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Abstract 

Attentional selection shapes human perception, enhancing relevant information, according to 

behavioral goals. While many studies have investigated individual neural signatures of 

attention, here we used multivariate decoding of electrophysiological brain responses 

(MEG/EEG) to track and compare multiple component processes of selective attention. 

Auditory cues instructed participants to select a particular visual target, embedded within a 

subsequent stream of displays. Combining single and multi-item displays with different types 

of distractors allowed multiple aspects of information content to be decoded, distinguishing 

distinct components of attention, as the selection process evolved. Although the task required 

comparison of items to an attentional “template” held in memory, signals consistent with 

such a template were largely undetectable throughout the preparatory period but re-emerged 

after presentation of a non-target choice display. Choice displays evoked strong neural 

representation of multiple target features, evolving over different timescales. We quantified 

five distinct processing operations with different time-courses. First, visual properties of the 

stimulus were strongly represented. Second, the candidate target was rapidly identified and 

localized in multi-item displays, providing the earliest evidence of modulation by behavioral 

relevance. Third, the identity of the target continued to be enhanced, relative to distractors. 

Fourth, only later was the behavioral significance of the target explicitly represented in 

single-item displays. Finally, if the target was not identified and search was to be resumed, 

then an attentional template was weakly reactivated. The observation that an item’s 

behavioral relevance directs attention in multi-item displays prior to explicit representation of 

target/non-target status in single-item displays is consistent with two-stage models of 

attention. 

Keywords: selective attention, MEG/EEG, decoding, attentional template, visual processing 
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1. Introduction 

Our perception of the world is constantly shaped by attentional selection, enhancing relevant 

over irrelevant information, to achieve our behavioral goals. Effective selection begins from a 

flexible description, often called the attentional template, of the object currently required 

(Duncan and Humphreys, 1989; Bundesen, 1990). Much evidence suggests that attentional 

selection is then achieved through a process of biased, integrated competition across a broad 

sensorimotor network (Duncan et al., 1997). As objects in the visual input compete to 

dominate neural activity, the degree to which they match the attentional template determines 

their competitive advantage (Desimone and Duncan, 1995; Beck and Kastner, 2009). 

 

Attention is often characterized as an emergent property of numerous neural mechanisms 

(Desimone & Duncan, 1995; Hopf et al. 2005), with different mechanisms dominating as 

successive stages of selection (Eimer, 2015). Therefore, while many studies have investigated 

the time-course of individual neural signatures of attention in humans and animal models, it 

is informative to compare multiple components of the selection process within the same 

paradigm. Recently, there has been much interest in the use of MEG/EEG for real-time 

decoding of cognitive representations in the human brain (Stokes et al., 2015). Here, we used 

simultaneous MEG/EEG to examine the time-course and content of different components of 

attentional selection. We combined single-item and multi-item search displays with different 

types of distractors to allow multiple aspects of information content to be decoded from the 

neural signal, distinguishing distinct components of attention as the selection process 

evolved.  
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The behavioral relevance of stimuli was manipulated by starting each trial with one of two 

auditory cues, indicating the relevant visual target object on this trial. Participants were then 

presented with a series of visual displays of 4 possible types: a 1-item display of the target 

(T), an inconsistent non-target (Ni; which was associated with the other cue and served as a 

target for other trials), a consistent non-target (Nc; which was never a target), or a 3-item 

display with all items presented simultaneously (see Figure 1 for an illustration). The use of 

inconsistent non-targets allowed representation of target status to be distinguished from 

representation of stimulus identity. The inclusion of 3-item displays allowed competitive 

representation of target location and target identity to be quantified under matched visual 

input. The use of consistent non-targets amongst a stream of choice displays allowed 

decoding of attentional template reactivation in preparation for a subsequent display. 

Participants made a button press whenever they detected a rare brightening of the target item. 

Requiring responses only for conjunctions of identity and brightening allowed response trials 

to be excluded from the analysis and attentional selection assessed on trials without an overt 

response. Using multivariate decoding analyses, we asked which component processes of 

attentional selection are visible in the MEG/EEG signal over time. 

 

First, we examined representation of the attentional template. One possibility is that, when a 

cue indicates the relevant target object, some sustained signal will be set up in neurons 

selectively responsive to that object (Chelazzi et al., 1993; Puri et al., 2009; Kok et al., 2013). 

fMRI decoding studies have shown cross-generalization between attentional templates and 

sensory responses to the corresponding objects (e.g., Stokes et al., 2009; Peelen and Kastner, 

2011), supporting a tonic activation of visual representations. However, corresponding results 

tend to be weak or non-existent in electrophysiological recordings (Stokes et al., 2013; Myers 

et al., 2015; Wolff et al., 2015), and where they have been found, they may appear only very 
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briefly prior to the target stimulus (Myers et al., 2015; Kok et al., 2017). Indirect measures of 

attentional templates, derived from ERP components, demonstrate that search templates are 

not continuously active but are transiently activated in preparation for each new search 

episode (Grubert and Eimer, 2018).  Recently, it has been proposed that template storage may 

sometimes be “silent”, perhaps encoded in changed synaptic weights rather than sustained 

firing (Stokes, 2015). To examine template coding, holding visual input constant, we 

analyzed data from the period between cue and displays, and during subsequent presentation 

of Nc stimuli.  

