias errors do not shrink with data volume but the variance errors do, the best
inference, depending on data volume, usually occurs at weaker weights than the
point of optimal inherent distinguishibility (were the inference and generative models
matched).

Strong weights greatly exacerbate inference error in partially
observed networks.

In partially observed networks, it is impossible in principle, without additional as-
sumptions, to infer the existence of a connection between a pair of neurons from
observed activity because of the possibility that observed correlations are due to
an unobserved common input (e.g. Fig. 1a, if the neuron at the bottom were not
observed). To decouple these known problems of inference in partially observed net-
works55–61 from the more subtle but important problems of inference in recurrent
circuits with strong weights, we considered above the fully observed setting. Now we
examine how errors that already result from inference in partially observed networks
are affected by the strength of weights within the circuit.

As before, we apply a GLM to infer circuit connectivity. This time, we use activity
data from only a subset of neurons to reconstruct connectivity within that subset. We
repeat this process over multiple subsets of the same size, and “merge” the inferred
sub-circuits together (for each neuron pair i, j, we average the inferred weights Ŵij

from all sub-circuits that contained that pair) to obtain a complete N×N circuit
that can be visualized. For fixed, weak weights, as the observed fraction shrinks,
the side bands become more pronounced (Fig. 6a, left two panels), illustrating that
partial observation leads to qualitatively similar patterns of bias error as when weights
are strong. Similarly, for a given observed fraction, increasing the weight strength
produces stronger side bands (Fig. 6a, second and fourth panels).

Quantitatively, at fixed data volume the inference error rises linearly as the ob-
served fraction shrinks. Increasing the weight strengths causes an increase in the rate
at which circuit inference deteriorates with the observed fraction (Figs. 6b, c, d). In
other words, the errors introduced by partial observation are milder when the weights
are weak, and bigger when they are strong, even when the architecture is fixed.

The increase in the slope of inference error versus observed fraction when weights
are larger is due to mounting bias errors, Fig. 6e. At the weakest weights, inference
quality in the 50% observed network nearly matches the fully observed case (Fig. 6f,
left), but the gap between the two is large at strong weights (Fig. 6f, right), and the
gap, due to bias errors, is largely immune to data volume.
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observed networks, at weak and strong weights.
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Discussion

We have shown that estimates of functional or effective connectivity in a network
obtained from activity at the nodes can diverge substantially and in systemically
biased ways from actual connectivity in a recurrent circuit if the weights are strong.
Our definition of strong weights encompasses not only circuits that can hold states
without external inputs, as required for memory, but also sensory circuits which
moderately or strongly amplify their inputs. Note too that although the issues we
illustrate were in the context of inferring connectivity within a network from spike
data, they may arise more generally in other domains as well, such as when considering
other kinds of activity data or connectivity across networks, such as when inferring
area-wise connectivity from fMRI activity data.

The divergence between estimated and true connectivity cannot be addressed by
collecting more data because the explaining away errors found in strongly coupled net-
works are biases that do not shrink with data volume, as do noise-based variance errors
which dominate at weak connectivity. Moreover, estimates of functional connectivity
by sophisticated inference algorithms in the strongly coupled regime are generally not
much better than simple inverse correlation, except in the strongly connected regime
where they both provide relatively poor estimates of the true connectivity. These
results point to the need for considerable caution when using activity to construct
an estimate of structural connectivity in even moderately strongly coupled recurrent
circuits.

Arguably, it is sufficient for many purposes to merely infer functional connectivity,
without relating it to structural connectivity. This can be the case when the goal is to
use activity-based inference to ultimately predict future activity, as done for instance
in7;8. However, the functional connectivity in even these cases is then often referred
to and used as a proxy for actual connectivity, and here systemic biases in estimation
can lead to important errors in our understanding of circuit and circuit development
mechanisms. For example, in our simple ring network, purely local connectivity can
give rise to periodic activity patterns. One could imagine that developmentally, such
a circuit with periodic activity patterns could arise without the need for activity-
dependent plasticity. On the other hand, in a sideband model, the sidebands are
related to the periodic activity patterns, suggesting that activity must have lead to
connectivity, a developmentally distinct process.

Despite the pessimistic results shown here, the challenge of discovering the connec-
tivity in recurrent neural networks is difficult but not unsurmountable: rapid advances
in automated segmentation for connectomics mean that one can imagine obtaining
connectivity matrices for complete circuits in the not-too-remote future. However,
the costs remain large, and determining the link between structure and function af-
ter obtaining a connectivity matrix still requires an inference step or model of how
activity emerges from connectivity. More immediately accessible and directly inter-
pretable are experiments that rely on perturbation of the system. Clearly, if every
single connection could be individually perturbed, that would provide detailed causal
connectivity information.

But even much lower-dimensional perturbations can be helpful: Appropriately
designed perturbations can help disambiguate between competing dynamical models
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with even subtle differences62–64. More generally, given that variance errors can be
averaged away, and that inference with strong noise is superior to inference with
weaker noise given enough data (better inference when the noise to recurrent weight
strength ratio is high) as we have shown, we expect that driving systems strongly
with noise and then performing even simple correlational inference (with lots of data)
should lead to much better estimates of true connectivity than when the system is
not noise-driven even if sophisticated inference algorithms are used. In other words,
studying a recurrent dynamical system with fixed points as it is continuously driven
out-of-equilibrium by noise should be much more informative about its structure
than studying it close to or at equilibrium54. We have additionally shown above that
studying far-from-equilibrium dynamics in strongly coupled recurrent networks, e.g.
by watching the network evolve from a fully silenced to patterned state, can provide
data for much better inference in strongly recurrent networks.

