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Abstract

We organized 10Kin1day, a pop-up scientific event with the goal to bring together
neuroimaging groups from around the world to jointly analyze 10,000+ existing
MRI connectivity datasets during a 3-day workshop. In this report, we describe
the motivation and principles of 10Kin1day, together with a public release of

8,000+ MRI connectome maps of the human brain.

Main Text

Ongoing grand-scale projects like the European Human Brain Project (Amunts et
al., 2016), the US Brain Initiative (Insel et al., 2013), the Human Connectome
Project (Van Essen et al., 2013), the Chinese Brainnetome (Jiang, 2013) and
exciting world-wide neuroimaging collaborations such as ENIGMA (Thompson et
al., 2017) herald the new era of big neuroscience. In conjunction with these major
undertakings, there is an emerging trend for bottom-up initiatives, starting with
small-scale projects built upon existing collaborations and infrastructures. As
described by Mainen and colleagues (Mainen et al., 2016), these initiatives are
centralized around self-organized groups of researchers working on the same
challenges and sharing interests and specialized expertise. These projects could
scale and open up to a larger audience and other disciplines over time,
eventually lining up and merging their findings with other programs to make the

bigger picture.
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10Kin1day

One type of event that fits well with this grass-roots collaboration philosophy are
short gatherings of scientists around a single theme, bringing together expertise
and tools to jointly analyze existing neuroscience data. We organized 10Kin1day,
an MRI connectome event, with the goal to bring together an international group
of researchers in the field of neuroimaging and consistently analyze MRI
connectivity data of the human cerebrum. We organized the event around five
founding principles:

- use existing neuroimaging data, available from many research groups
around the world; we focused on diffusion MRI data and aimed to bring
together 10,000+ datasets

- analyze data from varying cohorts and imaging protocols, using a single,
straightforward analysis strategy to encourage across-group
collaborations and multisite studies

- perform all processing during a short workshop, with only basic expertise
of analysis needed

- provide education on how to analyze resulting connectome data, so
participants can continue to work on their projects after the event

- each participant analyzes their own data and is free to decide what to do

with their analyzed results

The 10K workshop
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Over 50 participants from 40 different neuroimaging groups gathered in The
Netherlands for a 3-day event. Participants brought and worked on their own
datasets, varying from MRI data on healthy human brain organization, cross-
sectional and longitudinal brain development, aging, cognitive psychology, as
well as MRI data of a wide range of neurological and psychiatric brain disorders
(including among others: Schizophrenia, Mood Disorders, Alzheimer’s Disease,
Mild Cognitive Impairment, Amyotrophic Lateral Sclerosis, Frontotemporal
Dementia, Epilepsy and Parkinson’s Disease). Written informend consent of the
included healthy controls and/or patients was obtained by each of the
participants at their local institute. 10 TB online storage space and 50,000+ CPU
hours was reserved on the Cartesius supercomputer of the collaborative
Information and Communication Technology (ICT) organization for Dutch
education and research (SURF, https://surfsara.nl/) to analyze the data during
the workshop. Workshop participants performed data quality checks on their data
one week before the event after which they uploaded the MRI data (Diffusion
Weighted Images (DWI) and pre-processed T1 data, see Materials and Methods)
to their own user account on the supercomputer. During the workshop,
participants were brought up to speed on DWI processing, connectome
construction (see methods for details on the performed analysis), and running
parallel jobs on a supercomputer. Together, a total of 15,947 MRI datasets were
processed into anatomical connectome maps, with each output dataset including

connectivity matrices with different types of connection weights and multiple
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parcellation resolutions. Data processing was paralleled by interactive

educational talks and workshops on connectome analysis.

Open data

In line with the collaborative nature of the event, the 10K group discussed making
the connectome maps available to the scientific community for non-commercial
use, free of restrictions. We include herein the resulting individual connectome
maps of 8,000+ connectome datasets across an age range of 0 - 90 years, with
five different edge weights (number of traced streamlines (NOS), streamline
density (SD), fiber length, fractional anisotropy (FA) and mean diffusivity (MD)) at
three parcellation resolutions (80+ cortical and subcortical regions, 100+ and
200+ cortical regions, see methods for details). Connectome maps are presented
anonymously and blinded for participation site, together with basic demographics
(age in bins of 5 years, gender, patient/control status, Fig. 1). Data is presented
under the Non-Commercial Common Creative (CC BY-NC) license, free for all
scientists to use in a non-commercial setting. A download request can be made
at dutchconnectomelab.nl/10Kdata for a download link to the data (including 3
atlas resolutions, connectome matrices with multiple weights, information on the
cortical and subcortical nodes, subject demographics (gender, age in 5 year bins,

case/control)).