 

Second, we were interested in the process of target selection itself. Comparing target and 

non-target stimuli shows strong differences both behaviorally and neurally (Duncan, 1980; 

Hebart et al., 2018). Attending to a relevant visual object produces strong, sustained activity 

across many brain regions (Desimone and Duncan, 1995; Sergent et al., 2005; Dehaene and 

Changeux, 2011), reflecting encoding of its multiple visual properties and implications for 

behavior (Wutz et al., 2018). In the presence of multiple stimuli, neural responses are initially 

divided amongst the competing sensory inputs and later become replaced by a wide-spread 

processing of the behaviorally critical target (Duncan et al., 1997; Kadohisa et al., 2013). On 

1-item trials, we focused on the response to the T and Ni stimuli, to quantify the 

representation of object identity (e.g., face vs. house) regardless of status as target or non-

target, as well as representation of behavioral category (T vs. Ni) regardless of object 

identity. On 3-item trials, we quantified the encoding of target location and target identity, to 

assess preferential processing of target features when multiple items compete for 

representation.  
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2. Methods 

2.1 Participants 

Eighteen participants (9 males, 9 females; age range: 18-30 years, mean = 24.4, SD = 3.8) 

took part in the study, recruited from the volunteer panel of the MRC Cognition and Brain 

Sciences Unit. Two additional participants were excluded from the analysis due to technical 

problems (one could not do the MRI; another was excluded due to an error in digitizing the 

EEG electrodes). EEG data for 4 participants were excluded from the MVPA analysis due to 

a technical issue (a test signal used during hardware checkup was not removed). All 

participants were neurologically healthy, right-handed, with normal hearing and normal or 

corrected-to-normal vision. Procedures were carried out in accordance with ethical approval 

obtained from the Cambridge Psychology Research Ethics Committee, and participants 

provided written, informed consent prior to the experiment.  

 

2.2 Stimuli and Procedures 

Participants performed two localizer tasks (auditory and visual) and an attention task (see 

Figure 1 for an illustration). Stimulus presentation was controlled using the Psychophysics 

Toolbox (Brainard, 1997) in Matlab 2014a (Mathworks, Natick, WA). Auditory stimuli were 

delivered through in-ear headphones compatible with the MEG recording. Visual stimuli 

were back-projected onto a screen placed in front of the participant, approximately 129 cm 

from the participant’s eyes. Each stimulus image was approximately 20 cm wide 

(approximate visual angle 8.8°) on a gray background. Before the start of each task, 

participants were given training to familiarize them with the stimuli and task rules. If a false 

alarm was made during any of the trials during the recording, that trial was repeated at the 

end of the run.  
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2.2.1 Pattern Localizer Tasks 

Auditory Localizer Task: This task was used to characterize multivariate activity patterns for 

high and low pitch tones used in the attention task. Participants heard a stream of intermixed 

high (1100 Hz) and low (220 Hz) pitch tones. On rare occasions (9% of the time), a 

frequency modulation would occur (modulator frequency = 20 Hz; modulation index = 2.5), 

and participants were instructed to press a button whenever they detected a distortion in a 

tone. There were 100 occurrences of each unmodulated tone and 10 occurrences of each 

modulated tone. The duration of each tone was 100 ms, with the beginning and ending 10 ms 

ramped. The inter-stimulus interval was jittered between 1000-1500 ms. 

 

Visual Localizer Task: Similar to the auditory localizer task, this task was used to establish 

multivariate activity patterns for three visual stimuli (a face, a house, and a violin) used in the 

attention task. Participants were shown a stream of these images presented sequentially in the 

center of the screen for 100 ms each, with an inter-stimulus interval jittered between 1500-

2000 ms. Most image displays were semi-transparent (60% opaque) on a grey background; 

participants were asked to make a button press whenever they detected a brighter and higher 

contrast version of the image (100% opaque). There were 100 occurrences of each translucent 

image and 10 occurrences of each brightened image. 

 

2.2.2 Attention Task  

Figure 1 illustrates the stimuli used in the task, as well as the task structure. Before the start 

of this task, participants were trained to associate the two auditory tones with two of the three 

visual stimuli (the same used in the localizer tasks). This pairing resulted in the visual stimuli 

being categorized by behavioral relevance as targets (T: the visual stimulus paired with the 

current cue), inconsistent non-targets (Ni: the visual stimulus paired with the alternative cue), 
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and consistent non-targets (Nc: never targets). All six possible mappings of two cues to three 

objects were counterbalanced across participants. The task was executed in runs of 90 trials.  

Each trial began with an auditory cue (for 100 ms), followed by a 1750 – 2250 ms fixation 

cross during which participants were instructed to prepare to attend for the target stimulus. 

Then a stream of three visual displays appeared one by one for 100 ms each, separated by 

1500-2000 ms inter-stimulus intervals. Each display could be a 1-item display or a 3-item 

display with equal probability (order pseudorandomized, with the constraint that a 1-item 

display could not follow a 1-item display of the same type to minimize sensory adaptation 

effects). On 1-item displays, the stimulus was centered at fixation; 3-item displays contained 

all three visual stimuli, with the center of each stimulus 10° visual angle from fixation, 

arranged in an equilateral triangle with one above left, one above right, and one below. In 18 

out of the 90 trials in each run, a single brightened stimulus, target or non-target, occurred 

pseudo-randomly in one of the 3 displays, with equal likelihood of appearing in each. For 

each cue type, brightenings affected T, Ni and Nc items once each on single item-trials, and 

twice each on 3-item displays, allowing one brightening for each of the six possible 3-item 

stimulus configurations. Participants were asked to attend to targets, pressing a button if they 

detected a brightened target (they could respond any time before the next stimulus), with no 

response for all other displays. Events with a brightened stimulus and/or button presses were 

later removed in the analysis, such that the results were not influenced by these events. The 

trial terminated if a button press was made, and participants were informed whether the 

response was a correct detection or a false alarm. A new trial began when the participant 

indicated with a button press that they were ready to continue. Otherwise, each of the 90 trials 

in each run had a full sequence of 3 displays.  At the end of each run, feedback informed 

participants of their accuracy through the run. To discourage false alarms and equalize the 

number of non-response trials across conditions, trials that contained a false alarm were 
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repeated at the end of the run. The task was repeated over 5 runs (2 participants only 

completed 4 runs due to time constraints). 

 

 

Figure 1. Stimuli and experimental paradigm. (A) The 3 objects used in the experiment. (B) An 

example of how the two auditory tones could be paired with the three objects. This results in two items 

that serve as targets (T) for one cue, and non-targets (Ni) for the other cue, and the third item serving 

as a consistent non-target (Nc). The pairings between the tones and the objects were counterbalanced 

across participants. (C) An example trial illustrating the experimental paradigm. At the beginning of 

each trial, an auditory cue indicated the target for that trial. After a delay, this was followed by three 

visual displays. Participants were asked to make an immediate button press if a brightening of the 

target stimulus was detected.  

