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Abstract 

We organized 10Kin1day, a pop-up scientific event with the goal to bring together 

neuroimaging groups from around the world to jointly analyze 10,000+ existing 

MRI connectivity datasets during a 3-day workshop. In this report, we describe 

the motivation and principles of 10Kin1day, together with a public release of 

8,000+ MRI connectome maps of the human brain. 

  

Main Text 

Ongoing grand-scale projects like the European Human Brain Project (Amunts et 

al., 2016), the US Brain Initiative (Insel et al., 2013), the Human Connectome 

Project (Van Essen et al., 2013), the Chinese Brainnetome (Jiang, 2013) and 

exciting world-wide neuroimaging collaborations such as ENIGMA (Thompson et 

al., 2017) herald the new era of big neuroscience. In conjunction with these major 

undertakings, there is an emerging trend for bottom-up initiatives, starting with 

small-scale projects built upon existing collaborations and infrastructures. As 

described by Mainen and colleagues (Mainen et al., 2016), these initiatives are 

centralized around self-organized groups of researchers working on the same 

challenges and sharing interests and specialized expertise. These projects could 

scale and open up to a larger audience and other disciplines over time, 

eventually lining up and merging their findings with other programs to make the 

bigger picture. 
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10Kin1day 

One type of event that fits well with this grass-roots collaboration philosophy are 

short gatherings of scientists around a single theme, bringing together expertise 

and tools to jointly analyze existing neuroscience data. We organized 10Kin1day, 

an MRI connectome event, with the goal to bring together an international group 

of researchers in the field of neuroimaging and consistently analyze MRI 

connectivity data of the human cerebrum. We organized the event around five 

founding principles: 

- use existing neuroimaging data, available from many research groups 

around the world; we focused on diffusion MRI data and aimed to bring 

together 10,000+ datasets 

- analyze data from varying cohorts and imaging protocols, using a single, 

straightforward analysis strategy to encourage across-group 

collaborations and multisite studies 

- perform all processing during a short workshop, with only basic expertise 

of analysis needed  

- provide education on how to analyze resulting connectome data, so 

participants can continue to work on their projects after the event 

- each participant analyzes their own data and is free to decide what to do 

with their analyzed results  

  

The 10K workshop   
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Over 50 participants from 40 different neuroimaging groups gathered in The 

Netherlands for a 3-day event. Participants brought and worked on their own 

datasets, varying from MRI data on healthy human brain organization, cross-

sectional and longitudinal brain development, aging, cognitive psychology, as 

well as MRI data of a wide range of neurological and psychiatric brain disorders 

(including among others: Schizophrenia, Mood Disorders, Alzheimer’s Disease, 

Mild Cognitive Impairment, Amyotrophic Lateral Sclerosis, Frontotemporal 

Dementia, Epilepsy and Parkinson’s Disease). Written informend consent of the 

included healthy controls and/or patients was obtained by each of the 

participants at their local institute. 10 TB online storage space and 50,000+ CPU 

hours was reserved on the Cartesius supercomputer of the collaborative 

Information and Communication Technology (ICT) organization for Dutch 

education and research (SURF, https://surfsara.nl/) to analyze the data during 

the workshop. Workshop participants performed data quality checks on their data 

one week before the event after which they uploaded the MRI data (Diffusion 

Weighted Images (DWI) and pre-processed T1 data, see Materials and Methods) 

to their own user account on the supercomputer. During the workshop, 

participants were brought up to speed on DWI processing, connectome 

construction (see methods for details on the performed analysis), and running 

parallel jobs on a supercomputer. Together, a total of 15,947 MRI datasets were 

processed into anatomical connectome maps, with each output dataset including 

connectivity matrices with different types of connection weights and multiple 
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parcellation resolutions. Data processing was paralleled by interactive 

educational talks and workshops on connectome analysis.  