Finally, when the inference model exactly matches the dynamical model gener-
ating the data, all neurons are observed, and the mapping from circuits to activity
is injective, it can be possible to exactly estimate connectivity from activity (e.g. in
Ising-on-Ising inference for certain architectures). While it is impossible for any infer-
ence model to exactly match the true neural circuit dynamics, and the mapping from
circuits to activity states need not be injective, improvements in how well the infer-
ence models mimic the dynamics of the system can shrink the gap between functional
and structure connectivity.
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Çağatay Aydın, et al. Fully integrated silicon probes for high-density recording
of neural activity. Nature, 551(7679):nature24636, 2017.

[14] John J Hopfield. Neural networks and physical systems with emergent collec-
tive computational abilities. Proceedings of the national academy of sciences,
79(8):2554–2558, 1982.

[15] John Hertz, Anders Krogh, and Richard G Palmer. Introduction to the theory of
neural computation. Addison-Wesley/Addison Wesley Longman, 1991.

19

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 4, 2019. ; https://doi.org/10.1101/512053doi: bioRxiv preprint 

https://doi.org/10.1101/512053
http://creativecommons.org/licenses/by-nc-nd/4.0/


[16] Daniel J Amit. Modeling brain function: The world of attractor neural networks.
Cambridge university press, 1992.

[17] Gasper Tkacik, Elad Schneidman, II Berry, J Michael, and William Bialek. Ising
models for networks of real neurons. arXiv preprint q-bio/0611072, 2006.

[18] Pradeep Ravikumar, Martin J Wainwright, John D Lafferty, et al. High-
dimensional Ising model selection using l1-regularized logistic regression. The
Annals of Statistics, 38(3):1287–1319, 2010.

[19] P McCullagh and JA Nelder. Generalised linear modelling. Chapman and Hall,
London. Negro, JJ & Hiraldo, F.(1992) Sex ratios in broods of the lesser kestrel
Falco naumanni. Ibis, 134:190–191, 1983.

[20] Liam Paninski. Maximum likelihood estimation of cascade point-process neu-
ral encoding models. Network: Computation in Neural Systems, 15(4):243–262,
2004.

[21] Wilson Truccolo, Uri T Eden, Matthew R Fellows, John P Donoghue, and
Emery N Brown. A point process framework for relating neural spiking activity
to spiking history, neural ensemble, and extrinsic covariate effects. Journal of
neurophysiology, 93(2):1074–1089, 2005.

[22] Yuriy Mishchencko, Joshua T Vogelstein, and Liam Paninski. A Bayesian ap-
proach for inferring neuronal connectivity from calcium fluorescent imaging data.
The Annals of Applied Statistics, pages 1229–1261, 2011.

[23] Duane Q Nykamp. Reconstructing stimulus-driven neural networks from spike
times. In Advances in Neural Information Processing Systems, pages 325–332,
2003.

[24] Jonathon Shlens, Greg D Field, Jeffrey L Gauthier, Matthew I Grivich, Dumitru
Petrusca, Alexander Sher, Alan M Litke, and EJ Chichilnisky. The structure
of multi-neuron firing patterns in primate retina. The Journal of neuroscience,
26(32):8254–8266, 2006.

[25] Eizaburo Doi, Jeffrey L Gauthier, Greg D Field, Jonathon Shlens, Alexander
Sher, Martin Greschner, Timothy A Machado, Lauren H Jepson, Keith Math-
ieson, Deborah E Gunning, et al. Efficient coding of spatial information in the
primate retina. Journal of Neuroscience, 32(46):16256–16264, 2012.

[26] Yuriy Mishchencko, Joshua T Vogelstein, and Liam Paninski. A bayesian ap-
proach for inferring neuronal connectivity from calcium fluorescent imaging data.
The Annals of Applied Statistics, pages 1229–1261, 2011.

[27] Yuriy Mishchenko and Liam Paninski. A bayesian compressed-sensing approach
for reconstructing neural connectivity from subsampled anatomical data. Journal
of computational neuroscience, 33(2):371–388, 2012.

20

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 4, 2019. ; https://doi.org/10.1101/512053doi: bioRxiv preprint 

https://doi.org/10.1101/512053
http://creativecommons.org/licenses/by-nc-nd/4.0/


[28] Ben Shababo, Brooks Paige, Ari Pakman, and Liam Paninski. Bayesian inference
and online experimental design for mapping neural microcircuits. In Advances
in Neural Information Processing Systems, pages 1304–1312, 2013.

[29] Alexandro D Ramirez and Liam Paninski. Fast inference in generalized lin-
ear models via expected log-likelihoods. Journal of computational neuroscience,
36(2):215–234, 2014.

[30] Diego A Gutnisky and Valentin Dragoi. Adaptive coding of visual information
in neural populations. Nature, 452(7184):220–224, 2008.

