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Abstract

To initiate X-chromosome inactivation (XCI), the long non-coding RNA Xist mediates
chromosome-wide gene silencing of one X chromosome in female mammals to equalize gene
dosage between the sexes. The efficiency of gene silencing, however is highly variable across
genes, with some genes even escaping XCI in somatic cells. A genes susceptibility to Xist-
mediated silencing appears to be determined by a complex interplay of epigenetic and
genomic features; however, the underlying rules remain poorly understood. We have
quantified chromosome-wide gene silencing kinetics at the level of the nascent transcriptome
using allele-specific Precision nuclear Run-On sequencing (PRO-seq). We have developed a
Random Forest machine learning model that can predict the measured silencing dynamics
based on a large set of epigenetic and genomic features and tested its predictive power
experimentally. While the genomic distance to the Xist locus is the prime determinant of the
speed of gene silencing, we find that also pre-marking of gene promoters with polycomb
complexes is associated with fast silencing. Moreover, a series of features associated with
active transcription and the O-GIcNAc transferase Ogt are enriched at rapidly silenced genes.
Our machine learning approach can thus uncover the complex combinatorial rules underlying

gene silencing during X inactivation.
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Introduction

X-chromosome inactivation (XCI) is a developmental process in mammals that ensures equal
gene dosage of X-linked genes between XX and XY individuals by transcriptional inactivation
of one of the two X chromosomes in female cells (Galupa and Heard 2015). In placental
mammals XCl is triggered by the long non-coding (INcRNA) RNA Xist, which is transcribed
from a genomic region called the X-inactivation center (Xic). Xist is upregulated in a
monoallelic fashion and its RNA coats the future inactive X chromosome in cis leading to the
recruitment of several factors involved in transcriptional inactivation and eventually converting
the entire X chromosome into silent heterochromatin (Escamilla-Del-Arenal et al. 2011;
Gendrel and Heard 2014; Galupa and Heard 2015).

Early events following Xist coating of the chromosome include the depletion of RNA
polymerase Il from the Xist RNA domain and loss of active histone marks as well as gain of
repressive chromatin modifications, such as H2AK119ub1 and H3K27me3, deposited by the
polycomb repressive complexes (PRC) 1 and 2 respectively. Later chromatin modifications
become associated with the X undergoing XClI, including accumulation of the histone variant
macroH2A and DNA methylation of gene promoters (Escamilla-Del-Arenal et al. 2011;
Gendrel and Heard 2014; Galupa and Heard 2015). The manner in which Xist RNA induces
gene silencing and chromatin changes is still poorly understood, although progress has been
made in identifying some of its partners and also the parts of this IncRNA that mediate its
different functions. Xist contains multiple conserved repeats. The most highly conserved A
repeat is thought to mediate gene silencing through recruitment of Spen and other factors
including Rom15 (Chu et al. 2015; McHugh et al. 2015). Repeat-B is required for recruitment
of polycomb-repressive complexes mediated by hnRNPK (Pintacuda et al. 2017). While the
A-repeat pathway seems to be required for Xist mediated silencing in mouse embryonic stem
cells (mESCs) (Wutz et al. 2002), it has been shown to be partially dispensable in

extraembryonic tissues, such that a subset of X-linked genes can still be silenced by an Xist
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mutant lacking the A repeat (Sakata et al. 2017). The PRC1/2 pathway is particularly important
for the early maintenance of XCI in extraembryonic tissues but also also seems to contribute
to some degree of silencing in epiblast/embryonic stem cells (Wang et al. 2001; Brockdorff
2017).

Intriguingly, the dynamics of Xist-mediated silencing is known to be highly variable between
genes across the X chromosome (Chow et al. 2010; Borensztein et al. 2017), with a subset of
so-called escape genes remaining active even in somatic cell (Berletch et al. 2011). However,
the determinants of susceptibility to XCI remain poorly understood. Since XCl is a multi-step
process, local interference with any step, such as coating by Xist or access to the silencing
machinery of one or several silencing pathways, could delay or prevent silencing of a certain
gene or genomic region. Defining some of the underlying features that could explain
differential susceptibility to XCI remains an important question, particularly as it is becoming
clear that some genes that are not fully silenced are implicated in diseases, such as
autoimmune syndromes (Bianchi et al. 2012).

The coating by Xist RNA of the X chromosome would seem the most obvious determinant for
X-linked gene silencing dynamics and efficiency. Xist RNA spreading is thought to occur by
proximity transfer to sites that are close to the Xist locus genomically or in 3D space (“Xist
entry sites”) (Engreitz et al. 2013). From there Xist has been proposed to move first into gene
dense regions and then spread to intergenic domains of the X chromosome (Engreitz et al.
2013; Simon et al. 2013). In differentiated cells Xist binding is observed across the entire X
chromosome, but is reduced at escape genes (Engreitz et al. 2013; Simon et al. 2013). Xist
RNA is positively correlated with gene density and with PRC2 enrichment and negatively
correlated with the density of LINE elements (Engreitz et al. 2013; Simon et al. 2013). Similarly
to Xist spreading, kinetics of X-linked gene silencing has also been associated with the
genomic distance from the Xist locus, such that genes at the distal ends of the X chromosome
are silenced late or escape (Marks et al. 2015; Borensztein et al. 2017). In addition, more
efficient gene silencing has been linked to the presence of LINE elements (Loda et al. 2017)
and full length, active LINEs have been found to be enriched in regions that are otherwise
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prone to escape (Chow et al. 2010) . Genes that are silenced efficiently also tend to be
enriched for polycomb complexes (Ring1B, H3K27me3) and depleted for active marks such
as H3K4me3 and H3K27ac prior to Xist-induced silencing (Kelsey et al. 2015; Loda et al.
2017). Finally, genes that can actively escape from XCl| have been reported to be
characterised by CTCF at their transcription start sites compared to partially or fully silenced
X-linked genes (Loda et al. 2017). Thus, a variety of genetic and epigenetic features have
been implicated in controlling gene-specific silencing efficiency. However, none of these
features alone can predict whether and to what extent a gene will be silenced upon XCI, and
the associations with measured silencing efficiencies are generally weak. Since no predictive
pattern of features has so far been identified, the susceptibility of genes to Xist-mediated
silencing is likely to be controlled by a complex combination of different features.

In this study we set out to identify the genetic and chromatin features of X-linked loci, or more
precisely the enrichment or depletion of certain features, that predispose genes on the
chromosome X to be efficiently silenced or avoid silencing. For this, we measured
chromosome-wide silencing dynamics of X-linked genes following induction of Xist
expression, using allele-specific Precision nuclear Run-On sequencing (PRO-seq) (Kwak et
al. 2013). We then trained two Random Forest machine-learning models to predict from 74
genomic and epigenetic features 1) whether a gene is subject to XCI and 2) whether it will be
silenced with fast or slow kinetics. Through forest-guided gene clustering we identified feature
sets that determine the silencing dynamics of sub-groups of genes, indicating that variable
silencing efficiencies might be associated with distinct silencing pathways. For example, we
identified a subset of rapidly silenced genes that are pre-marked by PRC1 binding, while
genes that escape XCI tend to be very distal to the Xist locus and depleted of CpG islands.
We have thus developed a framework to comprehensively assess the contribution of genetic
and epigenetic factors to transcriptional silencing on chromosome X in an unbiased and

quantitative manner.
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Results

