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Abstract

Identification of host-pathogen interactions can reveal mechanistic insights of infectious
diseases for potential treatments and drug discoveries. Current computational methods
focus on the prediction of host—pathogen protein interactions and rely on our knowledge
of the sequences and functions of pathogen proteins, which is limited for many species,
especially for emerging pathogens. We developed an ontology-based machine learning
method that predicts potential interaction protein partners for pathogen taxa. Our
method exploits information about infectious disease mechanisms through features
learned from phenotypic, functional and taxonomic knowledge about pathogen taxa and
human proteins. Additionally, by propagating the phenotypic features of the pathogens
within a formal representation of pathogen taxonomy, we demonstrate that our model
can also accurately predict interaction protein partners for pathogens even without
known phenotypes, using a combination of their taxonomic relationships with other
pathogens and information from ontologies as background knowledge. Our results show
that the integration of phenotypic, functional and taxonomic knowledge not only
improves the prediction performance, but also enables us to investigate novel pathogens
in emerging infectious diseases.

Author summary

Infectious diseases are caused by various types of pathogens, such as bacteria and
viruses, and lead to millions of deaths each year, especially in low-income countries.
Researchers have been attempting to predict and study possible host-pathogen
interactions on a molecular level. Understanding these interactions can shed light on
how pathogens invade cells or disrupt the immune system. We propose a novel method
to predict such interactions by associating phenotypes (e.g., the signs and symptoms of
patients) associated with pathogens and phenotypes associated with human proteins.
We are able to accurately predict and prioritize possible protein partners for dozens of
pathogens. We further extended the prediction model by relating pathogens without
phenotypes with those with phenotypes through their taxonomic relationships. We
found that the addition of taxonomic knowledge greatly increased the number of
pathogens that we can study, without diminishing the accuracy of the model. To the
best of our knowledge, we are the first to predict host-pathogen interactions based on
phenotypes and taxonomy. Our work has important implications for new pathogens and
emerging infectious diseases that are not yet well-studied.
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Introduction

Infectious diseases from bacteria, viruses and fungi are one of the major causes of
deaths around the globe, especially in low-income regions [1]. Pathogens disrupt host
cell functions [2] and target immune pathways [3] through complex interactions among
proteins [4], RNA [5] and DNA [6]. The study of host-pathogen interactions (HPI) can
provide insights into molecular mechanisms underlying infectious diseases and enable
the development of novel therapeutic discoveries. For example, a previous study of
many HPIs showed that pathogens typically interact with the protein hubs (those with
many interaction partners) and bottlenecks (those of central location to important
pathways) in human protein-protein interaction (PPI) networks [4]. However, due to
high costs and time constraints, experimentally validated pairs of interacting
host-pathogen proteins are limited in number. Moreover, there exists a time delay for a
validated HPI to be included in a database of HPIs, often requiring text-mining
efforts |7]. Therefore, the computational prediction of HPIs is useful in suggesting
candidate interaction partners out of all the human proteins.

Existing HPI prediction methods typically focus on predicting protein interactions
and utilize features of interacting protein pairs, such as PPI network topology,
structural and sequential homology, or functional profiling such as Gene Ontology
similarity and KEGG pathway analysis [8]. While such protein-specific features exist for
some extensively studied pathogens, such as Mycobacterium tuberculosis [9], human
immunodeficiency virus [10], Salmonella and Yersinia |11], for most of the other
pathogens, especially the newly emerging ones, these features are scarce (or
non-existent) and expensive to obtain. As new virus species are discovered each year
with potentially many more to come [12], a method is needed to aggregate our existing
phenotypic, functional and taxonomic knowledge about HPIs and predict for pathogens
that are less well studied or even novel.

The phenotypes elicited by pathogens, i.e., the signs and symptoms observed in a
patient, may provide information about molecular mechanisms [13]. The information
that phenotypes provide about molecular mechanisms is commonly exploited in
computational studies of Mendelian disease mechanisms [141[15], for example to suggest
candidate genes [16}/17] or diagnose patients [1§], but can also be used to identify drug
targets [19] or gene functions [20]. To the best of our knowledge, phenotypes and
phenotype similarity have not yet been used to suggest host-pathogen interactions.