[31] Jasper Poort and Pieter R Roelfsema. Noise correlations have little influence
on the coding of selective attention in area V1. Cerebral Cortex, 19(3):543–553,
2009.

[32] Jason M Samonds, Brian R Potetz, and Tai Sing Lee. Cooperative and com-
petitive interactions facilitate stereo computations in macaque primary visual
cortex. Journal of Neuroscience, 29(50):15780–15795, 2009.

[33] Marlene R Cohen and John HR Maunsell. Attention improves performance pri-
marily by reducing interneuronal correlations. Nature neuroscience, 12(12):1594–
1600, 2009.

[34] Jude F Mitchell, Kristy A Sundberg, and John H Reynolds. Spatial atten-
tion decorrelates intrinsic activity fluctuations in macaque area V4. Neuron,
63(6):879–888, 2009.

[35] Xin Huang and Stephen G Lisberger. Noise correlations in cortical area MT and
their potential impact on trial-by-trial variation in the direction and speed of
smooth-pursuit eye movements. Journal of Neurophysiology, 101(6):3012–3030,
2009.

[36] Marlene R Cohen and William T Newsome. Context-dependent changes in func-
tional circuitry in visual area MT. Neuron, 60(1):162–173, 2008.

[37] Ehud Zohary, Michael N Shadlen, and William T Newsome. Correlated neu-
ronal discharge rate and its implications for psychophysical performance. Nature,
370(6485):140, 1994.

[38] Wyeth Bair, Ehud Zohary, and William T Newsome. Correlated firing in
macaque visual area MT: time scales and relationship to behavior. Journal of
Neuroscience, 21(5):1676–1697, 2001.

[39] Caleb Kemere, Margaret F Carr, Mattias P Karlsson, and Loren M Frank. Rapid
and continuous modulation of hippocampal network state during exploration of
new places. PloS one, 8(9):e73114, 2013.

[40] Xaq Pitkow and Markus Meister. Decorrelation and efficient coding by retinal
ganglion cells. Nature neuroscience, 15(4):628, 2012.

21

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 4, 2019. ; https://doi.org/10.1101/512053doi: bioRxiv preprint 

https://doi.org/10.1101/512053
http://creativecommons.org/licenses/by-nc-nd/4.0/


[41] Ingmar Kanitscheider, Ruben Coen-Cagli, and Alexandre Pouget. Origin of
information-limiting noise correlations. Proceedings of the National Academy of
Sciences, 112(50):E6973–E6982, 2015.

[42] Rishidev Chaudhuri, Berk Gerek, Biraj Pandey, Adrien Peyrache, and Ila R
Fiete. Dynamics in a canonical microcircuit. Submitted, 2018.

[43] Yoram Burak and Ila R Fiete. Fundamental limits on persistent activity in
networks of noisy neurons. Proceedings of the National Academy of Sciences,
109(43):17645–17650, 2012.

[44] Iacopo Mastromatteo and Matteo Marsili. On the criticality of inferred mod-
els. Journal of Statistical Mechanics: Theory and Experiment, 2011(10):P10012,
2011.

[45] Tamara Broderick, Miroslav Dudik, Gasper Tkacik, Robert E Schapire, and
William Bialek. Faster solutions of the inverse pairwise ising problem. arXiv
preprint arXiv:0712.2437, 2007.

[46] Francisco Barahona. On the computational complexity of Ising spin glass models.
Journal of Physics A: Mathematical and General, 15(10):3241, 1982.

[47] Jascha Sohl-Dickstein, Peter B Battaglino, and Michael R DeWeese. New method
for parameter estimation in probabilistic models: minimum probability flow.
Physical Review Letters, 107(22):220601, 2011.

[48] David J Thouless, Philip W Anderson, and Robert G Palmer. Solution of ‘solv-
able model of a spin glass’. Philosophical Magazine, 35(3):593–601, 1977.

[49] Yasser Roudi, Joanna Tyrcha, and John Hertz. Ising model for neural data:
model quality and approximate methods for extracting functional connectivity.
Physical Review E, 79(5):051915, 2009.
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[69] Marc Mézard and Giorgio Parisi. The Bethe lattice spin glass revisited. The Eu-
ropean Physical Journal B-Condensed Matter and Complex Systems, 20(2):217–
233, 2001.

[70] Yasser Roudi, Erik Aurell, and John A Hertz. Statistical physics of pairwise
probability models. Frontiers in computational neuroscience, 3, 2009.

[71] Steven P Strong, Roland Koberle, Rob R de Ruyter van Steveninck, and William
Bialek. Entropy and information in neural spike trains. Physical Review Letters,
80(1):197, 1998.

[72] Marlene R Cohen and Adam Kohn. Measuring and interpreting neuronal corre-
lations. Nature neuroscience, 14(7):811–819, 2011.

[73] Thierry Mora and William Bialek. Are biological systems poised at criticality?
Journal of Statistical Physics, 144(2):268–302, 2011.

[74] Liam Paninski. Estimating entropy on m bins given fewer than m samples. IEEE
Transactions on Information Theory, 50(9):2200–2203, 2004.

Methods

Generative network model

Here we outline the dynamical model that was used to generate the data in most
cases. Other generative models that we used are described in the Supp. Info.