Quantification of gene-specific silencing dynamics by PRO-seq

To explore the features that control susceptibility to XCI for individual genes, we used an
experimental system that accurately measures Xist-induced silencing over time in a
chromosome-wide manner. Although differentiating mouse embryonic stem cells (MESCs) are
the classical in vitro system used to study XClI, this model is not optimal for analysis of gene
silencing kinetics as Xist up-regulation and thus gene silencing only occurs in a subset of cells
(maximum 60-70%, sometimes as low as 10-20%) and in a rather asynchronous manner, due
to cell-to-cell variability in differentiation speed (Chow et al. 2010). This results in a very poor
temporal resolution of population measurements. To circumvent this limitation, we used the
doxycycline-responsive female TX1072 mESC line (Schulz et al. 2014), where Xist
upregulation from the endogenous locus on one X chromosome can be induced by
doxycycline treatment in undifferentiated cells in a fast and efficient manner. To assess the
dynamics of gene silencing we measured the nascent transcriptome by Precision nuclear Run-
on sequencing (PRO-seq) (Kwak et al. 2013) before doxycycline treatment and at 7 different
time points after treatment, namely at 0.5, 1, 2, 4, 8, 12 and 24h (Figure 1a). Since the TX1072
line is derived from a cross between two different mouse strains (C57BL/6 x CAST/EiJ), a
large number of polymorphisms enables allele-specific mapping of the PRO-seq reads to the
two parental genomes to obtain the number of reads originating from the B6 or Cast X-
chromosomes, respectively. The data was highly reproducible, since replicates generated for
the first and last time point of the experiment (Oh, 24h) were strongly correlated (pearson
correlation > 0.94; Supplemental Figure S1). Xist started to be upregulated from the B6
chromosome about 1h after Dox treatment and reached a plateau after 4h (Figure 1b, Figure
1c and Supplemental Figure S2). Global expression of the B6 X chromosome, which carries
the doxycycline-inducible promoter was gradually reduced over time due to X inactivation,
starting at 4 hours of treatment (Figure 1d). Based on the PRO-seq dataset we estimated

gene-specific silencing half-times in a chromosome-wide manner, covering 296 genes in total.
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Figure 1: Measuring gene silencing dynamics. (a) Schematic overview of the experimental
setup. Generation of hybrid female mESC line (B6:Cast) with non-random XCI due to the
insertion of a DOX-responsive promoter in front of the Xist gene on the B6 allele. Pol Il activity
at base-pair resolution was measured by allele-specific PRO-seq (Precision nuclear Run-On
and sequencing assay) in a 24 hours time course. (b) Strand-specific read density at the
Tsix/Xist locus is shown over time after Dox-mediated induction of Xist. Plus-strand is shown

in red, minus strand is in blue; the y-axis is in reads per million. (¢) Xist kinetics on B6 and
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Cast over 24 hours time course. (d) Distribution of the fraction of B6 reads from the PRO-seq
experiment for both autosomal (A) and X-linked (X) genes over time. (e) Schematic overview
of the estimation of gene silencing half-times from the allele-specific PRO-seq time course
data. Raw reads are normalized to the uninduced control and corrected for basal skewing
towards one allele. Normalized read counts are fitted to an exponential decay function
separately for each gene and the silencing half-time of the corresponding gene is computed.
(F) Examples of three fitted exponential functions, and corresponding computed half-times, for
three genes: one early silenced (Stard8), one intermediated silenced (Piga) and one known
escapee gene (Otudb). (g) Distribution of estimated half-times for 296 X-linked genes. The
half-time ranges used to define the model classes, silenced and not silenced for the
XCl/escape model and early vs late silenced for the silencing dynamics model are also

highlighted.

The expectation is that, upon initiation of silencing, X-linked transcript expression will continue
to exponentially decrease at constant rate and can be described by an exponential decay
function typically used to model transcription inhibition time courses, mMRNA decay and mRNA
half-lives (Rabani et al. 2011; Lugowski et al. 2018).

To this end, expression from the B6 chromosome for each gene was normalized to the
uninduced control to correct for basal skewing towards one allele and was then fitted with an
exponential decay model to compute the silencing half-time (see Methods section). The half-
time indicates the time point at which transcription of the B6 chromosome is reduced by 50%
compared to the uninduced control (Figure 1e). The estimated half-times ranged from several
hours up to several days (Figure 1f and Figure 1g), showing that not all genes get silenced

in the 24h time course that was measured.

The estimated silencing dynamics are comparable to those measured in vitro

and in vivo
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In our experimental design we induced Xist ectopically in undifferentiated mESCs in order to
measure gene silencing with high temporal resolution. To ensure that the relative silencing
dynamics across genes in this setting are comparable to those in the cellular context where
XCI occurs endogenously, we compared the estimated half-times to those measured during
differentiation (Xist induction and differentiation for 48h). To this end, we generated two
additional data sets again using the TX1072 cell line, where mRNA-Seq was performed at
different time points of doxycycline treatment, namely 0, 2, 4, 8, 12 and 24h in undifferentiated
mESCs and 0, 8, 16, 14 and 48h in differentiating mESCs (Figure 2a). The computed half-
times were very similar whether measured in undifferentiated cells or during differentiation
(Figure 2b, Pearson correlation coefficient 0.75, p-value=7.07e-60), suggesting that the
differentiation process only has a minor impact on relative gene silencing dynamics. When
comparing half-times estimated from the two different data types (MRNA-Seq vs PRO-seq)
correlation was generally a bit lower, independent of the cellular context (Figure 2c and
Figure 2d, Pearson correlation coefficient 0.52/0.51), which would be expected given that
PRO-seq measures the direct transcription dynamics, whereas mRNA-Seq kinetics are
modulated by transcription, RNA-processing and degradation. All three datasets measure
doxycycline-induced silencing dynamics to ensure inactivation of the same chromosome (B6)
in all cells, which is a prerequisite to assess XCI in population measurements. To ensure that
doxycycline-induced XCI occurs with similar dynamics as X inactivation in differentiating XX
ESCs, we compared our data to a previous study that had used a different, doxycycline-
independent strategy to make XCI non-random (Marks et al. 2015). In that study a stop-
cassette had been inserted in Xists repressive antisense transcript Tsix, which results in
preferential inactivation of the mutant chromosome during differentiation. The silencing
classes that had been defined in that study (early, intermediate, late, escapee) are in good
agreement with the half-times we have estimated from the PRO-seq data (Figure 2e),
suggesting that doxycycline-induced XClI as used in our study recapitulates endogenous gene

silencing dynamics.
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Figure 2: Estimating gene silencing half-times. (a) Fraction of reads expressed from B6 for

each timestep of the time course experiment ordered by genomic position. X inactivation
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center is marked with Xic. Upper panel: PRO-seq experiment on undifferentiated mESCs over
a time course of 24 hours with replicates for time point 0 and 24 hours; intermediate panel:
MRNA-Seq experiment on undifferentiated mESCs over a time course of 24 hours with
replicates for each time point; lower panel: mMRNA-Seq experiment on differentiated mESCs
over a time course of 48 hours with replicates for each time point. (b - d) Comparison of half-
times computed from PRO-seq data on undifferentiated mESCs, mRNA-Seq data on
undifferentiated mMESCs and mRNA-Seq data on differentiating mESCs. For each comparison
a scatterplot with a fitted regression line (red) is shown. Pearson correlation between half-
times and significance of correlation (p-value of test statistics) is reported for each plot. (e)
Distribution of our computed half-times within the silencing classes defined by Marks et. al.
from RNA-seq time course data on differentiating mESCs (Marks et al. 2015). (f) Distribution
of our computed half-times within the silencing classes defined by Borensztein et. al. during
XCI in pre-implantation mouse embryos from single-cell RNA-seq data (Borensztein et al.
2017). (g) Distribution of our computed half-times within the classes defined by our
classification models: silenced and not silenced (XCl/escape model) and early and late
silenced (silencing dynamics model), respectively. (h) Estimated half-times (black stars)
relative to genomic positions of the corresponding genes. A fitted smooth curve of the half-
times is displayed as black line. The X inactivation center is marked with a grey line. i
Comparison of our estimated half-times with the X-linked gene dynamics observed in an Xist
A-repeat mutant cell line (Sakata et al. 2017). “repeatA independent genes” refers to the half-
time cumulative distribution of those genes which still undergo silencing in the mutant cell line
(orange line), while “repeatA dependent genes” refers to the half-time cumulative distribution

of those genes were silencing is abrogated in the mutant cell line.

We also validated the silencing half-times estimated in vitro by looking at an in vivo situation.
We compared our Xist-induced silencing half-times in ESCs to the dynamics of (imprinted)
XCI in pre-implantation mouse embryos, measured through single-cell RNA-Sequencing
(Borensztein et al. 2017). In that study, genes were classified as silenced early (before the 16-
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cell stage), intermediate (before the 32-cell stage), late (at the blastocyst stage) or not at all
(escapee). This was once more in very good agreement with the silencing half-times estimated
from the PRO-seq data (Figure 2f), since in vivo early silenced genes have half-times of less
than one day, late silenced genes have higher half-times between 0.8-1.5 days, while
escapees lie in the upper range of computed half-times of above 1 day. Taken together, these
results show that the silencing dynamics computed in our study recapitulate well the dynamics
of endogenous X-inactivation both in vitro and in vivo. Thus, based on our PRO-seq data we
defined classes of gene expression dynamics: early or late silenced; and silenced or not
silenced (including both escapees and very late silenced genes), as described in the next

paragraph.

