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Complexity is often associated with increasing non-coding DNA (ncDNA). For example,
the human genome is in its vast majority ncDNA. Here, it is hypothesized that
normalized ncDNA (nncDNA) has in fact diminished in evolution. This definition of
ncDNA content takes into consideration total proteomic content. It is shown that by
reducing their normalized ncDNA, organisms may have obtained more complexity in
evolution. Also, a potential connection between ncDNA, proteome information and
chromatin interactions in mice and humans is presented.

Introduction

Life comprises a large number of forms; all of which composed of one or more cells [1]. In
these, one or several DNA molecules carry the genetic information. DNA therefore controls
cellular activities, and is transmitted across generations [1][2].

Initially, the quantity of DNA was thought to determine complexity in organisms [3]. Simpler
organisms would have less cellular DNA than more complex ones. However, it soon became
clear that it was not the case. Neither the total amount of DNA nor the number genes seem to
correlate accurately with complexity. This has been termed the C-paradox [3] and the G-
paradox [4], respectively.

A more successful approach to account for complexity consists of non-coding DNA (ncDNA).
NcDNA is defined as DNA that does not encode proteins [5]. The percentage of ncDNA in the
genome has been reported as a valid predictor of complexity [6][7]. In this way, it is not large
amounts of DNA or number of genes, but rather large ncDNA percentages, what seems to
characterize complex organisms [6][7].

Interestingly, ncDNA comprises i) identified regulatory sequences, but especially ii) large
regions of unknown function. The latter are primarily transposon-derived DNA; i.e DNA
created by molecular parasites known as transposable elements. As they lack of apparent
function, these regions are often referred as junk DNA [8]. The fact that genomes of advanced
species are mainly ncDNA is thus intriguing. So, even though ncDNA is an effective indicator
of complexity, the reason for this remains unclear.

Another more intuitive predictor of complexity can be suggested. In this case, it is the total
number of different proteins that an organism can display —referred here as Proteome
Information Units (PIUS). The referred amount does not correspond to the number of genes,
as alternative splicing and post-translational modifications allow genes to code for multiple
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proteins. Consequently, PIUS take into consideration the standard set of proteins plus their
isoforms.

In the present work, the relation between these two complexity indicators --ncDNA
percentage and Proteome Information Units-- is assessed. The ratio, named here normalized

ncDNA (nncDNA), reveals a characteristic behavior which could provide insights into
evolution.

Results

A general decrease in normalized ncDNA:

Previous studies [6][7] were used to extract information about ncDNA content for multiple
species. The focus was not on the total amount of kilobases of ncDNA, but on ncDNA
percentages in relation to the whole genome.

On the other hand, Uniprot [9] served as a source of proteomic data. Particularly, reference
proteomes were employed. Reference proteomes constitute a series of proteomes selected to
represent biological diversity [9]. Uniprot provides a general overview of the data in terms of i)
number of proteins of the haploid genome, ii) number of isoforms and iii) mappings. All of
these elements are indicated for each species. Here, the elements i) and ii) were added in
each case to calculate the PIUS values as discussed in the introduction.

Once the ncDNA data and proteomic data were collected, the next step was to select the
organisms for which both types of information was available. The results include a total of 26
species, ranging from bacteria to mammals. Table 1 contains for each organism its
correspondent i) ncDNA percentage, ii) PIUS, iii) ncDNA percentage - PIUS-" ratio (i.e
nncDNA) and iv) an identifying letter.