Circuit

Neurons are arranged on a ring. The outgoing synaptic weights Wij from each neuron
to all of the others around the ring have a local Mexican-hat (difference-of-Gaussians)
shape:

Wij = e−d
2
ij/2σ

2
1 − ae−d2

ij/2σ
2
2 , (1)

where dij is the distance (in neurons) between neurons i and j. We set a =
1.0005 > 1 to make the weights purely inhibitory, to prevent self-excitation and allow
dynamical stability. Parameters used: σ1 = 6.98 and σ2 = 7 (in neurons).
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Neural dynamics

Dynamics are updated in discrete time, with a time-step ∆t of size 0.1ms. The vector
of inputs to the 100 neurons is:

g(t) = rWs(t) + b(t), (2)

where the synaptic activations of neurons are given by s(t), W is the recurrent
connectivity defined above, and b are the feedforward inputs. The relative influence
of W is scaled by the weight strength r. b(t) is given by: b(t) = b(1 + ξ(t)), where
b = 0.001 provides a uniform excitatory drive, and ξ(t) is a multiplicative private
Gaussian white noise per neuron, with zero mean and s.d. σξ = 0.3, resulting in a
Poisson-like variance proportional to the mean activation. This noise is only injected
with probability ≈ .07 in each time step of the discrete-time equations, since with
more noise the dynamics loses coherence.

If at any time step (t, t+∆t] the input gi to neuron i exceeds threshold Θ, it emits
a spike. σ(t) is the binary vector of spikes from the network at time step (t, t+ ∆t].
The synaptic activation of neuron i, through which it affects the other neurons in the
circuit, is incremented by an amount ∆t whenever that neuron spikes, and otherwise
decays exponentially according to:

si(t+ ∆t) = si(t)
(
1− ∆t

τ

)
, (3)

with a synaptic time constant τ = 10 ms.

Generating spike data

To move from the weakly to the strongly coupled regime, we increase the weight
strength r. The threshold Θ is adjusted at each r to hold roughly fixed (within
16.0 ± 0.1 ms) the average inter-spike interval of the combined across-population
spike train.

For each parameter setting, we initialize the network dynamics with random acti-
vations s and wait for it to equlibriate, then collect a total volume of 108 spikes from
the network.

Characterizing the dynamical regime of the network

Noise correlations

To measure noise correlations across the network, we need to hold the signal fixed.
Removing the feedforward input b from a neuron forces a valley of activity at its
location, and holds the activity pattern stationary. We then generate spikes from the
network with no further time-binning than the generative resolution (which would
artificially amplify correlations by calculating them over time). We then calculate the
correlation coefficient between the (unbinarized) spike count trains of every neuron
pair, excluding the suppressed neuron. Strong positive and negative values both
indicate correlated activity, so we take only the magnitude.

25

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 4, 2019. ; https://doi.org/10.1101/512053doi: bioRxiv preprint 

https://doi.org/10.1101/512053
http://creativecommons.org/licenses/by-nc-nd/4.0/


Activity pattern strength

The phase of the spatially periodic activity pattern randomly wanders around the
network over time. But its degree of spatial periodicity will be captured by activity
correlations regardless of its phase. We start with spike data that is not binned in
addition to the generative resolution of 0.1 ms, and compute the correlation coefficient
matrix between all neuron pairs (replacing the 1’s in the diagonal with 0’s to ignore
self-correlation). Since the pattern can migrate around the network while the data is
being collected, these correspond to signal correlations. A global spatial periodicity
of the pattern is reflected as a periodicity in each row/column of this matrix. We
calculate the degree of this periodicity in each row by averaging its autocorrelation
at circular shifts of 1, 2 and 3 periods (the pattern has 4 periods around the ring),
then averaging this across all rows. This measure will be near 0 for uncorrelated
spike trains, and approaches 1 in the limit of a 4-period spatial pattern in spike-time
correlations.

Diffusivity of activity pattern phase

Over time, the phase of the activity pattern migrates randomly around the network.
To measure the diffusion coefficient of this motion, we choose the Fourier component
of the vector of neural inputs g(t) with the spatial frequency of the activity pattern
(4 cycles around the ring). The time-varying phase φ(t) of this component is the
trajectory of the pattern phase. The slope of the linear fit of 〈(φ(t + τ) − φ(t))2〉t
against τ then gives the diffusion coefficient. For weights below r = 0.0125, g was too
noisy to extract any periodic pattern, hence diffusivity was not computed for these.

Measuring inference error

The ground-truth and inferred weights are the elements of W and Ŵ, ignoring the
diagonals. Since the inference model is generally different from the generative model,
Ŵ has an arbitrary overall scale factor with respect to W. So before calculating the
inference error, the first step is to re-scale Ŵ to match the scale of W, which we do
in the following way.

W is circulant, so each row is a rotation of the same Mexican-hat shaped weight
vector ω. Because of noise, though, the rows of Ŵ are not exact rotated copies of
each other. Each row i is a different noisy estimate ωi of ω. We re-scale Ŵ such
that its average weight-shape estimate ω = 1

N

∑
iωi has the least l1 deviation from

the true shape ω. Averaging the noisy ωi’s and using the l1 metric (which is more
noise-tolerant than l2) provide greater accuracy in the scale-matching in the face of
noise.