Identifying determinants of gene silencing dynamics with Random-Forest
modelling

Having estimated gene-specific silencing kinetics from our PRO-seq data we set out to
understand which features might determine whether a gene is subject to XCl at all and whether
it is silenced with fast or slow kinetics. First, we noted that genes close to the Xic, where the
Xist gene is located, tended to be silenced faster than distal genes (Figure 2h), in agreement
with a previous study (Marks et al. 2015). However, many genes did not follow this trend, as
they are close to the Xic but escape XCI or are located in the distal regions of the X
chromosome but are silenced fast. To uncover additional factors that potentially determine the
susceptibility to Xist-mediated silencing of a given gene we developed a statistical machine
learning model to predict silencing dynamics based on genomic and epigenetic features.

We collected more than 100 publicly available high-throughput datasets (ChlP-seq and
Bisulfite-Seq) measuring chromatin modifications, chromatin modifiers, transcription factor
binding (TF) and components of the transcriptional machinery (Table 1). As these data sets
had been generated in undifferentiated mESCs, they correspond to the chromatin state before

Xist induction. After stringent filtering on data quality (see Methods section, Supplemental
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Figure S14 and S15 for examples), we computed the enrichment for 57 of these ChIP-Seq

features at the promoters of all genes present in our PRO-seq data set (Supplemental Table

S5). The active transcription start site (TSS) of each gene was identified based on a

bidirectional PRO-seq pattern (Core et al. 2014; Danko et al. 2015) (Supplemental Figure

S3 and Methods section). Out of 296 gene for which we computed half-times 280 could be

assigned an active TSS and were used for subsequent analysis. In addition, we included a

series of genomic and structural features, such as gene density, the frequency of 3D chromatin

interactions with different genomic elements and the linear distance to other genomic features,

such as the Xist locus, the next TAD boundary and the next lamin-associated domain (LAD)

(Table 1, for further details on the collected data and for data pre-processing refer to Methods

section and Supplemental Text S1).

Table 1: Epigenetic and genomic features used for modeling.

epigenetic
features

sequence- cMyc, Esrrb, Kif4, MafK, Nanog, nMyc, Oct4, Sox2,
specific Tcf3, Tcfep2l1, YY1, Znf384

transcription

factors

structural CTCF, Smc1, Smc3

proteins

general Cdk9, E2F1, Hcfc1, Max, Med1, Med12, Nipbl, RNAPII
transcription (pS2, pS5, pS7, unphosphorylated), Sin3a, Taf1, Taf3,
regulators Tbp

chromatin H3K27ac, H3K9ac, H3K4me1, H3K4me3,

modifications
(activation)

H3K36me3, H3K79me2, KMT2b/MII2

chromatin
modifications
(repression)

H2AK119ub1, H3K27me3, Ring1b (PRC1), Cbx7
(PRC1) Rybp (PRC1), KMT6/Ezh2 (PRC2), Suz12
(PRC2), Kdm1A/Lsd1, Kdm2A, Kdm2B, Hdac1, Hdac2,
DNA methylation (BS-Seq), 5fC (MeDip), 5hmC
(MeDip), Tet1

others H2A.Z, Ogt, Brg1, Cbx3

genomic distance to the Xist locus
genomic | elements overlap with Xist entry sites
features distance to TAD border

distance to LAD
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overlap with LAD

gene density (200kb)
overlap with CpG islands
CpG content

3D structure number interactions (HiC) all,

mean interaction strength (HiC) all, number interactions
(HiC) promoter,

mean interaction strength (HiC) promoter, mean
interaction strength (HiC) xist, number interactions
(HiCap) promoter, number interactions (HiCap)
enhancer, number interactions (HiCap) all

To identify features that determine a genes susceptibility to Xist-mediated silencing, we first
attempted to develop a linear model that would predict the silencing half-time from the
collected epigenetic and genomic features (data not shown). This simple approach however,
had little predictive power, probably because no single linear combination of features or rules
could be defined to discriminate, for example, silenced from not silenced genes. The different
functional domains of Xist might recruit distinct silencing complexes (e.g. PRC1 and
Spen/Hdac3) and thus elicit several parallel silencing pathways. Susceptibility to each
pathway might be determined by distinct feature patterns, thus resulting in different sets of
rules underlying Xist-mediated XCI. We expected to identify feature combinations associated
with different silencing pathways from our data set. For example in the trophoblast, genes that
require the Xist A-repeat, which recruits Spen, exhibit longer silencing half-times compared to
A-repeat independent genes that might be preferentially targeted by the polycomb-repressive
complexes (Sakata et al. 2017) (Figure 2i, Kolmogorov Smirnov (KS) test, p = 2.2*10-6).

To identify different combinatorial rule sets that could predict silencing susceptibility, we chose
to use Random Forest (RF), a non-parametric machine learning method which has been
shown to perform very well in non-linear classification tasks (Polak et al. 2015). RFs combine
an ensemble of single classification trees, which successively split the feature input space in

a non-linear fashion, to predict the value of a discrete binary variable (Figure 3).
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Figure 3: Schematic overview of our modeling approach. (a) Input data for the model are
collected and pre-processed. In particular, signals from epigenetic modifiers, histone marks
and other factors at X-linked gene promoters are computed, as well as features such as
distance of genes to other genomic elements (e.g. Xist locus, LADs), density of genomic
elements around gene promoters or 3D interactions. Estimated gene half-times are converted
to discrete classes for modeling. (b) Classification model. Genes are classified either into

silenced versus not silenced (XCl/escape model) or early versus late silenced (silencing
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dynamics model) using in both cases a Random Forest classifier. (¢) Forest-guided clustering
for model interpretation. A similarity matrix between genes (also referred to as proximity
matrix) is computed from the trained model and converted into a distance matrix for clustering.
Genes that end up more often in the same leaves of the Random forest trees are more likely
to be clustered together according to the common subset of features that determine their
classification. Clustering results, displaying genes and their most significant associated

features are displayed as a heatmap.

Based on the PRO-seq derived silencing half-times, we classified all genes according to
whether they are subject to XCI or escape (Figure 1g, silenced/not silenced) and whether
they are silenced with slow or fast kinetics (Figure 1g, early/late). The optimal half-time cutoffs
were determined during model training (see Methods section and Supplemental Table S6).
As described above, the resulting classes largely agree with those previously defined in
differentiating mMESCs and in pre-implantation embryos (Marks et al. 2015; Borensztein et al.
2017) (Figure 2e and Figure 2g). Moreover, the “not silenced” class is enriched for known
escapees (odd ratio 2.6, p-value 0.0032, Fisher exact test). The discretization of the gene half-
times into three non-disjoint classes and the use of two classification models rather than one
continuous model are justified by the fact that the computed half-times tend to be noisy and
give rather an indication of the silencing trend for each gene than an exact kinetic measure.
We built two binary classification models, one for silenced versus not silenced genes
(XCl/escape model), and another one for early versus late silenced genes (silencing dynamics
model) to predict a genes silencing susceptibility from a total of 74 epigenetic and genomic
features. The XCl/escape model would allow us to pinpoint those factors or combinations of
factors which are important for silencing in general, while the silencing dynamics model would
identify factors that influence the kinetics of gene silencing.

Both RF models are able to predict gene silencing dynamics with error rates of 27% and 30%,
which means that 73% and 70% of genes are classified correctly, which is considerably more
than a random predictor (computed as described in Methods section). We assessed the
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individual contribution of genomic and epigenetic features to the classification accuracy via
Random Forest variable importance analysis for the positive (silenced / early) and the negative
class (not silenced / late) of each model by the Mean Decrease in Accuracy (MDA) (Figure
4). The higher this value, the more important the contribution of the feature to the classification
model (see Methods section). We then trained our models on a set of only 10/11 top features
(see Methods section), which greatly improved the prediction error rate to 23% (XCl/escape
model) and 22% (silencing dynamics model) as shown in Supplemental Figure S4.
Discarding low-impact noisy features thus appears to greatly improve modeling of X-
chromosomal gene dynamics in both settings. Reassuringly, the XCl/escape model correctly
predicted several known escapees, such as Ddx3x, Taf1, Eif2s3x, Pdbc1, Kdm6a, Usp9x and
Utp14a, identified in more than one study (Yang et al. 2010; Berletch et al. 2011; Splinter et
al. 2011; Calabrese et al. 2012; Wu et al. 2014; Marks et al. 2015).

