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Abstract

Identification of host-pathogen interactions can reveal mechanistic insights of infectious
diseases for potential treatments and drug discoveries. Current computational methods
focus on the prediction of host–pathogen protein interactions and rely on our knowledge
of the sequences and functions of pathogen proteins, which is limited for many species,
especially for emerging pathogens. We developed an ontology-based machine learning
method that predicts potential interaction protein partners for pathogen taxa. Our
method exploits information about infectious disease mechanisms through features
learned from phenotypic, functional and taxonomic knowledge about pathogen taxa and
human proteins. Additionally, by propagating the phenotypic features of the pathogens
within a formal representation of pathogen taxonomy, we demonstrate that our model
can also accurately predict interaction protein partners for pathogens even without
known phenotypes, using a combination of their taxonomic relationships with other
pathogens and information from ontologies as background knowledge. Our results show
that the integration of phenotypic, functional and taxonomic knowledge not only
improves the prediction performance, but also enables us to investigate novel pathogens
in emerging infectious diseases.

Author summary

Infectious diseases are caused by various types of pathogens, such as bacteria and
viruses, and lead to millions of deaths each year, especially in low-income countries.
Researchers have been attempting to predict and study possible host-pathogen
interactions on a molecular level. Understanding these interactions can shed light on
how pathogens invade cells or disrupt the immune system. We propose a novel method
to predict such interactions by associating phenotypes (e.g., the signs and symptoms of
patients) associated with pathogens and phenotypes associated with human proteins.
We are able to accurately predict and prioritize possible protein partners for dozens of
pathogens. We further extended the prediction model by relating pathogens without
phenotypes with those with phenotypes through their taxonomic relationships. We
found that the addition of taxonomic knowledge greatly increased the number of
pathogens that we can study, without diminishing the accuracy of the model. To the
best of our knowledge, we are the first to predict host-pathogen interactions based on
phenotypes and taxonomy. Our work has important implications for new pathogens and
emerging infectious diseases that are not yet well-studied.
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Introduction 1

Infectious diseases from bacteria, viruses and fungi are one of the major causes of 2

deaths around the globe, especially in low-income regions [1]. Pathogens disrupt host 3

cell functions [2] and target immune pathways [3] through complex interactions among 4

proteins [4], RNA [5] and DNA [6]. The study of host-pathogen interactions (HPI) can 5

provide insights into molecular mechanisms underlying infectious diseases and enable 6

the development of novel therapeutic discoveries. For example, a previous study of 7

many HPIs showed that pathogens typically interact with the protein hubs (those with 8

many interaction partners) and bottlenecks (those of central location to important 9

pathways) in human protein-protein interaction (PPI) networks [4]. However, due to 10

high costs and time constraints, experimentally validated pairs of interacting 11

host-pathogen proteins are limited in number. Moreover, there exists a time delay for a 12

validated HPI to be included in a database of HPIs, often requiring text-mining 13

efforts [7]. Therefore, the computational prediction of HPIs is useful in suggesting 14

candidate interaction partners out of all the human proteins. 15

Existing HPI prediction methods typically focus on predicting protein interactions 16

and utilize features of interacting protein pairs, such as PPI network topology, 17

structural and sequential homology, or functional profiling such as Gene Ontology 18

similarity and KEGG pathway analysis [8]. While such protein-specific features exist for 19

some extensively studied pathogens, such as Mycobacterium tuberculosis [9], human 20

immunodeficiency virus [10], Salmonella and Yersinia [11], for most of the other 21

pathogens, especially the newly emerging ones, these features are scarce (or 22

non-existent) and expensive to obtain. As new virus species are discovered each year 23

with potentially many more to come [12], a method is needed to aggregate our existing 24

phenotypic, functional and taxonomic knowledge about HPIs and predict for pathogens 25

that are less well studied or even novel. 26

The phenotypes elicited by pathogens, i.e., the signs and symptoms observed in a 27

patient, may provide information about molecular mechanisms [13]. The information 28

that phenotypes provide about molecular mechanisms is commonly exploited in 29

computational studies of Mendelian disease mechanisms [14,15], for example to suggest 30

candidate genes [16,17] or diagnose patients [18], but can also be used to identify drug 31

targets [19] or gene functions [20]. To the best of our knowledge, phenotypes and 32

phenotype similarity have not yet been used to suggest host-pathogen interactions. 33