We use the hypothesis that phenotypes elicited by an infection with a pathogen are,
among others, the result of molecular interactions, and that knowledge of the
phenotypes in the host can be used to suggest the protein perturbations through which
these phenotypes arise. While a large number of phenotypes resulting from infections
are a consequence of immune system processes that are shared across a wide range of
different types of pathogens, certain hallmark phenotypes, such as decreased CD4 count
in infections with human immunodeficiency virus or microcephaly resulting from Zika
virus infections, can be used to suggest candidate host proteins through which these
phenotypes are elicited. Phenotypes shared across many pathogens could also
contribute to the prediction of interacting host proteins as well as the absence of certain
phenotypes.

We developed a method to predict candidate interacting proteins for pathogens by
integrating phenotypic, functional and taxonomic information about pathogens and
human proteins. Relying on recent progress in deep learning with structured and
semantic data [21], we construct a model that combines this information as well as
structured information about taxonomic relations between pathogens to predict
host-pathogen interactions. We demonstrate that our model can not only accurately
predict the interacting protein partners for pathogens with phenotypic information, but

also their relatives without phenotypes by aggregating knowledge through the taxonomy.
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Results

Feature generation and representation learning for human

proteins and pathogens

We first generated feature vectors for pathogens and human proteins based on different
sets of features, and then trained an artificial neural network model (ANN) for
predicting their interactions. We follow the workflow shown in Figure
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(a) Feature generation and representation learning (b) Train & Predict

Fig 1. An illustration of our overall workflow.

The first step in our method is the generation of features that represent a pathogen
or a human protein. We represent human proteins through their associated phenotypes,
the phenotypes associated with their mouse orthologs, and their functions. We obtained
loss-of-function phenotypes of mouse genes from the Mouse Genome Informatics (MGI)
database [22| and phenotype annotations of human genes from Human Phenotype
Ontology (HPO) database [23]. We obtained protein function annotations from the
Gene Ontology (GO) database [24L25]. For pathogens, we use the phenotype
annotations from the PathoPhenoDB [26], a database of pathogen-phenotype
associations, and taxonomic information from the NCBI Taxonomy [27].

We represent the phenotypes, functions and taxonomic relations through ontologies.
To associate human and mouse phenotypes, we use the cross-species phenotype ontology
PhenomeNET [16}28], which combines the Human Phenotype Ontology (HP) [23] and
the Mammalian Phenotype Ontology (MP) [29]. To incorporate knowledge of protein
functions, we use the Gene Ontology [24,25]. For the taxonomic relations between
pathogens, we used the NCBI Taxonomy Ountology [27]. These ontologies contain
formalized biological background knowledge |30]. Using the information in ontologies as
background knowledge during feature generation has the potential to significantly
improve the performance of these features in machine learning and predictive
analyses [31].

We use the OPA2Vec [21] method to generate features from annotations of pathogen
taxa and human proteins while using the ontologies that are used to express them as
background knowledge. To determine the effect of different annotations and ontologies
on the performance of our models, we generated feature vectors of human proteins from
human phenotype annotations, the phenotypes of their mouse orthologs, and functional
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annotations individually with their respective ontologies, as well as their union and
intersection by combining the annotations and merging the ontologies.

Phenotypic, functional and taxonomic prediction of interaction
partners

We first test our method on pathogens that have phenotype annotations in
PathoPhenoDB and use a merged representation of the PhenomeNet and NCBI
Taxonomy ontologies. We obtain high-confidence interaction pairs of pathogens and
human proteins from the Host-Pathogen Interaction Database (HPIDB) [32] as the
positive training data. We then train an ANN to predict host-pathogen interactions
using the feature vectors of pathogens and human proteins as input. We perform
leave-one-taxon-out cross-validation (LOOCYV), in which we leave out one pathogen
taxon in our positive set for validation, and use all the other pathogens and their
interactions as training data. We evaluated our model by ranking the true positive
protein partners of the validation taxon (see Methods). We perform the training and
evaluation separately based on taxonomic groups, i.e., viruses and bacteria. Table
provides an overview over the underlying data used for these predictions, and Figure
shows the prediction results.

Table 1. Datasets used for phenotypic, functional and taxonomic
predictions. The features of human proteins are human phenotypes (HP), mouse
phenotypes (MP), gene ontology terms (GO), their union and their intersection. The
features of pathogens are phenotypes from PathoPhenoDB and taxonomic relations
from NCBI Taxonomy. The coverage shows the total number of proteins annotated with
the respective features. The number of unique interacting pairs, pathogen taxa and
human proteins are listed for both viruses and bacteria.