However, this procedure cannot be applied in situations where the weight matrix
to be inferred is not circulant. This is the case when inferring a partially observed
circuit, (a sub-matrix of W, see Results, Fig. 6a,b), and also when inferring a circuit
with a non-circulant, e.g. random architecture (see Results, Fig. 4c). In these cases
we resort to the less noise-tolerant choice of re-scaling the inferred matrix Ŵ to have
the least l2 distance from the ground-truth matrix W. When we apply this re-scaling,
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the inference error is also the sine of the angle between the ground-truth and inferred
weight vectors in the space of weight parameters.

After Ŵ has been re-scaled, the inference error is the magnitude of the (l2) dis-
tance between the vectors of ground-truth and inferred weights, expressed as a fraction
of the vector magnitude of the ground-truth weights:

∆ =
‖W − Ŵ‖
‖W‖

(4)

Although the l2 metric is more noise-sensitive as noted, we choose it here in the
final expression, since its properties allow an elegant decomposition of the inference
error into variance and bias components, as we describe in the next section.

Variance and bias errors

Let us denote the N -1 elements (ignoring self-coupling) of the common weight vector
ω of the circulant W by ωα, and their estimates on row i of Ŵ by ωαi . The squared
inference error (eq. 4) can thus be expressed as:

∆2 =

∑
α,i (ω

α − ωαi )2

‖W‖2
. (5)

This can be rewritten in terms of ωα = 1
N

∑
i ω

α
i , the elements of the average

estimated weight shape ω:

∆2 =

∑
α,i [(ω

α − ωα) + (ωα − ωαi )]2

‖W‖2
(6)

=
N
∑

α (ωα − ωα)2

‖W‖2
+
N
∑

α vari (ω
α
i )

‖W‖2
(7)

(where vari (ω
α
i ) = 1

N

∑
i (ω

α
i − ωα)2 is the variance of the estimates of ωα)

=
‖W −W‖2

‖W‖2
+
‖Ŵ −W‖2

‖W‖2
(8)

(where W is a circulant matrix consisting of rotations of the mean estimate ω)

:= ∆2
b + ∆2

v. (9)

∆v = ‖Ŵ−W‖
‖W‖ , the variance error, is the error due to the variance among the

different noisy estimates ωi. ∆b = ‖W−W‖
‖W‖ , the bias error, is the error due to deviation

of the mean estimate ω from the true weights ω. We can geometrically interpret these
quantities in the space of all N(N − 1) weight parameters. W, Ŵ and W are three
points in this space representing the true weights, inferred weights, and mean inferred
weights. If we measure lengths in units of ‖W‖, the length of the gap between Ŵ
and W is the total inference error ∆, and can be decomposed into the gap due to
variance, from Ŵ to W with length ∆v, and the gap due to bias, from W to W
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with length ∆b. These two gaps are orthogonal, as evidenced by their Pythagorean
relationship (eq. 9), and their zero inner product:

(W −W).(Ŵ −W) =
∑
α,i

(ωα − ωα)(ωαi − ωα) (10)

=
∑
α

[
(ωα − ωα)

∑
i

(ωαi − ωα)

]
= 0. (11)

Hence, the total inference error is a vector sum of orthogonal components due to
variance and bias.

The relative contribution of bias to the inference error can thus be measured by
the angle between the vectors of the total inference error and the variance error, as a
fraction of 90◦:

θb =
tan−1 ∆b

∆v

90◦
. (12)

These variance and bias errors cannot be computed for non-circulant circuits.

Discriminating circuits using activity data

Constructing the alternative circuit

The circuit inferred at strong weights using inverse Ising needs to modified to be used
as a generative circuit with the same dynamics as our original generative model.

We first calculate the mean weight shape vector ω of this inferred circuit by
circularly shifting the matrix rows to align them, then averaging. Next, we set the
positive parts of this mean shape to 0 (to prevent self-excitation and ensure stability
under the generative dynamics), and re-scale to match its minimum with that of the
ground-truth weight shape. Finally, we create a circulant matrix from this weight
shape.

As with the original circuit, firing thresholds Θ for this circuit are tuned at each
weight strength to set the average network inter-spike-interval at 16.0± 0.1 ms. We
can now generate spike data from this circuit using the original dynamics.

Selecting a well-sampled subspace of neural activity

Even with binary spike data, there are 2N possible spike words, or states, of an
N -neuron network, prohibitively big for large N (in our case with N = 100, it is
2100 ≈ 1030). Each time-bin of spikes we collect from the network is a state. The
number of such states we obtain over 6 hours at a resolution of 0.1 ms, and binned at
10 ms, is only of the order of 106. Thus, even if in a given setting the network may
produce only a subset of all possible states, they are still severely undersampled by
data collected in any experiment of reasonable duration, and statistics to characterize
the data distribution, such as entropy, will be biased65;74.

We can instead choose a segment of n adjacent neurons from our ring network,
whose smaller n-dimensional state distribution we can make sure to have sampled
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well with our data. But this fails to utilize the data we collected from the other
neurons. We can address this by exploiting the rotation-invariance of our network,
and its activity over time. Sliding our n-neuron window around the ring network,
we can pool together the observed spike vectors of neurons 1 through n, 2 through
n + 1 etc. This lets us use the full dataset to build a better-sampled distribution of
adjacent n-neuron states of the network.

n should be chosen as large as possible while ensuring that its state distribution
is sampled sufficiently in our data. This largest possible value is dictated by the
particular statistical measure we want to accurately estimate, as explained in the
following sections.