We use the hypothesis that phenotypes elicited by an infection with a pathogen are, 34

among others, the result of molecular interactions, and that knowledge of the 35

phenotypes in the host can be used to suggest the protein perturbations through which 36

these phenotypes arise. While a large number of phenotypes resulting from infections 37

are a consequence of immune system processes that are shared across a wide range of 38

different types of pathogens, certain hallmark phenotypes, such as decreased CD4 count 39

in infections with human immunodeficiency virus or microcephaly resulting from Zika 40

virus infections, can be used to suggest candidate host proteins through which these 41

phenotypes are elicited. Phenotypes shared across many pathogens could also 42

contribute to the prediction of interacting host proteins as well as the absence of certain 43

phenotypes. 44

We developed a method to predict candidate interacting proteins for pathogens by 45

integrating phenotypic, functional and taxonomic information about pathogens and 46

human proteins. Relying on recent progress in deep learning with structured and 47

semantic data [21], we construct a model that combines this information as well as 48

structured information about taxonomic relations between pathogens to predict 49

host-pathogen interactions. We demonstrate that our model can not only accurately 50

predict the interacting protein partners for pathogens with phenotypic information, but 51

also their relatives without phenotypes by aggregating knowledge through the taxonomy. 52
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Results 53

Feature generation and representation learning for human 54

proteins and pathogens 55

We first generated feature vectors for pathogens and human proteins based on different 56

sets of features, and then trained an artificial neural network model (ANN) for 57

predicting their interactions. We follow the workflow shown in Figure 1.

Fig 1. An illustration of our overall workflow.

58

The first step in our method is the generation of features that represent a pathogen 59

or a human protein. We represent human proteins through their associated phenotypes, 60

the phenotypes associated with their mouse orthologs, and their functions. We obtained 61

loss-of-function phenotypes of mouse genes from the Mouse Genome Informatics (MGI) 62

database [22] and phenotype annotations of human genes from Human Phenotype 63

Ontology (HPO) database [23]. We obtained protein function annotations from the 64

Gene Ontology (GO) database [24,25]. For pathogens, we use the phenotype 65

annotations from the PathoPhenoDB [26], a database of pathogen-phenotype 66

associations, and taxonomic information from the NCBI Taxonomy [27]. 67

We represent the phenotypes, functions and taxonomic relations through ontologies. 68

To associate human and mouse phenotypes, we use the cross-species phenotype ontology 69

PhenomeNET [16,28], which combines the Human Phenotype Ontology (HP) [23] and 70

the Mammalian Phenotype Ontology (MP) [29]. To incorporate knowledge of protein 71

functions, we use the Gene Ontology [24,25]. For the taxonomic relations between 72

pathogens, we used the NCBI Taxonomy Ontology [27]. These ontologies contain 73

formalized biological background knowledge [30]. Using the information in ontologies as 74

background knowledge during feature generation has the potential to significantly 75

improve the performance of these features in machine learning and predictive 76

analyses [31]. 77

We use the OPA2Vec [21] method to generate features from annotations of pathogen 78

taxa and human proteins while using the ontologies that are used to express them as 79

background knowledge. To determine the effect of different annotations and ontologies 80

on the performance of our models, we generated feature vectors of human proteins from 81

human phenotype annotations, the phenotypes of their mouse orthologs, and functional 82
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annotations individually with their respective ontologies, as well as their union and 83

intersection by combining the annotations and merging the ontologies. 84

Phenotypic, functional and taxonomic prediction of interaction 85

partners 86

We first test our method on pathogens that have phenotype annotations in 87

PathoPhenoDB and use a merged representation of the PhenomeNet and NCBI 88

Taxonomy ontologies. We obtain high-confidence interaction pairs of pathogens and 89

human proteins from the Host-Pathogen Interaction Database (HPIDB) [32] as the 90