A first peek

10
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We performed a few first analyses on the joint dataset, such as comparison to
Human Connectome Project (HCP) data and examination of effects of age (see
Materials and Methods for more detail). We observed a high consistency of the
group averaged matrix with data derived from the high-quality HCP, with at least
69% of pathways identified in HCP also observed in the 10K set and with 98% of
all non-existing connections in HCP verified in the 10K set. Furthermore, the
distribution of weights across reconstructed connections is highly similar across
the two datasets (FA weights, r=.93, p<0.0001, Fig. 1). Inverse MD showed rapid
growth of microstructure in early years, with continuing development throughout
adolescence, peaking around the beginning of the third decade, followed by a
steady pattern of decline throughout aging (Fig. 1). Age analysis of the 10K set
shows clear developmental patterns of cortical morphology (Fig. 1 showing
cortical thickness) and white matter microstructure (Fig. 1 showing inverse MD)

across age.

Future events

We acknowledge that there are many shortcomings to the presented MRI
connectome dataset. Besides general, inherent limitations of diffusion MRI (Mori
and Zhang, 2006), the presented dataset is a collation of data from a wide variety
of groups, acquired with different scanners, different scanning protocols, varying
data quality et cetera, as well as including data from a mixture of different patient
and control populations. While these limitations place constraints on the type of

investigations that one can perform with such collated multi-site datasets, we are
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optimistic that the 10K dataset can be used as a large reference dataset for
future studies, enabling many technical and neuroscientific research questions to
be addressed (e.g. Fig. 1). As such, we hope that the presented data will be of
use to the neuroscience community in the examination of the human
connectome. Above all, we hope that our report will inspire others to organize
exciting 10Kin1day-type of events in the near future, bringing together existing
neuroimaging data and further catalyze open neuroimaging research of the

healthy and diseased brain.
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Figure 1. (A) For each dataset, DWI tractography was combined with T1-based
parcellation of cerebral brain regions to reconstruct a brain network. (B) Group-
averaged (group threshold 33%) FA matrix of the 10K dataset. (C) High overlap (r=0.93)
between group-averaged FA values as derived from high-resolution HCP data and the
10K dataset. (D) Relationship between age and average inverse mean diffusivity (MD)
across the 10K dataset. Colors indicate the different included datasets. Insert shows a
pie diagram of the size of included datasets, color coded to set participation. One

dataset (set_634413) was excluded from this plot, showing (across the age span)
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deviating FA (lower) and MD (higher) values than the other datasets (see methods).

Due to the high total n, excluding this dataset did not change the relationship with age.
(E) Relationship between age and average cortical thickness (CT). (F) Age distribution
of the presented data as in panel E and F. au=arbritrary units. DWI=diffusion weighted

imaging. CT=cortical thickness.

Supplementary Files
e Supplementary Table 1 describing the dataset demographics
e Group files (3 atlas resolutions) containing 8,000+ connectome maps. A link to
download the connectome matrices (2 Gb) can be obtained at

http://dutchconnectomelab.nl/10Kdata.

Materials and Methods

A total of 42 groups (52 participants) participated in the workshop, some working on
multiple datasets. Each dataset included a diffusion MRI scan and T1 MRI scan
processed using FreeSurfer (Fischl and Dale, 2000). Datasets across groups included
data from 1.5 and 3 Tesla MRI with varying scanner protocols and number of applied
DWI gradients. Data included MRI data of healthy participants and patients with a
neurological or psychiatric disorder. 24 groups were able to make their data available,
making a total of 8,697 connectome maps publicly available through means of this
report. Reconstructed connectome maps are presented anonymously, blinded for
participation site and disease condition. Basic demographics of the datasets are

included in the download set.
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DWI Preprocessing. DWI datasets were corrected for susceptibility and eddy current
distortions using the open tools from the FMRIB Software Library (FSL,
http://fsl.fmrib.ox.ac.uk). Depending on the included DWI dataset, participants could
choose to preprocess their data using the FSL eddy_correct or eddy tool (preprocessing
scripts are included as supplementary information). For those DWI sets that included a
subset of scans with an opposite k-space read out, an additional field distortion map

could be formed and applied to the DWI images (Andersson et al., 2003).

Cortical parcellation. Before the event, the participants created FreeSurfer files based
on their T1 images, with this output being subjected to varying degrees of quality
control. The resulting parcellations of the cerebrum were used to select the regions of
interest for the connectome reconstruction. The 68 cortical regions of FreeSurfer’s
standard Desikan-Killiany Atlas (Desikan et al., 2006, Fischl et al., 2004) as well as 14
subcortical regions were selected as network regions. Additionally, FreeSurfer files were
used to further parcellate the cortex into 114 and 219 regions respectively using the

Cammoun atlas (Cammoun et al., 2012).