Characterizing neural activity using information theory

Entropy We can verify that a distribution has been well-sampled for unbiased
entropy estimation by checking that the entropies computed with increasing fractions
of the data converge as we approach the total data volume. n = 22 is the largest
value that allows this convergence at all weights (see Supp. Fig. S7). However, as
described in the following sections, requirements for other measures constrained n to
be lower.

Relative entropy The dissimilarity between the data distributions pW and pW′ ,
considering the former as the ‘true’ distribution, is measured by their relative entropy
(KL divergence):

DKL(pW, pW′) =
∑

σ ∈ supp(pW)

pW(σ) log
pW(σ)

pW′(σ)
(13)

where σ runs over the n-neuron spike vectors that constitute the support of pW.

Fisher information This can be used to quantify the amount of information about
a generative model that is contained in the data it produces. It is measured by the
sensitivity of the data distribution to changes in the model parameters.

It is not feasible to compute the Fisher information against variations of all the
circuit parameters (the

(
N
2

)
= 4950 unique weights in W). Therefore, we consider

instead a single-parameter family of models that passes through the true circuit W
and the non-local circuit W′:

W(θ) = (1− θ)W + θW′. (14)

The Fisher information I(θ = 0) about the true model W = W(θ = 0) can be
written in terms of the KL divergence between the data distribution pW (= p0) that
it produces and the distribution pdθ that a neighbouring model W(dθ) produces:

DKL(p0, pdθ) ≈
1

2
dθ2

∑
σ ∈ supp(p0)

p0(σ)

(
d log pθ(σ)

dθ

∣∣∣
θ=0

)2

︸ ︷︷ ︸
I(θ=0)

, (15)
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where σ again constitute n-length binary spike vectors.
We approximate this measure by constructing the circuit W(θ = 1

3
) as a neigh-

bouring model in the family. At each weight strength, we again adjust its firing
threshold to maintain an average network inter-spike interval of 16.0 ± 0.1 ms as
before, generate spike data, binarize counts, and compute the KL divergence with
respect to the data distribution generated by W. The Fisher information is then
approximated by:

I ≈ 18DKL(pW, pW(θ= 1
3

)). (16)

Likelihood ratio of circuit models The log likelihood that the observed data
distribution pW was produced by the circuit W′ is:

log p(W′ | pW) =
∑

σ ∈ supp(pW)

s pW(σ) log pW′(σ) (17)

where s is the total number of samples in pW.
We can collect a second sample p̃W from the local circuit to account for sample-

to-sample variability, and then calculate the log likelihood ratio of W vs W′, given
data generated from W:

log
p(W | pW)

p(W′ | pW)
=

∑
σ ∈ supp(pW)

s pW(σ) log
p̃W(σ)

pW′(σ)
(18)

In order for the relative entropy, Fisher information and likelihood ratio to be
defined, the distributions must be sampled well enough that each spike state σ that
occurs in pW occurs in p̃W, pW′ and pW(θ= 1

3
). With the total volume of spike data

that we collected from the network, the largest value of n for which this was possible
is 10. Thus, these distributions are over 210 10-neuron binary spike state vectors.

Inferring a partially observed network

For each of a range of sub-population sizes n, we randomly select multiple n-neuron
sub-populations from the 100-neuron network. We use the spike data from each such
sub-population to infer its corresponding n×n connectivity submatrix.

In order to have statistically informative results, for a given sub-population size
n, we want to choose enough sub-networks such that together they cover the whole
network reasonably well. Each n-neuron sub-network covers a fraction n2−n

N2−N of the
weight matrix of the entire network (ignoring diagonal terms). Using this we calculate
that randomly selecting

sn(p) = d log(1− p)
log(1− n2−n

N2−N )
e (19)

sub-networks ensures with probability p that all synapses of the full network have
been sampled at least once. We collect enough samples to have p = 0.99 for each
sub-population size n.
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Supplementary information

S.1 Inference with matched models

All our results are obtained for the realistic case where the (statistical) inference mod-
els differs from the (dynamical) model in which the spike data are actually collected.
This case of model mismatch is inevitable when one is inferring neural circuitry from
experimental recordings, since the full biological dynamics that generate the observed
activity are unknown, and arguably more complex than any theoretical model can
describe.

Nevertheless, it is useful to complete our understanding of circuit inference by
comparing the idealized theoretical case in which the inference model exactly matches
the generative model.

We would like to perform inference on our generative dynamical model (see Meth-
ods) by using it also as the inference model, except that it is not simple or end-to-end
differentiable, so cannot readily be used for inference. Instead, we use the same
circuitry W that we have used so far, but the simpler Ising model for both the gen-
eration of (binary) spike data (Supp. Info. §S.2), and inference (with the minimum
probability flow algorithm).

Inference with this matched model is better in several respects (Fig. S1). Com-
paring the inference error curve with the pattern strength curve (the Ising model has
no notion of time, so diffusivity cannot be computed) shows that optimal inference
is now just inside the memory regime. Unlike the previous cases, inference errors are
variance errors, which decay with data volume as ∆2 ∼ 1/D at all weights, as seen
in the uniform drop in the log-log axes of Fig. S1a, secondary axis (see Supp. Fig.
S4 for power-law fits). Consequently, the optimal inference point remains stationary
with increasing data, reflecting an intrinsic critical point of the system.