 

2.3 Data acquisition 

2.3.1 Electroencephalography (EEG) 
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EEG data were collected from 70 Ag/AgCl electrodes mounted on an electrode cap (Easycap, 

Falk Minow Services, Herrsching-Breitbrunn, Germany) distributed according to the 

extended 10/20 system. Electrode impedances were kept below 5 kΩ. An electrode placed on 

the nose served as online reference while the ground electrode was placed on the right cheek. 

Vertical and horizontal eye movements were monitored using the electrooculograms (EOG) 

recorded using bipolar electrodes placed above and below the left eye and at the outer canthi 

of the eyes, respectively. Electrocardiography (ECG) was recorded using bipolar electrodes 

placed below the right collarbone and below the left ribcage. EEG data were sampled at 1000 

Hz with a band-pass filter of 0.1–333 Hz. EEG and MEG data were acquired simultaneously. 

 

2.3.2 Magnetoencephalography (MEG) 

MEG data were acquired using a 306 channel (204 planar gradiometers and 102 

magnetometers) Neuromag Vectorview system (Elekta AB, Stockholm) in a sound-attenuated 

and magnetically shielded room. Data were sampled at 1000 Hz with an online band-pass 

filter of 0.03–333 Hz. Five Head Position Indicator (HPI) coils were attached firmly to the 

EEG cap to track the head movements of the participant. The locations of the HPI coils as 

well as the EEG electrodes were recorded with a Polhemus 3D digitizer. We also measured 

three anatomical landmark points (nasion, left and right preauricular points) and additional 

points on the head to indicate head shape and enable matching to each individual’s structural 

MRI scan. 

 

2.3.3 Structural MRIs 

High-resolution anatomical T1-weighted images were acquired for each participant (either 

after the MEG session or at least three days prior to the MEG session) in a 3T Siemens Tim 

Trio scanner, using a 3D MPRAGE sequence (192 axial slices, TR = 2250 ms, TI = 900 ms, 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 8, 2019. ; https://doi.org/10.1101/511022doi: bioRxiv preprint 

https://doi.org/10.1101/511022
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

TE = 2.99 ms, flip angle = 9°, field of view = 256 mm × 240 mm × 160 mm, 1 mm isotropic 

resolution). The coordinates of the nasion, left and right preauricular points in native space 

were hand-marked by the experimenter, and used in the coregistration of the EEG/MEG and 

MRI. 

 

2.4 EEG and MEG data preprocessing 

The raw data were visually inspected during recording for any bad channels, which were 

removed (EEG: 0 - 5 across subjects; MEG: 1 - 5 across subjects). The MEG data were de-

noised using Maxfilter 2.2 (Elekta Neuromag, Helsinki), with the spherical harmonic model 

centered on a sphere fit to the digitized head points; default settings were used for the number 

of basis functions and the spatiotemporal extension (Taulu & Simola, 2006). Maxfilter 

detected additional bad channels using the first and last 900 data samples (default threshold), 

and signal from all bad channels was removed and interpolated. Continuous movement 

compensation was applied at the same time.  

 

Subsequent preprocessing used SPM12 (http://www.fil.ion.ucl.ac.uk/spm) and Matlab 2015a 

(The Mathworks Inc). Separately for EEG electrodes, magnetometers and gradiometers, 

independent component analysis (ICA), implemented using EEGLAB (Delorme & Makeig, 

2004), was used to detect and remove components whose time-course correlated with EOG or 

ECG reference time-courses, and whose topography matched reference topographies 

associated with ocular or cardiac artefacts estimated from independent data acquired on the 

same system. ICA used the default infomax algorithm, with dimension reduction to 60 

principal components. An independent component was removed if (1) it had the maximum 

absolute correlation with both a temporal and spatial reference, (2) these correlations were 

significant at p < 0.05, (3) the z-scored absolute correlations exceeded 2 for the spatial 
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component, and 3 for the temporal component, and (4) it explained > 1.7% of total variance. 

For assessing temporal correlations only, ICA and reference time-courses were band-pass 

filtered between 0.1 - 25 Hz, and correlations were also repeated 1000 times with phase 

randomization of the reference time-course to ensure that the true maximum absolute 

correlation of eliminated components was greater than the 95th percentile of the null 

distribution.  EEG data were then re-referenced to the average reference.  

 

Data were band-pass filtered between 0.1 Hz and 40 Hz (zero-phase forward and reverse 5th 

order Butterworth filters with half-power cutoff frequencies). We note that although filtering 

enhances the signal-to-noise ratio of neural signals, it also spreads signal in time, distorting 

estimates of onset latencies. In this paper we focus on peak latencies, which are less sensitive 

to filtering (Luck, 2014; Grootswagers et al., 2016; van Driel et al., 2019). Data were 

epoched around the events of interest, time-locked to stimulus onset (from -100 ms to 1000 

ms in the auditory localizer task; from -100 ms to 1500 ms in the visual localizer task; from -

100 ms to 1750 ms for the cue and delay period of the main task, and -100 ms to 1500 ms for 

each of the visual stimulus presentations in the main task). Time points -100 ms to 0 ms 

served as baseline for baseline correction – the mean signal across this window was 

subtracted from each time point, per epoch. Epochs that contained flat segments or high 

threshold artifacts (peak-to-peak amplitude greater than 4000 fT for magnetometers, 400 

fT/m for gradiometers, 120 μV for EEG, or 750 μV for EOG) were marked as bad trials and 

were rejected. In both localizer and attention tasks, any epoch that contained an auditory 

frequency distortion, a visual brightening, or a button press were additionally excluded from 

analyses. In the attention task, we also removed all data from any trial with an error (false 

alarm or miss). The average number of epochs remaining for each condition is shown in 

Table 1. 
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Table 1. Mean number of epochs (and standard deviation across participants) per condition 

after artifact rejection 

Localizer Tasks 

Auditory localizer 

Low tone High tone   

80.8 

(16.8) 