positive training data. We then train an ANN to predict host-pathogen interactions 91

using the feature vectors of pathogens and human proteins as input. We perform 92

leave-one-taxon-out cross-validation (LOOCV), in which we leave out one pathogen 93

taxon in our positive set for validation, and use all the other pathogens and their 94

interactions as training data. We evaluated our model by ranking the true positive 95

protein partners of the validation taxon (see Methods). We perform the training and 96

evaluation separately based on taxonomic groups, i.e., viruses and bacteria. Table 1 97

provides an overview over the underlying data used for these predictions, and Figure 2 98

shows the prediction results. 99

Table 1. Datasets used for phenotypic, functional and taxonomic
predictions. The features of human proteins are human phenotypes (HP), mouse
phenotypes (MP), gene ontology terms (GO), their union and their intersection. The
features of pathogens are phenotypes from PathoPhenoDB and taxonomic relations
from NCBI Taxonomy. The coverage shows the total number of proteins annotated with
the respective features. The number of unique interacting pairs, pathogen taxa and
human proteins are listed for both viruses and bacteria.

Features Coverage
Viruses Bacteria

Interactions Taxa Proteins Interactions Taxa Proteins

HP 3740 101 24 78 18 9 18
MP 9153 214 29 174 47 15 46
GO 18084 291 30 247 57 16 56

HP∪MP∪GO 18349 291 30 247 57 16 56
HP∩MP∩GO 2955 92 23 69 18 9 18

For both viruses and bacteria, the model using the intersection of phenotypic and 100

functional features has the best performance in prioritizing true protein partners. This 101

model is able to prioritize 50% of the true positives within the first 10% of all proteins. 102

The TPR curve of bacteria is less smooth compared to the viruses due to the limited 103

number of exact matches of bacterial taxa between HPIDB and PathoPhenoDB. To 104

compare with the effect of only using phenotypic features, we also generated feature 105

vectors for pathogens only using phenotypes and included the performance in S1 File. 106

Propagation of phenotypic features via pathogen taxonomy 107

The previous section only considers pathogens that have phenotypic annotations from 108

the associated infectious diseases in PathoPhenoDB, which presents a problem of 109

missing data: many pathogen taxa in HPIDB cannot be matched with those in 110

PathoPhenoDB at the exact taxon level and are ignored during training. To address the 111

taxonomic inconsistencies, we propagate information across a taxonomy: since we use a 112

merged representation from the PhenomeNet and NCBI Taxonomy ontologies during 113

feature generation, there can always be a representation of phenotypes for any pathogen 114
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(a) Viruses (b) Bacteria

Fig 2. The TPR curves by normalized rank of proteins The solid curves
represent the different features used to generate the feature vectors of human proteins.
The dashed line represents a random classifier.

taxon within the taxonomic hierarchy. The representation learned from taxonomy not 115

only increases the taxonomic coverage but also encodes phenotypic and taxonomic 116

information for pathogens and their relatives by exploiting the underlying ontological 117

structures. Table 2 shows that almost all of the pathogens we consider have some 118

relatives within the same family that have some phenotypic annotations in 119

PathoPhenoDB, and over two thirds within the same species (i.e., species, subspecies, or 120

strain). 121

Table 2. Coverage of phenotypic features through taxonomy. The percentages
stand for the proportion of pathogens that have relatives within the same family, genus
or species with phenotypic annotations and thus, have a vector representation.

Features
Viruses Bacteria

Family Genus Species Family Genus Species

HP 100% 90% 77% 97% 97% 79%
MP 100% 90% 76% 98% 98% 83%

GO & HP∪MP∪GO 100% 89% 75% 98% 98% 83%
HP∩MP∩GO 100% 90% 75% 97% 97% 79%

While we want to learn phenotype representations from taxonomy, the training data 122

obtained from HPIDB may have pathogens that are closely related taxa; therefore, the 123

taxonomic propagation could simply transfer the information and make the prediction 124

task trivial and unrealistic to be generalizable for novel pathogens. To simulate what we 125

would expect to see for a novel pathogen that does not have any well-studied close 126

relatives, we further excluded from the training data, at each taxon fold, the interactions 127

from the same viral family for viruses and the same bacterial genus for bacteria. 128