These findings are qualitatively reproduced with a model-matched inference using
a generalized linear model for both generation and inference (Supp. Info. §S.7).
Like Ising-on-Ising inference, inference error is almost entirely due to variance at all
weights. Optimal inference is again just inside the memory regime at the point of
pattern onset, and remains stationary there as increasing data volume erodes variance
error everywhere.
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Figure S1: Inference with matched models. a: Using an Ising model for both gen-
eration and inference. Top: superposed inferred weights from each node to the rest
(line marks zero). Bottom: pattern strength, and inference error with different data
volumes, against weight strength. b: Squared total, variance and bias errors against
data volume at weak and strong weights. c: Using a generalized linear model with
an exponential nonlinearity (§S.7) for both generation and inference. Top: Pattern
strength, and inference error with different data volumes, against weight strength.
Bottom: Superposed inferred weights from each node to the rest.
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S.2 The Ising model for data generation

To use an Ising model as a generative model, we set the Ising coupling matrix to
J = rIsingW, where W is the same ground-truth weight matrix as used so far, and
rIsing was varied from 10 to 80 to be in the right physical regime containing the
inference optimum. The biases of the Ising model are taken to be uniform: hi = 1.
The Ising states were generated using a Gibbs sampling algorithm that updates the
spins in a random sequence in each pass.

S.3 The Ising model for inference

The Ising model, when used for circuit inference, performs better when the spike data
are binned at an appropriate time-scale. The Ising model also requires spike data to
be binary. So to use inverse Ising inference, we bin the spike data with different bin-
widths and binarize the bins (spike/no spike) to obtain a total of 5 million binned and
binarized spikes, then implement inverse Ising inference with minimum probability
flow and compute the inference error. We then choose the bin-width that yields the
minimum inference error (Supp. Fig. S2b). We use the same procedure to find the
best bin-width for inference using logistic regression. The optimal bin-width turns out
to approximately equal τ , the neural time constant in the generative model. This is
consistent since τ is the time scale over which the spiking of one neuron can influence
that of a connected neuron, hence choosing it as the bin-width bins causally related
spikes together, leading to more accurate correlations (Supp. Fig. S2a) and better
inference.

Binarizing the spike data for inverse Ising inference results in discarding spikes
in bins containing multiple spikes. With stronger weights, the peaks of the activity
pattern become sharper and higher; at the peaks of the activity pattern, more bins
contain multiple spikes, and more spikes must be discarded (Supp. Fig. S2c). Thus,
to implement inverse Ising inference on a total of 108 spikes across weights (as with
other inference methods, see Methods), the actual number of spikes collected from
the network prior to binarization was larger.

S.4 Mean-field Ising models

Mean-field Ising models are a fast way to infer weights from binarized spikes, but their
simplifying assumptions produce different degrees of approximate solutions depending
on the model being studied67. The following are expressions for the weights with the
näıve mean field (NMF), which we also call ‘raw correlations’ (C is the spike-train
covariance matrix and mi is the average state of the ith node):

JNMF
ij = −(C−1)ij, (S1)

the Thouless-Anderson-Palmer (TAP) model:

JTAP
ij =

√
1− 8mimj(C−1)ij − 1

4mimj

, (S2)

and the Sessak and Monasson (SM) model:
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JSM
ij =

1

4
ln

[(1 +mi)(1 +mj) + Cij][(1−mi)(1−mj) + Cij]

[(1 +mi)(1−mj)− Cij][(1−mi)(1 +mj)− Cij]

− (C−1)ij −
Cij

(1−m2
i )(1−m2

j)− (Cij)2
. (S3)

S.5 Linear-nonlinear-Poisson model

A linear-nonlinear-Poisson (LNP) network was used to generate data from the circuit
W, for inference with a generalized linear model (Supp. Fig. S6). Its neural inputs
are the same as the original dynamics model (see Methods):

g(t) = rLNPW.s(t) + b. (S4)

However, here the external input b is 0.001 everywhere and lacks any explicit
noise component. Instead, the input is passed through a rectifying filter to obtain
a firing rate. The number of spikes ni(t) of each neuron i in each time-bin are then
Poisson-distributed with this rate:

λi(t) = λ0 [gi(t)−ΘLNP]+ , ni(t) ∼ Pois (λi(t)) . (S5)

The outgoing activations s follow the same dynamics as before:

ṡ(t) +
s(t)

τ
= σ(t), σi(t) =

∑
spikes

δ(t− tspike
i ). (S6)

In order to maintain an average network inter-spike interval of 16.0 ± 0.1 ms at
each weight strength rLNP, λ0 was set to 32, and the threshold ΘLNP was adjusted for
each weight strength. The spike data were not further binned for use in GLM-based
inference.

S.6 Generalized linear model (rectified)

This generative model is a close cousin of the LNP model, which is consistent with
the fact that inference on them yield similar weight profiles (see Supp. Fig. S6).