81.0 

(14.9) 
  

Visual localizer 

Face House Violin  

72.1 

(13.6) 

70.1 

(14.9) 

69.7 

(15.4) 
 

Attention Task 

Preparatory phase 

Low tone High tone   

147.6 

(35.7) 

147.4 

(37.5) 
  

Stimulus processing phase 

Face House Violin 3-item 

138.4  

(36.4) 

134.2  

(34.2)  

139.5  

(34.3) 

406.1  

(110.2) 

Target (T) 
Inconsistent Non-

target (Ni) 

Consistent Non-

target (Nc) 
 

138.9  137.9  135.1   

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 8, 2019. ; https://doi.org/10.1101/511022doi: bioRxiv preprint 

https://doi.org/10.1101/511022
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

(35.3) (35.0) (34.8) 

 

 

2.5 Source Localization 

For each participant, a cortical mesh was created from the individual’s structural MRI, with a 

mesh resolution of ~4000 vertices per hemisphere. The EEG/MEG and MRI were 

coregistered based on the three anatomical fiducial points and an additional ~200 digitized 

points on the scalp. Forward models were computed for EEG data using a three-shell 

boundary element model (BEM) and for MEG data using a single-shell BEM. The forward 

model was inverted using minimum norm estimation (MNE) to compute source estimates for 

each experimental condition.  

 

Due to the limited spatial resolution limits of EEG/MEG, we chose three a priori spatially 

distinct bilateral ROIs (Figure 2C). Early visual cortex and lateral prefrontal cortex (LPFC) 

were used to test representation in relevant sensory and cognitive control areas. An additional 

auditory cortex ROI was used both to measure cue decoding, and in other analyses to test for 

signal leakage. Auditory and primary visual cortex ROIs were taken from the SPM Anatomy 

toolbox (Eickhoff et al., 2005), containing 350 and 523 vertices. The LPFC ROI was taken 

from Fedorenko et al. (2013) (http://imaging.mrc-cbu.cam.ac.uk/imaging/MDsystem), 

combining the anterior, middle, and posterior medial frontal gyri, spanning 461 vertices. 

 

We chose V1 as the visual ROI to keep the three regions as far apart as possible and thus 

minimize signal leakage between them. Since higher visual regions are specialized for object-

level processing, and can contain template-like signals (Stokes et al., 2009), we subsequently 

examined a broad extrastriate visual cortex (ESV) ROI from the Fedorenko et al. (2013) 
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template, which encompasses object, face, and scene processing regions.  In all cases, results 

were very similar, reflecting the low spatial resolution of MEG. Here we report the results of 

V1, but the results from ESV can be found in Supplementary Material 1. 

 

2.6 Multivariate Pattern Analysis (MVPA) 

Multivariate pattern analyses were performed using the Matlab interface of LIBSVM (Chang 

and Lin, 2011). We used a linear support vector machine (SVM), with default parameters. 

For each analysis, we performed decoding in sensor space as well as in source space using 

data from the three ROIs. For sensor space decoding, we combined data from good EEG and 

MEG (gradiometers and magnetometers) channels. Each individual time point was 

standardized (z-scored across channels) before entering the classifier. For source space 

decoding, each participant’s cortical mesh was transformed into MNI space, and estimated 

source activity at each vertex within the ROIs was extracted to serve as a feature in the 

classifier. 

 

In both sensor and source space MVPA analyses, we trained and tested using spatiotemporal 

patterns extracted from a sliding time window of 32 ms, in 4 ms steps. Training and testing 

were performed on every combination of time windows, resulting in a cross-temporal 

generalization matrix of classification accuracies (King and Dehaene, 2014), with the 

diagonal representing the performance of classifiers trained and tested on the same time 

window. The classification accuracy matrix was then slightly smoothed using a sliding 32 ms 

square averaging window. For analyses involving within-task decoding, the data were split 

into five folds (with one fold containing every 5th trial chronologically), iteratively trained on 

individual trials from four of the folds and tested on the remaining fold by applying the SVM 
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to the remaining trials individually. In cross-task decoding, a classifier was trained on all 

relevant epochs from one task and tested on all relevant epochs from another task. 

 

Classification accuracies were compared against chance (50%) with one-tailed t-tests. 

Multiple comparisons were accounted for using Threshold Free Cluster Enhancement 

(TFCE), with height and extent exponents of 2 and 2/3 respectively, and Family-Wise Error 

controlled by comparing the statistic at each time point to the 95th percentile of the maximal 

statistic across a null distribution of 1000 permutations with random sign flipping (Smith and 

Nichols, 2009). TFCE was performed in the same way across the time × time decoding 

matrices and along the matched-time diagonals. The figures were plotted according to the last 

time bin in the sliding window (Grootswagers et al., 2017). For decoding of 1-item 

behavioral category, epochs that were preceded by a T or Ni were excluded, to ensure that 

behavioral category was balanced in the baseline period.  

 

2.7 Data and code availability statement 

The data and code are available upon direct request of the corresponding author. 

 

3. Results 

3.1 Behavioral results 

Behavioral performance was consistently high (auditory localizer task – hits: mean = 99.0%; 

false alarms: mean = 0.8%; visual localizer task – hits: mean = 98.9%; false alarms: 1.0%; 

attention task – hits: mean = 98.3%; false alarms: mean = 0.8%). 

 

3.2 Coding of the attentional cue/attentional template during the preparatory phase 
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Source localization of the response to the cue at representative time points is shown in figure 

2A. We first looked for decoding of the specific attentional cue during the preparatory phase 

of the attention task, defined as starting from cue onset but before the first visual stimulus, 

and compared this with decoding in the auditory localizer task. We asked whether preparing 

for a target enhances cue decoding. Here, we subsampled the trials in the attention task to 

match the minimum number of trials in the auditory localizer for each participant, keeping 

the first n trials, to ensure comparable signal-to-noise ratio across the three decoding 

analyses. Cue/stimulus decoding as a function of time from auditory stimulus onset is shown 

in Figure 2B, D. Curves on the left show training and testing on matched time-points. 