The most important feature associated with silencing in both models was close genomic
proximity to the Xist locus, which has an MDA of 16-21% in the XCl/escape model and of 5-
10% in the silencing dynamic model (Figure 4, Supplemental Figure S5 and S6). Other
important features were low gene density and enrichment for PRC1 (Ring1b, H2AK119ub1,
Rybp) and PRC2 (Ezh2) at (fast) silenced genes in both models, with PRC1/2 playing a more
prominent role in the silencing dynamics model (MDA for Ring1B of 5% in silencing dynamics

and 3% in XCl/escape model).
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Figure 4: Feature importance for both XCl/escape and silencing dynamics model. For

each model features are ranked according to their importance for the classification (either for

one class or the other) quantified by the Mean Decrease in Accuracy (MDA) (see Methods

section). The top features of each class (10 for XCl/Escape model; 11 for silencing dynamics
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model) which are used to build the final model are marked with a star. The color gradient
follows the MDA values: important features have a high MDA and are shown in dark blue,
while completely uninformative features have a low MDA (close to zero or negative) and are
shown in white. Intermediate features are shown with different grades of blue. For more details
on the stability analysis of important features refer to Supplemental Figure S5 and S6,

Supplemental Text S2.

Among the top features specific for the XCl/escape model (Figure 4) we found the association
with O-GIcNAc transferase Ogt (MDA 3-5%), which regulates a series of chromatin modifiers
(e.g. Ezh2) and transcriptional regulators (e.g. RNA Pol Il, Hcf1) (Yang and Qian 2017). Top
features associated with silenced genes include the histone deacetylase HDAC1, involved in
gene repression, as well as several features associated with active transcription, such as the
H3K4 methyltransferase MII2 (MDA 10% for escape class), the positive transcriptional
elongation complex b (P-TEFb) component Cdk9, E2F1 and Hcfc1, and the transcription factor
cMyc (MDA ranging from 2 to 4%). The dynamics of silencing by contrast seem to be strongly
influenced by the MafK transcription factor, which is enriched at slowly silenced genes (Figure
4b). Interestingly, several features related to 3D chromosome organisation also appear to be
associated with distinct silencing dynamics: While genes located in close proximity to a TAD
border tend to be silenced slow, genes tend to be silenced faster when they are close to a
LAD or highly connected to other genomic regions based on HiC/HiCap data. In summary, we
have identified different feature sets that appear to influence whether or not a gene is subject

to XCl and also, whether silencing occurs with slow or fast dynamics.

Forest-guided clustering of X-linked genes uncovers combinatorial rules of

gene silencing
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The variable importance analysis described above pinpoints the individual contribution of each
feature to the classification problem, but does not identify combinations of features associated
with different silencing pathways, which ultimately determine the silencing class of each gene.
Moreover, a large number of features appear to be of similar importance (MDA 2-4%), making
it difficult to prioritize the important factors in both models.

To enable a better interpretation of the results and identify the main rule sets within the
complex combinatorial classification of the RF models, we implemented a forest-guided
clustering approach to stratify the genes into subgroups according to different combinations
of rules. This approach uses the proximity of each gene to all other genes within the Random
Forest model to group genes that are regulated by the same set of genomic and epigenetic
features (see Methods section). The number of groups is chosen such that each cluster has
a low degree of class mixture (containing mainly genes from one class and none or only few
genes from the other class) while maintaining a small number of clusters in total (see
Supplemental Figure S7 and Supplemental Text S2). The results are visualized in a
heatmap (Figure 5a and Figure 6a) showing the genes (columns), grouped by cluster, and a
subset of features (rows) selected based on whether they were significantly different across
clusters (top 10 features, sorted by p-value, from an ANOVA test). A cluster stability analysis
showed that the clusters of the silencing dynamics are very stable, while the clusters of the
XCl/escape model model are more variable but no cluster dissolves (Supplemental Figure

S7 and Supplemental Text S2 for further information).
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XCl/escape model. (a) Forest-guided clustering reveals four main clusters of genes: elements
in cluster 1, 2 and 3 mainly correspond to genes predicted from the model as “silenced”
(marked in grey), while cluster 4 mainly contains genes predicted as “not silenced” (marked in
black). Rows of the heatmap correspond to the top 10 features which showed significant
differences among clusters, according to a p-value of an ANOVA test. Feature signals are
scaled between -3 and 3 in each row separately, to allow a visual comparison of features from
different scales. Scaled values are represented on a red-blue scale, with enriched features
mainly displayed in red, and depleted features in blue. Differences in the distributions of
features across different clusters are highlighted in the box plots next to the heatmap. (b)
Distribution of the gene half-times estimated from the PRO-seq time series data for each
cluster. (¢) Schematic view of the distinct molecular mechanisms leading to gene silencing

(cluster 1,2 and 3) or gene escape (cluster 4).
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For the XCl/escape model four clusters are found (Figure 5a). Clusters 1, 2 and 3 are mainly
populated with genes predicted as silenced, while cluster 4 contains not silenced genes
(Figure 5b). Generally, genes tend to escape silencing when they are far from the Xist locus,
when they have low levels of MII2 at their promoters and when they do not have a CpG island
(cluster 4). A large cluster of silenced genes (cluster 1) is already marked by a repressive
chromatin state (PRC1/2, Hdac1) (Supplemental Figure S8 and S9), while the two smaller
clusters are bound by E2F1 and Cdk9, which are associated with active transcription (cluster
2 and 3). In addition, cluster 1 and 2 are enriched for OGT, cluster 2 is also enriched for binding
of cMyc and genes in cluster 3 are particularly close to the Xist locus (Figure 5a and
Supplemental Figure S8). Taken together, genes pre-marked by PRC1 and 2 as well as
Hdac are generally silenced, while genes at the distal ends of the X chromosome tend to
escape silencing. Moreover, genes associated with features of active transcription will be
silenced, if they are enriched for Ogt and cMyc (cluster 2) or if they are very close to the Xic
with strong 3D interactions with the Xist locus (cluster 3) (Figure 5c¢).

In the next step, in the silencing dynamics model, we focused on genes that become silenced
by Xist and investigated the factors that would distinguish fast and slowly silenced genes.
Here, the forest-guided clustering approach produced three clusters (Figure 6a): clusters 1
and 2 contain genes with lower half-times and are therefore predicted as early silenced, and
cluster 3 is enriched for genes with higher half-times and predicted as late silenced (Figure
6b). Gene promoters in both early silenced clusters (1 and 2) tend to be close to the Xist locus
(Figure 6a and Figure 6¢), similar to the silenced genes in the analysis above (Figure 5a).
Again, a fast silenced cluster (1), pre-marked by polycomb-repressed chromatin
(H2AK119ub1, Ring1B, EzH2, Suz12, H3K27me3) is found. The second fast silenced cluster
is mainly characterized by depletion of the transcription factor MafK and moderate enrichment
of features related to transcriptional elongation, such as Ser2-phosphorylated RNA
Polymerase Il and H3K36me3 (Figure 6a, Supplemental Figure S10 and S11). Interestingly,
genes overlapping with Xist entry sites and genes that exhibit 3D contacts with the Xist locus
are preferentially found in the early silenced cluster 2 (Figure 6a bottom). The late silenced
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genes fall in cluster 3 and mainly differ from early silenced genes by their distance to the Xist
locus and by their genomic context, with being preferentially located in gene dense regions.
In addition, slowly silenced genes show a moderate enrichment of the transcription factor
Tcfcp2l1. By taking the data from Sakata et al. (Sakata et al. 2017), we also analysed genes
that can be silenced by an Xist mutant lacking the A repeat in the trophoblast, and found them
to be enriched in the fast cluster 1 compared to the slow cluster 3 (p-value=0.07 Fisher exact
test, Supplemental Figure S$12). These genes probably rely on the polycomb pathway for
silencing in the trophoblast and appear to the be pre-marked by polycomb already in
undifferentiated ES cells. In summary, our clustering analysis reveals that PRC1/PRC2 pre-
marking seems to promote rapid silencing, while a long genomic distance from the Xist locus
will delay silencing. For genes that are close to Xist, but depleted for the PRC1/2-associated
chromatin marks, a high connectivity within 3D chromatin organisation appears to accelerate

silencing.
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Figure 6: Classification rules for early vs late silenced genes derived from the silencing
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dynamics model. (a) Forest-guided clustering reveals three main clusters of genes: elements
in cluster 1 and 2 mainly correspond to genes predicted from the model as “early silenced”
(marked in grey), while cluster 3 mainly contains genes predicted as “late silenced” (marked
in black). Rows of the heatmap correspond to the top 10 features which showed significant
differences among clusters, according to a p-value of an ANOVA test. Feature signals are
scaled between -3 and 3 in each row separately, to allow a visual comparison of features from
different scales. Scaled values are represented on a red-blue scale, with enriched features
mainly displayed in red, and depleted features in blue. Differences in the distributions of
features across different clusters are highlighted in the box plots next to the heatmap. (b)

Distribution of the gene half-times estimated from the PRO-seq time series data for each
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cluster. (c) Schematic view of the distinct molecular mechanisms leading to fast gene silencing

(cluster 1,2) or slow gene silencing (cluster 3).