  

Open data 

In line with the collaborative nature of the event, the 10K group discussed making 

the connectome maps available to the scientific community for non-commercial 

use, free of restrictions. We include herein the resulting individual connectome 

maps of 8,000+ connectome datasets across an age range of 0 - 90 years, with 

five different edge weights (number of traced streamlines (NOS), streamline 

density (SD), fiber length, fractional anisotropy (FA) and mean diffusivity (MD)) at 

three parcellation resolutions (80+ cortical and subcortical regions, 100+ and 

200+ cortical regions, see methods for details). Connectome maps are presented 

anonymously and blinded for participation site, together with basic demographics 

(age in bins of 5 years, gender, patient/control status, Fig. 1). Data is presented 

under the Non-Commercial Common Creative (CC BY-NC) license, free for all 

scientists to use in a non-commercial setting. A download request can be made 

at dutchconnectomelab.nl/10Kdata for a download link to the data (including 3 

atlas resolutions, connectome matrices with multiple weights, information on the 

cortical and subcortical nodes, subject demographics (gender, age in 5 year bins, 

case/control)). 

 

A first peek 
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We performed a few first analyses on the joint dataset, such as comparison to 

Human Connectome Project (HCP) data and examination of effects of age (see 

Materials and Methods for more detail). We observed a high consistency of the 

group averaged matrix with data derived from the high-quality HCP, with at least 

69% of pathways identified in HCP also observed in the 10K set and with 98% of 

all non-existing connections in HCP verified in the 10K set. Furthermore, the 

distribution of weights across reconstructed connections is highly similar across 

the two datasets (FA weights, r=.93, p<0.0001, Fig. 1). Inverse MD showed rapid 

growth of microstructure in early years, with continuing development throughout 

adolescence, peaking around the beginning of the third decade, followed by a 

steady pattern of decline throughout aging (Fig. 1). Age analysis of the 10K set 

shows clear developmental patterns of cortical morphology (Fig. 1 showing 

cortical thickness) and white matter microstructure (Fig. 1 showing inverse MD) 

across age.  

   

Future events 

We acknowledge that there are many shortcomings to the presented MRI 

connectome dataset. Besides general, inherent limitations of diffusion MRI (Mori 

and Zhang, 2006), the presented dataset is a collation of data from a wide variety 

of groups, acquired with different scanners, different scanning protocols, varying 

data quality et cetera, as well as including data from a mixture of different patient 

and control populations. While these limitations place constraints on the type of 

investigations that one can perform with such collated multi-site datasets, we are 
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optimistic that the 10K dataset can be used as a large reference dataset for 

future studies, enabling many technical and neuroscientific research questions to 

be addressed (e.g. Fig. 1). As such, we hope that the presented data will be of 

use to the neuroscience community in the examination of the human 

connectome. Above all, we hope that our report will inspire others to organize 

exciting 10Kin1day-type of events in the near future, bringing together existing 

neuroimaging data and further catalyze open neuroimaging research of the 

healthy and diseased brain. 
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Figure 1. (A) For each dataset, DWI tractography was combined with T1-based 

parcellation of cerebral brain regions to reconstruct a brain network. (B) Group-

averaged (group threshold 33%) FA matrix of the 10K dataset. (C) High overlap (r=0.93) 

between group-averaged FA values as derived from high-resolution HCP data and the 

10K dataset. (D) Relationship between age and average inverse mean diffusivity (MD) 

across the 10K dataset. Colors indicate the different included datasets. Insert shows a 

pie diagram of the size of included datasets, color coded to set participation. One 

dataset (set_634413) was excluded from this plot, showing (across the age span) 
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deviating FA (lower) and MD (higher) values than the other datasets (see methods). 

Due to the high total n, excluding this dataset did not change the relationship with age. 

(E) Relationship between age and average cortical thickness (CT). (F) Age distribution 

of the presented data as in panel E and F. au=arbritrary units. DWI=diffusion weighted 

imaging. CT=cortical thickness. 