Matrices on the right show generalization of patterns across all pairs of training and testing 

time windows. 

 

Across the whole sensor space (Figure 2B), significant discrimination between the two 

auditory stimuli/cues emerged shortly after the presentation of the stimulus, peaking at 

around 116 ms for the auditory localizer task (Figure 2B, orange curve), 148 ms for the 

preparatory phase of the attention task (Figure 2B, purple curve), and 112 ms when training 

the classifier on the localizer task and testing on the attention task (Figure 2B, pink curve). In 

both sensor space (Figure 2B) and all ROIs (Figure2C-D), cue decoding during the attention 

task returned to chance level. During the auditory localizer task, cue decoding was more 

sustained, especially in the LPFC. After matching the number of trials used to train the 

classifier, an analysis type × ROI ANOVA of peak decoding accuracies, within a 0 – 600 ms 

time window, showed a main effect of ROI (F(2,34) = 155.2, p < 0.001), but no differences in 

decoding amplitude (F(2,34) = 3.4, p > 0.5), and no interactions (F(4,68) = 0.7, p = 0.6). 

Therefore, we found no evidence for template representation beyond the initial auditory 

representation of the cue. 
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To test whether activity during any stage of the preparatory phase might reflect the 

representation of the upcoming trial target, we performed a cross-task and cross-time 

classification analysis trained using the visual localizer task. At every time window, patterns 

from the two visual items associated with each cue were taken from the visual localizer task 

to use as training data, and these were tested at every time window of the preparatory phase 

of the attention task to decode the trial target (now without subsampling trials). We did not 

find any significant time points where the visual template cross-generalized to the preparatory 

phase.  

 

Finally, we note that cross-time generalization matrices suggest that the LPFC signal reached 

a steady state at the end of the auditory localizer, in contrast to its lack of any sustained signal 

during the preparatory phase of the attention task. Even including all the trials of the attention 

task, without subsampling, we observed the same disappearance of cue decoding during the 

preparatory phase (see Supplementary Material 2). This might reflect that the fact that the 

representation in the auditory task does not need to be transformed further, whereas in the 

attention task it serves an intermediate role in mapping subsequent visual inputs to behavior.     
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Figure 2. Response to the attentional cue. (A) Source localization of EEG/MEG response to the 

auditory attentional cue at representative time points relative to cue onset. (B) Decoding time-course 

of auditory stimulus/attentional cue using all sensors combining EEG and MEG across the whole 

brain. Curves on the left show decoding when training and testing on matched time-points. Dark 

colored dots beneath the decoding curves show times where decoding is significantly above chance 

for each condition (p < 0.05), corrected for multiple comparisons along the diagonal of the cross-

temporal generalization matrix; faint colored dots represent additional time-points where the 

diagonal of the cross-temporal generalization matrix is significant when corrected for multiple 

comparisons across the whole matrix. Translucent bands represent standard error of the mean. 

Matrices on the right show temporal generalization of decoding across all pairs of training and 

testing times. Black contours indicate regions of significant decoding (p<0.05). (C) Vertices within 

source space ROIs (auditory cortex, lateral prefrontal cortex (LPFC), and visual cortex). (D) 

Decoding time-courses from these source space ROIs; same format as (B). Significance is corrected 

for multiple comparisons across time using TFCE and permutation testing. 

 

3.3 Coding of visual and behavioral properties of 1-item displays  

We next turned to processing of the visual items, and selection of the target item. Source 

localization of the response to the visual stimuli at representative time points is shown in 

figure 3A.  

 

During 1-item displays, we expected strong, early discrimination of object identity (e.g., face 

vs. house, when the consistent non-target was the violin). In the attention task, each stimulus 

additionally had a behavioral category depending on the cue of that trial. For the participant 

to make the appropriate response to each stimulus, we expected that the neural signal would 

also show behavioral category discrimination (target vs. non-target), which would occur after 

object identity processing. For these analyses, we focused on the T and Ni conditions, for 
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which object identity and behavioral category were fully crossed. Object representation was 

measured by the discrimination between stimulus identities (e.g. face vs. house) when each 

were equally often targets or non-targets; conversely, behavioral category representation was 

measured by discrimination between targets and non-targets when these were equally 

balanced across stimulus identities. 

 

Single stimulus decoding time-courses on T and Ni presentations are shown in Figure 3B-C. 

In line with expectations, both object identity and behavioral category showed substantial 

periods of significant decoding accuracy. Across the whole sensor space, a significant 

difference between object identities peaked at around 128 ms. Behavioral category decoding 

emerged later, slowly rising to a peak at 360 ms. 

 

Source space analysis showed that both types of information could be decoded from all three 

ROIs. Decoding of object identity in the auditory ROI warns of possible signal leakage 

between regions. Visual cortex, however, had the highest decoding accuracy for object 

identity, while ROIs did not statistically differ in their strength of decoding accuracy for 

behavioral category. 

 

Cross-temporal generalization indicated that object identity representation was most stable in 

the visual ROI. In contrast, behavioral category representation was most stable in the LPFC 

ROI. 
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Figure 3. Coding of visual and behavioral properties of 1-item displays (A) Source localization of 

EEG/MEG response to visual presentation (including both single-item and multi-item displays) at 

representative time-points. (B) Decoding time-courses of object identity, in (a) sensor and (b) source 

space, when training/testing using matched time-points, and (c) generalizing across training/testing 

times. Dark colored dots beneath the decoding curves show times where decoding is significantly 

above chance for each condition (p < 0.05), corrected for multiple comparisons along the diagonal of 

the cross-temporal generalization matrix; faint colored dots represent additional time-points where 

the diagonal of the cross-temporal generalization matrix is significant when corrected for multiple 

comparisons across the whole matrix. Translucent bands represent standard error of the mean. Black 

contours in cross-time matrices indicate regions of significant decoding (p<0.05). Significance is 
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corrected for multiple comparisons across time using TFCE and permutation testing. (C) Decoding 

time-courses and cross-temporal generalization for behavioral category information. Object identity 

decoding emerged earlier than behavioral category decoding. Visual cortex showed the highest object 

decoding accuracy, while ROIs were comparable in their strength of behavioral category 

representation.  