Experimental testing of model predictions

To validate our machine learning model we used the trained XCI/Escape RF model to predict
the silencing class for X-chromosomal genes that could not be analyzed in the PRO-seq
experiment due to insufficient coverage (Figure 7a and Supplemental Table S1). Although
the number of X-linked genes that are not included in our PRO-seq data set, but had
polymorphisms and adequate expression levels prior to XCl were limited, we nevertheless
identified two genes for assessment by pyrosequencing as validation of our models. The
silencing dynamics of one gene, Sat1, predicted to be inactivated and another gene, Wdr13,
predicted to escape, that had been selected based on prediction probability and expression
level, were then assessed experimentally (Figure 7a). To this end, TX1072 cells were treated
with doxycycline for 8h and the ratio of Sat7 and Wdr13 mRNA originating from the B6 and
Cast chromosomes was quantified by pyrosequencing at different time points (Figure 7b).
Sat1 expression from the B6 chromosome was reduced by 50% after 8h doxycycline treatment
and was clearly silenced more strongly than Wdr13, which stayed approximately constant
during the time course (Figure 7b). We also estimated the silencing half-times for Sat7 and
Wdr13 from a pyrosequencing experiment performed on RNA extracted from the same cells
used for the initial PRO-seq experiments. As predicted, Sat1 falls in the silenced class with
half-time of 0.88 days, while Wdr13 falls in the not silenced class with a half-time of 1.65 days
(Supplemental Figure S$13). These results confirm that our machine learning model can

predict X-chromosomal gene silencing based solely on epigenetic and genomic features.
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Figure 7: Chromosome-wide prediction of X-linked gene silencing and experimental
validation of few candidates. (a) Workflow of gene silencing prediction and candidate
selection for experiments. The XCl/escape model is trained on labeled data (gene promoter
features and corresponding half-time class). The trained model is then used to predict the
silencing class of all unlabeled X-linked genes, i.e. genes for which a half-time could not be
estimated from the data, given the same set input features. Few candidate genes with newly
predicted silencing class are chosen for experimental validation based on different filtering

criteria. (b) Experimental validation of one gene predicted as silenced (Sat7) and another gene
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predicted as not silenced (Wdr13). Allele-specific quantification of Sat7 (left) and Wdr13 (right)
through pyrosequencing at different time points during 8h of doxycyline treatment in TX1072
cells. The measurements are corrected for basal skewing and normalized to the uninduced

control (for details see methods). Mean and standard deviation of 3 replicates are shown.

Discussion

In this study we have developed a machine learning model that can predict a genes
susceptibility to Xist-mediated silencing from a combination of epigenetic and genomic
features. To train the model we measured silencing kinetics with high temporal resolution
through allele-specific PRO-seq. Compared to previous studies (Marks et al. 2015;
Borensztein et al. 2017), we assess silencing dynamics by measuring nascent transcription,
therefore observing instantaneous changes in transcription by transcriptionally engaged Polll.
Such measures of “transcription turn off” are not complicated by preexisting levels of mMRNAs,
as well as RNA processing and degradation dynamics. Moreover, the use of an inducible
system allows us, in contrast to a previous study (Marks et al. 2015), to uncouple XCI from
differentiation and to avoid the use of mutations in Xist cis-regulation to ensure non-random
XCI. To identify the rules that govern the silencing dynamics, we developed a statistical
random-forest model that can predict gene silencing dynamics from a set of genomic and
epigenetic features. Unlike previous studies that focus on just a few sets of genes and/or
investigate a few selected promoter features which are potentially linked to the XCI (Kelsey et
al. 2015; Marks et al. 2015; Loda et al. 2017), we set out to identify silencing determinants in
an unbiased manner based on a large number of epigenetic and genomic features. In order
to discern the combinatorial rules which play a role in silencing dynamics we go one step
beyond classical variable importance analysis in Random Forests and introduce a
visualization scheme, based on Random-Forest-based clustering analysis. The determinants

of silencing for groups of clustered genes from both the XCl/escape model and the silencing
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dynamics model retrieve previous observations but also shed light on novel players or
combination of features which seem to have an important role in a genes susceptibility to Xist-
mediated inactivation.

At the onset of XCI, Xist RNA does not cover the whole X chromosome evenly, but probably
spreads by proximity transfer to regions that exhibit 3D contacts with the Xist locus (Engreitz
et al. 2013). Contact frequency, and consequently also Xist coating, generally correlates with
the genomic distance from the Xist locus, but is enriched at a set of 28 “Xist entry sites” that
are spread along the X chromosome (Engreitz et al. 2013). In agreement with these
observations our model identifies the genomic distance to the Xist locus as the primary
determinant of gene silencing dynamics, an association that was also described previously
(Marks et al. 2015). Moreover, we find that genes with strong 3D interactions with the Xist
locus and genes that overlap with Xist entry sites are generally silenced fast, which has also
been seen during imprinted XCI in preimplantation embryos (Borensztein et al. 2017).
Interestingly, Xist initially tends to spread to gene-dense regions (Engreitz et al. 2013; Simon
et al. 2013), but in our analysis, gene density is associated with reduced silencing, suggesting
that Xist coating is not the only determinant of silencing.

Upon coating of the X chromosome, Xist recruits several protein complexes that then mediate
gene silencing. While the protein Spen has been shown to directly bind to the A-repeat on the
Xist RNA and be required for silencing in ES cells (Wutz et al. 2002; Chu et al. 2015; Monfort
et al. 2015), a subset of genes in the extraembryonic trophoblast, where XCl is imprinted, can
be silenced by an Xist mutant lacking the A-repeat (Sakata et al. 2017). Those genes might
be particularly sensitive to alternative, Spen-independent silencing pathways, potentially
mediated by the polycomb repressive complexes, which have been shown to play a more
prominent role for silencing in the trophoblast compared to ES cells (Brockdorff 2017).
Interestingly, these A-repeat independent genes are silenced particularly fast in our data set
and are enriched in a cluster of rapidly silenced genes (Figure 6a) that is enriched for PRC1
and to a lesser extend PRC2. This finding suggests that polycomb pre-marking prior to the
onset of XCl might accelerate gene silencing, either by enhancing recruitment of additional
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repressive complexes or by helping to recruit Xist to gene promoters. A similar enrichment of
PRC2 chromatin mark H3K27me3 and the PRC1 component Ring1b has previously been
found at genes susceptible to ectopic silencing by Xist transgenes (Kelsey et al. 2015; Loda
et al. 2017).