When plotting the data in Table 1 a characteristic graph is obtained (Figure 1). Notably, a
direct correlation is not found, but rather organisms with higher PIUS (green) seem to have
lower ncDNA percentages than expected. Also, organisms in the other phase of the graph
(purple) belong to more primitive phylums. This can be explained by a reduction in nncDNA
values in more advanced species.
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Species % ncDNA PIUS Normalized ncDNA (%ncDNA-PIUS-?) Identifying letter
Homo sapiens 98.3 92000 0.0010684783 A
Mus musculus 95 62000 0.0015322581 B
Oryza sativa 80 49000 0.0016326531 C
Arabidopsis thaliana 71.2 41000 0.0017365854 D
Gallus gallus 97 30000 0.0032333333 E
Caenorhabditis elegans 74.19 28000 0.0026496429 F
Drosophila melanogaster 81 22000 0.0036818182 G
Ciona intestinalis 86.8 17309 0.0050147322 H
Anopheles gambiae 98.3 13524 0.0072685596 |
Dictyostelium discoideum 43.7 12765 0.0034234234 J
Neurospora crassa 62.4 10200 0.0061176471 K
Streptomyces coelicolor 11.1 8039 0.0013807688 L
Saccharomyces cerevisiae 29.5 6050 0.0048760331 M
Pseudomonas aeruginosa 10.6 5565 0.0019047619 N
Plasmodium falciparum 9 5449 0.0016516792 (0]
Schizosaccharomyces pombe 42.5 5150 0.0082524272 P
Escherichia coli 12 4400 0.0027272727 Q
Bacillus subtilis 80 4267 0.0187485353 R
Mycobacterium tuberculosis 9 3997 0.0022516888 S
Deinococcus radiodurans 9.1 3085 0.0029497569 T
Fusobacterium nucleatum 10.2 2046 0.0049853372 U
Neisseria meningitidis 17.1 2001 0.0085457271 \Y
Methanocaldococcus jannaschii 14 1787 0.0078343593 w
Aquifex aeolicus 7 1553 0.004507405 X
Helicobacter pylori 26695 74.2 1553 0.0477784932 Y
Mycoplasma genitalium 12 483 0.0248447205 4

Table 1. ncDNA percentage, PIUS, normalized ncDNA (nncDNA) and identification letters for different species.
The rows are sorted according to their PIUS values.
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Figure 1. Relation between ncDNA percentage and PIUS for different species. Each organism is represented by
a letter as shown in Table 1.
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Normalized ncDNA and control of available complexity:

Examination of Figure 1 also reveals a possible limitation on PIUS complexity based on the
relation between ncDNA percentage and PIUS. As PIUS values increase, normally so do
NcDNA percentages. Since ncDNA percentages cannot logically exceed 100%, there is a
limitation on the theoretical maximum PIUS.

Nevertheless, the ratio between ncDNA percentage and PIUS —i.e nncDNA-- is shown to

have presumably decreased in evolution. In this manner, more advanced organisms would
have achieved greater PIUS by reducing their nncDNA values.

Exploring the role of chromatin interactions:

One of the factors relating ncDNA percentages and PIUS may be regulation of gene
expression. At the same time, chromatin interactions are known to regulate gene expression
[10]. Therefore, these three elements (ncDNA, PIUS and chromatin interactions) could be
connected. To study this possibility, information from the 4DGenome database [11] was
retrieved. Particularly, Mus musculus and Homo sapiens data was selected, as these species
are closely related and share most gene regulation mechanisms [12].

The results show that, even though total ncDNA, PIUS and number of chromatin interactions
vary substantially from mice to humans, their proportion (k) is approximately constant. This is
shown in Table 2:

Total ncDNA (b.p) PIUS Total chromatin interactions k
Homo sapiens 3.2439 x 10e09 92000 3.0959 x 10e06 0.0114
Mus musculus 2.6600 x 10e09 62000 4.3410 x 10e06 0.0099

Table 2. Relation between total ncDNA, PIUS and total chromatin interactions. The parameter k corresponds to
the ratio Total ncDNA (b.p) - (PIUS - Total chromatin interactions) 1.

Discussion

In this work, it is shown that normalized ncDNA has generally decreased in evolution. This is
in contrast with ncDNA percentages, where organismal complexity and ncDNA percentages
are positively correlated. The advantage of normalized ncDNA over ncDNA percentages is
that it includes another complexity indicator, in this case Proteome Information Units.

nncDNA may not be used to measure biological complexity —-ncDNA percentages or PIUS are
better indicators-- but rather to gauge efficiency in regulation. Since ncDNA contains
regulatory DNA, lower nncDNA values indicate more efficient control per Proteome
Information Unit.


https://doi.org/10.1101/511196
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/511196; this version posted January 3, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

In addition, lower nncDNAs allow higher theoretical maximum PIUS values. This is in
agreement with the observed trend of nncDNA decrease in evolution. However, data
(genomic and proteomic) from more species is necessary to confirm these results.

Finally, an empirical constant between ncDNA, PIUS and chromatin interactions is presented
for humans and mice. In this manner, PIUS and chromatin interactions seem to be inversely

proportional. Information from other related species is also needed to further prove this
association.
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