 

3.4 Coding of target location in 3-item displays 

Next, we examined target representation in the presence of simultaneous distractors. We first 

asked when the spatial location of the target within 3-item displays could be decoded (Figure 

4; Fahrenfort et al. 2017). To do this, we decoded every pair of T versus Ni locations, while 

holding Nc position constant (i.e., “T right, Ni left” vs. “Ni right, T left”, “T right, Ni 

bottom” vs. “Ni right, T bottom”, and “T left, Ni bottom” vs. “Ni left, T bottom”) and 

averaged the accuracies within each participant. Within each pair, collapsing across both 

possible cues ensured that the decoding was balanced for both visual features and auditory 

cues. Group sensor-space results showed that decoding began to emerge shortly after 

stimulus onset, and peaked at 244 ms, before slowly declining toward the end of the epoch. 

The analysis was repeated in source space. Decoding of target location was significant in all 

ROIs, but strongest in visual cortex where it peaked at 132 ms. Cross-temporal generalization 

suggested that the representation of target location was initially dynamic, then entered a 

temporarily stable state, most apparent in sensor space suggesting spatially coarse stability, 

before becoming unstable once more prior to the end of the epoch. 

 

In a complementary analysis to target location decoding, we examined the N2pc, a well-

known early index of spatial attention, which appears as a negativity over posterior EEG 

electrodes contralateral to the side of space to which the subject is attending around 200-300 
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ms following a stimulus (Luck and Hillyard, 1994; Heinze et al., 1990; Eimer, 1996; Hopf et 

al. 2000; Fahrenfort et al., 2017). We compared event-related potentials/fields when the target 

was on the right or left of the screen of the 3-item display, and the topography of this contrast 

is shown in Figure 4B. Differences between target locations peaked between 200-300 ms in 

posterior EEG and MEG signals, although the signals diverged earlier in MEG, which could 

reflect the source of the earlier decoding. We note that our lateralized stimuli were in the 

upper visual field, and that the N2pc is typically stronger for stimuli in the lower visual field 

(Luck et al 1997; Bacigalupo & Luck, 2018).  

 

 

Figure 4. Coding of target location in 3-item displays. (A) Decoding of target location during 

presentation of 3-item displays, i.e., whether the item corresponding to the cue is in the left, right, or 

bottom position. Format as in Figure 3. Location decoding was strongest in the visual cortex. (B) 

Univariate N2pc ERP/ERFs across (a) EEG electrodes and (b) latitudinal gradiometers. Latitudinal 

gradiometers are presented because their orientation around the helmet means that contralateral 
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asymmetries in the magnetic flux gradient are expressed analogously to the EEG topography 

(Mitchell and Cusack, 2011; Kuo et al. 2016). Topographies are averaged across 200-260 ms 

(marked in grey on the time-courses). Time-courses are averaged across posterior sensors 

contralateral and ipsilateral to the target (highlighted on the topographies), with black dots 

indicating a significant difference (p<0.05) after TFCE with permutation testing. 

 

3.5 Coding of target identity during presentation of 3-item displays 

We also hypothesized that representation of 3-item displays would differ depending on the 

cue, even though the visual input was the same. All 3-item displays contained the target item 

that was associated with the cue, as well as the Ni and Nc items. Therefore, the decoding of 

the cue in the presence of a matching visual stimulus likely reflects attentional enhancement 

of the selected target identity. Although a template representation could also contribute to the 

decoding, this can only be isolated in the absence of a target (see next section). In sensor 

space, cue/target identity decoding peaked at 252 ms. In source space, the visual cortex 

showed the highest decoding accuracy (Figure 5).  

 

Cross-temporal generalization suggested that the representation of target identity in the 

presence of distractors was dynamic, and decayed rather than settling into a steady state. For 

this analysis, we also expected cross-task generalization from the visual localizer. This was 

significant in the visual ROI, but not in the auditory or LPFC ROIs, suggesting that the 

shared pattern was predominantly sensory, with minimal signal leakage in this case.  

 

To compare the decoding latencies of target location and target identity in 3-item displays, 

we calculated 50%-area latency (Luck, 2014; Liesefeld, 2018) using data from a 0 – 600 ms 

window for each subject, ROI and decoding type. Paired 2-tailed t-tests showed that target 
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location decoding preceded target identity decoding in both the whole sensor space (t(17) = 

2.86, p < 0.05) and in the visual cortex (t(17) = 4.97, p < 0.001), but not in the auditory or 

LPFC ROIs (both t(17)<1.95; both p>0.05). 

 

 

Figure 5. Decoding of attentional cue/target identity during presentation of 3-item displays. Panels 

(a-c) have the same format as Figure 3. Panel (d) shows cross-task generalization of decoding, when 

training on the visual localizer task and testing on the attention task.  

 

3.6 Reawakening of the attentional cue/template during presentation of consistent non-

targets 

Finally, we tested whether we could decode the cue/template during the presentation of a 

single Nc visual stimulus. Wolff et al. (2015, 2017) have shown that by ‘pinging’ the brain 

with a neutral stimulus during working memory maintenance, it can be possible to decode the 

memory-item-specific information from the impulse response. In our data, cue decoding 

following Nc presentation was visible but rather weak and intermittent (Figure 6).  Across 

sensor space and source space, there were scattered brief periods of above-chance decoding. 

Their appearance in auditory as well as visual and frontal ROIs questions whether these 

might reflect a reactivated memory of the auditory cue, or a visual attentional template in 

anticipation of the next visual input. Apparent signal in the auditory ROI might also reflect 

leakage from other sources.  Cross-temporal generalization suggested that although the 
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representation was not fully sustained, when it resurfaced in the visual ROI it did so with a 

similar pattern. Cross-task generalization from the auditory and visual localizers provided no 

evidence that this representation was in a similar format to either cue or target perception.   