We retrained the models with the extended set of pathogens and evaluated their 129

performance using LOOCV. Table 3 shows that there is more than 50% increase in the 130

number of interactions and pathogen taxa after the taxonomic propagation. Figure 3 131

shows the model performance after retraining with the extended set of pathogens. For 132

bacteria, the prediction model shows an increase in AUC for every feature of human 133
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proteins and for viruses the performance remains on a similar level. Again, the 134

intersection of phenotypic and functional features outperforms the others while the GO 135

features performs better than other individual features. Table 4 shows a summary of 136

the performances with and without the taxonomic propagation. We also test the model 137

performance without excluding close relatives and show the performance in S1 File. 138

Table 3. Datasets used for predictions via taxonomy The numbers in brackets
indicate the increase in data after using the propagated representations via pathogen
taxonomy.

Features
Viruses Bacteria

Interactions Taxa Proteins Interactions Taxa Proteins

HP 363 (+262) 98 (+74) 211 (+133) 47 (+29) 29 (+20) 34 (+16)
MP 829 (+615) 144 (+115) 510 (+336) 98 (+51) 40 (+25) 80 (+34)
GO 1125 (+834) 155 (+125) 746 (+499) 121 (+64) 42 (+26) 100 (+44)

HP∪MP∪GO 1126 (+835) 155 (+125) 747 (+500) 121 (+64) 42 (+26) 100 (+44)
HP∩MP∩GO 331 (+239) 96 (+73) 184 (+115) 47 (+29) 29 (+20) 34 (+16)

(a) Viruses (b) Bacteria

Fig 3. The TPR curves by normalized rank of proteins after using the
propagated representations of phenotypes via the taxonomy of pathogens.

Discussion 139

We developed an ontology-based method for predicting HPIs using the phenotypic, 140

functional and taxonomic features of pathogens and human proteins. Unlike previous 141

methods that target protein-protein interactions and utilize features from protein 142

structures and sequences [8], we focused on predicting pathogen-protein interactions and 143

use features that are relatively easy and fast to obtain from patients’ symptoms and 144

taxonomic identification of the pathogens. 145

Since the existing HPI prediction methods commonly predict interactions between 146

proteins (protein-protein interactions), our model of pathogen-protein interactions is not 147

directly comparable. However, we compare our results with the protein-based prediction 148

methods by combining the predicted human proteins for each pathogen across several 149

studies [33–35] and ranking them with our predicted score. The predicted protein 150
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Table 4. A summary of the model performances. The bold AUC values
represent, for each feature of human proteins and for virus and bacteria, the best model
performance before or after using the propagated representations via taxonomy.

Features
Without propogation With propagation
Virus Bacteria Virus Bacteria

HP 0.724 0.752 0.722 0.814
MP 0.737 0.562 0.717 0.683
GO 0.830 0.816 0.837 0.883

HP∪MP∪GO 0.824 0.800 0.825 0.862
HP∩MP∩GO 0.843 0.864 0.841 0.908

partners by these methods [33–35] are ranked significantly higher than other proteins 151

(Mann-Whitney U test; HIV: p = 6.57× 10−23; HBV: p = 9.65× 10−4; B. anthracis: 152

p = 0.014; F. tularensis: p = 5.68× 10−7; Y. pestis: p = 0.02; S. typhi : 153

p = 4.19× 10−8). This suggests that, although we are using very different features, our 154

method captures some common molecular mechanisms underlying pathogenesis that are 155

also predicted by protein-based prediction methods. 156

Phenotype-based approaches have been successful in predicting disease-gene 157

associations for Mendelian diseases [16] but have not yet been used for prediction of 158

host-pathogen interactions for infectious diseases. Our results demonstrate that the 159

phenotypes associated with human proteins and protein functions (i.e., GO classes), can 160

generate accurate predictions. While GO classes have been shown to perform well in 161