In addition to pre-marking with repressive chromatin modification and complexes (PRC1/2,
Hdac), we surprisingly also find features associated with active transcription at promoters of
silenced genes. The H3K4 methyltransferase MII2/Kmt2b, which deposits H3K4me3 at
bivalent promoters in ES cells (Hu et al. 2013; Denissov et al. 2014), and also Hcfc1 that is
part of the MII2 complex (Herz et al. 2013) and E2F1 that recruits the MII2 complex in a cell
cycle dependent manner (Tyagi et al. 2007), are enriched at silenced genes. Moreover, the
transcription factor cMyc and the Cdk9 protein, a member of P-TEFb, are found at a subset of
silenced genes. Interestingly, a large number of silenced genes are strongly enriched for Ogt,
the single enzyme that catalyzes the post-translational modification O-GIcNAc, found at
Ser/Thr residues in many proteins (Yang and Qian 2017). For example Hcfc1 activity requires
O-GlIcNAcylation and the PRC2 component Ezh2 is stabilized by O/GIcNAcylation (Yang and
Qian 2017). Moreover, RNA Pol Il is O-GlcNAcylated at Ser2 and Ser5, thus competing with
phosphorylation (by Cdk9 for Ser2) of these residues, which is required for transcription
initiation (Ranuncolo et al. 2012; Lewis et al. 2016; Harlen and Churchman 2017). Since Ogt
targets a large number of proteins and affects transcription in many different ways, it is hard
to pinpoint at this moment on how it might promote Xist-mediated silencing, but our finding
opens up an interesting avenue for future studies. It should also be noted that the Ogt gene is
actually X-linked, raising the intriguing possibility that it might even be implicated in the XX
dosage sensitivity involved in XCI.

Finally, our analysis identified several structural features that appear to modulate the dynamics
of silencing. A high “connectivity” of some genes, i.e. how much the gene is involved in 3D
interactions with other genomic elements, is associated with faster silencing, maybe because
Xist RNA can spread more easily to these genes through proximity transfer. Moreover, fast
silencing preferentially occurs at genes that are close to a LAD, which generally contain
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repressed genes (van Steensel and Belmont 2017), while genes close to TAD boundaries
tend to be silenced slowly.

In conclusion, we have developed two Random Forest models that can accurately predict
silenced and not silenced/escape genes, but also classes of early versus late silenced genes,
constituting the first chromosome-wide predictive models of gene silencing from a very large
set of features. We confirmed the predictive nature of our models by experimental testing of
model predictions. The Random Forest approach allows us to quantify the relative contribution
of several features that have previously been associated with XCI (e.g. linear distance to Xist,
enrichment for PRC1 and PRC2 etc) and suggested new features that can be tested in more
detail in future studies. It is however likely that additional features, which are not included in
the current model due to missing or poor quality datasets, might contribute to modulate the
susceptibility to Xist-mediated silencing. For example, certain repetitive elements, such as
LINEs have been suggested to affect silencing and escape from XCI (Lyon 1998). Including
additional features in the future will likely further improve our ability to predict silencing
susceptibility and a detailed experimental investigation of the different silencing pathways
elicited by Xist will facilitate the interpretation of the features that predict silencing dynamics

as well as escape from XCI.

Methods

ES cell culture

The female TX1072 cell line is a F1 hybrid ESC line derived from a cross between the 57BL/6
(B6) and CAST/EiJ (Cast) mouse strains that carries a doxycycline responsive promoter in
front of the Xist gene on the B6 chromosome and an rtTA insertion in the Rosa26 locus
(described in Schulz et al. (Schulz et al. 2014)). TX1072 cells were grown on gelatin-coated
flasks in serum-containing ES cell medium (DMEM (Sigma), 15% FBS (Gibco), 0.1mM (-
mercaptoethanol, 1000 U/ml leukemia inhibitory factor (LIF, Chemicon)), supplemented with

2i (3 yM Gsk3 inhibitor CT-99021, 1 uM MEK inhibitor PD0325901). Cells were seeded at a
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density of 10s cells/cm: coated with gelatin two days before the experiment. Xist was induced
by supplementing the medium with 1 ug/ml Doxycycline. For PRO-seq samples were collected
before doxycycline treatment (Oh) and at time points 0.5, 1, 2, 4, 8, 12 and 24 h after treatment.
Samples without doxycycline and 24 h doxycycline were collected in duplicate. For mRNA-
Seq on undifferentiated TX1072 cells, samples were collected before doxycycline treatment
and at time points 2, 4, 8, 12 and 24 h after treatment. Also for mMRNA-seq samples without
doxycycline and 24 h doxycycline were collected in duplicate. For mRNA-Seq on differentiating

TX1072 cells samples were collected at time points 0, 8, 16, 24 and 48h.

PRO-Seq

For each timepoint ~1 x 107 nuclei were isolated by washing the cells twice with ice-cold PBS,
and once with 15 ml swelling buffer (10 mM Tris-Cl, pH 7.4, 300 mM Sucrose, 3 mM CacCl,, 2
mM MgAc., 5 mM DTT). Then, 15 ml cell lysis buffer (10 mM Tris-CI, pH 7.4, 300 mM Sucrose,
3 mM CaCl., 2 mM MgAc., 0.5% NP-40, 1 mM PMSF, EDTA-free protease inhibitors (1 tablet
for 50 ml buffer; Roche), 5 mM DTT) is added and cells are scraped off the plate into a 50 ml
tube and spun at 900 g and 4 -C in a swing bucket centrifuge for 5 minutes. Supernatant is
removed and the cell pellet is resuspended in 5 ml cell lysis buffer, transferred to a 7 ml dounce
homogenizer and dounced 50x on ice. Dounced cells are moved to 15 ml tube and spun at
1200 g and 4 -C in a swing bucket centrifuge for 5 minutes. Supernatant is removed and the
nuclei are counted, snap frozen and stored in glycerol storage buffer (50 mM Tris-ClI, pH 8.3,
40% glycerol, 0.1 mM EDTA, 5 mM MgAc., 1 mM PMSF, EDTA-free protease inhibitors (1
tablet for 50 ml buffer; Roche), 5 mM DTT).

Run-on and library preparation was performed as previously described (Mahat et al. 2016),
using the single biotin-CTP nucleotide run-on protocol to prolong run-on and increase
sequence length. In short, run-on was performed with 1 x 107 nuclei in 100 ml glycerol storage
buffer and 100 ml pre-heated nuclear run-on mix, to get a final concentration in the run-on of

5 mM Tris-HCI, pH 8, 2.5 mM MgCI2, 0.5 mM DTT, 150 mM KCI, 0.025 mM biotin-11-CTP,
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0.25 mM CTP, 0.125 mM ATP, UTP and GTP, 0.5% sarkosyl and RNase inhibitor. Run-on
was done for 5 minutes at 37 ‘C and stopped by adding 500 ml Trizol LS. RNA isolation, base
hydrolysis, biotinylated-RNA enrichment steps, enzymatic modifications of RNA, adapter
ligations, reverse transcription, amplification and library size selection were done as described
previously(Mahat et al. 2016). Libraries were sequenced on the HiSeq 2000 lllumina

sequencer (100bp, single-end). For each library at least 50 Mio reads were generated.

Processing of PRO-Seq data

Adapter sequences were trimmed with cutadapt v1.8.2. Nucleotides with poor 3’ base quality
(BAPQ < 20) were trimmed and reads of <20 bp were discarded. After quality control between
30 to 50 million reads remained. Ribosomal reads were first removed by alignment to the rRNA
reference (GenBank identifiers:18S, NR_003278.3; 285, NR_003279.1; 5S, D14832.1; and
5.8S, KO1367.1) using bowtie1 (v1.0.0) and allowing 2 mismatches in the seed (-m 1 -1 20 -n
2 options). Then, non-ribosomal reads were mapped to both parental genomes. To do this,
the VCF file (mgp.v5.merged.snps_all.dbSNP142.vcf) reporting all SNP sites from 36 mouse
strains, based on mm10, was downloaded from the Sanger database. SNPsplit tool (v0.3.0)
was used to reconstruct the Cast genome from the mm10 reference. Only random best
alignments with fewer than two mismatches (-M 1 -v 2 -1 20 options) were kept for downstream
analyses. We applied an allele-specific RNA-seq strategy as described in Borensztein et
al.(Borensztein et al. 2017). Briefly, mapping files of both parental genomes were merged for
each sample and SAMtools mpileup (v1.1) was then used to extract the base-pair information
at each genomic position. Read counts mapping to the paternal and maternal genomes,
respectively, were summed up across all SNPs present in the same gene. To avoid allele
specific bias, we checked the genotypes using a ChIP-Seq input from the same cell line (data
not shown). Therefore, only SNPs covered by at least 10 reads in this input sample and having

an allelic ratio range between 0.25 and 0.75 were kept for downstream analysis (17,035,327
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SNPs in total). RPKM values were calculated using gene count table, generated with Gencode

annotation (M9) and HTSeq software (v0.6.1).