 

 

Figure 6. Decoding time-course of attentional cue during presentation of Nc displays. Format as in 

Figure 3. 

 

3.7 Summary of component time-courses during attentional selection 

Above we have described five distinct forms of information representation evoked by the 

appearance of the visual stimuli (Figures 3-6). These are summarized in Figure 7, overlaying 

their average sensor-space and ROI-based decoding time-courses for ease of comparison. 

  

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 8, 2019. ; https://doi.org/10.1101/511022doi: bioRxiv preprint 

https://doi.org/10.1101/511022
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 
 

 

Figure 7. Summary of the decoding time-courses of five component processes of selective attention 

following onset of a visual stimulus: representation of stimulus identity, target position, target 

identity, behavioral status, and the template of the cue/target. Decoding accuracy is averaged across 

sensor space and source ROIs, and translucent bands represent standard error of the mean across 

subjects. 

 

 

4. Discussion 

There is currently much interest in decoding the contents of cognitive operations from human 

MEG/EEG data, and in using these methods to understand attentional selection of 

information relevant to current goals. Here, we examined the evolution of multiple forms of 

information represented in the brain as a visual target is selected. Combining single-item 

displays with multi-item displays of targets and different types of distractors allowed 

quantification of distinct components of processing during selective attention, indexed by 

different profiles of representational content. 
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Although multiple attentional templates could guide behavior (Awh et al., 2012), for effective 

task performance selection of a particular target requires a template that specifies the 

currently relevant object (Duncan and Humphreys, 1989; Bundesen, 1990).  In fMRI, 

multivariate classifiers trained on responses to viewed stimuli can predict an attentional 

template during the preparatory phase (e.g., Stokes et al., 2009). In our MEG/EEG data, we 

observed significant decoding of cue identity in the attention task, but after equating trial 

numbers decoding accuracies were not significantly different from that of stimulus 

processing in the auditory localizer task. Furthermore, beyond 1000 ms, cue decoding was 

indistinguishable from chance. Previous MEG/EEG studies have suggested existence of a 

pre-stimulus template, often subtle and short-lived (Myers et al., 2015; Kok et al., 2017; 

Grubert and Eimer, 2018). Following non-target displays, we observed evidence of template 

reawakening; although significant, this was weak and not fully sustained. The delay of 

template reactivation relative to the explicit categorization of the display as a non-target 

suggests a serial component to the search process, here within the temporal presentation 

stream but consistent with neural evidence of serial refocusing of attention within single 

search displays (Woodman & Luck, 1999; Bichot et al., 2005). 

 

Sustained preparatory activity reflecting an attentional template may be largely invisible to 

MEG/EEG for many reasons. For example, at the physiological level, if discriminating 

neurons are intermixed, they may be hard to distinguish with non-invasive methods. Recent 

findings from single trial analysis of direct neural recordings also suggest that spiking activity 

during the delay period is sparse, with brief bursts of activity having variable onset latency 

and duration, which would hinder cross-trial decoding (Shafi et al., 2007; Lundqvist et al., 

2016, 2018; Stokes and Spaak, 2016; Miller et al., 2018). A parallel possibility is that 

attentional templates may sometimes be stored in an “activity silent” passive form, such as 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 8, 2019. ; https://doi.org/10.1101/511022doi: bioRxiv preprint 

https://doi.org/10.1101/511022
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 
 

changed synaptic weights (Lundqvist et al., 2010; Stokes, 2015). Consistent template 

representations may also be difficult to detect if there is-trial-to-trial variability at the 

cognitive level (Vidaurre et al., 2019), such as fidelity of mental imagery, as well as the 

anticipation of stimulus timing, with templates activated/strengthened only when the search 

display is expected to be imminent (Grubert and Eimer, 2018). It is also possible that in the 

current experiment, the attentional template required little effort to maintain as a verbal label 

and might have been more visible if harder to verbalize. Consistent templates may be more 

likely when few features distinguish targets from distractors, for example when targets are 

defined only by orientation or color (Kok et al., 2017; Myers et al., 2015; Grubert and Eimer, 

2018). Perceptually complete templates may be more likely when targets share different 

features with different distractors (Duncan and Humphreys, 1989).  Finally, we emphasize 

that for successful task performance a template must exist in some form, even when we are 

unable to detect it, and that uncovering subtle or variable templates may benefit from novel 

analysis methods (Vidaurre et al. 2019). 

 

Upon presentation of the visual choice display, we found much decodable information of 

various kinds. The timing of peak decoding of different features suggests five components of 

processing. The current data cannot determine the extent to which these components evolve 

in parallel or have some serial dependency, whereby one process influences another. It is 

likely that there is a degree of both (Bichot et al., 2005). First, visual stimulus properties are 

encoded, shown by object identity decoding in 1-item displays, peaking around 132 ms, and 

strongest in visual cortex. Second, in a multi-element display, the candidate target is 

localized, shown by target location decoding that peaked between 136 ms (in visual cortex, 

where strongest) and 288 ms (combining all sensors). This may be partially concurrent with 

initial visual processing, consistent with an initial parallel stage of selection (Duncan, 1980; 
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Treisman and Gelade, 1980) and automatic registration of coarse feature location (e.g. Cohen 

& Ivry,1989; Hopf et al., 2004), that could be used to guide subsequent attention (Itti and 

Koch, 2000; Bisley and Goldberg, 2010; Wolfe, 1994; Eimer, 2015). Third, representation of 

the candidate target continues to be enhanced relative to distractors, perhaps via integrated 

competition, shown by cue/target identity decoding in 3-item displays, peaking around 252 

ms, again strongest in visual cortex. Fourth, behavioral significance of the target is explicitly 

represented (in this case whether it is a target, so requiring further processing), shown by 

behavioral category decoding in 1-item displays, peaking around 344 ms and most stable in 

the LPFC. Fifth, if no target is identified and search must continue, an attentional template 

might be reactivated or strengthened, shown by cue decoding after Nc displays, peaking 

beyond 500 ms. The precise timing at which each representation is detectable will depend on 

many factors including stimuli, task, analysis sensitivity, similarity between targets and 

distractors, and the number and homogeneity of distractors (Duncan and Humphreys 1989). 