HPI predictions [36,37], they still rely on the sequence homology of pathogen proteins. 162

We only target interactions between pathogen taxa and host proteins instead of direct 163

protein-protein interactions, and therefore avoid the common bottleneck of identifying 164

the functions of pathogen proteins. Instead, we introduce a novel and – in the context 165

of infectious diseases – rarely explored type of feature, the phenotypes elicited by 166

pathogens in their hosts, as a “proxy” for the molecular mechanisms that result in the 167

phenotypes. 168

The focus of our method on utilizing features generated based on endo-phenotypes 169

observed in humans and mice [38] has the crucial advantage that we can identify 170

host-pathogen interactions that may contribute to particular signs and symptoms. For 171

example, our model predicts an interaction between Zika virus (NCBITaxon:64320) and 172

DDX3X (UniProt:O00571). Infections with Zika virus have the potential to result in 173

abnormal embryogenesis and, specifically, microcephaly [39]. Phenotypes associated 174

with DDX3X in the mouse ortholog include abnormal embryogenesis, microcephaly, and 175

abnormal neural tube closure [40]. DDX3X mutations in humans have been found to 176

result in intellectual disability, specifically in females and affecting individuals in 177

dose-dependent manner [41]. While DDX3X has previously been linked to the 178

infectivity of Zika virus [42], our model further suggests a role of DDX3X in the 179

development of the embryogenesis phenotypes resulting from Zika virus infections. 180

The lack of phenotypic annotations is often a challenge for such phenotype-based 181

predictions, which is also the case for many pathogens in our study. We demonstrated 182

that by integrating a formalized taxonomy in our feature generation and propagating 183

phenotypic features via the pathogen taxonomy, not only did we greatly increase the 184

coverage of pathogen taxa but also improved the prediction performance. This suggests 185

that our model was able to learn high-level representations of the phenotypes caused by 186

pathogens across their taxonomic hierarchy. This is the first attempt, to our knowledge, 187

for a taxonomy ontology to be used in a machine learning method to transfer and 188

distribute information across different taxonomic levels. This method has the potential 189

to be extended to many applications where data are only present for some levels of 190
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taxonomy, such as the modeling of some other ecological systems where many species 191

interact. 192

Materials and methods 193

Data sources 194

We downloaded interactions between hosts and pathogens from the Host Pathogen 195

Interaction Database (HPIDB) [32] on July 16, 2018. The dataset contains 27,533 196

distinct interaction pairs of human proteins to pathogen species with the IntAct and 197

Virhostnet MI scores provided. We further filtered the interactions by the MI scores 198

with a threshold of 0.5, reducing the number of interaction pairs to 1,682. We obtained 199

phenotypes associated with pathogens from the PathoPhenoDB [26], a database of 200

manually curated and text-mined associations of pathogens, diseases and phenotypes. 201

We downloaded the version 1 of the PathoPhenoDB database 202

(http://patho.phenomebrowser.net/) on Oct 11, 2018. Similarly to the 203

implementation at the PathoPhenoDB web interface, species level taxa are also 204

annotated with the phenotypes of all their subclasses in the taxonomy of pathogens. 205

We downloaded phenotypes of human genes on August 26, 2018 from the Human 206

Phenotype Ontology (HPO) database. The dataset contains 3,777 human genes and 207

131,045 associations between human genes and HPO classes. We downloaded 208

phenotypes associated with mouse genes from the Mouse Genome Informatics (MGI) 209

database [22] on September 17, 2018, using the MGI GenePheno.rpt file with 12,182 210

mouse genes and 165,892 associations of mouse genes and Mammalian Phenotype 211

ontology (MP) classes. We then associated MP classes with human genes by mapping 212

mouse genes to human genes based on the information about orthologous genes 213

provided in HMD HumanPhenotype.rpt downloaded from MGI on July 16, 2018. We 214

remove all “no abnormal phenotype detected” (MP:0002169) annotations. 215

We mapped all the genes to Uniprot proteins using the Uniprot Retrieve/ID mapping 216

tool (https://www.uniprot.org/uploadlists), and used only reviewed Swissprot 217

mappings. We downloaded Gene Ontology (GO) annotations of human proteins from 218

the Gene Ontology website [24, 25] on September 27, 2018. To identify broad taxonomic 219

groups, i.e., bacteria and viruses, we used the NCBI Taxonomy Categories file 220