RNA extraction and cDNA preparation

Cells were lysed by direct addition of 1 ml Trizol (Invitrogen). Then 200ul of Chloroform was
added and after 15 min centrifugation (12000xg, 4°C) the aqueous phase was mixed with 700
Ml 70% ethanol and applied to a Silica column (Qiagen RNAeasy Mini kit). RNA was then
purified according to the manufacturers recommendations, including on-column DNAse
digestion. Concentration and purity were checked on a Nanodrop. In case of a low 260/230
ratio, extra ethanol precipitation was performed. RNA profiles were then checked by
Bioanalyzer (Agilent RNA 6000 Nano kit) and 1ug of RNA from each condition was used for
mRNA-seq. For pyrosequencing, 1ug RNA was reverse transcribed into cDNA using

Superscript Il Reverse Transcriptase (Invitrogen).

Pyrosequencing

For allele-specific expression analysis of Sat1 and Wdr13, pyrosequencing technology was
used. Starting from cDNA, an amplicon containing a SNP is amplified by PCR with primers
CGACACTTCATGGCAACCTAGTA, AAGAGGGTGAAATGTTCTCTCTGG (reverse) for Sat1
and GTCAACTCTGCCACCTCAAAAATT, GCAACAGAATTTGGGTACATAACA for Wdr13
using GoTag Flexi G2 (Promega) with 2.5 mM MgCI2 for 40 cycles. The PCR product was
sequenced using the Pyromark Q24 system (Qiagen) with primers

CTTCATGGCAACCTAGTA for Sat1 and TTCATCACCAATCATCC for Wdr13.

mMRNA-Seq
The 32 libraries were prepared with an input of 1ug of totalRNA, using the TruSeq Stranded
mRNA LT Sample Prep kit from lllumina, according to manufacturer's recommendations.

Single Index kit was used, and 12 cycles of PCR were set up. Final libraries were quantified
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with Qubit dsDNA HS Assay Kit, and qualified with LabChip® GX system (PerkinElmer). Then
2 equimolar pools of 16 libraries each were prepared at 10nM. The exact molarity of the pools
were assess by qPCR using the KAPA Library Quantification Kit lllumina on CFX96 system
(Biorad). Then each pool was sequenced on 1 flowcell of HiSeq 2000 system (paired-end,

100bp reads) in PE100, in order to target ~100M cluster per sample.

Processing of mRNA-Seq data

First ten bases from all reads were removed, due to their low quality, using FASTX toolkit
(v0.0.13). Reads were then mapped to both parental genomes with TopHat2 software (v2.1.0).
Only random best alignments with less than two mismatches were kept for downstream
analyses. We applied the same allele-specific RNA-seq strategy used for PROseq data

analysis.

Silencing half-times

From the allele-specific counts, the fraction of reads mapping to the B6 chromosome were
calculated for each gene as the reads mapped on B6 (mm10) genome divided by the total
number of allele-specific reads.

readth6

fs = (1)

readsg ¢+ readsé o
Only genes with a minimum of 10 allele-specific reads at each time point were considered for
further analysis. th6 was averaged across replicates (0, 24h), resulting in a total of eight time

points (t=0, 0.5, 1, 2, 4, 8, 12, 24h). For estimating gene-specific silencing half-times we first
normalized the data to the uninduced control and corrected for basal skewing (different
transcriptional activity at the two alleles in the absence of dox). We assume that transcription

is constant on the Cast allele throughout the time course since Xist is induced only on the B6

chromosome. Solving (1) for T'eadsctastat t=0h gives
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If we solve (1) for readsfg and substitute reads 5, s with (2) we obtain:

constcast

readsky = (3)

1-fhe
f
fBe

we can calculate the expression from the B6 allele relative to the uninduced control (t=0)

ratiofgfor each time point as follows

t 0 t

readsgs _ 1— fpe ” fB6
0o 0 t

readsg, fBs 1-fgs

ratioks = (4)

Silencing half-times were estimated by fitting T'atiolg6 with an exponential decay function:
N(t) = e ®t (5
where k represents the silencing rate and N (t) the fit for ratiof%. The nonlinear least-

squares estimate of the parameter k of the exponential decay function in (5) was determine
with the nls function (stats R package). For each gene the half-time, defined as the time

point at which gene expression is reduced to 50% of its initial value at t=0 is estimated from k:

halftime t, , = @ (6)

A maximum value of k = 5, corresponding to a half-time of 3.5 days was set, as higher half-
times cannot be reliably estimated from our data, due to the limited range of time points from
0 to 24 h. The goodness of fit was evaluated via the square root of the residual sum of square

sqrtRSS defined as:

sqrtRSS =/ Y (ratiot, — N(t))? (7)
In order to obtain reliable half-times, only genes with a sqrtRSS smaller than 1.5 and a basal
skewing fB% between 0.2 and 0.8 were considered for further analysis. From the PRO-seq

data, we could compute half-times for 296 X chromosomal genes on mouse genome mm10
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(Supplemental Table S4 and Supplemental Table S2). Those genes were mapped to the
mouse genome mm9 with the 1iftOver tool (Kuhn et al. 2007) from UCSC Genome Browser.
Gene half-times from both differentiated and undifferentiated mRNA-seq time series were
computed in the same way as described above. For the undifferentiated mMRNA-Seq data set
we discarded replicate B due to insufficient read coverage and only used replicate A (Figure
2a), which resulted in computing half-times for 346 genes. For the differentiated mMRNA-Seq
data set we averaged replicate A and B for each time point and computed half-times for 379

genes. For 233 genes, half-time could be estimated from all 3 data sets.

Identification of active gene TSSs

To identify for each gene the transcription start site (TSS) that is used in embryonic stem cells,
we annotated regulatory regions (RR) based on the PRO-seq data with the dREG method
(Danko et al. 2015). RRs are defined as regions which harbor bidirectional transcription from
the PRO-seq signal at time point t=0. Both replicates at t=0 were analysed separately and de-
novo RRs with a quality score of 0.8 or higher were selected. Those RRs are indicative of
active transcription start sites (TSS) and were used to assign each gene to its active TSS
(Supplemental Figure S3). Regulatory regions with overlapping genomic ranges between
replicates were merged into one region. Most of the identified RRs overlapped known gene
promoters. If an RR was found within +/- 100bp of an annotated gene TSS, the TSS was
chosen as active TSS for that gene. If multiple gene TSSs were found to overlap RRs, the
active TSS overlapping the RR with the strongest signal (i.e. highest score) was chosen for
that gene. If no RR was found within +/- 100bp of an annotated gene TSS, the genomic search
space was extended to +/- 1000bp. If an RR could be found within +/- 1000bp of an annotated
gene TSS, a novel alternative TSS, coincident with the middle point of the RR, was defined
for that gene. If no RR could be found also within the enlarged region, the gene was discarded.
This revised gene TSS annotation for 280 genes with computed half-times was used to

quantify promoter features from ChiP-Seq data sets (Supplemental Table S4).
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Definition of model features

The epigenetic and genomic features used for the Random Forest models are listed in detail
in Supplemental Table S3 and summarized in Table 1. In total, 133 ChIP-seq libraries and
one bisulfite sequencing experiment on undifferentiated mouse embryonic stem cells (MESC)
were collected from various sources. After performing ChIP-Seq library quality control with the
deepTools package (Ramirez et al. 2014) and stringent filtering, 57 ChIP-seq libraries and the
bisulfite sequencing experiment were used in the model (Supplemental Text S1 for details
on data pre-processing and filtering and Supplemental Figure S14 and S$15). Epigenetic
features are defined as the average ChlP-seq signal in a pre-defined region around the genes
TSS, normalized to the signal of a matched control experiment in the same region (see
Supplemental Figure S16 as example). Read counts of each feature were normalized to the
control with the R package normR (Helmuth et al. 2016; Kinkley et al. 2016). The pre-defined
regions from which the epigenetic signal is computed are defined individually for each feature
to account for broad and narrow features, e.g. epigenetic signal for H3K36me3 vs.
Transcription Factor signal cMyc, by manually inspecting the heatmap plots generated by the
deepTools (Supplemental Figure $S14 and $15, Supplemental Table S3).