 

Supplementary Files  

• Supplementary Table 1 describing the dataset demographics 

• Group files (3 atlas resolutions) containing 8,000+ connectome maps. A link to 

download the connectome matrices (2 Gb) can be obtained at 

http://dutchconnectomelab.nl/10Kdata. 

 

Materials and Methods 

A total of 42 groups (52 participants) participated in the workshop, some working on 

multiple datasets. Each dataset included a diffusion MRI scan and T1 MRI scan 

processed using FreeSurfer (Fischl and Dale, 2000). Datasets across groups included 

data from 1.5 and 3 Tesla MRI with varying scanner protocols and number of applied 

DWI gradients. Data included MRI data of healthy participants and patients with a 

neurological or psychiatric disorder. 24 groups were able to make their data available, 

making a total of 8,697 connectome maps publicly available through means of this 

report. Reconstructed connectome maps are presented anonymously, blinded for 

participation site and disease condition. Basic demographics of the datasets are 

included in the download set. 
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DWI Preprocessing. DWI datasets were corrected for susceptibility and eddy current 

distortions using the open tools from the FMRIB Software Library (FSL, 

http://fsl.fmrib.ox.ac.uk). Depending on the included DWI dataset, participants could 

choose to preprocess their data using the FSL eddy_correct or eddy tool (preprocessing 

scripts are included as supplementary information). For those DWI sets that included a 

subset of scans with an opposite k-space read out, an additional field distortion map 

could be formed and applied to the DWI images (Andersson et al., 2003). 

  

Cortical parcellation. Before the event, the participants created FreeSurfer files based 

on their T1 images, with this output being subjected to varying degrees of quality 

control. The resulting parcellations of the cerebrum were used to select the regions of 

interest for the connectome reconstruction. The 68 cortical regions of FreeSurfer’s 

standard Desikan-Killiany Atlas (Desikan et al., 2006, Fischl et al., 2004) as well as 14 

subcortical regions were selected as network regions. Additionally, FreeSurfer files were 

used to further parcellate the cortex into 114 and 219 regions respectively using the 

Cammoun atlas (Cammoun et al., 2012). 

  

Fiber reconstruction. After preprocessing of the DWI data, a diffusion tensor was fitted 

to the diffusion signal in each voxel of the white matter mask (selected based on the 

white matter segmentation map of the FreeSurfer files) using robust tensor fitting 

(Chang et al., 2005). Simple Diffusion Tensor Imaging (DTI) reconstruction was used 

due to its robustness and relatively low sensitivity to false positive reconstructions 
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compared to more advanced reconstruction methods (Klaus Maier-Hein, 2017), and 

thus potentially being the least distorting solution for connectome reconstruction and 

analysis based on MR imaging data (Zalesky et al., 2016). Decomposition of the tensor 

into eigenvectors and eigenvalues was used to select the main diffusion direction in 

each voxel, and to compute fractional anisotropy (FA) and mean diffusivity (MD) 

(Beaulieu and Allen, 1994). Deterministic fiber tractography was used to construct large-

scale white matter pathways. Eight seeds (evenly distributed across the voxel) started in 

each white matter voxel, and fiber streamlines were formed by following the main 

diffusion direction from voxel to voxel using the fiber assignment by continuous tracking 

(FACT) algorithm (Mori and Barker, 1999), until one of the stopping criteria was met. A 

streamline was stopped when (1) it hit a voxel with an FA<0.1, (2) went out of the brain 

mask, or (3) made a turn >45 degrees. 