Features Coverage . Viruses . . Bacteria .
Interactions Taxa Proteins Interactions Taxa Proteins

HP 3740 101 24 78 18 9 18

MP 9153 214 29 174 47 15 46

GO 18084 291 30 247 57 16 56

HPUMPUGO 18349 291 30 247 57 16 56

HPNAMPNGO 2955 92 23 69 18 9 18

For both viruses and bacteria, the model using the intersection of phenotypic and
functional features has the best performance in prioritizing true protein partners. This

model is able to prioritize 50% of the true positives within the first 10% of all proteins.

The TPR curve of bacteria is less smooth compared to the viruses due to the limited
number of exact matches of bacterial taxa between HPIDB and PathoPhenoDB. To
compare with the effect of only using phenotypic features, we also generated feature
vectors for pathogens only using phenotypes and included the performance in

Propagation of phenotypic features via pathogen taxonomy

The previous section only considers pathogens that have phenotypic annotations from
the associated infectious diseases in PathoPhenoDB, which presents a problem of
missing data: many pathogen taxa in HPIDB cannot be matched with those in
PathoPhenoDB at the exact taxon level and are ignored during training. To address the
taxonomic inconsistencies, we propagate information across a taxonomy: since we use a
merged representation from the PhenomeNet and NCBI Taxonomy ontologies during
feature generation, there can always be a representation of phenotypes for any pathogen
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Fig 2. The TPR curves by normalized rank of proteins The solid curves
represent the different features used to generate the feature vectors of human proteins.
The dashed line represents a random classifier.

taxon within the taxonomic hierarchy. The representation learned from taxonomy not
only increases the taxonomic coverage but also encodes phenotypic and taxonomic
information for pathogens and their relatives by exploiting the underlying ontological
structures. Table [2[ shows that almost all of the pathogens we consider have some
relatives within the same family that have some phenotypic annotations in
PathoPhenoDB, and over two thirds within the same species (i.e., species, subspecies, or
strain).

Table 2. Coverage of phenotypic features through taxonomy. The percentages
stand for the proportion of pathogens that have relatives within the same family, genus
or species with phenotypic annotations and thus, have a vector representation.

Features Viruses Bacteria
Family Genus Species Family Genus Species
HP 100% 90% 7% 97% 97% 79%
MP 100% 90% 76% 98% 98% 83%
GO & HPUMPUGO  100% 89% 5% 98% 98% 83%
HPNMPNGO 100% 90% 5% 97% 97% 79%

While we want to learn phenotype representations from taxonomy, the training data
obtained from HPIDB may have pathogens that are closely related taxa; therefore, the
taxonomic propagation could simply transfer the information and make the prediction
task trivial and unrealistic to be generalizable for novel pathogens. To simulate what we
would expect to see for a novel pathogen that does not have any well-studied close
relatives, we further excluded from the training data, at each taxon fold, the interactions
from the same viral family for viruses and the same bacterial genus for bacteria.

We retrained the models with the extended set of pathogens and evaluated their
performance using LOOCV. Table 3| shows that there is more than 50% increase in the
number of interactions and pathogen taxa after the taxonomic propagation. Figure
shows the model performance after retraining with the extended set of pathogens. For
bacteria, the prediction model shows an increase in AUC for every feature of human
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proteins and for viruses the performance remains on a similar level. Again, the
intersection of phenotypic and functional features outperforms the others while the GO
features performs better than other individual features. Table [d] shows a summary of
the performances with and without the taxonomic propagation. We also test the model
performance without excluding close relatives and show the performance in

Table 3. Datasets used for predictions via taxonomy The numbers in brackets
indicate the increase in data after using the propagated representations via pathogen
taxonomy.

Features Viruses Bacteria
Interactions Taxa Proteins Interactions Taxa Proteins
HP 363 (+262) 98 (+74) 211 (+133) 47 (+29) 29 (+20) 34 (+16)
MP 829 (+615) 144 (+115) 510 (+336) 98 (+51) 40 (+25) 80 (+34)
GO 1125 (+834) 155 (+125) 746 (+499) 121 (+64) 42 (+26) 100 (+44)
HPUMPUGO 1126 (+835) 155 (+125) 747 (+500) 121 (+64) 42 (+26) 100 (+44)
HPNMPNGO 331 (+239) 96 (+73) 184 (+115) 47 (+29) 29 (+20) 34 (+16)
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0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Normalized rank Normalized rank
(a) Viruses (b) Bacteria

Fig 3. The TPR curves by normalized rank of proteins after using the
propagated representations of phenotypes via the taxonomy of pathogens.

Discussion

We developed an ontology-based method for predicting HPIs using the phenotypic,
functional and taxonomic features of pathogens and human proteins. Unlike previous
methods that target protein-protein interactions and utilize features from protein
structures and sequences [§], we focused on predicting pathogen-protein interactions and
use features that are relatively easy and fast to obtain from patients’ symptoms and
taxonomic identification of the pathogens.