In addition to epigenetic features, we defined 16 genomic features, including distance of each
genes TSS to the Xist locus or to the next TAD border. A gene was considered to overlap with
a LAD if a region of 1000 bp around its TSS overlapped with an annotated LAD. Gene density
was defined as the number of annotated genes within the 200 kb region around the TSS. 3D
interactions were quantified as the number of interactions (number of loci that interact with the
gene) or strength of interactions (average read counts / number of interactions) defined by
HiC or HiCap data for each genes promoter. A gene was classified as overlapping with a CpG
island if a region of 1000 bp around each genes TSS overlaps with an CpG island as annotated
in the UCSC genome browser (mm9). CpG content was defined as the normalized CpG

content within the 1000bp region around each genes TSS, computed as the ratio of observed
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over expected CG dinucleotides (Marsico et al. 2013). A detailed description of all genomic

features can be found in Supplemental Text S1.

Random Forest classification models

Two statistical models were developed to predict “silenced” vs “not silenced” genes, referred
to as “XCl/escape model” and the other one to distinguish “early” vs “late” silenced gene,
referred to as “silencing dynamics model”. The continuous half-time values were therefore
assigned to discrete classes in both models, according to fixed thresholds, which were chosen
such that the error rate from the classification model (see below) would be minimized (Figure
1g, Figure 2g and Supplemental Table S6). Genes were defined as silenced for t.. < 0.9 and
as not silenced for t.. > 1.6; they were classified as “early silenced” if {.. < 0.6 and as “late
silenced” if 0.9 < t.. < 1.4 Genes outside these ranges were not included in model training. At
the end, the XCl/escape model was trained on 218 genes (168 from the “silenced” and 50
from the “not silenced” class) and the silencing dynamics model on 139 genes (100 from the
“early” silenced and 39 from the “late” silenced class).

The two Random Forest classification models were implemented with the randomForest R
package. Random forests are non-parametric classifiers which make use of multiple decision
trees to learn non-linear classification tasks. The use of multiple trees makes the method
robust to outliers and noise, and reduces the risk of overfitting, also with a small number of
training examples, strong class imbalance and correlated features. Class imbalance is present
in both our data sets (168 silenced versus only 50 not silenced genes and 100 early silenced
versus 39 late silenced genes), as well as correlation between epigenetic and/or genomic
features (Supplemental Figure $17). In a Random Forest, for each tree a random subset of
training genes are drawn with replacement from the whole dataset. We set this number
(sampsize parameter in the randomForest R package) to the size of the smaller class - 10 for
both classes, to ensure that each tree is trained on a balanced subset of the data, thereby

avoiding a classification in favour of the larger class. The examples of the dataset which are
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not used by a classification tree for training (out-of-bag data) constitute a test set for that
particular tree and are used to compute the prediction error of the tree, the out-of-bag (OOB)
error.

The prediction for each gene is made by taking a majority vote from the predictions over all
trees for which that sample was part of the out-of-bag data. By comparing the OOB predictions
with the measured half-time training set one can estimate the prediction error rate. We used
Random Forest classification with 1000 trees to predict the silencing class for our X-
chromosomal genes in both classification settings (i.e. XCl/escape model and silencing
dynamics model) using in total 74 predictor variables (epigenetic and genomic features). The
mtry parameter, defining how many features are randomly tested at each split in the tree, was
optimized during training such that the OOB error of the corresponding Random Forest is
minimized (i.e. the average OOB error from all the trees).

Random Forest provides several internal measures of feature importance, based on out-of-
bag data. Here, we chose the mean decrease in accuracy (MDA) as feature importance
criterion because it has a straightforward interpretation. The MDA for a given feature is the
decrease in model accuracy from permuting the values of that feature, averaged over all trees.
Therefore variables with large positive values of the MDA correspond to important features for
the classification, while variables with MDA close to zero or negative correspond to
unimportant features or noise. MDA is computed for every feature in the model and for each
class separately, as some features might contribute more to the prediction of one class vs the
other. Feature importance (MDA) and classification performance (OOB error) measures were
further averaged over a collection of five hundred Random Forests to obtain stable results.
Simple feature selection was performed to improve the model performance by removing
weaker or redundant features, which potentially introduce noise. We ranked features in each
class according to their MDA and computed the models error rate on the top x features from
both classes (including only those variables with MDA > 0). x was optimized to obtain the
combination with minimal error rate. The top feature set with minimal error rate (10 from each
class of the XCl/escape model and 11 from each class for the silencing dynamics model) was
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then used to train a second collection of Random Forests. For both models, The classification
performance is reported as average of five hundred Random Forests trained on the fop

features.

Forest-guided clustering for model interpretation

In order to unravel the combinatorial rules of X-chromosomal gene silencing, as well as
correlations between important epigenetic and genomic features, we attempted to cluster and
visualize X chromosomal genes according to those rules. Each individual tree in the Random
Forest model contains several terminal nodes (i.e. leaves) with only a small number of
observations (i.e. genes) which belong to one of the two classes. We can then extract a
similarity measure between those observations: if two genes i and j land in the same terminal
node, the similarity between i and j is increased by one(Breiman 2001). We computed
similarities for all gene pairs and build an NxN symmetric matrix (with N=total number of
genes), which we refer to as proximity matrix (Figure 3c). Each entry in the proximity matrix
lies in the interval [0,1] and represents the frequency with which two genes occur in the same
terminal node of a tree, intuitively defining “how close” two genes are in the forest. Next, the
similarity values of this matrix are converted to dissimilarities or distances:

distance[i,j] = 1 — proximity|[i,j] (8)

and used as input to k-medoids clustering(Reynolds et al. 2006) in order to group genes into
clusters, using the pam function of the cluster R-package. The proximity matrix values and
the class predictions used for clustering are also averaged over the 500 Random Forest
models. As the clustering process is guided by the proximity matrix derived from the Random
Forest, genes of the same silencing class (e.g. not silenced) are largely expected to cluster
together according to a certain combination of epigenetic and genomic features. Given the
non-linear nature of the classification problem modeled here, we also expect, to some extent,
genes from the same silencing class to be grouped in different cluster according to different

combination of features.
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Similarly to k-means clustering, k-medoids clustering requires setting in advance the number
of clusters k. We developed a scoring system to choose the optimal k which minimizes model
bias and restricts model complexity (Supplemental Text S2). According to this scoring
system, we chose k=4 for clustering genes from the XCl/escape model and k=3 for clustering
genes from the silencing dynamics model (Supplemental Figure S7). The results of the k-
medoids clustering are visualized for both models as heatmaps. As displaying all the models
variables in the heatmaps would make visual interpretation harder, we display only the top 10
features which have a significant variation across clusters according to the p-value of an
ANOVA test. Compared to classical Random Forest feature importance, the outcome of the
forest-guided clustering enables an alternative interpretation of the Random Forest predictions

in terms of combinatorial rules which determine the silencing state of groups of genes.

Gene class predictions

Given our trained XCl/escape model we predicted the silencing class of all X-linked genes
which were not included in the training set, either because of insufficient read coverage from
the PRO-seq data or because of a poor fit to the exponential model. For these genes, we
computed the same epigenetic features at gene promoters, as well as all genomic features as
described above and gave them as input to the Random Forest model. After class prediction,
few genes were chosen for experimental validation (Figure 7a) according to the following
criteria: 1) sufficient expression for experimental detection at time point 0 (PRO-seq RPKM >
1, based on non-allele specific mapping); 2) at least one polymorphic site (SNP) in exonic
regions and 3) probability of a gene to be predicted in a certain class (silenced vs not silenced)

higher than 65%, averaged over 500 trained Random Forests.

Statistical tests
A non-parametric Kolmogorov-Smirnov (KS) test was performed to test whether silencing

dynamics significantly differ between A-repeat dependent genes and A-repeat independent
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genes. A Fisher exact test was performed to test whether known escapee genes
(Supplemental Table S2) were enriched among: 1) genes with measured half-times higher
than 1.6, which define the not silenced class in the XCl/escape model and 2) genes predicted
as not silenced from the XCl/escape model. An Analysis of Variance (ANOVA) test was
performed to test whether the distribution of the values of each features differed significantly
across clusters in both the XCl/escape and the silencing dynamics model. All statistical tests

were performed in R with the base statistical functions package.

Data Access

The time-course RNA-seq data, for both differentiated and undifferentiated mESC, as well as
the time-course PRO-seq data have been deposited in the Sequence Read Archive under
accession code GSE (pending for approval). These data also include processed data which

may serve for future analysis.
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