Nonetheless, we anticipate that the sequence of key components would largely generalize 

across paradigms (Eimer, 2015; Vidaurre et al., 2019). Potential dependencies between 

processes might be investigated by combining MVPA of electrophysiological recordings with 

transcranial magnetic stimulation at successive times. 

 

In 1-item displays, we found a distinction between visual cortex and LPFC. While the regions 

represented behavioral category with similar strength, visual cortex represented stimulus 

identity more strongly than LPFC. Similarly, object identity was represented more stably in 

visual cortex, whereas behavioral category was represented more stably in LPFC. fMRI 

studies show that frontal regions flexibly code for behaviorally relevant categories according 

to task rule (Jiang et al., 2007; Li et al., 2007; Woolgar et al., 2011; Lee et al., 2013; Erez and 

Duncan, 2015). Electrophysiological recordings of monkey prefrontal responses to T, Ni, and 
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Nc stimuli show that visual input properties are initially equally represented for targets and 

non-targets, whereas the behaviorally critical target dominates later processing (Kadohisa et 

al., 2013; Stokes et al., 2013). Our results also suggest an anterior-posterior distinction in 

information content and timing.  

 

In multi-item displays, the candidate target was rapidly identified and localized, with location 

decoding providing the earliest evidence of modulation by behavioral relevance. Although 

it’s timing, peaking around 132 ms in V1, was earlier than might be expected based on the 

N2pc and multivariate decoding using EEG alone (Fahrenfort et al., 2017), it is consistent 

with representation of the location of task-relevant features reported from ~140 ms and 

preceding the N2pc (Hopf et al. 2004). Ipsilateral and contralateral target responses diverged 

earlier in MEG than EEG, suggesting that the source of the earlier decoding may be more 

visible to MEG. Location decoding peaked later in the other ROIs and at the sensor level 

(beyond 230 ms) suggesting that source localization may have helped in isolating the earlier 

signal. 

 

Although target localization implies target identification, and time-courses of location and 

identity representation in 3-item displays were heavily overlapping, the location signal was 

significantly earlier than the identity representation in visual cortex. This is consistent with 

models of visual attention as well as empirical data that make an explicit distinction between 

feature selection, where attention is rapidly allocated to candidate objects (Broadbent, 1958), 

and object recognition, which takes place at a subsequent stage where the features of objects 

are integrated and their identity becomes accessible (Eimer, 2015; Eimer & Grubert, 2014; 

Kiss et al., 2013). It could also arise within a continuous competitive framework, without 

explicit recognition, if neurons representing identity have overlapping receptive fields such 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 8, 2019. ; https://doi.org/10.1101/511022doi: bioRxiv preprint 

https://doi.org/10.1101/511022
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 
 

that competition amongst them is slower to resolve or benefits from prior spatial filtering 

(Luck et al. 1997); or if complete identity representation involves several features whose 

integration is strongly mediated by shared location within spatiotopic maps (Treisman & 

Zhang, 2006; Schneegans and Bays, 2017). The location of an attended feature can also be 

represented before the location of a target itself (Hopf et al., 2004), and the temporal priority 

with which different features of the target are enhanced may depend on the cortical location 

as well as the particular task demands (Hopf et al., 2005). The observations that competitive 

representations of target location and target identity peaked at different times, and that neither 

appeared to reach a permanent steady state, together indicate that the early phase of 

integrated competition is dynamic, with different aspects of the target representation waxing 

and waning at different times. In contrast, the later explicit representation of target status 

settled into a steady state in LPFC that persisted until the end of the epoch.  

 

Interestingly, a target influenced bias in the 3-item displays well before its target status was 

explicitly decodable in the single-item displays. This strongly suggests at least two stages of 

target processing, consistent with behavioral manipulations suggesting that spatial selection 

and target identification are separable (Ghorashi et al., 2010). Distinction between an early, 

parallel processing stage and a later capacity-limited stage is central to most models of 

attention (Duncan, 1980; Treisman & Gelade, 1980). Target decoding in 3-item displays 

peaked at 252 ms with first significance at 196 ms, similar to attentional modulation of 

stimulus category processing in cluttered scenes observed from 180 ms (Kaiser et al., 2016), 

and to demonstration of feature-binding during integrated competition (Schoenfeld et al. 

2003). The later stage indexed by single-item decoding may correspond to capacity-limited 

individuation of the integrated target object, allowing its bound properties to become 

accessible for further processing and goal-directed action (Duncan, 1980; Bichot et al., 2005; 
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Mitchell and Cusack 2008; Christie et al., 2015), in this case likely including the brightness 

judgement. These two stages could also be interpreted in terms of the “global neuronal 

workspace” model - the earlier attentional bias reflecting accumulation of pre-conscious 

sensory evidence; the later explicit representation of target status reflecting conscious 

awareness and “ignition” of fronto-parietal networks, linked to P3 waves around 300- 500 ms 

(Dehaene & Changuex, 2011; Sergent et al., 2005) and consistent with the timing of peak 

decoding at 360 ms. 

 

To conclude, although attentional selection must begin with a template, this may be weakly 

or variably represented (Duncan et al., 1997; Lundqvist et al., 2018; Miller et al., 2018), such 

that it is largely invisible to MEG/EEG, or even maintained in “silent” form (Stokes, 2015). 

In agreement with others (Olivers et al., 2011; Myers et al., 2015; Grubert and Eimer, 2018), 

we suggest that the template may be actively and consistently represented only when needed, 

and least likely to interfere with other concurrent processes. Integrated competition accounts 

of attention imply that the template need be neither complete nor constant across trials, 

consistent with no significant response pattern generalization between template 

representations and the visual localizer. In contrast, integrated competition suggests that 

attentional selection and enhancement of stimulus representations will be strong and 

widespread. Supporting such models, we observed robust, time-resolved decoding of the 

critical processing stages required to select and enhance a target amongst competing 

distractors, and to categorize it according to behavioral requirements.  
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