(ftp://ftp.ncbi.nih.gov/pub/taxonomy) downloaded on September 3, 2018. 221

To obtain formal representations of phenotypes and GO classes, we downloaded the 222

cross-species PhenomeNET Ontology [16,28] from the AberOWL ontology 223

repository [43] on September 13, 2018, and we downloaded the Gene Ontology [24,25] 224

from the Gene Ontology website on September 27, 2018. For taxonomy features, we 225

downloaded the NCBI Taxonomy in OWL format from the OBO Foundry website 226

(http://www.obofoundry.org/ontology/ncbitaxon.html) on October 8th, 2018. 227

Generation of feature embeddings 228

For feature generation, we used OPA2Vec [21], a tool that generates feature vectors 229

from entities and their annotation from ontologies. OPA2vec first generates a corpus 230

consisting of relevant annotations of pathogens and proteins (i.e., HP, MP, GO, and 231

NCBI Taxonomy classes), the complete set of class axioms and the metadata of the 232

ontologies. For OPA2Vec parameters, we used the default skipgram model with a 233

window size of 5 and a minimum count parameter of 2. We tested different embedding 234

sizes (i.e., 50, 100, 150, 200 and 300) and fixed the embedding size to 300 throughout 235

our experiments in this paper. 236
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Supervised prediction models 237

We trained an ANN as a binary classifier that predicts a sigmoid score of an interaction 238

between a host protein and a pathogen taxon, and we used leave-one-taxon-out 239

cross-validation to report performance results. During each taxon-fold, we use the 240

trained ANN to predict possible interacting proteins for the validation taxon. We 241

evaluate the prediction results by ranking the sigmoid scores of its true protein partners 242

among those of all the proteins. By aggregating the ranks of these true positive at each 243

taxon fold, we plotted a true positive rate (TPR) curve by the normalized ranks of 244

proteins and calculated an Area Under Curve (AUC) metric by trapezoidal rule for 245

integration. The AUC metric shows our model’s ability to prioritize the true protein 246

partners under the assumption that a perfectly random model will have an AUC of 0.5. 247

Due to the large number of negatives in relation to the positives, normalized ranks 248

approximate the true negative rate (TNR) and the AUC measure approximates the area 249

under the receiver operating characteristic (ROC) curve [44]. 250

We obtained positives by extracting interaction pairs of human proteins and 251

pathogen taxa from HPIDB. To generate the negatives, we first generated all possible 252

combinations between all the proteins with a feature vector and pathogens that are in 253

the positives, and then randomly sampled within the ones that did not occur in the 254

positives. We treat all “unknown” interactions as negatives. 255

We searched for an optimal set of hyperparameters using the Hyperas library 256

(https://github.com/maxpumperla/hyperas) based on the TPE algorithm [45] for 257

one of our models (i.e., the model using only the HP features). After searching, we fixed 258

our parameters to the following throughout all the experiments: one hidden layer of 256 259

units with Rectified Linear Unit (ReLU) [46] as activation function; one batch 260

normalization layer; one dropout layer with a dropout rate of 0.52; one output layer 261

with a sigmoid activation function; the Adam optimizer with cross entropy as loss 262

function. We provide the complete list of hyperparameter search space and plot the 263

AUC by epoch relationship in S2 File. The preprocessing and training pipeline is 264

provided as Jupyter Notebooks, which are available at 265

https://github.com/bio-ontology-research-group/hpi-predict. 266
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Supporting information

S1 File Model performance using only phenotypes for pathogens, and not
excluding close relatives.

S2 File Hyperas search space and AUC-epoch plots.

April 28, 2019 13/13

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 28, 2019. ; https://doi.org/10.1101/508762doi: bioRxiv preprint 

https://doi.org/10.1101/508762
http://creativecommons.org/licenses/by-nc/4.0/