Since the existing HPI prediction methods commonly predict interactions between
proteins (protein-protein interactions), our model of pathogen-protein interactions is not
directly comparable. However, we compare our results with the protein-based prediction
methods by combining the predicted human proteins for each pathogen across several
studies [33H35] and ranking them with our predicted score. The predicted protein
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Table 4. A summary of the model performances. The bold AUC values
represent, for each feature of human proteins and for virus and bacteria, the best model
performance before or after using the propagated representations via taxonomy.

Without propogation With propagation

Features Virus Bacteria Virus  Bacteria
HP 0.724 0.752 0.722 0.814
MP 0.737 0.562 0.717 0.683
GO 0.830 0.816 0.837 0.883
HPUMPUGO 0.824 0.800 0.825 0.862
HPAMPNGO 0.843 0.864 0.841 0.908

partners by these methods [33-35] are ranked significantly higher than other proteins
(Mann-Whitney U test; HIV: p = 6.57 x 1072%; HBV: p = 9.65 x 10~*; B. anthracis:

p = 0.014; F. tularensis: p = 5.68 x 1077; Y. pestis: p = 0.02; S. typhi:

p = 4.19 x 1078). This suggests that, although we are using very different features, our
method captures some common molecular mechanisms underlying pathogenesis that are
also predicted by protein-based prediction methods.

Phenotype-based approaches have been successful in predicting disease-gene
associations for Mendelian diseases |[16] but have not yet been used for prediction of
host-pathogen interactions for infectious diseases. Our results demonstrate that the
phenotypes associated with human proteins and protein functions (i.e., GO classes), can
generate accurate predictions. While GO classes have been shown to perform well in
HPT predictions [36,,37], they still rely on the sequence homology of pathogen proteins.
We only target interactions between pathogen taxa and host proteins instead of direct
protein-protein interactions, and therefore avoid the common bottleneck of identifying
the functions of pathogen proteins. Instead, we introduce a novel and — in the context
of infectious diseases — rarely explored type of feature, the phenotypes elicited by
pathogens in their hosts, as a “proxy” for the molecular mechanisms that result in the
phenotypes.

The focus of our method on utilizing features generated based on endo-phenotypes
observed in humans and mice [38] has the crucial advantage that we can identify
host-pathogen interactions that may contribute to particular signs and symptoms. For
example, our model predicts an interaction between Zika virus (NCBITaxon:64320) and
DDX3X (UniProt:000571). Infections with Zika virus have the potential to result in
abnormal embryogenesis and, specifically, microcephaly [39]. Phenotypes associated
with DDX3X in the mouse ortholog include abnormal embryogenesis, microcephaly, and
abnormal neural tube closure [40]. DDX3X mutations in humans have been found to
result in intellectual disability, specifically in females and affecting individuals in
dose-dependent manner [41]. While DDX3X has previously been linked to the
infectivity of Zika virus [42], our model further suggests a role of DDX3X in the
development of the embryogenesis phenotypes resulting from Zika virus infections.

The lack of phenotypic annotations is often a challenge for such phenotype-based
predictions, which is also the case for many pathogens in our study. We demonstrated
that by integrating a formalized taxonomy in our feature generation and propagating
phenotypic features via the pathogen taxonomy, not only did we greatly increase the
coverage of pathogen taxa but also improved the prediction performance. This suggests
that our model was able to learn high-level representations of the phenotypes caused by
pathogens across their taxonomic hierarchy. This is the first attempt, to our knowledge,
for a taxonomy ontology to be used in a machine learning method to transfer and
distribute information across different taxonomic levels. This method has the potential
to be extended to many applications where data are only present for some levels of
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taxonomy, such as the modeling of some other ecological systems where many species
interact.

Materials and methods

Data sources

We downloaded interactions between hosts and pathogens from the Host Pathogen
Interaction Database (HPIDB) [32] on July 16, 2018. The dataset contains 27,533
distinct interaction pairs of human proteins to pathogen species with the IntAct and
Virhostnet MI scores provided. We further filtered the interactions by the MI scores
with a threshold of 0.5, reducing the number of interaction pairs to 1,682. We obtained
phenotypes associated with pathogens from the PathoPhenoDB [26], a database of
manually curated and text-mined associations of pathogens, diseases and phenotypes.
We downloaded the version 1 of the PathoPhenoDB database
(http://patho.phenomebrowser.net/) on Oct 11, 2018. Similarly to the
implementation at the PathoPhenoDB web interface, species level taxa are also
annotated with the phenotypes of all their subclasses in the taxonomy of pathogens.