Fiber reconstruction. After preprocessing of the DWI data, a diffusion tensor was fitted
to the diffusion signal in each voxel of the white matter mask (selected based on the
white matter segmentation map of the FreeSurfer files) using robust tensor fitting
(Chang et al., 2005). Simple Diffusion Tensor Imaging (DTI) reconstruction was used

due to its robustness and relatively low sensitivity to false positive reconstructions
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compared to more advanced reconstruction methods (Klaus Maier-Hein, 2017), and
thus potentially being the least distorting solution for connectome reconstruction and
analysis based on MR imaging data (Zalesky et al., 2016). Decomposition of the tensor
into eigenvectors and eigenvalues was used to select the main diffusion direction in
each voxel, and to compute fractional anisotropy (FA) and mean diffusivity (MD)
(Beaulieu and Allen, 1994). Deterministic fiber tractography was used to construct large-
scale white matter pathways. Eight seeds (evenly distributed across the voxel) started in
each white matter voxel, and fiber streamlines were formed by following the main
diffusion direction from voxel to voxel using the fiber assignment by continuous tracking
(FACT) algorithm (Mori and Barker, 1999), until one of the stopping criteria was met. A
streamline was stopped when (1) it hit a voxel with an FA<0.1, (2) went out of the brain

mask, or (3) made a turn >45 degrees.

Connectome reconstruction. A connectome map was made by combining the
(sub)cortical parcellation map and the set of reconstructed fibers using commonly
described procedures (Hagmann et al., 2008; van den Heuvel et al., 2012; van
den Heuvel et al., 2010; van den Heuvel and Sporns, 2011). For each of the
Cammoun Desikan-Killiany parcellation maps (i.e. 14+68, 14+114 and 14+219
regions respectively), the total collection of reconstructed fiber streamlines was
used to assess the level of connectivity between each pair of (sub)cortical
regions, represented as the connectivity matrix ClJ. (Sub)cortical regions were
selected as the nodes of the reconstructed network, and for each combination of

region / and region j where fiber streamlines touched both regions a connection
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(i.e. network edge) was included in cell ClJ(i,j) in the connectivity matrix. Five
different types of strength of a connection were computed and included as edge
strength: (1) the number of reconstructed streamlines (NOS) between region i
and j, (2) the average FA of the voxels traversed by the reconstructed
streamlines, (3) the average MD of the reconstructed streamlines, (4) the
average length of the reconstructed streamlines and (5) streamline density
computed as the number of reconstructed streamlines corrected for the average

volume of region j and region j (Hagmann et al., 2008).

Outliers. A total of 15,947 connectome maps were analyzed across the
participating groups. Of the datasets that could be shared, 197 were detected as
outliers (and were subsequently removed from the dataset). Outliers were
detected automatically per group by testing for each connectome map their
average connection strength and their distance to the group average prevalence
map. The average connection strength of a connectome map was calculated for
each of the five connection weights as the mean of the strengths over all existing
(nonzero) connections. To measure the presence of odd connections or absence
of common connections in a connectome map, we constructed a group
prevalence matrix for each dataset, counting per node pair how many times an
edge was observed across connectome maps in the group. For each
connectome map the total prevalence of all observed connections and the total
prevalence of all non observed connections was computed. Outliers were

identified as connectome maps that displayed on any of the 7 measures (5
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weight and 2 prevalence measures) a score below Q1 — 2xIQR or above Q3 +
2xIQR, with Q1 and Q3 referring to the first and third quartile respectively and
IQR the interquartile range IQR = Q3 — Q1. This resulted in the detection of 197
outliers in total, which were excluded from the dataset. One complete dataset
(set_634413, n=584) showed across all included individual sets an average lower
FA / higher MD as compared to the other datasets and this set was excluded
from the age curves shown in Figure 1. Due to the high overall sample size,

including or excluding this dataset did not change the shape of the final plot.

Comparison to HCP data

To test the validity of the 10K dataset, we compared the group average matrix of
the 10K set to the group average matrix of data from the Human Connectome
Project (HCP) (Van Essen et al., 2013). First, for the 10K dataset, a group
average FA matrix was computed, by including those edges that were observed
in at least 33% of the group (i.e. a group threshold of 33%, >2700 connectome
maps showing a particular network edge). Average weight values of the included
edges were taken as the non-zero mean of those edges across the connectome
maps. Second, a similar group average FA matrix was derived from previously
analyzed HCP data (van den Heuvel et al., 2016) (n=487 datasets). In brief, HCP
analysis included the following steps (see (van den Heuvel et al., 2016) for more
detailed information on the HCP data analysis). For each of the HCP DWI
datasets a connectome was reconstructed based on the minimally pre-processed

data of HCP. Given the high quality of the HCP data, analysis here included
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reconstruction of multiple diffusion directions, allowing for the reconstruction of
more complex fiber configurations (e.g. crossing fibers) (van den Heuvel et al.,
2016). Similarly as for the 10K data, across the total set of 487 datasets, an
average FA group matrix was computed, including those network edges that
were observed in at least 33% of the total population (i.e. >160 datasets) and
taking the non-zero mean of FA values across the group of subjects. Comparison
between the 10K set and the HCP dataset was computed by means of (1)
counting the number of existing connections and non-existing connections in the
10K dataset as observed in the HCP dataset and (2) by correlating the FA

weights of the set of edges as observed in both datasets.
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