The neural inputs are given by a spatiotemporal filter over spikes:

g(t) = rGLM rectW (a.n(t))′ + b. (S7)

Here n(t) is an T × N matrix of the spike-count vectors of the network in the
previous T = 200 time-bins. a is a length-T exponential kernel that filters the spike
history n(t):

ak = e(k−T )∆t/τ (S8)

where ∆t = 0.1 ms is the resolution at which the discrete-time equations are
evolved, and τ = 10 ms. This temporal filtering serves a similar puprose to the
dynamics of s in the LNP model. b is once again 0.001 at every node. As in the LNP
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model, these inputs are passed through a rectifying inverse link function to produce
Poisson firing rates:

λi(t) = λ0 [gi(t)−ΘGLM rect]+ , ni(t) ∼ Pois (λi(t)) . (S9)

Once again, in order to maintain an average network ISI of 16.0± 0.1 ms, λ0 was set
to 100 here, and the threshold ΘGLM rect was adjusted for each weight strength.

S.7 Generalized linear model (exponentiated)

A generalized linear model with an exponential nonlinearity (i.e., the canonical loga-
rithmic link function for the Poisson distribution) was used both as a generative and
an inference model.

The inputs in this model are the same spatiotemporal filters over the spikes as in
the previous model. However, they are then passed through an exponential inverse
link function to produce Poisson firing rates:

λi(t) =
1

α
e104gi(t), ni(t) ∼ Pois (λi(t)) . (S10)

α was adjusted at each weight strength to maintain the average network ISI at
16.0± 0.1 ms.

S.8 l1-regularized logistic regression

When performing logistic regression, we first mean-subtract all the spike channels.
Then we binarize the spike counts of the dependent channel, but leave the predictor
channels unbinarized. The matrix of regression coefficients of each node against all
others is taken to be the inferred weight matrix. At each weight strength we find the
regularization strength λ that minimizes the inference error (Supp. Fig. S5).

S.9 Negentropy of inference errors

Once we scale-match Ŵ with W (see Methods), the elements of W− Ŵ give us the
distribution of errors in individual inferred weights. Negentropy is a way to charac-
terize this error distribution in terms of its dissimilarity from a normal distribution
(which would result from purely random errors). If the error distribution has variance
σ2, and pi denotes the relative frequencies in the distribution histogram binned with
binsize b, negentropy is given by:

log(2πeσ2) +
∑
i

pi log
pi
b
. (S11)

This is the difference between the differential entropy of a normal distribution
with the same variance, and a continuous version of the discrete entropy of the error
distribution.
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Figure S2: Binning affects noise correlations and inference. a: Noise correlations
between neuron pairs (top: full matrix, bottom: superposed vectors between each
node and the rest) for binned vs unbinned spikes. The right bin-width groups causally
related spikes together, and noise correlations at an intermediate r then reflect the
underlying weights. b: Inference error using inverse Ising with MPF on spike data
binned at different widths. c: Fraction of spikes discarded when binarizing binned
spike data for Inverse Ising inference.
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Figure S3: a: Distribution of errors in inferred connectivity (relative to the length of
the ground-truth weight vector) at different weights. With weak weights, errors are
random, thus normally distributed. As the weight increases, errors initially shrink as
noise weakens and SNR grows; the distribution of errors becomes increasingly non-
normal with increasing weight due to bias. b: Negentropy of the error distribution
(§S.9) against weight strength.
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Figure S4: a: The fitted exponents α of the power-law decay of variance error with
data volume ∆2

v ∼ Dα when using a generalized linear model to infer on data from the
original model. Error-bands are 95% confidence intervals. The theoretical exponent
is -1. b: The exponent α of the power-law decay of total inference error with data
volume ∆2 ∼ Dα when using the Ising model for both data generation and inference.
Here inference error is almost entirely due to variance, thus follows the power-law
decay with data.
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Figure S5: Circuit inference using logistic regression is not improved by l1 regulariza-
tion. a: Example coupling profiles inferred using logistic regression with zero, optimal
and excessive regularization penalties. When weights are weak, regularization reduces
some noise and marginally improves inference. At high weights, regularization sup-
presses both the spurious side-bands and the true coupling shape, so is not helpful.
b: Inference error vs weight strength using logistic regression with and without l1
regularization. c: Optimal l1 penalties (that produce the lowest inference errors) at
each weight. Regularization barely improves inference in the strong and weak weight
regimes.
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Figure S7: a: Entropy of the distributions of 22-neuron spike sub-states from the
local circuit W and the non-local circuit W′. b: Entropies of the spike sub-states of
the two circuits computed with different data fractions across weight strengths. At all
weights, the computed entropies converge as the data approaches the total volume.
c: Example slice of plot b at the weakest weights, where entropy convergence takes
the longest.
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Figure S6: Results of inference using a generalized linear model with an exponential
nonlinearity (§S.7), on data generated by a linear-nonlinear-Poisson model (§S.5),
and a generalized linear model (§S.6), both with rectifying nonlinearities. a: Pattern
strength against weight strength for the generative LNP network. b: Inferred weight
matrices (top) and superposition of inferred connectivity from each node to the rest
(bottom, line marks zero), at several weight strengths. c: Inference error and bias
fraction against weight strength. Optimal inference is at the point of pattern onset.
d-f: Similar plots for inference using a generalized linear model with an exponential
nonlinearity on data from a generalized linear model with a rectifying nonlinearity.
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