We downloaded phenotypes of human genes on August 26, 2018 from the Human
Phenotype Ontology (HPO) database. The dataset contains 3,777 human genes and
131,045 associations between human genes and HPO classes. We downloaded
phenotypes associated with mouse genes from the Mouse Genome Informatics (MGI)
database [22] on September 17, 2018, using the MGI_GenePheno.rpt file with 12,182
mouse genes and 165,892 associations of mouse genes and Mammalian Phenotype
ontology (MP) classes. We then associated MP classes with human genes by mapping
mouse genes to human genes based on the information about orthologous genes
provided in HMD_HumanPhenotype.rpt downloaded from MGI on July 16, 2018. We
remove all “no abnormal phenotype detected” (MP:0002169) annotations.

We mapped all the genes to Uniprot proteins using the Uniprot Retrieve/ID mapping
tool (https://www.uniprot.org/uploadlists), and used only reviewed Swissprot
mappings. We downloaded Gene Ontology (GO) annotations of human proteins from
the Gene Ontology website [241|25] on September 27, 2018. To identify broad taxonomic
groups, i.e., bacteria and viruses, we used the NCBI Taxonomy Categories file
(ftp://ftp.ncbi.nih.gov/pub/taxonomy) downloaded on September 3, 2018.

To obtain formal representations of phenotypes and GO classes, we downloaded the
cross-species PhenomeNET Ontology |16428] from the AberOWL ontology
repository [43] on September 13, 2018, and we downloaded the Gene Ontology [24,25|
from the Gene Ontology website on September 27, 2018. For taxonomy features, we
downloaded the NCBI Taxonomy in OWL format from the OBO Foundry website
(http://www.obofoundry.org/ontology/ncbitaxon.html) on October 8th, 2018.

Generation of feature embeddings

For feature generation, we used OPA2Vec [21], a tool that generates feature vectors
from entities and their annotation from ontologies. OPA2vec first generates a corpus
consisting of relevant annotations of pathogens and proteins (i.e., HP, MP, GO, and
NCBI Taxonomy classes), the complete set of class axioms and the metadata of the
ontologies. For OPA2Vec parameters, we used the default skipgram model with a
window size of 5 and a minimum count parameter of 2. We tested different embedding
sizes (i.e., 50, 100, 150, 200 and 300) and fixed the embedding size to 300 throughout

our experiments in this paper.
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Supervised prediction models

We trained an ANN as a binary classifier that predicts a sigmoid score of an interaction
between a host protein and a pathogen taxon, and we used leave-one-taxon-out
cross-validation to report performance results. During each taxon-fold, we use the
trained ANN to predict possible interacting proteins for the validation taxon. We
evaluate the prediction results by ranking the sigmoid scores of its true protein partners
among those of all the proteins. By aggregating the ranks of these true positive at each
taxon fold, we plotted a true positive rate (TPR) curve by the normalized ranks of
proteins and calculated an Area Under Curve (AUC) metric by trapezoidal rule for
integration. The AUC metric shows our model’s ability to prioritize the true protein
partners under the assumption that a perfectly random model will have an AUC of 0.5.
Due to the large number of negatives in relation to the positives, normalized ranks
approximate the true negative rate (TNR) and the AUC measure approximates the area
under the receiver operating characteristic (ROC) curve [44].

We obtained positives by extracting interaction pairs of human proteins and
pathogen taxa from HPIDB. To generate the negatives, we first generated all possible
combinations between all the proteins with a feature vector and pathogens that are in
the positives, and then randomly sampled within the ones that did not occur in the
positives. We treat all “unknown” interactions as negatives.

We searched for an optimal set of hyperparameters using the Hyperas library
(https://github.com/maxpumperla/hyperas) based on the TPE algorithm [45] for
one of our models (i.e., the model using only the HP features). After searching, we fixed
our parameters to the following throughout all the experiments: one hidden layer of 256
units with Rectified Linear Unit (ReLU) [46] as activation function; one batch
normalization layer; one dropout layer with a dropout rate of 0.52; one output layer
with a sigmoid activation function; the Adam optimizer with cross entropy as loss
function. We provide the complete list of hyperparameter search space and plot the
AUC by epoch relationship in The preprocessing and training pipeline is
provided as Jupyter Notebooks, which are available at
https://github.com/bio-ontology-research-group/hpi-predict.
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