  

Connectome reconstruction. A connectome map was made by combining the 

(sub)cortical parcellation map and the set of reconstructed fibers using commonly 

described procedures (Hagmann et al., 2008; van den Heuvel et al., 2012; van 

den Heuvel et al., 2010; van den Heuvel and Sporns, 2011). For each of the 

Cammoun Desikan-Killiany parcellation maps (i.e. 14+68, 14+114 and 14+219 

regions respectively), the total collection of reconstructed fiber streamlines was 

used to assess the level of connectivity between each pair of (sub)cortical 

regions, represented as the connectivity matrix CIJ. (Sub)cortical regions were 

selected as the nodes of the reconstructed network, and for each combination of 

region i and region j where fiber streamlines touched both regions a connection 
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(i.e. network edge) was included in cell CIJ(i,j) in the connectivity matrix. Five 

different types of strength of a connection were computed and included as edge 

strength: (1) the number of reconstructed streamlines (NOS) between region i 

and j, (2) the average FA of the voxels traversed by the reconstructed 

streamlines, (3) the average MD of the reconstructed streamlines, (4) the 

average length of the reconstructed streamlines and (5) streamline density 

computed as the number of reconstructed streamlines corrected for the average 

volume of region i and region j (Hagmann et al., 2008).  

  

Outliers. A total of 15,947 connectome maps were analyzed across the 

participating groups. Of the datasets that could be shared, 197 were detected as 

outliers (and were subsequently removed from the dataset). Outliers were 

detected automatically per group by testing for each connectome map their 

average connection strength and their distance to the group average prevalence 

map. The average connection strength of a connectome map was calculated for 

each of the five connection weights as the mean of the strengths over all existing 

(nonzero) connections. To measure the presence of odd connections or absence 

of common connections in a connectome map, we constructed a group 

prevalence matrix for each dataset, counting per node pair how many times an 

edge was observed across connectome maps in the group. For each 

connectome map the total prevalence of all observed connections and the total 

prevalence of all non observed connections was computed. Outliers were 

identified as connectome maps that displayed on any of the 7 measures (5 
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weight and 2 prevalence measures) a score below Q1 – 2×IQR or above Q3 + 

2×IQR, with Q1 and Q3 referring to the first and third quartile respectively and 

IQR the interquartile range IQR = Q3 – Q1. This resulted in the detection of 197 

outliers in total, which were excluded from the dataset. One complete dataset 

(set_634413, n=584) showed across all included individual sets an average lower 

FA / higher MD as compared to the other datasets and this set was excluded 

from the age curves shown in Figure 1. Due to the high overall sample size, 

including or excluding this dataset did not change the shape of the final plot. 

  

Comparison to HCP data 

To test the validity of the 10K dataset, we compared the group average matrix of 

the 10K set to the group average matrix of data from the Human Connectome 

Project (HCP) (Van Essen et al., 2013). First, for the 10K dataset, a group 

average FA matrix was computed, by including those edges that were observed 

in at least 33% of the group (i.e. a group threshold of 33%, >2700 connectome 

maps showing a particular network edge). Average weight values of the included 

edges were taken as the non-zero mean of those edges across the connectome 

maps. Second, a similar group average FA matrix was derived from previously 

analyzed HCP data (van den Heuvel et al., 2016) (n=487 datasets). In brief, HCP 

analysis included the following steps (see (van den Heuvel et al., 2016) for more 

detailed information on the HCP data analysis). For each of the HCP DWI 

datasets a connectome was reconstructed based on the minimally pre-processed 

data of HCP. Given the high quality of the HCP data, analysis here included 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 16, 2019. ; https://doi.org/10.1101/509554doi: bioRxiv preprint 

https://doi.org/10.1101/509554
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

reconstruction of multiple diffusion directions, allowing for the reconstruction of 

more complex fiber configurations (e.g. crossing fibers) (van den Heuvel et al., 

2016). Similarly as for the 10K data, across the total set of 487 datasets, an 

average FA group matrix was computed, including those network edges that 

were observed in at least 33% of the total population (i.e. >160 datasets) and 

taking the non-zero mean of FA values across the group of subjects. Comparison 

between the 10K set and the HCP dataset was computed by means of (1) 

counting the number of existing connections and non-existing connections in the 

10K dataset as observed in the HCP dataset and (2) by correlating the FA 

weights of the set of edges as observed in both datasets. 
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